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Abstract. Reinforcement Learning (RL) and Deep Reinforcement Learn-
ing (DRL) have advanced rapidly in recent years and have been success-
fully applied to e-learning environments like intelligent tutoring systems
(ITSs). Despite great success, the broader application of DRL to ed-
ucational technologies has been limited due to major challenges such
as sample ine!ciency and di!culty designing the reward function. In
contrast, Apprenticeship Learning (AL) uses a few expert demonstra-
tions to infer the expert’s underlying reward functions and derive
decision-making policies that generalize and replicate optimal behavior.
In this work, we leverage a generalized AL framework, THEMES, to
induce e"ective pedagogical policies by capturing the complexities of
the expert student learning process, where multiple reward functions
may dynamically evolve over time. We evaluate the e"ectiveness of
THEMES against six state-of-the-art baselines, demonstrating its supe-
rior performance and highlighting its potential as a powerful alternative
for inducing e"ective pedagogical policies and show that it can achieve
high performance, with an AUC of 0.899 and a Jaccard of 0.653, using
only 18 trajectories of a previous semester to predict student pedagogical
decisions in a later semester.

Keywords: Apprenticeship Learning · Pedagogical Policy · Reinforce-
ment Learning · Evolving Reward Function

1 Introduction
In most STEM e-learning environments, the system follows a sequential decision-
making process, deploying a pedagogical policy to determine what action to take
and when at each discrete time step. In such environments, student-system in-
teractions can be modeled as sequential decision-making problems under un-
certainty, formulated within the framework of Reinforcement Learning (RL)—a
paradigm that optimizes long-term rewards without requiring knowledge of the
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‘best’ decisions at each immediate time step [44]. Recent research has demon-
strated the e!ectiveness of RL and Deep RL (DRL) in deriving data-driven
pedagogical policies to enhance student learning in Intelligent Tutoring Systems
(ITSs) (e.g., [2, 25, 33, 42]). Despite their success, several challenges hinder its
broader application in e-learning systems. One major challenge is sample ine!-
ciency, as classic DRL algorithms like Deep Q-Networks (DQN) require millions
of interactions to learn e!ective policies. Many studies attempt to derive peda-
gogical policies from fewer than 3,000 student-ITS interactive trajectories, often
leading to ine!ective results [5, 43]. Another key challenge is reward function
design, which is crucial for guiding RL agents but is di"cult to define accurately,
especially in human-centric domains like education [26]. Manually designing re-
ward functions is labor-intensive, prone to expertise blind spots, and often results
in misspecified objectives that misalign with intended policies [16, 1, 3].

Unlike RL and DRL, Apprenticeship Learning (AL) is a machine learn-
ing approach that derives decision-making policies from a limited set of expert
demonstrations by inferring the expert’s underlying reward functions, en-
abling the system to generalize and replicate optimal behavior [1]. It assumes
expert agents make optimal or near-optimal decisions based on an underlying
reward function, allowing the apprentice to e"ciently approximate expert be-
havior with fewer training samples [1, 54]. Existing AL approaches are typically
online, requiring iterative interactions with the environment to collect new data
and update the model [1, 54, 21, 12]. However, executing a potentially flawed pol-
icy can be costly or even dangerous in human-centric tasks such as education
[32], making o#ine policy induction from expert demonstrated highly desirable
[4, 36, 39, 46, 22]. In this work, our "expert" demonstrations were selected by
allowing students to make pedagogical decisions, and then choosing only those in
which the student greatly benefited from the learning environment. To accurately
model students’ complex and dynamic decision-making processes, it is crucial to
incorporate evolving reward functions that reflect students’ changing learning
needs and adaptive strategies across di!erent learning phases. Previous o#ine
AL methods typically assume a single or fixed reward function across trajecto-
ries, failing to capture the evolving goals of students. For example, while energy-
based distribution matching (EDM) [24] has advanced o#ine AL, it assumes a
homogeneous policy with a single reward function [7]. Approaches like EM-IRL
[52] address reward function heterogeneity by clustering students based on peda-
gogical behavior but struggle with large continuous state spaces. More recently,
EM-EDM [22] extends EDM with an Expectation-Maximization(EM) frame-
work, enabling policy induction from expert demonstrations driven by multiple
heterogeneous reward functions while generalizing to continuous state spaces.

