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Abstract

This paper studies two estimators for Gaussian moment tensors: the standard sample
moment estimator and a plug-in estimator based on Isserlis’s theorem. We establish
dimension-free, non-asymptotic error bounds that demonstrate and quantify the
advantage of Isserlis’s estimator for tensors of even order p > 2. Our bounds hold
in operator and entrywise maximum norms, and apply to symmetric and asymmetric
tensors.
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1 Introduction

This paper develops dimension-free, non-asymptotic theory for estimating Gaussian
moment tensors of arbitrary order. We study two estimators: the sample moment
estimator and a plug-in estimator based on Isserlis’s formula. Our non-asymptotic
bounds quantify the advantage of Isserlis’s estimator for tensors of even order p > 2,
both in operator and entrywise maximum norms. By studying the sample moment
estimator, this work contributes to the emerging literature on concentration inequalities
for random tensors [27, 30, 34, 33, 9, 11, 4, 12]; and by studying Isserlis’s estimator, it
contributes to the literature on estimating functionals of high and infinite-dimensional
parameters [16, 17, 20, 18]. More broadly, this work is motivated by the growing
adoption of tensor methods in statistics and machine learning [23, 21, 8, 10, 7, 13, 25],
which calls for new theory for high-dimensional tensor estimation.

The concentration of the sample covariance (the sample moment tensor of order
p = 2) has been extensively studied. Most pertinent to our work, the papers [28, 19]
identify a notion of effective dimension that determines the sample complexity. In
contrast to our results for even order p > 2, in the case p = 2 the sample covariance
matrix is known to be minimax optimal under the operator norm (see [22, Theorem
2] and [19, Theorem 4]). Sharp operator norm concentration inequalities for simple
random tensors of arbitrary order were recently established in [2, 12] using the effective
dimension from [28, 19]. In this paper, we prove a new sharp concentration inequality in
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On the estimation of Gaussian moment tensors

entrywise maximum norm using a notion of effective dimension introduced in [3, 4] to
analyze thresholding estimators for structured covariance operators.

Isserlis’s theorem expresses higher-order moments of a Gaussian distribution as func-
tionals of its covariance. Consequently, our problem falls within the general framework of
estimating functionals f(X) of a covariance operator > [16, 17], where plug-in estimators
f (E) based on the sample covariance S are often severely biased and suboptimal [20, 18].
Bias reduction techniques —such as jackknife, bootstrap, and Taylor expansions— are
commonly used to improve efficiency. Our new dimension-free, non-asymptotic error
bounds for Isserlis’s estimator show that, in the context of estimating Gaussian moment
tensors, plug-in estimation via Isserlis’s formula performs well and strictly outperforms
the sample moment estimator.

2 Preliminaries

Given positive integers dy, . .., d, and tensors T, T’ € R4 X4, their Frobenius inner
product is defined by

di  da
7
(LT =3 > - Z
i1=11i2=1 ip=1

Forvectors vy, € R*, 1 <k <p,letv @ - - ® vp € R4 *x*dy» denote their outer product,
defined entrywise by

(V1 ® - ®Vp)ey,...e, = V1,0, " VUpt,,

where v; , denotes the /-th coordinate of v;. The operator norm of 7' € Rérxxdp jg

1Tl == sup  (T,u1 @ @uy),
v €S%h 1<k<p

where S% := {v € R% : |v| = 1} denotes the unit Euclidean sphere in R%. Similarly, the
entrywise maximum norm is defined by

HT”max = sup |<T,’U1®"'®Up>|,
v €EYk 1<k<p

where £% := {¢;}*, is the standard basis of R%:.
We will consider two notions of effective dimension of a covariance matrix ¥ € R4*4.
The first is

Tr(X%)

7"2(2) = W,

which will arise in our bounds in operator norm (see e.g. [19, 28]). The second is

2
(Ex o)X ls0)
12| max ’

Tmax(2) 1=

which arises in our bounds in entrywise maximum norm (see e.g. [5, 3, 4]).
For positive sequences {a,}, {b,}, we write a,, < b,, to denote that, for some constant

