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Abstract

This paper studies two estimators for Gaussian moment tensors: the standard sample

moment estimator and a plug-in estimator based on Isserlis’s theorem. We establish

dimension-free, non-asymptotic error bounds that demonstrate and quantify the

advantage of Isserlis’s estimator for tensors of even order p > 2. Our bounds hold

in operator and entrywise maximum norms, and apply to symmetric and asymmetric

tensors.
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1 Introduction

This paper develops dimension-free, non-asymptotic theory for estimating Gaussian

moment tensors of arbitrary order. We study two estimators: the sample moment

estimator and a plug-in estimator based on Isserlis’s formula. Our non-asymptotic

bounds quantify the advantage of Isserlis’s estimator for tensors of even order p > 2,

both in operator and entrywise maximum norms. By studying the sample moment

estimator, this work contributes to the emerging literature on concentration inequalities

for random tensors [27, 30, 34, 33, 9, 11, 4, 12]; and by studying Isserlis’s estimator, it

contributes to the literature on estimating functionals of high and infinite-dimensional

parameters [16, 17, 20, 18]. More broadly, this work is motivated by the growing

adoption of tensor methods in statistics and machine learning [23, 21, 8, 10, 7, 13, 25],

which calls for new theory for high-dimensional tensor estimation.

The concentration of the sample covariance (the sample moment tensor of order

p = 2) has been extensively studied. Most pertinent to our work, the papers [28, 19]

identify a notion of effective dimension that determines the sample complexity. In

contrast to our results for even order p > 2, in the case p = 2 the sample covariance

matrix is known to be minimax optimal under the operator norm (see [22, Theorem

2] and [19, Theorem 4]). Sharp operator norm concentration inequalities for simple

random tensors of arbitrary order were recently established in [2, 12] using the effective

dimension from [28, 19]. In this paper, we prove a new sharp concentration inequality in
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On the estimation of Gaussian moment tensors

entrywise maximum norm using a notion of effective dimension introduced in [3, 4] to

analyze thresholding estimators for structured covariance operators.

Isserlis’s theorem expresses higher-order moments of a Gaussian distribution as func-

tionals of its covariance. Consequently, our problem falls within the general framework of

estimating functionals f(Σ) of a covariance operator Σ [16, 17], where plug-in estimators

f(Σ̂) based on the sample covariance Σ̂ are often severely biased and suboptimal [20, 18].

Bias reduction techniques —such as jackknife, bootstrap, and Taylor expansions— are

commonly used to improve efficiency. Our new dimension-free, non-asymptotic error

bounds for Isserlis’s estimator show that, in the context of estimating Gaussian moment

tensors, plug-in estimation via Isserlis’s formula performs well and strictly outperforms

the sample moment estimator.

2 Preliminaries

Given positive integers d1, . . . , dp and tensors T, T ′ ∈ R
d1×···×dp , their Frobenius inner

product is defined by

〈T, T ′〉 :=
d1∑

i1=1

d2∑

i2=1

· · ·
dp∑

ip=1

Ti1,...,ipT
′
i1,...,ip .

For vectors vk ∈ R
dk , 1 ≤ k ≤ p, let v1 ⊗ · · · ⊗ vp ∈ R

d1×···×dp denote their outer product,

defined entrywise by

(v1 ⊗ · · · ⊗ vp)`1,...,`p := v1,`1 · · · vp,`p ,

where vi,` denotes the `-th coordinate of vi. The operator norm of T ∈ R
d1×···×dp is

‖T‖ := sup
vk∈Sdk ,1≤k≤p

〈T, v1 ⊗ · · · ⊗ vp〉 ,

where Sdk := {v ∈ R
dk : |v| = 1} denotes the unit Euclidean sphere in R

dk . Similarly, the

entrywise maximum norm is defined by

‖T‖max := sup
vk∈Edk ,1≤k≤p

| 〈T, v1 ⊗ · · · ⊗ vp〉 |,

where Edk := {ei}dki=1 is the standard basis of Rdk .

We will consider two notions of effective dimension of a covariance matrix Σ ∈ R
d×d.

The first is

r2(Σ) :=
Tr(Σ)

‖Σ‖ ,

which will arise in our bounds in operator norm (see e.g. [19, 28]). The second is

rmax(Σ) :=

(
EX∼N (0,Σ)‖X‖∞

)2

‖Σ‖max
,

which arises in our bounds in entrywise maximum norm (see e.g. [5, 3, 4]).

For positive sequences {an}, {bn}, we write an . bn to denote that, for some constant

c > 0, an ≤ cbn. If both an . bn and bn . an hold, we write an � bn. We write .p and �p
to indicate that the implicit constant may depend on the parameter p.
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On the estimation of Gaussian moment tensors

3 Main results

This section contains our main results. In Subsection 3.1, we study the symmetric

case: moment tensors defined by expectation of the p-fold outer product of a single

random vector. In Subsection 3.2, we consider the asymmetric case: moment tensors

defined by expectation of the outer product of p random vectors of possibly different

dimensions. While the asymmetric case subsumes the symmetric one, we present first

the symmetric case due to its simplicity and its central role in theory and applications.