To directly induce e!ective pedagogical policies from expert students’ in-
teractions with an ITS, we leverage THEMES [50], a Time-aware Hierarchical
EM Energy-based Subtrajectory AL framework which is designed to model mul-
tiple reward functions evolving over time in an o!ine manner. THEMES con-
sists of two key components: (1) Sub-trajectory partitioning, achieved by
partitioning expert trajectories into fine-grained sub-trajectories while incorpo-
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rating time-awareness. A hierarchically learned reward regulator captures evolv-
ing decision-making patterns. (2) Policy induction, performed through o#ine
EM-EDM, which simultaneously clusters sub-trajectories and induces policies
specific to each cluster. We evaluate THEMES against six competitive AL base-
lines and two ablations on a challenging task—predicting students’ pedagogical
decisions in an ITS by training on past semester trajectories and testing on a later
semester. Results show that THEMES consistently outperforms all baselines and
ablations across performance metrics. Our findings highlight its potential as a
powerful alternative for capturing evolving student pedagogical strategies and
inducing e!ective policies, even with as few as 18 demonstrations.

2 Related Work

RL for Pedagogical Policy Induction: Prior research has demonstrated
the great potential of leveraging RL and DRL for pedagogical policy induction
in ITSs [25, 33, 42, 49]. Shen et al. [43] applied a value iteration algorithm to
induce policies aimed at improving student performance, showing advantages
over random decision-making. Wang et al. [49] utilized DRL to optimize students’
learning in an educational game, outperforming traditional RL approaches in
simulations. More recently, Zhou et al. [53] employed o#ine Hierarchical RL
to induce pedagogical policies, achieving superior results compared to flat-RL
baselines in classroom studies. However, these approaches require large-scale
training data—often exceeding 1,000 trajectories [43, 25, 53]—which is typically
collected by constraining ITSs to make randomized yet reasonable decisions.
Moreover, they rely on predefined reward functions, such as normalized learning
gains [43, 53], manually designed by researchers [16], limiting adaptability to
diverse student learning processes.

O"ine Apprenticeship Learning (AL): The most straightforward approach
to o!ine AL is behavior cloning (BC) [15], which directly maps states to actions
to replicate demonstrated behaviors [37]. More robust alternatives, such as in-
verse reinforcement learning (IRL) [27, 23, 31, 8] and adversarial imitation learn-
ing [28, 29], infer an explicit or implicit reward function to generalize beyond ob-
served behaviors. Standard IRL involves iterative online computations, including
reward function inference, policy induction via RL, policy rollouts, and reward
updates based on behavior divergence. To eliminate policy rollouts, batch-IRL
methods [40] have been introduced, but they often rely on o!-policy evalua-
tion, leading to suboptimal solutions. Similarly, adversarial imitation learning
iteratively trains a generator to roll out policies and a discriminator to distin-
guish learned behaviors from expert demonstrations. O!-policy variants based
on actor-critic algorithms [28, 29] mitigate the need for policy rollouts but inherit
the instability of adversarial training [21]. To address these challenges, EDM [24]
was introduced, o!ering a more stable solution for o#ine settings and outper-
forming both IRL and adversarial imitation learning. In this work, EDM serves
as one of our baselines. All the aforementioned methods assume a single reward
function across all demonstrations.
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To handle scenarios where multiple reward functions exist across trajecto-
ries but remain fixed within each trajectory, several methods have been devel-
oped. Dimitrakakis and Rothkopf [10] introduced Bayesian multi-task IRL, which
learns a separate reward function for each trajectory while sharing a common
prior distribution. Choi et al.[9] extended this idea using nonparametric Bayesian
IRL, modeling the distribution of di!erent rewards with a Dirichlet process to
allow for more flexible clustering. Babes-Vroman et al.[7] proposed an EM-based
framework that iteratively assigns probabilities to demonstrations belonging to
di!erent clusters and updates the corresponding cluster-wise reward functions
using Maximum Likelihood IRL.

