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Abstract

Nonbiting midges (family Chironomidae) are found throughout the world in a diverse array of aquatic and terrestrial habitats, 
can often tolerate harsh conditions such as hypoxia or desiccation, and have consistently compact genomes. Yet we know 
little about the shared molecular basis for these attributes and how they have evolved across the family. Here, we address 
these questions by first creating high-quality, annotated reference assemblies for Tanytarsus gracilentus (subfamily 
Chironominae, tribe Tanytarsini) and Parochlus steinenii (subfamily Podonominae). Using these and other publicly available 
assemblies, we created a time-calibrated phylogenomic tree for family Chironomidae with outgroups from order Diptera. We 
used this phylogeny to test for features associated with compact genomes, as well as examining patterns of gene family evo-
lution and positive selection that may underlie chironomid habitat tolerances. Our results suggest that compact genomes 
evolved in the common ancestor of Chironomidae and Ceratopogonidae and that this occurred mainly through reductions 
in noncoding regions (introns, intergenic sequences, and repeat elements). Significantly expanded gene families in 
Chironomidae included biological processes that may relate to tolerance of stressful environments, such as temperature 
homeostasis, carbohydrate transport, melanization defense response, and trehalose transport. We identified several positive-
ly selected genes in Chironomidae, notably sulfonylurea receptor, CREB-binding protein, and protein kinase D. Our results 
improve our understanding of the evolution of small genomes and extreme habitat use in this widely distributed group.
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Significance
Chironomid midges are known for having small genomes and tolerating many forms of environmental stress, yet little is 
known of the shared features of their genomes that may underlie these traits. We found that reductions in noncoding 
regions coincide with small chironomid genomes, and we identified duplicated and/or selected genes that may equip 
chironomids to tolerate harsh conditions. These results describe the key genomic changes in chironomid midges that 
may explain their ability to inhabit a range of extreme habitats across the world.
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Introduction
Non-biting midges of the family Chironomidae (order 
Diptera) are the most widely distributed group of fresh-
water insects (Armitage et al. 1995), with species found 
as far north as Ellesmere Island in Canada (Oliver and 
Corbet 1966); as far south as the Antarctic mainland 
(Usher and Edwards 1984); at 5,600 m above sea level in 
Himalayan glaciers (Kohshima 1984); and at 1,000 m be-
low the surface of Lake Baikal in Siberia (Linevich 1963). 
Sediment in a productive freshwater river or lake is 
the archetypical chironomid habitat, but chironomids 
live in diverse environments such as ephemeral pools, 
hot springs, and water-filled cavities in plants, with even 
some marine or fully terrestrial species (Armitage et al. 
1995). Chironomids may be ubiquitous because of their 
ability, as a group, to tolerate extreme conditions. Many 
forms of tolerance have been documented, including to 
low temperature (Lee et al. 2006; Rinehart et al. 2006), 
low oxygen (Burmester and Hankeln 2007), heavy metal 
contamination (Zheng et al. 2017), complete desiccation 
(Watanabe et al. 2002), and exposure to ionizing radiation 
(Gusev et al. 2010).

The extent to which shared genomic features underlie 
the extreme physiology and diverse habitat use of chirono-
mids is largely unknown. The first sequenced chironomid 
genome was the Antarctic midge Belgica antarctica, one 
of the smallest recorded insect genomes (Kelley et al. 
2014). The number of protein-coding genes in the B. ant-
arctica genome was similar to other nonchironomid dipter-
ans, whereas repeat elements and noncoding regions were 
reduced, and the authors concluded that the small genome 
size was likely an adaptation to its extreme environment. 
However, genome sizes were later estimated for 25 chir-
onomid species by flow cytometry, showing that small gen-
ome size is likely an ancestral trait in chironomids and that 
smaller genomes within the family do not necessarily correl-
ate with particularly stressful environments (Cornette et al. 
2015). Additional reference assemblies have yielded further 
insights into individual types of stress tolerance, including 
hemoglobin gene repeats underlying copper tolerance in 
Propsilocerus akamusi (Sun et al. 2021) or a single chromo-
some in Polypedilum vanderplanki containing clusters of 
duplicated genes mediating desiccation tolerance (Gusev 
et al. 2014; Yoshida et al. 2022). Some commonalities 
have emerged, such as upregulation in antioxidant genes 
as a common mechanism for chironomid tolerances to hea-
vy metal exposure, desiccation, and cold (Lopez-Martinez 
et al. 2008; Zheng et al. 2011; Gusev et al. 2014). 
Nonetheless, no study has explicitly compared chirono-
mids to other dipterans to help understand genome 
evolution in this ubiquitous group.