3.1 Symmetric case

Let X ∼ N (0,Σ) be a zero-mean Gaussian random vector in R
d with covariance

matrix Σ, and let X1, . . . , XN be i.i.d. copies of X. Let p be an even integer. Our goal is

to estimate the p-th order moment tensor

T := EX⊗p := EX ⊗ · · · ⊗X, (3.1)

which is the expectation of the p-fold tensor product of X.

A natural estimator is the sample moment estimator T̂S , defined by

T̂S :=
1

N

N∑

i=1

X⊗p
i . (3.2)

Entrywise, this corresponds to

(
T̂S
)
`1,...,`p

:=
1

N

N∑

i=1

Xi,`1 · · ·Xi,`p .

Alternatively, Isserlis’s theorem [15] (also known as Wick’s probability theorem [31])

provides an exact expression for Gaussian moment tensors in terms of second-order

moments. Specifically, for any multi-index (`1, . . . , `p),

(EX⊗p)`1,...,`p = E[X`1 · · ·X`p ] =
∑

π∈Π2
p

∏

(j,k)∈π

Σ`j ,`k ,

where Π2
p is the set of all pairwise partitions of {1, . . . , p}. This motivates Isserlis’s

estimator, which substitutes the sample covariance

Σ̂ :=
1

N

N∑

i=1

XiX
>
i

into the same expression. The resulting estimator is given entrywise by

(
T̂I
)
`1,...,`p

:=
∑

π∈Π2
p

∏

(j,k)∈π

Σ̂`j ,`k . (3.3)

Using the notion of induced likelihood [32], the plug-in estimator T̂I can be interpreted

as the maximum likelihood estimator of T.

Theorem 3.1 compares the performance of the two estimators, T̂S and T̂I , under both

the operator norm and the entrywise maximum norm.

Theorem 3.1. Let X ∼ N (0,Σ) be a zero-mean Gaussian random vector in R
d with

covariance matrix Σ, and let X1, . . . , XN be i.i.d. copies of X. For any even integer p, let

T, T̂S , and T̂I be as defined in equations (3.1), (3.2), and (3.3), respectively. Then the

following bounds hold.

ECP 30 (2025), paper 83.
Page 3/15

https://www.imstat.org/ecp



On the estimation of Gaussian moment tensors

(i) Operator norm bounds:

E‖T̂S − T‖ �p ‖Σ‖p/2
(√

r2(Σ)

N
+
r2(Σ)

p/2

N

)
,

E‖T̂I − T‖ .p ‖Σ‖p/2
(√

r2(Σ)

N
+

(
r2(Σ)

N

)p/2)
.

(ii) Entrywise maximum norm bounds:

E‖T̂S − T‖max �p ‖Σ‖p/2max

(√
rmax(Σ)

N
+
rmax(Σ)

p/2

N

)
,

E‖T̂I − T‖max .p ‖Σ‖p/2max

(√
rmax(Σ)

N
+

(
rmax(Σ)

N

)p/2)
.

Proof. (i) Operator norm bounds. The sample moment estimator bound follows by [2,

Theorem 2.1] (see also [1]). For T̂I , by Corollary 3.9, we have

‖T̂I − T‖
‖T‖ ≤ p

2
· ‖Σ̂− Σ‖

‖Σ‖

(
1 +

‖Σ̂− Σ‖
‖Σ‖

)p/2−1

.p
‖Σ̂− Σ‖
‖Σ‖ +

(‖Σ̂− Σ‖
‖Σ‖

)p/2
.

Further, by [19, Theorem 4], E‖Σ̂−Σ‖/‖Σ‖ �
√

r2(Σ)
N + r2(Σ)

N , which can be plugged into

the expression in the previous display to give the result.

(ii) Entrywise maximum norm bounds. For the sample moment estimator, the upper

bound is a direct corollary of Theorem 3.6. The lower bound follows by an analogous

argument to the one used in the proof of [2, Theorem 2.1] and is omitted for brevity. For

Isserlis’s estimator, the bound follows from Corollary 3.9.

Remark 3.2. Theorem 3.1 shows that consistent estimation of T using the sample

moment estimator T̂S requires a sample size N � (r2(Σ))
p/2 under the operator norm,

or N � (rmax(Σ))
p/2 under the entrywise maximum norm. In contrast, consistency of

Isserlis’s estimator T̂I only requires sample size N � r2(Σ) or N � rmax(Σ), leading to

a significant reduction in sample complexity.

Remark 3.3. The upper bounds for the sample moment tensor in Theorem 3.1 hold

for sub-Gaussian data. In contrast, our analysis of the Isserlis’s estimator is limited to

Gaussian data. An interesting question beyond the scope of this work is to leverage

the generalization of Isserlis’s theorem for isotropic distributions in [24, Theorem 3]

to define and analyze more general Isserlis’s-type estimators. Numerical results in [6]

suggest that the advantage of Isserlis’s-type estimators over the sample moment tensor

may carry over to isotropic, sub-Gaussian data.

The following theorem establishes a lower bound for Isserlis’s estimator.

Theorem 3.4. Let X ∼ N (0,Σ) be a zero-mean Gaussian random vector in R
d with

covariance matrix Σ, and let X1, . . . , XN be i.i.d. copies of X. For any even integer p,

let T and T̂I be as defined in equations (3.1) and (3.3), respectively. Then the following

bounds hold.