To model reward functions that evolve over time, Krishnan et al. [30] intro-
duced Hierarchical IRL (HIRL), and Hausman et al. [19] proposed Multi-modal
Imitation Learning. More recently, Wang et al. [48, 47] developed a hierarchical
imitation learning model that learns both high-level policies and sub-policies for
individual sub-tasks. These methods, often relying on generative adversarial im-
itation learning [21], require online interactions or o!-policy evaluations, making
them less suited for fully o#ine settings. Additionally, meta-imitation learning
[13] has been explored to generalize from a few demonstrations, typically by
structuring tasks into subtasks predefined by domain experts. However, man-
ually defining subtasks is challenging in complex, uncertain environments like
education. To address this, THEMES framework [50] automatically segments
trajectories into sub-trajectories, capturing the evolving nature of reward func-
tions in a data-driven manner.

AL for ITSs: Ra!erty et al. applied IRL to infer learners’ beliefs in an ed-
ucational game, demonstrating that IRL could e!ectively recover participants’
understanding of how their actions influence the environment [39]. This high-
lighted IRL’s potential for interpreting data in interactive learning settings. In
subsequent work, they used IRL to assess learners’ mastery of algebraic skills,
identifying misconceptions and providing personalized feedback for improvement
[38]. Yang et al. introduced EM-Inverse Reinforcement Learning (EM-IRL) to
cluster students based on pedagogical behavior [52]. However, like many multi-
intent approaches, it was constrained to discrete state representations (e.g., 17
discrete features in [52]). More recently, Islam et al. developed EM-EDM frame-
work [22] to induce e!ective policies from expert demonstrations with hetero-
geneous reward functions while generalizing to continuous state spaces. They
demonstrated that EM-EDM surpassed two DRL and four AL baselines in a
challenging student modeling task for predicting pedagogical decisions. Thus,
we adopt EM-EDM as a baseline to assess the e!ectiveness of THEMES.

3 Methods
The input dataset DTotal consists of L student-ITS interaction trajectories, each
having a fixed length of n. Each trajectory d can be viewed as: s1

a1→↑ s2
a2→↑

· · · sn→1
an→1→→→↑ sn. Here si

ai→↑ si+1 designates that at the ith time step in d,
the student’s learning status was in state si, the student executed the action ai

and their learning status transitioned to state si+1. Since in AL, it is typically
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Fig. 1: Overview of the THEMES Framework.

assumed that the experts’ trajectories provided as input are optimal or near-
optimal according to latent reward functions [1], the quality of these trajectories
is crucial for inducing more accurate policies. Therefore, we have designed a
procedure outlined in Section 4 to select the expert student trajectories, based
on which a subset of N trajectories DExpert is selected from DTotal, denoted as:
{Dj} = {(sji , a

j
i )|i = 1, ..., n; j = 1, ..., N} where N ↓ L.

3.1 THEMES for Evolving Student Pedagogical Strategy

Given DExpert as input, THEMES seeks to learn the multiple underlying reward
functions of students that evolve over time leveraging its two key components,
i.e., sub-trajectory partitioning and policy induction (Figure 1). Primarily, a
time-aware sub-trajectory partitioning method [51] processes the states from in-
put (DExpert). It partitions and clusters the states {sji} into sub-trajectories such
that each resulting cluster captures consistent time-invariant patterns, which can
be interpreted as high-level states {Sq|q ↔ [1, Q]} where Q refers to the number
of sub-trajectory clusters. Then, focusing on the state-action pairs within the
partitioned sub-trajectories, an Expectation-Maximization(EM) Energy-based
Distribution Matching (EDM) method [24] clusters and induces policies from the
state-action pairs {(sji , a

j
i )} over the partitioned sub-trajectories, ensuring that

each cluster exhibits consistent decision-making patterns, referred to as high-
level actions {ωo|o ↔ [1, O]}. Using these high-level state-action pairs, a Maxi-
mum Likelihood Inverse Reinforcement Learning (ML-IRL) method [7] learns a
high-level reward regulator R(·), which is then fed back to refine sub-trajectory
partitioning. This iterative procedure continues until convergence.

Sub-trajectory Partitioning As shown in Figure 1, this module first extracts
the states {sji} from the given expert student trajectories {(sji , a

j
i )}. Since the

states in student trajectories are sequential and influenced by adjacent states, it
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is desirable to leverage the temporal dependencies rather than treating states in-
dependently. Hence, the Subtrajectory-partitioning module of THEMES captures
this temporal dependency by investigating patterns within a sliding window of
size ε ↗ n. For each state sji , the sub-trajectory within the window, Sj

i =
{sji→ω+1, . . . , s

j
i}, is used to determine the cluster assignments {Sq|q ↔ [1, Q]}.