Here, we generated two high-quality, annotated chirono-
mid reference assemblies, a new assembly for Tanytarsus 

gracilentus (subfamily Chironominae, tribe Tanytarsini) and 
an improved assembly for Parochlus steinenii (subfamily 
Podonominae). We also constructed a time-calibrated phylo-
genomic tree for nine chironomids plus five dipteran out-
groups. We used this phylogeny to inform analyses of (i) 
genome features associated with compact chironomid gen-
omes and (ii) gene family evolution and positive selection 
that relate to extreme habitat use.

Results and Discussion

Genome Assemblies

We generated 23.08 Gb (∼243×) Oxford Nanopore 
Technologies (ONT) reads (read length N50 = 7,539 bp) 
and 22.11 Gb (∼232×) Illumina reads from our samples 
of T. gracilentus. The resulting assembly was 91.83 Mb in 
size, which closely matches the size estimated by back- 
mapping reads to the final assembly (95.10 Mb). We also 
created an assembly for P. steinenii based on sequencing 
reads from the Sequence Read Archive (SRA). This assem-
bly’s size of 143.57 Mb closely matches the published pre-
diction of 143.8 Mb (Shin et al. 2019). These assemblies are 
two of the most contiguous gap-free chironomid assem-
blies to date (Table 1), although they are not arranged 
onto chromosomes as in P. vanderplanki and P. akamusi 
(Sun et al. 2021; Yoshida et al. 2022). Their high 
BUSCO (diptera_odb10 library) completeness percentages 
(T. gracilentus = 91.60% [90.53% single-copy, 1.07% 
duplicated], P. steinenii = 92.30% [90.99% single-copy, 
1.31% duplicated]) indicate high quality assemblies. 
Both assemblies had negligible contamination from other 
species (maximum from sendsketch.sh: T. gracilentus =  
0.02%, P. steinenii = 0.01%).

Genome Annotations

For T. gracilentus, we generated Illumina RNA-seq 
reads from adults (52.81 Gb, ∼555×) and juveniles 
(63.28 Gb, ∼665×). The total estimates of protein-coding 
genes for T. gracilentus, P. steinenii, and Culicoides so-
norensis were similar to other chironomids and dipteran 
outgroups (supplementary table S1, Supplementary 
Material online). BUSCO completeness was high for the 
coding sequences from all sets of gene predictions, indi-
cating good performance of the gene predictions, but the 
number of duplicated genes in C. sonorensis was high 
(supplementary fig. S1, Supplementary Material online), 
likely as a result of a redundant assembly (12.5% 
BUSCO complete + duplicate genes). We were able 
to functionally annotate most of the proteins for each 
species (Chironomus riparius = 12,249; C. sonorensis =  
12,971; P. steinenii = 11,645; and T. gracilentus =  
11,369) (supplementary table S1, Supplementary 
Material online).
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Phylogeny

To reconstruct the evolutionary history of chironomids, 
protein sequences from 1,436 diptera_odb10 single- 
copy, orthologous genes (935,062 total aligned sites 
after trimming) were used to construct the 14-species 
phylogenomic tree with dipteran outgroups. Matches 
to diptera_odb10 proteins and missing data from align-
ments were consistent across taxa (supplementary table 
S2, Supplementary Material online). All internal nodes 
had high bootstrap values (supplementary fig. S2, 
Supplementary Material online), and the topology of 
Chironomidae is consistent with previously published 
phylogenies (Cranston et al. 2012, 2010). MCMCTree 
results were consistent across runs, with the minimum 
pairwise correlation between mean posterior estimates 
being r = 1.000 and minimum effective sample size for 
any parameter being 559. Our deepest Chironomidae 
divergence times (Fig. 1A) are intermediate when com-
pared to two published estimates (Cranston et al. 2012, 
2010), but more nested splits, such as between 
Propsilocerus and the subfamilies Orthocladiinae and 
Chironominae, are similar to those in Cranston et al. 
(2010). The confidence intervals for our three deepest 
divergence events were overlapping, which is consistent 
with the wide range of published estimates for the di-
vergence times between, for example, Chironomidae 
and Ceratopogonidae (137.3 to 296.9 Ma) (Bertone 
et al. 2008; Cranston et al. 2010, 2012; Rainford 
et al. 2014).