(i) Operator norm bound:

E‖T̂I − T‖ &p ‖Σ‖p/2
(

1

κ(Σ)p/2−1

√
r2(Σ)

N
+

(
r2(Σ)

N

)p/2)
,

where κ(Σ) := λmax(Σ)/λmin(Σ) is the condition number of Σ.
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(ii) Entrywise maximum norm bound:

E‖T̂I − T‖max &p ‖Σ‖p/2max

(
1

κ(D(Σ))p/2−1

√
rmax(Σ)

N
+

(
rmax(Σ)

N

)p/2)
,

where D(Σ) is the diagonal matrix with the same diagonal entries as Σ, and κ(D(Σ))

denotes the condition number of D(Σ).

Proof. (i) Operator norm bound. By Proposition 3.5 below, we have

‖T̂I − T‖
‖T‖ ≥ max

{
‖Σ̂− Σ‖
‖Σ‖

(
1

κ(Σ)

)p/2−1

,

(‖Σ̂− Σ‖
‖Σ‖

)p/2}
.

Taking expectations on both sides and substituting the bound E‖Σ̂− Σ‖/‖Σ‖ �
√

r2(Σ)
N +

r2(Σ)
N from [19, Theorem 4] yields the desired result.

(ii) Entrywise maximum norm bound. By Proposition 3.5 below,

‖T̂I − T‖max

‖T‖max
≥ max

{
‖D(Σ̂− Σ)‖max

‖D(Σ)‖max

(
1

κ(D(Σ))

)p/2−1

,

(‖D(Σ̂− Σ)‖max

‖D(Σ)‖max

)p/2}
.

A straightforward adaptation of the argument in [12, Proposition 3.1] and [2, Proposition

3.1] —replacing the operator norm with the entrywise maximum norm— yields

E‖D(Σ̂− Σ)‖max = E sup
v∈Ed

|〈(Σ̂− Σ)v, v〉| & ‖Σ‖max

(√
rmax(Σ)

N
+
rmax(Σ)

N

)
.

Taking expectations in the previous inequality, substituting this bound, and noting that

‖D(Σ)‖max = ‖Σ‖max completes the proof.

The following proposition, proved in Section 4, was used in the proof of Theorem 3.4.

Proposition 3.5. Let X ∼ N (0,ΣX) and Y ∼ N (0,ΣY ), and let TX := EX⊗p, TY :=

EY ⊗p. Then,

‖TX − TY ‖
‖TY ‖

≥ max

{
‖ΣX − ΣY ‖

‖ΣY ‖

(
1

κ(ΣY )

)p/2−1

,

(‖ΣX − ΣY ‖
‖ΣY ‖

)p/2}
,

where κ(ΣY ) := λmax(ΣY )/λmin(ΣY ) is the condition number of ΣY . Similarly, under the

entrywise maximum norm,

‖TX − TY ‖max

‖TY ‖max
≥ max

{
‖D(ΣX − ΣY )‖max

‖D(ΣY )‖max

(
1

κ(D(ΣY ))

)p/2−1

,

(‖D(ΣX − ΣY )‖max

‖D(ΣY )‖max

)p/2}
,

where D(ΣX − ΣY ) and D(ΣY ) denote the diagonal matrices with the same diagonal

entries as ΣX − ΣY and ΣY , respectively.

3.2 Asymmetric case

Let p be an even integer, and let X = (X(1), . . . , X(p)) ∈ R
d be a zero-mean Gaussian

random vector with covariance matrix Σ, where each block X(k) ∈ R
dk and

∑p
k=1 dk = d.

For each k ∈ {1, . . . , p}, denote the marginal covariance by Σ(k) := EX(k) ⊗X(k), and the

cross-covariance by Σ(j,k) := EX(j) ⊗X(k). Let X1, . . . , XN be i.i.d. copies of X, where

Xi = (X
(1)
i , . . . , X

(p)
i ). Our goal is to estimate the moment tensor

T := EX(1) ⊗ · · · ⊗X(p), (3.4)
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formed by taking the tensor product over the blocks of X.

A natural estimator is the sample moment estimator, defined as

T̂S :=
1

N

N∑

i=1

X
(1)
i ⊗ · · · ⊗X

(p)
i . (3.5)

Entrywise, this corresponds to

(
T̂S
)
`1,...,`p

:=
1

N

N∑

i=1

X
(1)
i,`1

· · ·X(p)
i,`p

.

Alternatively, by Isserlis’s theorem, for any multi-index (`1, . . . , `p),

(
EX(1) ⊗ · · · ⊗X(p)

)
`1,...,`p

= E[X
(1)
`1

· · ·X(p)
`p

] =
∑

π∈Π2
p

∏

(j,k)∈π

Σ
(j,k)
`j ,`k

,

where Π2
p denotes the set of pairwise partitions of {1, . . . , p}. This motivates Isserlis’s

estimator, which substitutes the sample covariances

Σ̂(j,k) :=
1

N

N∑

i=1

X
(j)
i (X

(k)
i )>

into the same expression. The resulting estimator is given entrywise by

(
T̂I
)
`1,...,`p

:=
∑

π∈Π2
p

∏

(j,k)∈π

Σ̂
(j,k)
`j ,`k

. (3.6)

Theorem 3.6 compares the performance of the two estimators, T̂S and T̂I , under both

the operator norm and the entrywise maximum norm.

