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Abstract. Student communication during collaborative problem solv-
ing centers on sharing and negotiating ideas, regulating problem-solving
processes, and maintaining social interaction. These cognitively and so-
cially driven processes help students consolidate knowledge, manage their
actions, and engage e!ectively in collaborative learning environments.
To enhance these environments, analyzing student dialogue is crucial for
delivering adaptive sca!olding and fostering deeper engagement and col-
laboration. However, such analysis poses significant challenges due to the
complexity of student interactions and the need for interpretable analy-
sis. To address these challenges, we introduce a novel framework for an-
alyzing collaborative problem-solving dialogue that integrates temporal
clustering of dialogue patterns with LLM-generated explanations. Using
video and chat log data from middle school student groups engaged in a
collaborative game-based learning environment, we demonstrate that our
framework e!ectively identifies collaborative problem-solving dialogue
patterns. Furthermore, the LLM-generated interpretations enhance the
interpretability of these clusters, to enable both collaborative problem-
solving assessment and early prediction of learning outcomes. This work
lays the foundation for enabling adaptive sca!olding, automated collabo-
ration assessment, and improved learning processes within collaborative,
game-based educational settings.

Keywords: Dialogue analysis · Temporal clustering · Large language
model · Collaborative learning · Collaborative problem solving.

1 Introduction

Collaborative problem solving has emerged as a key 21st-century competency,
requiring individuals to integrate knowledge, skills, and e!orts to solve complex
problems [10, 22]. Collaborative learning environments that feature collabora-
tive problem solving have been shown to enhance student learning, engagement,
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and problem-solving outcomes [10, 17]. In these settings, students develop col-
laborative problem-solving skills by tackling complex, ill-structured problems
[17], yet they often face di"culties in navigating and regulating collaborative
processes [29]. Addressing these challenges requires expert analysis of student
dialogues, a notably labor-intensive process. AI-driven methods o!er promising
alternatives by enabling the automatic monitoring and analysis of collaborative
problem-solving behavior, thus supporting tailored interventions. Previous ap-
proaches have primarily focused on recognizing collaborative problem-solving
dialogue acts [9, 18] or analyzing utterance-level transitions mapped to collabo-
rative problem-solving categories [15] and actions [4, 20, 34, 31]. However, these
approaches often struggle to capture higher-level, long-range patterns and to
connect behaviors to learning outcomes. Deep sequential models like Long Short-
Term Memory networks [14] can model temporal dependencies but tend to over-
fit due to the variability and unpredictability in student dialogue. Compounding
the issue, their "black box" nature limits interpretability in linking students’
collaborative problem-solving behaviors and their learning outcomes. Temporal
clustering has shown potential to uncover patterns in dialogue data. However,
its lack of interpretability has led many studies to focus on discrete collabora-
tive problem-solving events or their transitions over broader temporal trends,
typically using statistical methods [15, 31]. Large language models (LLMs) can
generate intuitive interpretations, but their use in real-time learning environ-
ments is limited by computational cost, latency, and data privacy concerns.

To address these challenges, we propose a novel collaborative problem-solving
dialogue analysis framework that integrates temporal clustering of collabora-
tive problem-solving dialogue patterns with LLM-generated explanations: LLM-
Enhanced Dialogue Clustering and Interpretation (LEDI). The LEDI collabora-
tive dialogue analysis framework bridges the gap between temporal data analysis
and human-readable, domain-specific interpretation. Crucially, it enhances scal-
ability, reduces computational cost, and preserves data privacy by eliminating
the need for real-time LLM inference at deployment. By increasing the trans-
parency and usability of collaborative problem-solving dialogue analysis, LEDI
enables automated collaboration assessment in collaborative game-based learn-
ing environments and lays the foundation for improving collaborative learning
processes and outcomes. In this paper, we investigate three research questions:
(RQ1) How e!ective are temporal clustering methods in identifying meaningful
patterns within collaborative problem-solving dialogue?; (RQ2) How accurately
can LLMs interpret and evaluate clustered dialogues to provide insightful and
domain-specific explanations?; and (RQ3) Can the evaluation of clustered dia-
logue quality reliably predict students’ learning outcomes?