Features Associated with Genome Size

To examine the drivers of genome size variation, we used a 
regression analysis to show that genome size, intergenic se-
quences, introns, and repeat elements all differed between 
nonchironomid dipterans and the group comprising 
Chironomidae and their closest relative, C. sonorensis (fam-
ily Ceratopogonidae) (Fig. 1B and C). These same features 
were also significantly correlated with genome size across 
all species in our phylogeny (Fig. 2). In contrast, the number 

of protein-coding genes neither correlated with genome 
size nor differed between the families Chironomidae and 
Ceratopogonidae and other dipterans. These results sug-
gest that the compact genomes of chironomids likely 
evolved in a common ancestor with Ceratopogonidae, al-
though having only one species from Ceratopogonidae in 
our analysis makes this conclusion less certain. Our results 
also suggest that the reduction in genome size occurred 
through noncoding regions and repeat elements, which is 
consistent with a recent analysis of insect genome sizes 
(Cong et al. 2022). However, unlike Cong et al. (2022), 
our repeat element divergence landscapes reveal no obvi-
ous connection between repeat element ages and genome 
size (supplementary fig. S3, Supplementary Material
online).

Gene Family Evolution

To examine gene families that evolved rapidly in chirono-
mid lineages, we identified 19,878 total phylogenetic 
Hierarchical Orthologous Groups (HOGs) output from 
OrthoFinder and used CAFE for gene family evolution ana-
lysis. Of these, 9,057 HOGs were present at the root of the 
phylogeny, 883 changed significantly (P < 0.05) across the 
phylogeny, and nine had a significant change (P < 0.001) at 
the node separating Chironomidae from their nearest rela-
tive, C. sonorensis (supplementary table S4, Supplementary 
Material online). Gene Ontology (GO) terms overrepre-
sented in these HOGs spanned a range of biological pro-
cesses (Fig. 3A). Some of these may relate to tolerance 
of stressful or nutrient-limited environments, such as tem-
perature homeostasis, carbohydrate transport, blood 
coagulation, and transport of dehydroascorbic acid 
(the oxidized form of vitamin A). Other overrepresented 
GO terms may indicate chironomids evolving in response 
to infectious agents (defense response to virus and re-
sponse to fungus) and to plant chemical defenses (response 
to caffeine). Melanization defense response may relate to 
multiple adaptive pathways since it plays many physiologic-
al roles, including desiccation tolerance (Rajpurohit et al. 

Table 1 
Summary statistics for the final T. gracilentus and P. steinenii assemblies and for other assemblies of Chironomidae species available on GenBank. Percent 
complete was calculated using BUSCO complete genes based on the diptera_odb10 library.

Species Total length (Mb) Contigs Contig N50 (bp) GC (%) Complete (%) Accession

Tanytarsus gracilentus 91.83 45 7,014,169 32.4 91.57 GCA_038502055.1
Chironomus riparius 191.84 82 19,590,381 30.7 92.60 GCA_917627325.3
Chironomus tentans 213.46 64,545 7,697 31.2 89.35 GCA_000786525.1
Polypedilum vanderplanki 118.97 2,066 219,078 28.1 93.18 GCA_018290095.1
Polypedilum pembai 122.92 15,099 16,153 28.6 91.90 GCA_014622435.1
Belgica antarctica 89.58 22,152 13,687 38.9 91.72 GCA_000775305.1
Clunio marinus 85.49 24,952 154,800 31.8 93.18 GCA_900005825.1
Propsilocerus akamusi 85.84 144 6,207,813 33.8 92.79 GCA_018397935.1
Parochlus steinenii 143.57 55 7,709,542 31.0 92.27 GCA_038502155.1
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2008) and immune response (Nakhleh et al. 2017). 
Similarly, trehalose transport is likely a key stress-associated 
adaptation because of its diverse functions in cold and 