Theorem 3.6. Let p be an even integer, and let X = (X(1), . . . , X(p)) ∈ R
d be a zero-

mean Gaussian random vector with covariance matrix Σ. For each k ∈ {1, . . . , p}, let
Σ(k) := EX(k) ⊗X(k), and for j, k ∈ {1, . . . , p}, let Σ(j,k) := EX(j) ⊗X(k). Let X1, . . . , XN

be i.i.d. copies of X, where Xi = (X
(1)
i , . . . , X

(p)
i ). Let T, T̂S , and T̂I be as defined in

equations (3.4), (3.5), and (3.6), respectively. Then the following bounds hold.

(i) Operator norm bounds:

E‖T̂S − T‖ .p

( p∏

k=1

‖Σ(k)‖1/2
)((∑p

k=1 r2(Σ
(k))

N

)1/2

+

∏p
k=1(r2(Σ

(k)) + logN)1/2

N

)
,

E‖T̂I − T‖ .p

( p∏

k=1

‖Σ(k)‖1/2
)(

max1≤k≤p r2(Σ
(k))

N

)1/2

, if N ≥ max
1≤k≤p

r2(Σ
(k)).

(ii) Entrywise maximum norm bounds:

E‖T̂S−T‖max .p

( p∏

k=1

‖Σ(k)‖1/2max

)((∑p
k=1 rmax(Σ

(k))

N

)1/2

+

∏p
k=1(rmax(Σ

(k))+logN)1/2

N

)
,

E‖T̂I − T‖max .p

( p∏

k=1

‖Σ(k)‖1/2max

)(
max1≤k≤p rmax(Σ

(k))

N

)1/2

, if N ≥ max
1≤k≤p

rmax(Σ
(k)).

Remark 3.7. The upper bounds on the deviation of sample moment estimator T̂S from

its expectation are sharp under both the operator norm and entrywise maximum norm

when the vectors X(1), . . . , X(p), together with their samples (X
(1)
i )Ni=1, . . . , (X

(p)
i )Ni=1, are
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mutually independent; see [12, Theorem 2.1] and Theorem 6.1. Consistent estimation of

T using the sample moment estimator T̂S requires a sample size satisfying

N �
p∏

k=1

(r2(Σ
(k)) + logN)1/2 or N �

p∏

k=1

(rmax(Σ
(k)) + logN)1/2

under the operator norm and the entrywise maximum norm, respectively. In contrast,

Isserlis’s estimator T̂I only requires sample size

N � max
1≤k≤p

r2(Σ
(k)) or N � max

1≤k≤p
rmax(Σ

(k))

for consistency under the respective norms, leading to a significant reduction in sample

complexity.

Proof of Theorem 3.6. First, for the sample moment estimator T̂S , the upper bound on its

deviation from T under the operator norm follows directly from [12, Theorem 2.1], while

the corresponding bound under the entrywise maximum norm is given by Theorem 6.1

in this paper. It remains to analyze Isserlis’s estimator T̂I .

We apply the upper bound in Proposition 3.8, which yields

‖T̂I − T‖ ≤
( p∏

k=1

‖Σ(k)‖1/2
)
(p− 1)!! · p

2
· ε∗(1 + ε∗)

p/2−1,

where

ε∗ := max
j 6=k

‖Σ̂(j,k) − Σ(j,k)‖
(
‖Σ(j,j)‖‖Σ(k,k)‖

)1/2 .

To control ε∗, we use the bound from [12, Remark 2.1 and page 21] for the sample

cross-covariance. For j, k ∈ {1, . . . , p} and any u ≥ 0, it holds with probability at least

1− exp(−u2) that

‖Σ̂(j,k) − Σ(j,k)‖
(
‖Σ(j,j)‖‖Σ(k,k)‖

)1/2 . u

(
r2(Σ

(j)) + r2(Σ
(k))

N

)1/2

+ u2
(r2(Σ

(j))r2(Σ
(k)))1/2

N
.

Applying a union bound over all j 6= k yields, with probability at least 1− p2 exp(−u2),

ε∗ = max
j 6=k

‖Σ̂(j,k) − Σ(j,k)‖
(
‖Σ(j,j)‖‖Σ(k,k)‖

)1/2

. max
j 6=k

{
u

(
r2(Σ

(j)) + r2(Σ
(k))

N

)1/2

+ u2
(r2(Σ

(j))r2(Σ
(k)))1/2

N

}

. u

(
max1≤k≤p r2(Σ

(k))

N

)1/2

+ u2
max1≤k≤p r2(Σ

(k))

N
.

Substituting this bound into the inequality for ‖T̂I − T‖, we obtain, with probability at

least 1− p2 exp(−u2):

‖T̂I − T‖ ≤
( p∏

k=1

‖Σ(k)‖1/2
)
(p− 1)!! · p

2
· ε∗(1 + ε∗)

p/2−1

.p

( p∏

k=1

‖Σ(k)‖1/2
)
(ε∗ + ε

p/2
∗ )
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.p

( p∏

k=1

‖Σ(k)‖1/2
)(

u

(
max1≤k≤p r2(Σ

(k))

N

)1/2

+ up
(
max1≤k≤p r2(Σ

(k))

N

)p/2)
.