~

¢ >0, an < cby,. If both a,, < b, and b, < a, hold, we write a,, < b,,. We write <, and =,

~

to indicate that the implicit constant may depend on the parameter p.
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On the estimation of Gaussian moment tensors

3 Main results

This section contains our main results. In Subsection 3.1, we study the symmetric
case: moment tensors defined by expectation of the p-fold outer product of a single
random vector. In Subsection 3.2, we consider the asymmetric case: moment tensors
defined by expectation of the outer product of p random vectors of possibly different
dimensions. While the asymmetric case subsumes the symmetric one, we present first
the symmetric case due to its simplicity and its central role in theory and applications.

3.1 Symmetric case

Let X ~ N(0,X) be a zero-mean Gaussian random vector in R¢ with covariance
matrix ¥, and let X;,..., Xy be i.i.d. copies of X. Let p be an even integer. Our goal is
to estimate the p-th order moment tensor

T=EX®” =EX® - ®X, (3.1)

which is the expectation of the p-fold tensor product of X.
A natural estimator is the sample moment estimator 75, defined by

1 N
e ®p
Ts = N E X, (3.2)

i=1

Entrywise, this corresponds to

~

| X
(Ts)el,...,e,, =N ZXi,fl X,
i=1

Alternatively, Isserlis’s theorem [15] (also known as Wick’s probability theorem [31])
provides an exact expression for Gaussian moment tensors in terms of second-order
moments. Specifically, for any multi-index (¢4, ..., ¢,),

(EX®P)ey ot =E[Xe, - Xe, )= D T Ze
m€ell2 (j,k)en

where H127 is the set of all pairwise partitions of {1,...,p}. This motivates Isserlis’s
estimator, which substitutes the sample covariance

1N
- T
L= Z XX,
i=1
into the same expression. The resulting estimator is given entrywise by

(ff)zl,...,zp = Z H izj,ék- (3.3)

m€ll2 (j,k)en

Using the notion of induced likelihood [32], the plug-in estimator IA“I can be interpreted
as the maximum likelihood estimator of T

Theorem 3.1 compares the performance of the two estimators, fg and JA“I, under both
the operator norm and the entrywise maximum norm.

Theorem 3.1. Let X ~ N(0,%) be a zero-mean Gaussian random vector in R? with
covariance matrix ¥, and let X1, ..., Xy be i.i.d. copies of X. For any even integer p, let
T, fg, and fl be as defined in equations (3.1), (3.2), and (3.3), respectively. Then the
following bounds hold.
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On the estimation of Gaussian moment tensors

(i) Operator norm bounds:

~ » $)\p/2
M%—ﬂwumwﬂ M>+”<))7

N N
p/2
Tr — < p/2 @ r2(%)
BIT - 71 5 11 (20 + (20) )

(ii) Entrywise maximum norm bounds:

-~ max E max E p/2
E%—mmxmmW(T‘(Nf‘())

max N N
5 ) (rmax(D))"?
BT — Tlhmax Sp IS (1) T2 max .
I = Tlhows p 12120 (25 (2

Proof. (i) Operator norm bounds. The sample moment estimator bound follows by [2,
Theorem 2.1] (see also [1]). For T}, by Corollary 3.9, we have

- « « 2—-1 - « 2
nn—Tn<pwm—an nz—z>” | UE—M)”_
Il =27 ] 1] ~ s B

Further, by [19, Theorem 4], B[S — X||/[|Z]| < /22 4 22 which can be plugged into
the expression in the previous display to give the result.

(ii) Entrywise maximum norm bounds. For the sample moment estimator, the upper
bound is a direct corollary of Theorem 3.6. The lower bound follows by an analogous
argument to the one used in the proof of [2, Theorem 2.1] and is omitted for brevity. For

Isserlis’s estimator, the bound follows from Corollary 3.9. O

Remark 3.2. Theorem 3.1 shows that consistent estimation of 7" using the sample
moment estimator T requires a sample size N > (r5(X))?/2 under the operator norm,
or N > (rmax(X))?/? under the entrywise maximum norm. In contrast, consistency of
Isserlis’s estimator fl only requires sample size N > r3(X) or N > rpax(2), leading to
a significant reduction in sample complexity.