Given sji ↔ Rm, each sub-trajectory with the sliding window Sj
i can be viewed

as a random variable in a mε-dimensional space, which can be generated by
concatenating the ε consecutive states.

Each sub-trajectory cluster is represented by its mean vector (µ) and inverse
covariance matrix (!) [18]. Specifically, the process of determining the optimal
mean vectors, {µq | q ↔ [1, Q]}, is equivalent to assigning each state to the most
suitable cluster. In Intelligent Tutoring Systems (ITSs), student trajectories are
often collected at irregular intervals. Consequently, both the mean vectors and
inverse covariance matrices are learned across various trajectories, while time-
awareness is incorporated during the sub-trajectory partitioning phase using a
decay function that allows for a re-evaluation of cluster consistency over time
[51]. To enhance the sub-trajectory clustering by accounting for decision-making
behaviors, hierarchical rewards {rjt | t ↔ [1, n]} are inferred for each state-action
pair, which then inform the adjustment of the consistency constraint. As illus-
trated in Figure 1, these high-level state-action pairs facilitate the inference of
high-level rewards, R(·), which can be learned using Maximum Likelihood In-
verse Reinforcement Learning (ML-IRL) [7].
Policy Induction In this segment, EDM [24], a state-of-the-art strictly o#ine
AL method, serves as the core component, which assumes a single reward func-
tion while learning the policy ω

ε, parameterized by ϑ. To induce the policy ω
ε,

EDM aim to learn the parameter ϑ by minimizing the KL divergence between
ϖD and ϖϑω , DKL(ϖD||ϖϑω ), where ϖD and ϖϑω represent the occupancy measures
for the expert trajectories and for the induced policy ω

ε, respectively.
Despite its success in o!ine learning, EDM assumes that all demonstrations

adhere to a single reward function, which is often impractical for human-centric
tasks in the real world, such as education, where students may have multiple
reward functions evolving over time. To address the challenge of multiple reward
functions varying across demonstrations, an Expectation-Maximization(EM)-
EDM [22] was introduced, iteratively clustering demonstrations in the E-step
and inducing the policy for each cluster by EDM in the M-step. The input to EM-
EDM will be the sub-trajectories {Dĵ |ĵ = 1, ..., N̂}, where N̂ is the total number
of sub-trajectories learned from Sub-trajectory partitioning. Finally, THEMES
yields sub-trajectory clusters with respective policies {ωo|o ↔ [1, O]} as output,
representing multiple student pedagogical strategies evolving over time.

3.2 Baselines

Behavior Cloning (BC) Behavior cloning [45, 41] is a supervised learning ap-
proach used in AL where an agent learns to imitate an expert by directly mapping
observations to actions based on the expert’s demonstrations. The objective is
to mimic the expert’s behavior, hence, learn a policy ωε(a|s) parameterized by
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ϑ that approximates the expert behavior: L(ϑ) = 1
n