2 Related Work

Collaborative learning encompasses both cognitive and social dimensions. The
cognitive aspect focuses on problem solving, while the social aspect emphasizes
interaction and cooperation [12, 22]. In computer-supported collaborative learn-
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ing (CSCL) environments, collaborative learning has been strongly associated
with improved learning outcomes, as it enables students to support and guide
one another, fostering both individual and collective learning [26]. CSCL culti-
vates collaborative problem-solving skills through pedagogical strategies such as
problem-based and inquiry-based learning [13, 28]. Notably, students in game-
based learning environments tend to achieve better learning outcomes compared
to those who learn individually [5]. However, understanding and e!ectively sup-
porting collaborative learning behaviors in these environments remains a chal-
lenge due to their inherently complex and dynamic nature [16].

To systematically analyze collaborative problem-solving behaviors, Liu et al.
[21] proposed a discursive collaborative problem-solving framework for science
education in collaborative learning environments. They emphasized that collab-
orative problem-solving skills are predominantly demonstrated through face-to-
face and text-mediated dialogues. This framework delineates four core dimen-
sions of collaborative problem solving: (1) sharing ideas, which is exchanging
task-relevant information, ideas, and resources; (2) negotiating ideas, which is
expressing agreement or disagreement with supporting evidence to reach con-
sensus; (3) regulating problem solving, which is monitoring, reflecting, and co-
ordinating collaborative e!orts; and (4) maintaining positive communication,
which is fostering a supportive and productive group dynamic. This framework
has been foundational for numerous collaborative problem-solving investigations,
including the present work.

Recent advances in natural language processing (NLP) techniques have signif-
icantly enhanced dialogue analysis in CSCL [1]. While earlier research focused on
statistically analyzing sequential dialogue behaviors [7, 15] and problem-solving
actions [4, 20, 34] to assess students’ collaborative problem-solving competencies,
recent studies have increasingly advanced NLP techniques, such as deep neural
networks and Transformer-based methods, to tackle a broad range of collabora-
tive learning analytics tasks. These include learning outcome prediction [11], de-
tecting o!-task behaviors [2], and identifying disruptive discourse [25, 8] through
the analysis of students’ interactions and dialogue data. More recently, large
language models (LLMs) have gained attention for their generative capability
and generalizability in education [30, 19], as they are trained on vast amounts of
natural language data. Researchers have expanded dialogue analysis capabilities
including dialogue act recognition [24, 18], problem behavior diagnosis [6], and
inter-sentential relation analysis, such as temporal, causal, and dialogue relations
[3]. Additionally, Markov Chain analysis has been integrated with LLM-based di-
alogue interpretation to examine transitions between two collaborative problem-
solving events across multiple utterances [31]. Despite advances in NLP-driven
collaborative problem-solving analysis, limited work has explored the role of con-
secutive temporal dynamics in collaborative problem-solving dialogue, which is
crucial for capturing nuanced collaborative problem-solving patterns. Our pro-
posed approach introduces a framework for understanding high-level temporal
structures in collaborative problem-solving dialogue, which can lead to more
e!ective adaptive support mechanisms in collaborative learning environments.
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3 Crystal Island: EcoJourneys

The Crystal Island: EcoJourneys is a collaborative game-based learning
environment designed to support middle school students in developing life sci-
ence knowledge and collaborative problem-solving skills [28]. In the game, teams
of three to four students investigate the cause of tilapia illness, communicating
either in person or via an in-game chat. The game includes a tutorial and three
quests, each featuring an individual Investigation phase, where students gather
and analyze data on water quality and aquatic ecosystems, followed by collabora-
tive problem-solving tasks. In the Deduce phase, students collaborate to answer
multiple-choice questions, based on their findings, sharing ideas, negotiating, and
resolving knowledge gaps, reaching a consensus before submitting their response.
In the Talk, Investigate, Deduce, and Explain (TIDE) phase, students use a col-
laborative real-time collaboration tool to assess whether a given explanation is
tenable by organizing evidence into consistent or inconsistent columns and dis-
cussing their reasoning. Through discussion, they evaluate and select relevant
evidence to reach a consensus. This study analyzes students’ collaborative dia-
logue patterns across the three quests, examining both in-person and in-game
communication.