Remark 3.3. The upper bounds for the sample moment tensor in Theorem 3.1 hold
for sub-Gaussian data. In contrast, our analysis of the Isserlis’s estimator is limited to
Gaussian data. An interesting question beyond the scope of this work is to leverage
the generalization of Isserlis’s theorem for isotropic distributions in [24, Theorem 3]
to define and analyze more general Isserlis’s-type estimators. Numerical results in [6]
suggest that the advantage of Isserlis’s-type estimators over the sample moment tensor
may carry over to isotropic, sub-Gaussian data.

The following theorem establishes a lower bound for Isserlis’s estimator.

Theorem 3.4. Let X ~ N(0,%) be a zero-mean Gaussian random vector in R? with
covariance matrix ¥, and let X1,..., Xy be i.i.d. copies of X. For any even integer p,
let T and ZA} be as defined in equations (3.1) and (3.3), respectively. Then the following
bounds hold.

(i) Operator norm bound:

R 1 , (Z) r (2) p/2
_7| > p/2 2 2
E|T; =T Zp [IZ]] (K(E)p/Q—l N ( N ’

where k(X)) := Apax(2)/Amin () is the condition number of ¥..
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(ii) Entrywise maximum norm bound:

~ 1 Tmax () Tmax (%) v/
_ > p/2
EHT] T”max ~Pp ||E|max<H(D(Z))p/2—1 N + ( N )

where D(X) is the diagonal matrix with the same diagonal entries as %, and x(D(X))
denotes the condition number of D(X).

Proof. (i) Operator norm bound. By Proposition 3.5 below, we have

[ A - ||i—z||< 1 >/ (ni—m)m |
I = = \s®/) "\
TQ(Z)

Taking expectations on both sides and substituting the bound E||S — S||/||Z|| = 7+

% from [19, Theorem 4] yields the desired result.

(ii) Entrywise maximum norm bound. By Proposition 3.5 below,

17 = Tl S IDE = Dl (L7 (IDE = 5 max |
Tl { [D(Z) max (K<D<z>>> ( ID(Z)max ) }

A straightforward adaptation of the argument in [12, Proposition 3.1] and [2, Proposition
3.1] —replacing the operator norm with the entrywise maximum norm— yields

=N -~ Tmax E Tmax E
ED(z—mnmax:Esup|<<z—2>v»v>|2“2W( N( Ly N( ))'
vegd

Taking expectations in the previous inequality, substituting this bound, and noting that
ID(2) |lmax = ||X]|max completes the proof. O

The following proposition, proved in Section 4, was used in the proof of Theorem 3.4.
Proposition 3.5. Let X ~ N (0,Xx) and Y ~ N(0,%y), and let Tx = EX®P, Ty =
EY®P, Then,

2—-1 2
ITx ~Tv] |zx—zy||< 1 )”/ (IIEX—Zle>”/
Il = =l \sEy)/) Y] ’

where k(Xy) := Amax(Zy)/Amin(Zv) is the condition number of Xy . Similarly, under the
entrywise maximum norm,

ITx = T [lmax ID(Ex = Zy)llmax 1L \2 7ID(Ex = 3y)llnax \ 72
———————— > max R
||TY||max ”D(EY)Hmax "E(D(EY)) HD(EY)”maX

where D(Xx — Xy ) and D(Xy) denote the diagonal matrices with the same diagonal
entries as X x — Xy and Xy, respectively.