∑n
i=1↘ωε(ai|si) → ai↘2. It

is important to note that while BC is straightforward, it can be sensitive to
distribution shifts and compounding errors, especially when the learned policy
deviates from the expert demonstrations.
Gaussian Process (GP) + Deep Q-Network (DQN) To infer immediate
rewards from the final delayed reward of each trajectory, this method [6] first em-
ploys GP to model a distribution function f that captures the expected values
and standard deviations of the unknown intermediate rewards. The inference
is formulated as a minimum mean square error (MMSE) estimation problem,
where the additive Gaussian rewards are estimated such that their sum approx-
imates the observed delayed return [17]. This approach assumes that rewards at
each timestep follow a Gaussian distribution and that the total reward across
the trajectory equals the observed delayed outcome. Once immediate rewards
are inferred, a Deep Q-Network (DQN) is trained on the reconstructed imme-
diate reward-labeled trajectories. This enables the agent to learn a policy that
maximizes the expected cumulative reward over the reconstructed trajectories.
Multi-modal Imitation Learning (MIL) MIL [19] tackles imitation learning
from unstructured and unlabeled demonstrations by learning a multi-modal pol-
icy. Instead of assuming demonstrations are pre-segmented by task, MIL jointly
segments skills and learns their corresponding policies. The method augments
the standard policy ω(a|s) with a latent intention variable i ≃ p(i), resulting in
a conditional policy ω(a|s, i). The intention variable i selects a specific mode of
the policy corresponding to a distinct skill. MIL optimizes a generative adver-
sarial imitation learning objective, extended with an additional latent intention
loss, encouraging the policy to maximize the mutual information between the
latent intention and the generated behaviors. Through this framework, MIL si-
multaneously discovers the distinct skills present in demonstrations and learns
to imitate them using a single, unified policy.
Adapted Hierarchical Inverse Reinforcement Learning (AHIRL) HIRL
[30] addresses the challenge of long-horizon tasks with delayed rewards by seg-
menting demonstrations into a sequence of locally linear sub-tasks. Each sub-
task is defined by consistent changes in local linearity, detected using a Bayesian
nonparametric Gaussian Mixture Model (DP-GMM) over a featurized trajectory
space. To ensure sequential execution, HIRL augments the original state-space
S with a binary vector v ↔ {0, 1}Q that tracks progress across Q sub-goals. A
reward function Rε(s, a, v) is then learned using Maximum Entropy IRL over
this augmented space. This enables the agent to reason about both current state
and sub-task completion history.

4 Experiment
This study utilized a Probability ITS (Figure 2) deployed in the Spring and Fall
semesters of a large undergraduate STEM course at a public university. Designed
by domain experts and overseen by departmental committees, the system aims to
teach entry-level undergraduates ten key probability principles, e.g., complement
theorem and Bayes’ rule, through solving a series of complex problems, each of
which requires 30 to 60 interactions.
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Data Collection Data were collected from 221 students over four semesters: 67
in Spring 2021 (S21), 56 in Spring 2022 (S22), 54 in Spring 2024 (S24), and 44 in
Fall 2024 (F24). All students followed a standardized process, including the same
textbook, pre-test, training, and post-test within our ITS. During the textbook,
all students studied the 10 probability principle, read a general explanation, and
worked through various single- and multi-principle problems. The pre-test and
post-test comprised 8 and 12 open-ended complex problem-solving questions,
respectively.

During ITS training, all students were presented with the same 12 training
problems in a fixed sequence. Each problem required applying 3 to 11 domain
principles for a solution. For two of these problems, all students were required
to solve them independently to familiarize themselves with the ITS interface.
For the remaining 10 problems, students would decide among three ap-
proaches: 1) solving the problem independently, 2) collaborating with the ITS,
or 3) viewing a worked-out example. Students’ pre-test and post-test answers
were graded independently by two evaluators using a double-blind process, with
discrepancies resolved through discussion to reach a final grade. All test scores
were normalized to the range of [0 - 100] for comparison purposes. Student data
were obtained anonymously through an exempt IRB-approved protocol.

130 State Feature Representation Given that students’ underlying learning
status are unobservable [33], two domain experts define the State space through
130-dimensional continuous features including: 10 Autonomy features that
measure the student’s work, such as the number of elicits since the last tell; 22
Temporal features that represent time-related information, like average time
per step; 31 Problem Solving features that reflect contextual information
about problem-solving, including di"culty level; 57 Performance features that
indicate student’s performance so far, such as the percentage of correct responses;
10 Hints features that show data on hint usage, such as total hints requested.

Expert Student Demonstrations To select demonstrations with optimal or
near-optimal student interactions with the ITS, we used the Quantized Learning
Gain (QLG) measure [34]. Students were categorized into low, medium, or high-
performance groups based on their pre- and post-test scores (as shown in Figure
3). A "High" QLG is assigned to students who improved or remained in the
high-performance group, while a "Low" QLG is given to those who dropped to a
lower group or stayed in low/medium groups. This helped identify students who
benefited most from our ITS. A total of 89 student trajectories from 4 semesters
were used as expert demonstrations: 18 from S21, 24 from S22, 23 from S24, and
24 from F24.