Data Collection and Data Sources. The classroom involved 67 consenting
middle school students (grades 6-8, ages 11-14) distributed across 17 groups in
seven science classes from four middle schools. Most of the participants (96%,
64 students) identified as White, and 46% identified as female and 49% as male,
and the remaining participants selected other options. During gameplay, groups
of three to four students collaborated using individual laptops. In-person and
in-game conversations were captured through video and trace log data, respec-
tively. After transcribing the in-person conversations across the three quests, we
combined the transcribed and in-game dialogue, yielding 7,371 utterances. An
utterance, u, is defined as the sentences spoken or typed within a single speaker’s
turn, with examples shown in Table 1. On average, each group produced 433.6 ut-
terances (SD=237.2), while each quest averaged 141.6 utterances (SD=44.3). A
pre-and post-assessment on life science was administered on the first and last day
of each implementation, respectively. A paired t-test shows a significant increase
from the pre-test (mean=22.1) to the post-test (mean=24.6), t(N → 1)=-3.83,
p=0.0003, suggesting that the gameplay had an e!ect on the learning outcome.
Data collection was conducted with Institutional Review Board (IRB) approval
for research involving human subjects.

4 Method

The LEDI collaborative dialogue analysis framework (Fig. 1) involves four stages
during the training phase: 1) temporal clustering of collaborative problem-solving
dialogues, 2) LLM-based cluster interpretation, 3) cluster quality labeling, and
4) dialogue interpretation and prediction of learning outcomes. In the test phase,
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Table 1. Examples of collaborative problem-solving utterances, dialogue sequences,
cluster IDs, cluster quality labels, and cluster quality score.

ui Student Utterance Dialogue Cluster Quality Quality

Sequence ID Label Score

u1 Student1 The first one as compared to the bottom S1=[u1] c1 Exemplary 2
of the clean tank. That’s the first question.
There is dissolve oxygen at the bottom of
the dirty tank.

u2 Student2 Tha so, there’s less at the bottom of S2=[u1, u2] c2 Developing 1
the dirty tank.

u3 Student1 Oh wait it out. So I thought it talks S3=[u1, u2, u3] c2 Developing 1
about the dirty tank. So, sort of
comparing the dirty and the clean tank.

u4 Student1 Yes, there’s less dissolved oxygen because S4=[u1, ..., u4] c1 Exemplary 2
the bottom of the clean tank is 6.2 and
the bottom of the dirty tank is 3.7.

u5 Student2 For the second one, it’s photosynthesis? S5=[u1, ..., u5] c1 Exemplary 2

LLM-based cluster interpretation is omitted, since all clusters have already been
interpreted; dialogue sequences are assigned cluster IDs and quality labels, and
the average cluster score is calculated for prediction.

Fig. 1. The LEDI collaborative dialogue analysis framework.

Problem definition. For interpretable temporal clustering, given an input dia-
logue sequence, Si, consisting of a sequence of utterances, our goal is to group Si

into a temporal cluster c ↑ C, denoted Sc, and provide a language description,
Dc, for every cluster for interpretation. Then, for cluster quality evaluation, each
temporal cluster is assigned a quality label q ↑ Q among Emerging, Develop-
ing, and Exemplary. Lastly, for early prediction, given a dialogue sequence Si is
classified into a higher- or lower-performing group.
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Temporal Clustering of Dialogues. We train temporal clusters using dia-
logue sequences. To capture semantic similarity, we encode each utterance, u,
in a fixed-dimensional vector using Sentence Transformers [27]. These vectors
are concatenated into l-length sequences, Si = [ui→l+1, ..., ui→1, ui], to represent
a single dialogue sequence as context. We then apply Dynamic Time Warping
(DTW) to cluster Si ↑ S into k groups, addressing variations in dialogue con-
tent, length, speed, and timing. DTW nonlinearly aligns utterances, preserving
meaningful patterns for higher-level dialogue analysis. While clustering captures
dialogue similarity, cluster meanings are interpreted in the next step.

LLM-Based Dialogue Cluster Interpretation. We interpret the learned
clusters using an LLM. Algorithm 1 generates natural language descriptions of
collaborative problem-solving dialogue clusters using an LLM. Given a subset of
dialogue sequences, Sc, from cluster c, it generates a text description, Dc, which
summarizes the cluster c’s collaborative problem-solving traits identified by the
clustering model. The process consists of three steps: (1) randomly sampling
dialogue sequences from cluster c, (2) generating descriptions for each sample
batch, and (3) repeating this process m times to derive a final summary and title
of the cluster. The iterative approach enhances the representation of the trained
clustering model by capturing broader dialogue patterns.