Integrating the tail bound yields the following expectation bound:

E‖T̂I − T‖ .p

( p∏

k=1

‖Σ(k)‖1/2
)((

max1≤k≤p r2(Σ
(k))

N

)1/2

+

(
max1≤k≤p r2(Σ

(k))

N

)p/2)

�p
( p∏

k=1

‖Σ(k)‖1/2
)(

max1≤k≤p r2(Σ
(k))

N

)1/2

, if N ≥ max
1≤k≤p

r2(Σ
(k)).

An analogous argument yields the corresponding bound under the entrywise maximum

norm. This completes the proof.

The following proposition is used in the proof of Theorem 3.6, and its proof is deferred

to Section 5.

Proposition 3.8. Let p be an even integer, and let X = (X(1), . . . , X(p)) and Y =

(Y (1), . . . , Y (p)) be zero-mean Gaussian random vectors in R
d, where each X(k), Y (k) ∈

R
dk and d =

∑p
k=1 dk. For j, k ∈ {1, . . . , p}, denote the cross-covariance blocks by

Σ
(j,k)
X = EX(j) ⊗X(k), Σ

(j,k)
Y = EY (j) ⊗ Y (k).

Let

TX := EX(1) ⊗ · · · ⊗X(p), TY := EY (1) ⊗ · · · ⊗ Y (p),

denote the moment tensors formed by taking tensor products over the blocks of X and

Y , respectively. Then,

‖TX − TY ‖ ≤
( p∏

k=1

‖Σ(k,k)
Y ‖1/2

)
(p− 1)!! · p

2
· ε∗(1 + ε∗)

p/2−1,

where

ε∗ := max
j 6=k

‖Σ(j,k)
X − Σ

(j,k)
Y ‖

(
‖Σ(j,j)

Y ‖‖Σ(k,k)
Y ‖

)1/2 .

For the entrywise maximum norm, it similarly holds that

‖TX − TY ‖max ≤
( p∏

k=1

‖Σ(k,k)
Y ‖1/2max

)
(p− 1)!! · p

2
· ε̄∗(1 + ε̄∗)

p/2−1,

where

ε̄∗ := max
j 6=k

‖Σ(j,k)
X − Σ

(j,k)
Y ‖max(

‖Σ(j,j)
Y ‖max‖Σ(k,k)

Y ‖max

)1/2 .

Corollary 3.9. Let X ∼ N (0,ΣX) and Y ∼ N (0,ΣY ), and let TX := EX⊗p, TY := EY ⊗p.

Then,

‖TX − TY ‖
‖TY ‖

≤ p

2
· ‖ΣX − ΣY ‖

‖ΣY ‖

(
1 +

‖ΣX − ΣY ‖
‖ΣY ‖

)p/2−1

.

Similarly, under the entrywise maximum norm,

‖TX − TY ‖max

‖TY ‖max
≤ p

2
· ‖ΣX − ΣY ‖max

‖ΣY ‖max

(
1 +

‖ΣX − ΣY ‖max

‖ΣY ‖max

)p/2−1

.
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Proof of Corollary 3.9. Apply Proposition 3.8 with X(1) = · · · = X(p) =: X and Y (1) =

· · · = Y (p) =: Y , so that Σ
(j,k)
X =: ΣX and Σ

(j,k)
Y =: ΣY for all j, k ∈ {1, . . . , p}. The result

then follows from computing the norm of the reference tensor:

‖TY ‖ = ‖EY ⊗p‖ = sup
v∈Sd

E〈Y, v〉p = (p− 1)!! · ‖ΣY ‖p/2,

where the last equality uses the moment formula for centered Gaussian variables. The

bound under the entrywise maximum norm follows analogously.

4 Proof of Proposition 3.5

Proof of Proposition 3.5. We begin by observing that

‖TX − TY ‖ = sup
v∈Sd

|
〈
EX⊗p − EY ⊗p, v⊗p

〉
|

= sup
v∈Sd

|E〈X, v〉p − E〈Y, v〉p|

= (p− 1)!! sup
v∈Sd

∣∣∣〈ΣXv, v〉p/2 − 〈ΣY v, v〉p/2
∣∣∣

= (p− 1)!! sup
v∈Sd

|〈(ΣX − ΣY )v, v〉|
∣∣∣∣
p/2−1∑

`=0

〈ΣXv, v〉`〈ΣY v, v〉p/2−1−`

∣∣∣∣,

where the third equality uses the moment formula for centered Gaussian variables.

Taking the supremum over the first term and the infimum over the second yields

‖TX − TY ‖ ≥ (p− 1)!! sup
v∈Sd

|〈(ΣX − ΣY )v, v〉| · inf
v∈Sd

∣∣∣∣
p/2−1∑

`=0

〈ΣXv, v〉`〈ΣY v, v〉p/2−1−`

∣∣∣∣

≥ (p− 1)!!‖ΣX − ΣY ‖ · λmin(ΣY )
p/2−1.

Since ‖TY ‖ = (p− 1)!! ‖ΣY ‖p/2, it follows that

‖TX − TY ‖
‖TY ‖

≥ ‖ΣX − ΣY ‖
‖ΣY ‖

·
(

1

κ(ΣY )

)p/2−1

, (4.1)

where κ(ΣY ) := λmax(ΣY )/λmin(ΣY ) is the condition number of ΣY .