Experimental Settings We select six competitive AL baselines for compari-
son against THEMES, as discussed in Section 3.1 and 3.2. The settings for the
baselines are summarized as follows:
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Fig. 2: ITS Interface Fig. 3: Quantized Learning Gain

1) BC [15, 45]: We use the BC implementation available in the imitation [15]
library and extend it to a customized environment corresponding to our ITS
setting.
2) GP+DQN [6]: For this method, we employ Gaussian Process (GP) to in-
fer immediate rewards first from the delayed final outcomes, e.g., learning gain
of students for ITS setting, followed by a standard Deep Q-Network (DQN)
implementation [11] for policy learning.
3) EDM [24]: Since EDM is strictly o#ine, we minimally adapt the original
implementation to fit the ITS setting.
4) Multi-modal Imitation Learning (MIL) [19]: MIL leverages InfoGAN
to jointly learn sub-trajectories and policies. Although originally designed for
online settings, we adapt it for o#ine learning.
5) Adapted Hierarchical Inverse Reinforcement Learning (AHIRL)
[30]: In our o#ine adaptation of HIRL, we reuse the segment clustering and local
reward structure but employ EDM-based policy learning rather than online RL,
enabling HIRL to operate e!ectively in a strictly o#ine setting.
6) EM-EDM [22]: We extend the implementation of EDM to EM-EDM by
incorporating the EM algorithm and maximizing the log-likelihood of cluster
assignments as described in [22].

In addition to the six AL baselines, we evaluate the performance of THEMES
against its two ablations. The first one is: THEMES0, where the high-level
states are obtained through sub-trajectory partitioning [51], but the high-level
actions are induced by EDM [24]. The second one is: THEMES1, where the
high-level states are also learned by sub-trajectory partitioning, but high-level
actions are induced by EM-EDM [7]. Finally, in THEMES, we utilize reward
regulated sub-trajectory clustering to partition trajectories with hierarchically
learned reward regulator and induce policies over the partitioned sub-trajectories
via EM-EDM. For THEMES, the hyperparameters in sub-trajectory partitioning
are determined based on the Bayesian Information Criteria (BIC) [14], with the
number of sub-trajectory clusters Q set to 6, window size ε set to 2, and the
coe"cients for sparsity and consistency terms set to 1e-3 and 4, respectively.
For EM-EDM, the optimal number of clusters O was determined heuristically
as 3, by iteratively implementing the EM algorithm until either empty clusters
are generated or the log-likelihood of the clustering results varies by less than
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a predefined threshold. The iterations for the overall THEMES framework are
set as 10, since the clustering likelihood for both sub-trajectory clustering and
EM-EDM converge within 10 iterations.

Experiment Setup and Evaluation Metrics It is important to emphasize
that all models are evaluated using semester-based temporal cross-validation (3-
fold) in this task, which only applied data from previous semesters individually or
combined for training and is a much stricter approach than the standard cross-
validation [35]. We report Accuracy, Recall, Precision, F1 Score, AUC (Area
Under the ROC Curve), APR (Area Under the Precision-Recall Curve), and
Jaccard score. The Jaccard score measures the similarity between the predicted
and true sets of labels, calculated as the size of the intersection divided by the
size of the union of the two sets. Given the nature of our task, we consider AUC
and Jaccard score to be the most critical metrics, as they are generally robust.

5 Results

Table 1: Comparing THEMES with baselines and ablations
Methods Acc Rec Prec F1 AUC AP JAC
1. BC [15] .366±.03 .366±.03 .384±.04 .363±.03 .523±.03 .362±.01 .224±.02