More specifically, in each iteration i, a random sample batch, Sc,i, of size r is
drawn from the clustered sequences Sc (line 3). The LLM then extracts common
characteristics using in-context learning with a prompt that includes only sam-
ples (Sc,i) or samples along with collaborative problem-solving knowledge (K).
We define three variants: (1) LEDI-Base, which includes samples only and
excludes K; (2) LEDI-CPS, which incorporates both samples and the collab-
orative problem-solving (CPS) framework description; and (3) LEDI-Expert,
which includes samples, the CPS framework description, and expert-defined CPS
behavior focuses (line 4). After m iterations, the algorithm summarizes the de-
scriptions, [Dc,1, ..., Dc,m] into a final summary Dc (line 6), enhancing the inter-
pretability of the clustering model. This clustering interpretation step enables
each collaborative problem-solving group’s dialogue to be represented as a se-
quence of collaborative problem-solving contexts.

Algorithm 1 LLM-Enhanced Dialogue Interpretation Algorithm.
Input: clustered dialogue sequences S, domain knowledge K
Parameter: cluster number k, random sample size r, max iteration m
Output: cluster description, D
1: for c → [1, k] do

2: for i → [1,m] do

3: Sc,i ↑ randomSample(Sc, r)
4: Dc,i ↑ extractCommonPatterns(LLM, Sc,i, K)
5: end for

6: Dc ↑ summarize(LLM, Dc,1, ..., Dc,m)
7: end for
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To define the focus of expert-informed CPS behavior, an educational expert
identified eight key dialogue patterns distinguishing exemplary and emerging
CPS behaviors. Emerging patterns reflect CPS behaviors with room for improve-
ment: (1) insu"cient participation: limited utterances that prevent meaningful
engagement; (2) superficial negotiation: arguments that lack evidence or reason-
ing; (3) wheel-spinning conversations: repetitive or o!-topic talk with unclear
goals; and (4) expedited task completion: prioritizing finishing tasks quickly over
quality dialogue. In contrast, exemplary patterns include: (1) comprehensive con-
tribution: active discussion of diverse task aspects; (2) divergent idea sharing:
exchange of diverse and relevant ideas; (3) evidence-based negotiation: reasoned
dialogue supported by evidence; and (4) socially shared regulation: group-level
planning, strategies, and reflection. Based on these patterns, we constructed a
prompt for LEDI-Expert to interpret clusters and support its cluster quality
labeling process, described in the next paragraph.

Cluster Quality Labeling. To systematically label the collaborative problem-
solving quality of dialogue clusters, we employ two approaches: an LLM-based
method that evaluates cluster descriptions (LEDI-Base/LEDI-CPS/LEDI-Expert),
and a data-driven method, LEDI-CR (Cluster Ratio), that assigns quality la-
bels based on each cluster’s prevalence in higher- and lower-performing groups.
In the LLM approach, a prompt provides each cluster’s description obtained from
the previous stage, asking an LLM to assign a quality label: Emerging, Develop-
ing, and Exemplary. For the data-driven approach, we devise a metric based on
the ratio of clustered dialogue sequences in higher- and lower-performing groups
to assign labels as follows: Exemplary : rH > rL + ω, Developing : (rH >
rL→ ω)& (rH ↓ rL+ ω), and Emerging : rH ↓ rL→ ω where rH and rL represent
the ratios of cluster instances from higher- and lower-performing groups, respec-
tively. The parameter ω defines a bu!er zone in which a cluster’s occurrence
frequency remains similar between the two groups, classifying it as Developing.

Learning Outcome Prediction. Evaluated clusters can be used for early
prediction of learning outcomes by assessing the average quality of n-cumulative
utterances from the start of each collaborative problem-solving task. In this
work, we explore n = [10, 20, 30, 50, 100, 200, all] to examine how di!erent con-
text lengths impact prediction performance. We frame the task as a binary classi-
fication, grouping dialogues into higher- and lower-performing categories. Higher-
performing groups are defined as those whose average learning gain exceeds the
median of group-level learning gain of the training data, while the remaining
groups are classified as lower-performing. The quality labels, Emerging, Devel-
oping, and Exemplary, are assigned to collaborative problem-solving scores of
0, 1, 2, respectively. The average quality score of a sequence of utterances (i.e.,
target dialogue) is calculated as the mean of cluster quality scores. If the score
exceeds the median score identified from the training data, the target dialogue
is predicted as higher-performing; otherwise, it is predicted as lower-performing.
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5 Experiments

We conduct 5-fold group-level cross-validation across four stages: temporal clus-
tering, cluster interpretation, cluster quality labeling, and learning outcome pre-
diction. For temporal clustering of dialogues, we produce utterance embed-
dings using Sentence Transformer (MiniLM, 384 dimensions) [33] and perform
hyperparameter optimization via expert evaluation with grid search, using the
number of clusters k=[5, 10, 20] and dialogue sequence length l=[5, 10, 20, 30]
for DTW, along with the number of dialogue samples for interpretation r=[20,
30, 40], with the optimal hyperparameters marked in bold.