Next, let v be a unit eigenvector associated with the eigenvalue of ΣX −ΣY of largest

magnitude, so that 〈(ΣX − ΣY )v, v〉 = ±‖ΣX − ΣY ‖. If the sign is positive, we have

‖TX − TY ‖ ≥ (p− 1)!!
∣∣∣〈ΣXv, v〉p/2 − 〈ΣY v, v〉p/2

∣∣∣

= (p− 1)!!
∣∣∣
(
〈(ΣX − ΣY )v, v〉+ 〈ΣY v, v〉

)p/2 − 〈ΣY v, v〉p/2
∣∣∣

= (p− 1)!!
((

‖ΣX − ΣY ‖+ 〈ΣY v, v〉
)p/2 − 〈ΣY v, v〉p/2

)

≥ (p− 1)!!‖ΣX − ΣY ‖p/2.

If the sign is negative, a symmetric argument gives the same bound with ΣX and ΣY
interchanged. Therefore,

‖TX − TY ‖
‖TY ‖

≥ (p− 1)!!‖ΣX − ΣY ‖p/2
(p− 1)!!‖ΣY ‖p/2

=

(‖ΣX − ΣY ‖
‖ΣY ‖

)p/2
. (4.2)

Combining (4.1) and (4.2) yields the desired lower bound in operator norm.
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For the entrywise maximum norm, we first obtain a lower bound of the same form as

in the operator norm case, except that the supremum is now taken over the standard

basis vectors. Specifically,

‖TX − TY ‖max = sup
vk∈Ed,1≤k≤p

| 〈TX − TY , v1 ⊗ · · · ⊗ vp〉 |

≥ sup
v∈Ed

|
〈
TX − TY , v

⊗p
〉
|

= (p− 1)!! sup
v∈Ed

∣∣∣〈ΣXv, v〉p/2 − 〈ΣY v, v〉p/2
∣∣∣ ,

where Ed = {ei}di=1 denotes the standard basis of Rd. Then, the desired lower bound for

the entrywise maximum norm follows from the same argument as for the operator norm

case, with only minor modifications. We omit the details for brevity.

5 Proof of Proposition 3.8

Proof of Proposition 3.8. For arbitrary vectors v1 ∈ R
d1 , . . . , vp ∈ R

dp , we have

〈TX − TY , v1 ⊗ · · · ⊗ vp〉 =
〈
EX(1) ⊗ · · · ⊗X(p) − EY (1) ⊗ · · · ⊗ Y (p), v1 ⊗ · · · ⊗ vp

〉

= E

p∏

k=1

〈X(k), vk〉 − E

p∏

k=1

〈Y (k), vk〉

(i)
=
∑

π∈Π2
p

∏

(j,k)∈π

E〈X(j), vj〉〈X(k), vk〉 −
∑

π∈Π2
p

∏

(j,k)∈π

E〈Y (j), vj〉〈Y (k), vk〉

=
∑

π∈Π2
p

( ∏

(j,k)∈π

〈Σ(j,k)
X vj , vk〉 −

∏

(j,k)∈π

〈Σ(j,k)
Y vj , vk〉

)
.

Here, (i) follows from Isserlis’s theorem, and Π2
p denotes the set of pairwise partitions of

{1, . . . , p}. Denoting by π = (π(1), . . . , π(p)) a fixed ordering of the indices in the pairing

π, and applying the telescoping identity

a1 · · · ap/2 − b1 · · · bp/2 =

p/2∑

`=1

a1 · · · a`−1 (a` − b`) b`+1 · · · bp/2,

we obtain

〈TX − TY , v1 ⊗ · · · ⊗ vp〉 =
∑

π∈Π2
p

( ∏

(j,k)∈π

〈Σ(j,k)
X vj , vk〉 −

∏

(j,k)∈π

〈Σ(j,k)
Y vj , vk〉

)

=
∑

π∈Π2
p

p/2∑

`=1

[( `−1∏

s=1

〈Σ(π(2s−1),π(2s))
X vπ(2s−1), vπ(2s)〉

)

× 〈(Σ(π(2`−1),π(2`))
X −Σ

(π(2`−1),π(2`))
Y )vπ(2`−1), vπ(2`)〉

( p/2∏

s=`+1

〈Σ(π(2s−1),π(2s))
Y vπ(2s−1), vπ(2s)〉

)]
.

To bound the operator norm, we take the supremum over v1 ∈ Sd1 , . . . , vp ∈ Sdp ,

‖TX − TY ‖ = sup
vk∈Sdk ,1≤k≤p

|〈TX − TY , v1 ⊗ · · · ⊗ vp〉|

= sup
vk∈Sdk ,1≤k≤p

∣∣∣∣
∑

π∈Π2
p

p/2∑

`=1

( `−1∏

s=1

〈Σ(π(2s−1),π(2s))
X vπ(2s−1), vπ(2s)〉

)
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×〈(Σ(π(2`−1),π(2`))
X −Σ

(π(2`−1),π(2`))
Y )vπ(2`−1), vπ(2`)〉

( p/2∏

s=`+1

〈Σ(π(2s−1),π(2s))
Y vπ(2s−1), vπ(2s)〉

)∣∣∣∣

≤
∑

π∈Π2
p

p/2∑

`=1

[
sup

vk∈Sdk ,1≤k≤p

∣∣∣∣
( `−1∏

s=1

〈Σ(π(2s−1),π(2s))
X vπ(2s−1), vπ(2s)〉

)

×〈(Σ(π(2`−1),π(2`))
X −Σ

(π(2`−1),π(2`))
Y )vπ(2`−1), vπ(2`)〉

( p/2∏

s=`+1

〈Σ(π(2s−1),π(2s))
Y vπ(2s−1), vπ(2s)〉

)∣∣∣∣

]

=
∑

π∈Π2
p

p/2∑

`=1

[( `−1∏

s=1

‖Σ(π(2s−1),π(2s))
X ‖

)

× ‖Σ(π(2`−1),π(2`))
X − Σ

(π(2`−1),π(2`))
Y ‖

( p/2∏

s=`+1

‖Σ(π(2s−1),π(2s))
Y ‖

)]
.