3.2 Asymmetric case

Let p be an even integer, and let X = (X ... X)) ¢ R? be a zero-mean Gaussian
random vector with covariance matrix ¥, where each block X*) € R and >-%_, d; = d.
For each k € {1,...,p}, denote the marginal covariance by £*) := EX(*) @ X(*), and the
cross-covariance by LU*) .= EX0) @ X*) Let X;,..., Xy be i.i.d. copies of X, where
X = (Xi(l)7 e 7Xi(p)). Our goal is to estimate the moment tensor

T=ExXWg...0x@), (3.4)
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On the estimation of Gaussian moment tensors

formed by taking the tensor product over the blocks of X.
A natural estimator is the sample moment estimator, defined as

N
_1 & ()
_NZXi ®---0X7. (3.5)
Entrywise, this corresponds to
7 O x®
(TS l1,...,0 7ZXZ[1 ’ 17pp
Alternatively, by Isserlis’s theorem, for any multi-index (¢1,...,4,),
1 _ (1) (p) k)
(EX( )®...®X(P))ehm’ep _]E[le Xp Z H zlk’
n€ll2 (j,k)en
where Hf, denotes the set of pairwise partitions of {1,...,p}. This motivates Isserlis’s

estimator, which substitutes the sample covariances

N
~ . 1 .
k) A
S0P = =3 x9(x®
i=1
into the same expression. The resulting estimator is given entrywise by

(T = > 11 =25 (3.6)

m€ell2 (j,k)em

Theorem 3.6 compares the performance of the two estimators, fs and ZA}, under both
the operator norm and the entrywise maximum norm.
Theorem 3.6. Let p be an even integer, and let X = (X1 ,..., X)) € R? be a zero-
mean Gaussian random vector with covariance matrix ¥.. For each k € {1,...,p}, let
»*) = EX® @ X*), and for j, k € {1,...,p}, let ZUHF) .= EXU) @ X*), Let X;,..., Xn
be i.i.d. copies of X, where X; = (Xi(l), . ,Xi(p)). Let T, ’fg, and T; be as defined in

equations (3.4), (3.5), and (3.6), respectively. Then the following bounds hold.

(i) Operator norm bounds:

p p (k)\\ 1/2 p (k) 1/2
~ ) b)) + log N
E|Ts — T <p < I I |E(k)”1/2> <<Zk_1 o )> R >’
k=1

N N

= < T s 1y2 ) ((maxicrap ra (W) 2o (k)
BIT) - 71 5, (T 1m0 2 ) (=2 2E) i v s ()

(ii) Entrywise maximum norm bounds:

P P (k)\\ 1/2 P (k) 1/2
) —1 "max(Z'") H — (rmaX(Z )‘HOgN)
BTy —T . < (k) |1/2 2 k1 Tmax( k=1
s~ 55 ( T 11 s n - ,

7 e (k)||1/2 maXi<k<p” (Z(k)) 1z (k)
— < 3 Sk max . > )
E\T; — T|lmax Sp (kI:[l p> ||max> ( N > , if N> 1I£]§%<prmax(2 )

Remark 3.7. The upper bounds on the deviation of sample moment estimator fg from
its expectation are sharp under both the operator norm and entrywise maximum norm
when the vectors X1, ..., X, together with their samples (X")Y ... (XP)N , are

K2 7
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On the estimation of Gaussian moment tensors

mutually independent; see [12, Theorem 2.1] and Theorem 6.1. Consistent estimation of
T using the sample moment estimator T's requires a sample size satisfying

p p
N> [[(r2(2%) +10g N)V2 or N> [[(rmax(S*)) + log N)'/2
k=1 k=1

under the operator norm and the entrywise maximum norm, respectively. In contrast,
Isserlis’s estimator 77 only requires sample size

N> max 75(3®) or N> max rpa(S®)
1<k<p 1<k<p
for consistency under the respective norms, leading to a significant reduction in sample
complexity.

Proof of Theorem 3.6. First, for the sample moment estimator fg, the upper bound on its
deviation from 7" under the operator norm follows directly from [12, Theorem 2.1], while
the corresponding bound under the entrywise maximum norm is given by Theorem 6.1
in this paper. It remains to analyze Isserlis’s estimator IA“I.