For LLM-based dialogue cluster interpretation, LEDI-Base, LEDI-
CPS, and LEDI-Expert generate interpretations for each cluster. As a prelimi-
nary analysis suggested that LEDI-Expert produced the most reliable interpre-
tations, a domain expert conducted an additional human evaluation of LEDI-
Expert’s interpretations to further examine its accuracy and coherence.

For cluster quality labeling, we assign a quality label to each cluster using
LEDI-Base, LEDI-CPS, LEDI-Expert, and LEDI-CR. To further compare these
approaches, we measure the cross-method similarity among cluster quality labels
assigned by a human expert (human labeling based on samples per cluster),
LEDI-Expert (the best interpretation-based approach), and LEDI-CR (data-
driven). For LEDI-CR, we search ω of [0.005, 0.01, 0.02, 0.03]. Similarity is
calculated as the ratio of the clusters with matching quality labels to the total
number of clusters between any two clustering methods.

Lastly, for learning outcome prediction, we compare our clustering-based
approaches, variants of LEDI, with two non-clustering baselines (i.e., directly an-
alyzing utterances): LSTM and LLM-Expert, whose hyperparameters are also
optimized via grid search. For LSTM, we use Sentence Transformer embeddings
(MiniLM, 384 dimensions) [33] and explore the following hyperparameters: se-
quence length = [20, 30, 40, 50], hidden unit size = [16, 32, 64, 128], and batch
size =[32, 64, 128, 256]. For LLM-Expert, we apply few-shot in-context learning,
using a target dialogue sequence with [1,3,5] dialogue examples from higher- and
lower-performing groups, incorporating expert knowledge, K. GPT-4o-mini [23]
is used as the base LLM for both LLM-Expert and LEDI-based methods.

6 Results

Temporal Clustering. The optimal number of clusters is determined through
expert evaluation on LLM-generated interpretations to distinguish their charac-
teristics. With 5 clusters, multiple collaborative problem-solving dialogue pat-
terns were grouped into a single cluster, while 20 clusters led to overlap in in-
terpretation, making 10 the optimal balance. For dialogue sequence length, 5-
utterance sequences lacked context, whereas 30-utterance sequences often com-
bined multiple situations, reducing clarity. Both 10- and 20-utterance sequences
were viable, but domain experts favored 20 for a more comprehensive analysis.
In the 5-fold training datasets, 10 clusters with 20-utterance sequences yielded
cluster sizes ranging from 19 to 1,705 utterance sequences, with a mean of 576.8.
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LLM-Based Dialogue Cluster Interpretation. Table 2 presents examples
of LLM interpretation for collaborative problem-solving dialogue clusters. The
expert assessed these interpretations by analyzing dialogue samples within each
cluster, highlighting both strengths and limitations of LLMs. For strengths,
LLMs e!ectively clarify the overall context and dialogue quality, particularly
for emerging-level clusters, by identifying unproductive collaborative problem-
solving behaviors and irrelevant scenarios. However, as limitations, LLMs often
lack descriptive precision, using vague terms like ‘varying participation’ or ‘con-
flicts’ that obscure details, making descriptions di"cult to understand or apply
in specific contexts. LLMs also struggle with understanding the learning envi-
ronment’s task-related elements (e.g., moving notes to represent an answer) and
misinterpreting them as out-of-domain content.

Table 2. Examples of LEDI-Expert interpretation of CPS dialogue clusters.

Dialogue Cluster LLM-Driven Interpretation

Imbalanced Engage in problem solving with varying participation. Some contribute
participation meaningfully while others hesitate, leading to superficial idea negotiation.
with superficial Frustration and impatience occasionally surface, hindering deeper
negotiation exploration.

Hesitation and Participate inconsistently with hesitation, causing confusion and disputes.
disputes in A mix of reasoning attempts exists, but not all contributions are
problem solving well-supported, leading to misunderstandings.