2.GP+DQN [6] .389±.06 .389±.06 .399±.10 .297±.05 .525±.06 .386±.03 .193±.04

3. EDM [24] .656±.05 .656±.05 .686±.03 .658±.05 .801±.03 .662±.04 .506±.05

4. MIL [19] .508±.06 .508±.06 .486±.11 .456±.06 .627±.06 .465±.06 .319±.06

5. AHIRL [30] .545±.07 .545±.07 .566±.07 .545±.07 .688±.07 .537±.07 .388±.07

6. EM-EDM [7] .705±.06 .705±.06 .725±.04 .709±.05 .847±.03 .724±.05 .561±.07

7. THEMES0 .638±.05 .638±.05 .671±.06 .642±.06 .783±.05 .643±.07 .487±.06

8. THEMES1 .745±.04 .745±.04 .761±.03 .747±.03 .875±.02 .768±.03 .605±.04

9. THEMES .763±.02
→ .763±.02

→ .773±.02
→ .765±.02

→ .879±.02
→ .773±.04

→ .626±.03
→

Table 1 reports the average and standard deviation of the overall semester-
based temporal cross-validation results for the di!erent models, with the best
baselines and ablations highlighted in bold, and the overall best results are high-
lighted with *. The critical di!erence diagram, based on the Conover-Friedman
tests (p = 0.05), for AUC and Jaccard, is presented in Figure 4. The results
clearly show that THEMES significantly outperform all other methods in all
evaluation metrics. Specifically, THEMES outperforms THEMES1, demonstrat-
ing the e!ectiveness of hierarchically learned reward regulator in incorporating
decision-making patterns during sub-trajectory partitioning. Furthermore, the
three THEMES-based methods consistently and significantly outperform com-
petitive baselines such as AHIRL and MIL, which share the assumption of mul-
tiple reward functions evolving over time. This suggests that the e!ectiveness
of high-level state representation is enhanced by incorporating time-awareness
during sub-trajectory partitioning. When comparing THEMES and THEMES0

with EM-EDM, significant improvements are observed, highlighting the power
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of high-level state representation to capture time-varying patterns across par-
titioned sub-trajectories. Although EM-EDM is better than EDM, which sup-
ports the assumption of multiple reward functions, the superior performance
of THEMES over EM-EDM suggests that the assumption was insu"cient to
model time-varying decision-making. Moreover, THEMES demonstrates excep-
tional consistency between semesters, as evidenced by the minimal standard de-
viation in Table 1. Notably, among all individual fold results of semester-based
cross validation, we found that THEMES can achieve an AUC of 0.899 and a
Jaccard of 0.653, using only 18 trajectories of S21 to predict student strategies
in S22. Finally, all of these results underscore the potential of THEMES as a
sample-e"cient alternative to capture evolving student pedagogical strategies.

(a) AUC

(b) Jaccard Score

Fig. 4: Critical di!erence diagram for AUC and Jaccard Score

A Case Study Figure 5 presents a t-SNE visualization of the original 130-state
space from all expert student demonstrations. To facilitate better visualization,
we applied t-distributed stochastic neighbor embedding (t-SNE) to project the
data into a lower-dimensional space [20]. In this figure, di!erent colors corre-
spond to the six clusters identified by sub-trajectory clusters or high-level states
in THEMES framework. The blue and black lines represent the expert stu-
dent demonstrations from two distinct groups. The blue trajectory remains
consistently within sub-trajectory cluster 1, indicating a student likely driven
by a single, stable intention throughout their learning process. In contrast, the
black trajectory begins in cluster 2 but evolves over time, transitioning through

clusters 6, 1, 2, 6, and 3. This suggests that the latter student’s learning is guided
by multiple, shifting intentions. AL methods like EDM, which assume a single
reward function for each demonstration, can e!ectively capture the former tra-
jectory but may struggle to account for the dynamic nature of the latter. In con-
trast, THEMES leverages sub-trajectory partitioning and clustering, enabling it
to capture and adapt to these evolving intentions, resulting in a more accurate
policy for the latter trajectory.
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Fig. 5: t-SNE Visualization of Expert Student Demonstrations— blue Trajec-
tory (representing a fixed reward function) vs. black Trajectory (indicating
evolving reward functions)
6 Caveats, Discussion & Conclusion
We leverage a generalized time-aware hierarchical AL framework, THEMES, to
induce pedagogical policies from expert student demonstrations, with the as-
sumption that multiple reward functions evolve over time. By integrating time-
awareness with hierarchically learned reward patterns, THEMES enables more
precise sub-trajectory partitions, resulting in highly e!ective pedagogical poli-
cies that align closely with expert student decisions. However, a limitation of
this work lies in the relatively limited interpretation of evolving multiple reward
functions in student demonstrations. Furthermore, this study is focused on a
single ITS, although the time-aware hierarchical AL approach holds significant
promise for other e-learning environments. Using student-ITS interaction logs,
it can potentially validate the presence of multiple evolving intentions in diverse
contexts. Moreover, while the trajectory lengths in our ITS were shorter than
those in many real-world human-centric environments, THEMES still outper-
formed other approaches. Future work exploring e-learning environments with
longer trajectories may reveal even more impressive results, further solidifying
the framework’s e!ectiveness in complex, evolving pedagogical settings.
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