We apply the upper bound in Proposition 3.8, which yields

p
T, — ®1/2) (p— 1. 2. /2-1
1T~ < (JLISOI )=t e,

where R
Hg(j,k) — E(J}k')”

€4 i= max — 72
J#k (“E(]J)HHZ(kak)”)
To control ¢,, we use the bound from [12, Remark 2.1 and page 21] for the sample
cross-covariance. For j, k € {1,...,p} and any u« > 0, it holds with probability at least
1 — exp(—u?) that

00 — GR) U<T2(E(‘j)) + Tz(E(k))>1/2 +u? (ra(ED)ra(5)) 12
(=@ )~ N N
Applying a union bound over all j # k yields, with probability at least 1 — p? exp(—u?),
|S0R) — nGR)|
(=GP0 )

(4) ()Y 1/2 ) (k)\\1/2
Smax{u<r2(2j ) +ra(E )) +u2(r2(2] )2 (B9)) }
J N N

€+« = Max
J#k

<

~

max; <<y r2(SH) \ /2 4 g2 MaXi<ksp ro (DR
N N '

Substituting this bound into the inequality for ||T; — T
least 1 — p? exp(—u?):

, we obtain, with probability at

p
B ®N/2\ (0, _ P /2-1
|Tr =T < <k||12 | )(p nn 2 Ex(1+e4)P

P
a(Hmwwﬁm+£%

k=1
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p () \ 1/2 n(k))\ P/2
(k) 11/2 max <p<p 2 (X) max; <p<p 2 (X))
< (T (o st o - .
k=1
Integrating the tail bound yields the following expectation bound:

P 1/2 2
- m SEN\Y? M maxi ey ra(R0)\ P/
EIT, =TI < Z(k) 1/2 aX1<k<p 7”'2( 1<k<p T2
ITr =Tl <p <k||1| [ ~ + G

- (kyy1/2 \ ( MaX1<k<p o (R()) 1/2 N
= ; <k< . § .
P <l]:[1 HZ H ) ( N ) y if N > 11%1]?%27.2(2 )

An analogous argument yields the corresponding bound under the entrywise maximum
norm. This completes the proof. O

The following proposition is used in the proof of Theorem 3.6, and its proof is deferred
to Section 5.

Proposition 3.8. Let p be an even integer, and let X = (XM,... . X®) and Y =
(Y ... Y(®) be zero-mean Gaussian random vectors in R?, where each X*)| Y (%) ¢
Ré% andd = Y"}_, dy. Forj,k € {1,...,p}, denote the cross-covariance blocks by

k=1

R —EXD @ x® piH Z gy ) g y®),
Let
Tx =EXV @...0 XP), Ty =EYWP g...Y®,

denote the moment tensors formed by taking tensor products over the blocks of X and
Y, respectively. Then,

p
T -1yl < (TLISE912)0- 0t B eatis e,
k=1

where

.
N 23 5|
: ¥ k.k 1/2°
72k (ISE ) IEP)

For the entrywise maximum norm, it similarly holds that

p
k,k _ _ _
I = Tilhnwe < ( TTIZEPIEE )0 - 8- 5 204 27727,
k=1

N3

where
ik ik
||Egg' ) - E(Y? )”Inax

.k 1/2°
(”252 j)Hmaxuzgf )”max)

Corollary 3.9. Let X ~ N (0,Xx) and Y ~ N (0,Xy), and let Tx := EX®P, Ty := EY ®P.
Then,

€4 = max
J#k

Tx — T Yy - % Yy — Sy |\
ITx =Tyl _p [Zx =2y <1+ x Y||) .

vl 2 =y [pug

Similarly, under the entrywise maximum norm,

||TX - TY”max
||TY ||max

IN

P|2X—Eﬂmw(l|mx—2ﬂmm)M21
T Tl S T TR .

HZY”max ||ZY||max
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Proof of Corollary 3.9. Apply Proposition 3.8 with X = ... = X® = X and YV =
o =Y® =Y, so that 2{*) =: S5 and SU* =: 5y forall j, k € {1,...,p}. The result
then follows from computing the norm of the reference tensor:

1Ty | = [EY®P| = sup (Y, 0)” = (p - I 1=y [I7/2,
veES

where the last equality uses the moment formula for centered Gaussian variables. The
bound under the entrywise maximum norm follows analogously. O