Evidence-based Engage in dynamic problem solving on scientific concepts, referencing
collaboration learning materials with varying participation. Emphasizing reasoning
with dynamic and evidence, they strive for consensus despite frustrations, maintaining
engagement respectful communication.

Cluster Quality Labeling. Table 3 presents the collaborative problem-solving
quality labeling results from human expert (H-Expert), LEDI-Expert, and LEDI-
CR in the first set of training data (14 groups). The random guess is 33.3% among
three labels. The highest similarity (67%) was observed between H-Expert and
LEDI-Expert, indicating a close alignment between human expert evaluation and
LLM-generated interpretations, followed by LEDI-Expert and LEDI-CR (50%).
In contrast, H-Expert and LEDI-CR exhibited the lowest similarity (33%), high-
lighting a divergence in clustering labeling approaches. While H-Expert and
LEDI-Expert rely on qualitative descriptions, LEDI-CR uses a quantitative,
data-driven method based on behavior frequency in higher- and lower-performing
groups. This methodological distinction led to notable discrepancies, particularly
in Exemplary clusters.

Fig. 2 illustrates average collaborative problem-solving dialogue quality scores
for higher- and lower-performing groups across three quests, evaluated by H-
Expert and LEDI-Expert. In the H-Expert evaluation, both groups start with
similar quality scores but diverge over time, with higher-performing groups im-
proving and lower-performing groups slightly declining. LEDI-Expert, which ap-
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Table 3. Cluster quality label examples of collaborative problem-solving dialogue.

Size Title H-Expert LEDI-Expert LEDI-CR

293 Imbalanced participation with Emerging Developing Developing
superficial negotiation

928 Dominant voices and tension in negotiation Developing Developing Developing

1518 Scientific dialogue with varying clarity Developing Developing Emerging

907 Hesitation and disputes in problem solving Emerging Emerging Emerging

1082 Evidence-based collaboration Exemplary Exemplary Emerging
with dynamic engagement

1099 Active in sharing information Exemplary Developing Emerging
and regulating problem

plies stricter criteria (higher=0.8, lower=0.5) compared to H-Expert (higher=1.1,
lower=1.0), assigns consistently lower scores than H-Expert. Both groups show
a decline in dialogue quality over the quests, though higher-performing groups
maintain better scores than lower-performing ones. This suggests that H-Expert
and LEDI-Expert use di!erent criteria but both distingush performance level.

Fig. 2. Average Quality Score of dialogue sequences in higher- and lower-performing
groups across quests, evaluated by human expert (H-Expert) and LEDI-Expert.

Learning Outcome Prediction Table 4 presents prediction accuracy as the
utterance window expands from 10 to all utterances within a collaborative
problem-solving task. Among non-clustering-based approaches, LLM-Expert out-
performs the LSTM baseline by an average of 2.5% points. Among the cluster-
based approaches, LEDI-CPS produces 46.9% accuracy, underperforming rela-
tive to the LSTM baseline. However, by incorporating expert-derived collabora-
tive problem-solving behavior focuses, LEDI-Expert (71.7%) improves prediction
accuracy by an average of 15.4% points over LSTM, while LEDI-CR achieves
the highest accuracy (75.4%) in this evaluation. In sum, the clustering-based
methods with expert knowledge outperform the non-clustering approaches in
prediction while also enhancing the interpretability of dialogue sequences.
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Table 4. The average accuracy of learning outcome early prediction by increasing ut-
terances within a collaborative problem-solving task. → indicates a significant di!erence
from the baseline LSTM based on a Wilcoxon rank sum test (p < 0.05).

Utterances 10 20 30 50 100 200 All Mean Di!. (%)

LSTM 58.4 50.4 56.2 58.2 56.6 59.5 54.9 56.3 0
LLM-Expert 64.7 64.7 52.9 58.8 58.8 58.8 52.9 58.8 2.5

LEDI-Base 51.7 45.0 45.0 51.7 45.0 45.0 45.0 46.9 -9.4
LEDI-CPS 61.7 →61.7 55.0 55.0 →55.0 55.0 →55.0 56.9 0.6
LEDI-Expert →71.7 →71.7 →65.0 →71.7 →65.0 →