hypoxia tolerance (Elbein 2003; Chen and Haddad 2004), 
as well as protection from desiccation, as in the chironomid 
P. vanderplanki (Sakurai et al. 2008).
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FIG. 1.—A) Time-calibrated phylogenomic tree showing relationships among chironomids and outgroups within order Diptera. Wide, gray bars indicate 
95% credible intervals for node ages, and lowercase letters indicate fossil calibrations. Geological periods are shown above the x-axis. Species label colors and 
positions are the same as in the lower panels; chironomids are the top-most 9 species in shades of red/orange. B) Time-calibrated phylogeny next to genome 
size, number of protein-coding genes, total intergenic content, and mean intron length for all species in our phylogeny. C) Phylogeny alongside repeat content 
by class. B, C) Gray vertical lines indicate the mean estimates from the phylogenetic linear regressions for Chironomidae and Ceratopogonidae and for all other 
species. Gray envelopes indicate the 95% confidence interval bounds for these estimates computed via parametric bootstrapping. All measures are the log10-
-transformed totals across each species’ entire genome except for intron length, which is the mean of log10-transformed intron lengths.
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Positive Selection

We tested for positive selection in 163 single-copy 
HOGs containing GO terms associated with tolerating 
stressful environments (Fig. 3B; supplementary table S5, 
Supplementary Material online). Using HyPhy’s BUSTED 
method, 29 (17.8%) HOGs had evidence of gene-wide 
positive selection in chironomids compared to outgroups. 
Using HyPhy’s RELAX method, 44 (27.0%) HOGs had evi-
dence for relaxation or intensification of selection in chiro-
nomids, with most (40) of these indicating intensification. 
Ten (6.1%) HOGs were significant for both tests, only 
one of which had evidence for relaxed (instead of intensi-
fied) selection. Most of these HOGs were associated 
with “defense response to other organisms” (6) and/or 
“response to hypoxia” (5) GO terms. The genes with the 
strongest evidence for positive, intensified selection for 
Chironomidae were sulfonylurea receptor, histone acetyl-
transferase CREBBP, and protein kinase D. Sulfonylurea re-
ceptor is involved in chitin synthesis (Abo-Elghar et al. 2004) 
and protects against cardiac hypoxic stress in Drosophila 
melanogaster (Akasaka et al. 2006). CREB-binding protein 
is a lysine acetyl transferase that helps regulate a wide 
range of biological processes, including DNA repair 
(Cazzalini et al. 2014) and responses to hypoxia (Kung 
et al. 2004). Protein kinase D contributes to oxidative stress 

signaling and mediating of antioxidant enzyme expression 
(Storz and Toker 2003; Storz et al. 2005). These genes 
are interesting candidates for further study of the molecular 
basis of chironomid stress tolerance.

Materials and Methods
Below is an overview of the methods, and more detailed in-
formation can be found in the Supplementary Material
online.

Data Sources

In this study, we generated two new reference assemblies, 
three gene predictions, and four functional annotations. 
Reference assemblies and genome annotations for the com-
parative analysis (Tables 1 and supplementary table S6, 
Supplementary Material online) include previously published 
data, which were obtained from GenBank, SRA, VectorBase 
(Amos et al. 2022), or InsectBase (Mei et al. 2022).