4 Proof of Proposition 3.5
Proof of Proposition 3.5. We begin by observing that

[Tx — Ty || = sup |(EX®P — EY®P v®P) |

veSd
= sup [E(X, )" — B(Y,v)?|
veS
= (p— 1)1 sup [(Sxv,0)?/2 — (Syv,0)?"?|
veES?
p/2—-1
=(p—D"sup ((Bx — Zy)v,v)| Z (Exv,0) (Syv, v)P/27174
veS —0

where the third equality uses the moment formula for centered Gaussian variables.
Taking the supremum over the first term and the infimum over the second yields

p/2—1

ITx = Ty || = (p— D! sup [(Sx — By )v,v)| - inf | > (Sxwv,0)(Syw, )P/~
£=0

veSd veSd

Z (P - 1)”H2X - EYH . Arnin(EY)p/Qil-

Since || Ty || = (p — 1)!'||Zy||?/2, it follows that

B _ p/2—1
ITx = Tyl _ [Sx Eyl,( (1 )) , @.1)
K

(4" | I P | Yy

where £(Zy) := Anax(Zy )/ Amin(Xy) is the condition number of Yy .
Next, let v be a unit eigenvector associated with the eigenvalue of ¥ x — >y of largest
magnitude, so that ((Xx — Xy )v,v) = £||Xx — Xy ||. If the sign is positive, we have

ITx = Tyl = (p = )| (Sxv, 0)7/2 = (Syv,0)7/2)
— (p—1)! ‘(<(2X — Sy ), v) + (Syv, )7 - <Eyv,v>p/2‘
= (= D1((Ix = Syl + (Syv,0)"* = (Syv,0)72)
> (p— DN[Sx - Sy [P2.

If the sign is negative, a symmetric argument gives the same bound with > x and ¥y
interchanged. Therefore,

2
ITx =Tyl o (p=DVISx =Ty [P? _ <||ZX - EY||>p/ . 4.2)
ITv[l = (p— DSy (/2 12yl
Combining (4.1) and (4.2) yields the desired lower bound in operator norm.
ECP 30 (2025), paper 83. https://www.imstat.org/ecp
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For the entrywise maximum norm, we first obtain a lower bound of the same form as
in the operator norm case, except that the supremum is now taken over the standard
basis vectors. Specifically,

||TX —Ty”max sup ‘ <TX —Ty,ﬂ1®"'®’l)p>|

v €EL 1<k<p

> sup |(Tx — Ty, v®P) |
veEd
= (p - 1)” sup <EXU7U>p/2 - <EYv7/U>p/2 )
vegd
where £ = {¢;}%_, denotes the standard basis of R¢. Then, the desired lower bound for
the entrywise rnax1murn norm follows from the same argument as for the operator norm
case, with only minor modifications. We omit the details for brevity. O

5 Proof of Proposition 3.8

Proof of Proposition 3.8. For arbitrary vectors v; € R%,... v, € R%, we have

(TX—Ty,v1®--~®vp>=<EX(1)®~-~®X(1’)—EY(1)®~--®Y@)701®---®vp>

p p
H x (k) Uk H y (k) L Uk)
k=1 k=
9 H E(X X(k) , Uk Z H E(Y Y( )avk>
112 (j,k)Em mell? (j,k)Em
- Z ((I1 &% - 11 <z$”%jmk>).
wellz N (j,k)er (g.k)em

Here, (i) follows from Isserlis’s theorem, and Hg denotes the set of pairwise partitions of
{1,...,p}. Denoting by = = (7 (1),...,n(p)) a fixed ordering of the indices in the pairing
m, and applying the telescoping identity

p/2
iy — by p/2_za1 ag—1(ag —bg) bey1---by)a,

we obtain
<TX _TY7U1 ®®Up> = Z ( H <Eg?’k)vj7vk> — H <Z§;7k)’(]jyvk>)
n€ll2 (j,k)em (5,k)em
ke (m(25—1),m(29))
Z Z [( H Z ' U7r(2sl)avfr(2s)>>
71'61_[2 =1 s=1
p/2
x <(Eg?(2€1)7ﬂ(2€))_2§17(2€1)777(25)))1)71_(2@1)7UW(24)>< H <Z§f(2s1)’”(25))%(251),Uﬂ(2s)>>]-
s=/0+1