For j, k ∈ {1, . . . , p}, we introduce the normalized deviation ε(j,k) :=
‖Σ

(j,k)
X −Σ

(j,k)
Y ‖(

‖Σ
(j,j)
Y ‖‖Σ

(k,k)
Y ‖

)1/2

and define ε∗ := maxj 6=k ε
(j,k). Using that ‖Σ(j,k)

Y ‖ ≤ ‖Σ(j,j)
Y ‖1/2‖Σ(k,k)

Y ‖1/2, we obtain

‖TX − TY ‖ ≤
∑

π∈Π2
p

p/2∑

`=1

[( `−1∏

s=1

‖Σ(π(2s−1),π(2s))
X ‖

)

× ‖Σ(π(2`−1),π(2`))
X − Σ

(π(2`−1),π(2`))
Y ‖

( p/2∏

s=`+1

‖Σ(π(2s−1),π(2s))
Y ‖

)]

≤
∑

π∈Π2
p

p/2∑

`=1

[( `−1∏

s=1

‖Σ(π(2s−1),π(2s−1))
Y ‖1/2‖Σ(π(2s),π(2s))

Y ‖1/2
(
1 + ε(π(2s−1),π(2s))

))

×
(
‖Σ(π(2`−1),π(2`−1))

Y ‖1/2‖Σ(π(2`),π(2`))
Y ‖1/2ε(π(2`−1),π(2`))

)

×
( p/2∏

s=`+1

‖Σ(π(2s−1),π(2s−1))
Y ‖1/2‖Σ(π(2s),π(2s))

Y ‖1/2
)]

=

( p∏

k=1

‖Σ(k,k)
Y ‖1/2

) ∑

π∈Π2
p

p/2∑

`=1

ε(π(2`−1),π(2`))
`−1∏

s=1

(
1 + ε(π(2s−1),π(2s))

)
.

Using the identity
p/2∑

`=1

a`

`−1∏

s=1

(1 + as) =

p/2∏

`=1

(1 + a`)− 1,

we conclude that

‖TX − TY ‖ ≤
( p∏

k=1

‖Σ(k,k)
Y ‖1/2

) ∑

π∈Π2
p

( p/2∏

`=1

(
1 + ε(π(2`−1),π(2`))

)
− 1

)

≤
( p∏

k=1

‖Σ(k,k)
Y ‖1/2

)
(p− 1)!!

(
(1 + ε∗)

p/2 − 1
)

≤
( p∏

k=1

‖Σ(k,k)
Y ‖1/2

)
(p− 1)!! · p

2
· ε∗(1 + ε∗)

p/2−1,
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where we used the inequality (1 + ε∗)
p/2 − 1 ≤ p

2 · ε∗(1 + ε∗)
p/2−1.

The bound under the entrywise maximum norm follows from an analogous argument,

replacing the supremum over the unit spheres Sd1 , . . . ,Sdp with the supremum over the

standard bases Edk = {ei}dki=1 for 1 ≤ k ≤ p. This completes the proof.

6 Entrywise maximum norm bound for sample moment tensor

Theorem 6.1. For any integer p ≥ 2 and 1 ≤ k ≤ p, let X(k), X
(k)
1 , . . . , X

(k)
N be i.i.d.

zero-mean Gaussian random vectors in R
dk with covariance matrix Σ(k). Then,

E

∥∥∥∥
1

N

N∑

i=1

X
(1)
i ⊗ · · · ⊗X

(p)
i − EX(1) ⊗ · · · ⊗X(p)

∥∥∥∥
max

.p

( p∏

k=1

‖Σ(k)‖1/2max

)
EN

(
(Σ(k))pk=1

)
,

where

EN

(
(Σ(k))pk=1

)
:=

(∑p
k=1 rmax(Σ

(k))

N

)1/2

+
1

N

p∏

k=1

(
rmax(Σ

(k)) + logN
)1/2

.

Moreover, the upper bound is sharp in the following two cases:

1. Independent Components. If X(1), . . . , X(p), (X
(1)
i )Ni=1, . . . , (X

(p)
i )Ni=1 are mutually

independent, then

E

∥∥∥∥
1

N

N∑

i=1

X
(1)
i ⊗· · ·⊗X(p)

i −EX(1)⊗· · ·⊗X(p)

∥∥∥∥
max

�p
( p∏

k=1

‖Σ(k)‖1/2max

)
EN

(
(Σ(k))pk=1

)
.