78.3
→
78.3

→71.7 15.4
LEDI-CR →

78.3
→
78.3

→
78.3 73.3

→
73.3 73.3 73.3 →

75.4 19.1

7 Discussion

Our findings address the three research questions. For RQ1 (How e!ective are
temporal clustering methods in identifying meaningful patterns within collabora-
tive problem-solving dialogue?), temporal clustering e!ectively identifies distinct
collaborative problem-solving dialogue patterns, as validated by domain expert
evaluations and by the high accuracy of learning outcome predictions based on
the resulting clusters. Regarding RQ2 (How accurately can LLMs interpret and
evaluate clustered dialogues, providing insightful and domain-specific explana-
tions?), LEDI-Expert, an expert knowledge-augmented approach, significantly
enhances interpretability, achieving alignment 67% with human expert assess-
ments. Notably, when collaborative problem-solving behaviors were quantified
in quality scores based on cluster interpretation, a significant di!erence was ob-
served between higher- and lower-performing groups. In response to RQ3 (Can
the evaluation of clustered dialogue quality reliably predict students’ learning
outcomes?), given clustered collaborative problem-solving dialogues, LEDI-CR
(75.4%) and LEDI-Expert (71.7%) successfully predict learning outcomes, out-
performing competitive baselines (LSTM and LLM-Expert). Moreover, since an-
alyzing new utterances relies only on light-weighted Sentence Transformers for
embedding extraction, eliminating cost-ine!ective LLM use during testing, our
framework retains its analytical benefits while improving collaborative problem-
solving analysis scalability in educational settings where LLM use is limited.

In the prediction task, the superior performance of the cluster-ratio-based
method (LEDI-CR) over the interpretation-based methods (LEDI-Expert and
LEDI-CPS) stems from several factors. First, while collaborative problem-solving
behavior correlates with learning gains, they are not the sole determinant. Ef-
fective collaborative problem solving requires both collaboration and problem-
solving skills, incorporating various factors such as group dynamics and prior
knowledge in constructing appropriate solutions [32]. Second, LLM prompting
can be improved by including an indicator of active participation in collabora-
tive problem solving (e.g., the amount of group dialogue), which serves as a key
collaborative problem-solving metric. Third, LLMs’ reliance on general terms to
describe common dialogue characteristics reduces cluster specificity and increases
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ambiguity, highlighting a limitation of natural language in conceptualizing data.
These findings suggest that integrating data-driven metrics with dialogue inter-
pretation o!ers greater synergy than relying solely on one approach.

Evaluation was conducted on a MacBook Pro (Apple M1 Max, 32GB RAM,
no GPU), with total training time of approximately 15 minutes. At runtime,
the model responds in under 0.02 seconds, about 50 faster than typical LLM
inference (↔1 second). LEDI uses ↔115K tokens during the design phase for
cluster interpretation and evaluation via LLM, with no LLM usage at runtime. In
contrast, runtime LLM usage (450 tokens per request) would reach 115K tokens
after 255 calls, highlighting the model’s e"ciency for real-time deployment.

8 Conclusion

Analyzing student dialogue in collaborative learning environments is essential
for evaluating collaborative problem-solving behaviors, predicting learning out-
comes, and enabling adaptive feedback. However, the inherent complexity of stu-
dents’ dialogue makes e!ective analysis challenging. To address this, we propose
a collaborative dialogue analysis framework that integrates temporal clustering
with LLM-generated interpretations to analyze collaborative problem-solving
dialogues. Our findings highlight the potential of combining LLMs with expert
insights to automate the interpretation and assessment of collaborative problem-
solving dialogue, reducing reliance on labor-intensive manual evaluations. More-
over, our framework demonstrates that clustered collaborative problem-solving
dialogues can predict student groups’ learning outcomes with high accuracy,
outperforming competitive baselines. These results underscore the promise of
AI-driven methods in collaborative problem-solving assessment and learning out-
come prediction, o!ering valuable methods for educators and researchers to bet-
ter understand and support collaborative learning.

Future research should explore combining LLMs with data-driven approaches
to explain the specific relationship between dialogue patterns and learning out-
comes to gain deeper and interpretable insights. Additionally, exploring alter-
native prompt engineering techniques could increase interpretability by incor-
porating broader context information such as tasks in the game and students’
pretest knowledge. Applying this framework to game-based learning environ-
ments could further enhance adaptive learning systems, improving students’ col-
laborative problem-solving experience through real-time feedback. Ultimately,
by advancing our understanding of collaborative problem-solving dialogue, this
work contributes to the development of more e!ective adaptive collaborative
learning environments.
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