To bound the operator norm, we take the supremum over v; € S%, ... ,Up € S,

[Tx =Tyv[l= suwp  [(Tx =Ty, 01®- - @ vp)|
vp €S%%h 1<k<p
p/2 -1
w(2s—1),m(2s

S I D30 3§ 1 (- S S

Ve €S, 1<k<p wEH% (=1 “s=1
ECP 30 (2025), paper 83. https://www.imstat.org/ecp
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p/2
« <(Zg?(2£—1)nr(2€)) 729(24—1)777(215)))@#(%_1)7 Uw(2€)>< H <Z§17(23—1)77r(23))v7r(28_1), vﬂ(23)>>‘
s=0¢+1

-1
< H <Z¥(2571)’W(25))Uﬂ(2571)7 'U7r(23)>)

s=1

S

mEM2 £=1 vp€8% ,1<k<p

p/2
w(20—1),7(2¢ w(20—1),7(2¢ m(2s—1),7(2s
x (B0 _preen.ml )))Uﬂ(2€1)7v7r(2€)>< 11 (i @emthnl ))Uw(251)7v7r(2s)>>H
s={+1

p/2
Z Z KH ||E(7T(2s* 1),7r(2s~))”)

EH2Z1 s=1

p/2
m(20—1),m(2¢ (20—1),m(2¢ w(2s—1),m(2s
K B e Dm(20) _ yree1)a >>|( [T s ))”ﬂ'
s={+1

I=¢" ¢
Bk 1/2
(=2 1sE )

and define ¢, := max,_; cU*%). Using that |5 || < 202172 2(9)1/2, we obtain

For j, k € {1,...,p}, we introduce the normalized deviation £(/:¥) :=

p/2 -1
1Ty — Ty < Z Z (H HZE?(?sl)m(Zs))H)
WEH%Z:l s=1
2¢ 2¢ 20—1 2¢ v 2s—1 2
w(26—1),m T —-1),7 w(2s—1),m(2s
K B EEDRE0) e ))II( [T s >>||>]
s={+1

p/2
Z Z [(H ||E(7r(2e 1),m(2s— 1))H1/2H2(7T(28)77T(23))H1/2(1+€(7T(25 1),77(25))))

WEHZZ 1 s=1

X (HZg;r(%1),7r(2£1))1/2Zglr(%)m(zz))||1/2€(7r(2z_1),77(2g)))

p/2
w(2s—1),m(2s—1 w(2s),7(2s
><< H ||Z§,( ),m( ))”1/2”E§/( ) ( ))||1/2>]

s=0¢+1
p/2
(H ||Z(kk ||1/2) Z ZE(T((QK 1),7(2¢)) H 1 +€(7r(25 1),7‘!’(25)))
7T€H2 =1
Using the identity

p/2 -1 p/2

doac]J(+a) =[]0 +a)-1

=1 s=1 /=1

we conclude that

P p/2
ITx — Tyl < (H ||z§f”“)||1/2) > (H (14 el mC0)) - 1)

k=1 71'61‘[129 {=1

< ( f[ ||2$”“)||1/2) (p— 1! ((1 T e 1)

k=1

k,k) —
(an( ||1/2) N N
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where we used the inequality (1 +¢,)P/2 =1 < Z.¢,(1+¢,)P/27L.

The bound under the entrywise maximum norm follows from an analogous argument,
replacing the supremum over the unit spheres S% . ..., S% with the supremum over the
standard bases £% = {e; } | for 1 <k <p. This completes the proof. O

6 Entrywise maximum norm bound for sample moment tensor

Theorem 6.1. For any integer p > 2 and 1 < k < p, let X® X* X" pe iid.
zero-mean Gaussian random vectors in R% with covariance matrix ¥(*). Then,

(an’f)n;{;) V(=9

N
1 (1) (p) (1) (p)
]EHNZXZ. ®--XV -EXVg...0x

max

where

P (k)y\ 1/2 p 1/2
(k)\p — Zk:l Tmax(Z1) i (k)
En(B")hy) ( N TN kIfI1 (Tmax(z )+1ogN) )

Moreover, the upper bound is sharp in the following two cases:

1. Independent Components. If XD ... x® (xM)N =~ (xP))

N, are mutually
independent, then

N

1 |
HNE XV . .0x?P -ExVg.. . gx®
=1

(an 2 ) ()

max
2. Identical Components. If X() = ... = X®) = X and X" = ... = X" = X, forall
1<i<N,2M =...=%0@) =¥ then

— ||§;Hp/2 T'max(2) + (Tmax(2)+10gN)p/2
p max N N .

max

N
1
Ell— Y X% _Ex®r
[y

Furthermore, since (log N)?/2/N <, 1/v/N, this bound simplifies to

N
1 ®p ®
EHNZXi —~EX®P

i=1

/2
- p/Q 7Amax(z) 7Amax(z)p
=, Il ) 4 B,

max

Remark 6.2. The upper bound in Theorem 6.1 holds without requiring independence
between the sequences (X»(}“C))f\’:1 and (Xi(k ))Z-I\Ll for k # k’; that is, no assumptions are

1
made on the correlation structure across components. Moreover, the upper bound in
Theorem 6.1 extends directly to sub-Gaussian settings. Dimension-dependent counter-
parts can also be derived by applying standard e-net arguments in conjunction with the

a-sub-exponential concentration inequality of [14].

Proof of Theorem 6.1. Upper bound By the definition of the entrywise maximum norm,
we have

N
1 (1) (p) (1) (p)
]EHNEXi @ -XV -ExWg..XP

max

1 N p L p
= max ZH X() HX(k) V)
v €EH 1<k<p 1:1 paie Pl
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where £% = {¢;}*, denotes the standard basis of R%. Let £% := £% U —£%, and define
F®) = {(-,v) : v € E%} for 1 < k < p. Then the maximum can be upper bounded by

ST B [T o
k=1

i=1 k=1

E sup
FEF®) 1<k<p

Applying [12, Theorem 2.2], we obtain
E

N p
1
1 FO(x®) g T £®(x® ‘
f(k)efuc) 1<k<p| N Zl;[ H )
P
k=

(Hdwz >_< f“wz) H” (v(f”,tf\?)+(logN)”2)>7 (6.1)

where F(F®) 4hg) := y(FF) 1hy) /dy, (F*)). Here, v(F, 1) denotes Talagrand’s generic
chaining complexity of the function class F [26, Definition 2.7.31, dy, (F) := supsc 7 || f |l 4.,

and v refers to the Orlicz norm with Orlicz function ¥(z) = e — 1, see e.g. [29,
Definition 2.5.6].

Since X(®) is Gaussian with covariance ©(¥), the 1o-norm of linear functionals is
equivalent to the Lyo-norm. Hence,

: : 1/2
dy,(FP)y = sup [IfP|ly, = sup [[fP, = sup (BXP,0)?)7" = [m® 172
fk) e Fk) fReFk) ve€lk

For the generic chaining term, note that the canonical metric on £% is given by
1/2 .
oo (1, v) := (BX®, u) = (X, 00)) " = (v, 3E) (u=0))/2 = ||, ) = (-, 0)]| oy ()

where (%) is the law of X %), By Talagrand’s majorizing measure theorem [26, Theorem
2.10.1],

YF® a) =< y(F®, La) = 4(E%,dxw) < E sup (XP,u) = B XW||

uc&dk

We conclude that
dyy (FE) < [B®22 0 (F® o) < B X®)||,

max

and therefore,

N
1 (1) (p) (1) (p)
_ \ P p
IEHNngZ ® ® X, EXY ® ® X

(an 2 )8 ().

max

where

p (R)\\ 1/2 P 12
(k) . Zk:l Tmax(z ) 1 *)
N <( >£:1) : ( N + N kl_ll ("“max(Z ) - log N)

and rmaX(E(k)) (EX(k>~N(O Z<k))HX ”00) /Hz(k) || max-

Lower bound The lower bounds follow from straightforward modifications of the
argument in [12, Proposition 3.1] and [2, Proposition 3.1], respectively, by replacing the
operator norm with the entrywise maximum norm. We omit the details for brevity. O
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