2. Identical Components. If X(1) = · · · = X(p) = X and X
(1)
i = · · · = X

(p)
i = Xi for all

1 ≤ i ≤ N , Σ(1) = · · · = Σ(p) = Σ, then

E

∥∥∥∥
1

N

N∑

i=1

X⊗p
i − EX⊗p

∥∥∥∥
max

�p ‖Σ‖p/2max

(√
rmax(Σ)

N
+

(rmax(Σ) + logN)p/2

N

)
.

Furthermore, since (logN)p/2/N .p 1/
√
N , this bound simplifies to

E

∥∥∥∥
1

N

N∑

i=1

X⊗p
i − EX⊗p

∥∥∥∥
max

�p ‖Σ‖p/2max

(√
rmax(Σ)

N
+
rmax(Σ)

p/2

N

)
.

Remark 6.2. The upper bound in Theorem 6.1 holds without requiring independence

between the sequences (X
(k)
i )Ni=1 and (X

(k′)
i )Ni=1 for k 6= k′; that is, no assumptions are

made on the correlation structure across components. Moreover, the upper bound in

Theorem 6.1 extends directly to sub-Gaussian settings. Dimension-dependent counter-

parts can also be derived by applying standard ε-net arguments in conjunction with the

α-sub-exponential concentration inequality of [14].

Proof of Theorem 6.1. Upper bound By the definition of the entrywise maximum norm,

we have

E

∥∥∥∥
1

N

N∑

i=1

X
(1)
i ⊗ · · · ⊗X

(p)
i − EX(1) ⊗ · · · ⊗X(p)

∥∥∥∥
max

= E max
vk∈Edk ,1≤k≤p

∣∣∣∣
1

N

N∑

i=1

p∏

k=1

〈X(k)
i , vk〉 − E

p∏

k=1

〈X(k), vk〉
∣∣∣∣,
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where Edk = {ei}dki=1 denotes the standard basis of Rdk . Let Ēdk := Edk ∪−Edk , and define

F (k) := {〈·, v〉 : v ∈ Ēdk} for 1 ≤ k ≤ p. Then the maximum can be upper bounded by

E sup
f(k)∈F(k),1≤k≤p

∣∣∣∣
1

N

N∑

i=1

p∏

k=1

f (k)(X
(k)
i )− E

p∏

k=1

f (k)(X(k))

∣∣∣∣.

Applying [12, Theorem 2.2], we obtain

E sup
f(k)∈F(k),1≤k≤p

∣∣∣∣
1

N

N∑

i=1

p∏

k=1

f (k)(X
(k)
i )− E

p∏

k=1

f (k)(X(k))

∣∣∣∣

.p

( p∏

k=1

dψ2(F (k))

)(∑p
k=1 γ̄(F (k), ψ2)√

N
+

∏p
k=1

(
γ̄(F (k), ψ2) + (logN)1/2

)

N

)
, (6.1)

where γ̄(F (k), ψ2) := γ(F (k), ψ2)/dψ2
(F (k)). Here, γ(F , ψ2) denotes Talagrand’s generic

chaining complexity of the function class F [26, Definition 2.7.3], dψ2
(F) := supf∈F ‖f‖ψ2

,

and ψ2 refers to the Orlicz norm with Orlicz function ψ(x) = ex
2 − 1, see e.g. [29,

Definition 2.5.6].

Since X(k) is Gaussian with covariance Σ(k), the ψ2-norm of linear functionals is

equivalent to the L2-norm. Hence,

dψ2(F (k)) = sup
f(k)∈F(k)

‖f (k)‖ψ2 � sup
f(k)∈F(k)

‖f (k)‖L2 = sup
v∈Ēdk

(
E〈X(k), v〉2

)1/2
= ‖Σ(k)‖1/2max.

For the generic chaining term, note that the canonical metric on Ēdk is given by

dX(k)(u, v) :=
(
E(〈X(k), u〉−〈X(k), v〉)2

)1/2
= 〈u−v,Σ(k)(u−v)〉1/2 = ‖〈·, u〉−〈·, v〉‖L2(µ(k)),

where µ(k) is the law of X(k). By Talagrand’s majorizing measure theorem [26, Theorem

2.10.1],

γ(F (k), ψ2) � γ(F (k), L2) = γ(Ēdk , dX(k)) � E sup
u∈Ēdk

〈X(k), u〉 = E‖X(k)‖∞.

We conclude that

dψ2(F (k)) � ‖Σ(k)‖1/2max, γ(F (k), ψ2) � E‖X(k)‖∞,

and therefore,

E

∥∥∥∥
1

N

N∑

i=1

X
(1)
i ⊗ · · · ⊗X

(p)
i − EX(1) ⊗ · · · ⊗X(p)

∥∥∥∥
max

.p

( p∏

k=1

‖Σ(k)‖1/2max

)
EN

(
(Σ(k))pk=1

)
,

where

EN

(
(Σ(k))pk=1

)
:=

(∑p
k=1 rmax(Σ

(k))

N

)1/2

+
1

N

p∏

k=1

(
rmax(Σ

(k)) + logN
)1/2

and rmax(Σ
(k)) :=

(
EX(k)∼N (0,Σ(k))‖X(k)‖∞

)2
/‖Σ(k)‖max.

Lower bound The lower bounds follow from straightforward modifications of the

argument in [12, Proposition 3.1] and [2, Proposition 3.1], respectively, by replacing the

operator norm with the entrywise maximum norm. We omit the details for brevity.
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