DNA Samples, Extractions, and Sequencing

We collected T. gracilentus from Lake Mývatn, Iceland 
(supplementary fig. S4A, Supplementary Material online). 
For long-read ONT sequencing, we extracted high- 
molecular-weight DNA from a single adult male (Quick 
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2018). ONT library preparation (EXP-PBC001 and LSK-109 
kits) and sequencing (R9.4.1 FLO-MIN106 RevD SpotON 
flowcell on MinION II) were performed by the Roy 
J. Carver Biotechnology Center, University of Illinois 
Urbana-Champaign. We also used pooled short-read 
DNA-seq of adults for assembly polishing (as in Steward 
et al. 2021) and RNA-seq of both adults and juveniles 
to inform gene predictions (supplementary fig. S4B, 
Supplementary Material online). Extractions (using 
QIAGEN QIAcube HT and RNeasy Mini Kit), library prepar-
ation (using Celero PCR Workflow with Enzymatic 
Fragmentation and Illumina TruSeq Stranded mRNA), and 
sequencing were conducted by the University of 
Wisconsin–Madison Biotechnology Center.

Genome Assemblies

For our T. gracilentus assembly, we first generated multiple 
assemblies from ONT reads using different assemblers 
(NECAT, SMARTdenovo, NextDenovo, and Flye) and then 
combined them into a single best assembly using quick-
merge (supplementary tables S7 and S8 and fig. S5, 
Supplementary Material online). For each step of the as-
sembly, we used BUSCO with the diptera_odb10 dataset 

to evaluate genome completeness and a custom Python 
script to evaluate contiguity. We estimated the genome 
size by mapping ONT reads back onto the final assembly 
using backmap. We generated the assembly for P. steinenii 
using NextDenovo on publicly available ONT sequences 
(SRA accessions: SRR8180978, SRR3951280, SRR3951285, 
SRR3951284, and SRR3951283). We looked for contamin-
ation in both final assemblies using unique 31-mers via 
sendsketch.sh from bbmap.

Repeat Elements and Genome Annotations

We described repeat elements for all species by combining 
a de novo library of repetitive elements for each using 
RepeatModeler with a library of dipteran repeats from 
RepBase. We used RepeatMasker to summarize repeat ele-
ments by class and to calculate repeat element divergences. 
We used BRAKER and the GeneMark-ES Suite to create two 
sets of gene predictions, one using RNA-seq reads and an-
other using the OrthoDB arthropod protein database. We 
combined them using TSEBRA. We functionally annotated 
genes using mantis that compares protein sequences to 
Pfam, KOfam, eggNOG, NCBI’s protein family models, 
and the transporter classification databases.
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HOG GO Description
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P-value P-value k

N0.HOG0004708 1 sulfonylurea receptor 9.92 × 10 9 <10 26 8.62
N0.HOG0006310 1,2,3,6 CREB-binding protein 1.09 × 10 3 <10 26 11.40
N0.HOG0008312 3,4 protein kinase D 2.89 × 10 3 <10 26 1.43
N0.HOG0007710 3 Serrate protein 2.52 × 10 3 3.76 × 10 12 0.66
N0.HOG0001080 3 ribosomal protein S6 kinase II 2.67 × 10 3 1.00 × 10 9 4.55
N0.HOG0007767 1,3 prohibitin 2.15 × 10 5 1.39 × 10 4 15.17
N0.HOG0006733 1 heat shock protein 83 6.33 × 10 4 2.12 × 10 4 1.71
N0.HOG0006410 4 peroxiredoxin 1.37 × 10 4 2.01 × 10 3 2.43
N0.HOG0007287 1 HIF-proline dioxygenase 1.05 × 10 4 3.30 × 10 3 2.63
N0.HOG0007283 3 ETS domain-containing protein 8.00 × 10 4 2.38 × 10 3 10.49

FIG. 3.—A) Treemap showing hierarchical structure of GO terms for HOGs that expanded significantly in Chironomidae. B) For each targeted GO term 
related to extreme physiology, we show the percent of single-copy HOGs that are significant for gene-wide positive selection (BUSTED), intensification of 
selection (RELAXintensify), relaxation of selection (RELAXrelax), or both BUSTED and RELAX (either RELAXintensify or RELAXrelax). Numbers indicate total HOGs 
per GO term, and some GO terms share HOGs. C) List of HOGs with evidence for both positive selection and change in selection intensity in chironomids, 
in order of decreasing evidence for both tests (i.e. PBUSTED × PRELAX). The GO column indicates the GO term(s) listed in B) associated with each HOG. Parameter k 
indicates the relative selection intensity for Chironomidae compared to outgroups (k > 1 means intensified selection, k < 1 means relaxed). HOG descriptions 
were extracted from the representative gene in Culex quinquefasciatus.
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Phylogeny Construction and Finding Orthogroups

To construct the phylogeny, we first extracted amino acid 
sequences for single-copy orthologs from the dipter-
a_odb10 database using BUSCO. We aligned sequences 
using MAFFT and then trimmed alignments using trimAl. 
Next, we partitioned by gene and used ModelTest-NG 
to optimize the substitution model for each partition. 
RAxML-NG was then used to generate a maximum likeli-
hood (ML) tree and quantify bootstrapped branch support. 
We created a time-calibrated tree by combining the ML tree 
with fossil data from paleobiodb.org (queried on July 5, 
2022) and previous time estimates using MCMCTree. We 
defined five calibration points: (i) 238.5 Ma minimum and 
295.4 Ma maximum for the root (Benton et al. 2009), (ii) 
242.0 Ma minimum for the superfamily Chironomoidea 
(Lukashevich et al. 2010), (iii) 201.3 Ma minimum for family 
Chironomidae (Krzeminski and Jarzembowski 1999), (iv) 
93.5 Ma minimum for subfamily Chironominae (Gitka 
et al. 2022), and (v) 33.9 Ma minimum for the portion of 
subfamily Orthocladiinae containing genera Belgica and 
Clunio (Zelentsov et al. 2012). These estimates informed 
the parameters for the divergence time sampling distribu-
tions in MCMCTree (see supplementary table S9, 
Supplementary Material online for specific details). We 
used CODEML to inform the overall substitution rate and 
the “data-driven birth–death” method (Tao et al. 2021) 
to inform priors for the speciation birth–death process. 
ModelFinder was used to merge partitions (for better con-
vergence in MCMCTree) and find the best model per 
partition.

We used OrthoFinder to identify phylogenetic HOGs. We 
input each species’ protein sets (filtering for the longest iso-
form per gene) and the time-calibrated species tree into 
OrthoFinder and used the set of HOGs for the root of the 
phylogeny for downstream analyses. We removed Clunio 
marinus from any analyses using HOGs because only 
58.5% of its genes were assigned to orthogroups.

Features Associated with Genome Size

We looked for associations between genome size and four 
genomic features in chironomids: protein-coding genes, 
intergenic sequences, introns, and repeat elements. We 
first tested for significant differences in each feature (in-
cluding genome size) between chironomids and other dip-
terans to assess whether any associations likely pertain to 
chironomids specifically. For these tests, we grouped C. 
sonorensis (family Ceratopogonidae) with chironomids 
because doing so improved the log-likelihoods of our 
models. We used phylogenetic linear regressions via the 
R package phylolm (Ho and Ane 2014). We next tested 
for whether each feature was correlated with genome 
size to ascertain whether any changes that occurred likely 
contributed to genome compaction using the cor_phylo 

function in the phyr package (Li et al. 2020) that accounts 
for phylogenetic covariance.

Gene Family Evolution

We used CAFE to identify HOGs that significantly expanded 
(P < 0.001) at the node separating Chironomidae from 
their most recent common ancestor. We used the enricher 
function in clusterProfiler to find enriched GO terms in our 
set of HOGs. We then used rrvgo to reduce the redundancy 
of the set of enriched GOs and to generate a treemap.

Positive Selection

We used HyPhy to test for positive selection in Chironomidae 
in single-copy HOGs that were associated with an a priori list 
of GO terms associated with tolerance to extreme habitats 
(supplementary table S5, Supplementary Material online). 
We labeled Chironomidae on our tree to define our fore-
ground branches, and then for each HOG, we tested (i) 
whether positive selection occurred for any chironomids 
using HyPhy’s BUSTED method (Murrell et al. 2015) and (ii) 
whether selection intensified or relaxed for chironomids 
using HyPhy’s RELAX method (Wertheim et al. 2015). We 
corrected P-values for multiple comparisons using the 
Benjamini–Yekutieli procedure.

Supplementary Material
Supplementary Material online is available at Genome 
Biology and Evolution online.
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