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We revisit the fundamental question of simple-versus-simple hypothe-
sis testing with an eye towards computational complexity, as the statistically
optimal likelihood ratio test is often computationally intractable in high-
dimensional settings. In the classical spiked Wigner model with a general
i.i.d. spike prior we show (conditional on a conjecture) that an existing test
based on linear spectral statistics achieves the best possible tradeoff curve
between type I and type II error rates among all computationally efficient
tests, even though there are exponential-time tests that do better. This result is
conditional on an appropriate complexity-theoretic conjecture, namely a nat-
ural strengthening of the well-established low-degree conjecture. Our result
shows that the spectrum is a sufficient statistic for computationally bounded
tests (but not for all tests).

To our knowledge, our approach gives the first tool for reasoning about
the precise asymptotic testing error achievable with efficient computation.
The main ingredients required for our hardness result are a sharp bound on
the norm of the low-degree likelihood ratio along with (counterintuitively)
a positive result on achievability of testing. This strategy appears to be new
even in the setting of unbounded computation, in which case it gives an alter-
nate way to analyze the fundamental statistical limits of testing.

1. Introduction. A fundamental question in mathematical statistics is that of testing
between two simple hypotheses, that is, the task of deciding which of two known distributions
produced a given sample. The celebrated Neyman—Pearson lemma states that tests based
on thresholding the likelihood ratio are optimal in the sense that they sweep out the best
possible tradeoff between type I and type II error rates as the threshold is varied. However,
in high-dimensional settings, the likelihood ratio is often intractable to compute because it
involves summing over an exponential number of possible values for a latent variable. In this
work we revisit the classical problem of simple-versus-simple testing with an eye towards
computational complexity: we aim to precisely characterize the best possible testing error
achievable by a computationally efficient algorithm, which may differ from the statistical
limit.

1.1. Spiked Wigner model. While our methods have the potential to be applied more
broadly, we focus on one canonical high-dimensional testing problem: the spiked Wigner
model.

DEFINITION 1.1 (Spiked Wigner testing problem). For a positive integer n, a signal-to-
noise ratio (SNR) A > 0, and a spike prior m which is a distribution on R with mean 0 and
variance 1, let Py . , denote the distribution over n X n symmetric matrices Y generated as
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where x € R™ has entries drawn i.i.d. from 7w, and W € R"*™ is drawn (independent from x)
according to the Gaussian Orthogonal Ensemble (GOE): W is symmetric with {W;; : i < j}
independent, W;; ~ N (0,1/n) for i # j, and W;; ~ N(0,2/n). We adopt the convention
zx/||z||? = 0 in the (unlikely) event ||z|| = 0. For ease of notation, we will suppress the
dependence on w,n and write Py = P » . Our focus is on the asymptotic regime n — oo
with X\, 7 held fixed. We consider testing the null hypothesis Y ~ Pg (the case A = 0) against
a specific alternative Y ~ Py, where X\, are known.

This testing problem amounts to detecting the presence of a rank-1 “signal” buried in random
“noise.” We emphasize that only a single sample Y € R™*™, drawn either from Py or Py, is
observed.

Spiked (or deformed) random matrix models such as (1) and the related spiked Wishart
model have been extensively studied from the perspective of random matrix theory [40, 6,
9, 60, 59, 30, 51, 5, 21, 56, 17, 62]. Notably, the model (1) undergoes a spectral transition
akin to that of Baik, Ben Arous, and Péché [6] at the threshold A = 1: when )\ < 1, the
empirical distribution of eigenvalues converges to the Wigner semicircle law (supported on
[—2,2]) and the maximum eigenvalue converges to 2; when A > 1, the maximum eigenvalue
converges to A + 1/\ > 2 due to a single “signal” eigenvalue that exits the semicircular
bulk [30, 51]. As an immediate corollary, thresholding the maximum eigenvalue gives a test
achieving strong detection when A > 1, that is, testing Py versus [P, with both type I and type
IT error probabilities tending to 0 as n — oo.

More recently, spiked models have been studied from a statistical perspective with the
aim of identifying the best possible test, which may not be based on the maximum eigen-
value [57, 58, 53, 48, 14, 61, 28, 22, 42]. For the moment, we restrict ourselves to spectral
tests, that is, tests that only use the spectrum (multiset of eigenvalues) of Y. In the Wigner
model (Definition 1.1), no spectral test can achieve strong detection when A < 1 [53] but weak
detection, i.e., testing with a non-vanishing advantage over random guessing, is possible for
any A > 0 by thresholding the trace of Y. More precisely, the best possible asymptotic trade-
off curve between type I and type Il error rates for spectral tests is known for each A < 1[7, 8]
(see [22]), and is furthermore achieved by a computationally efficient (polynomial-time) test
based on linear spectral statistics (LSS) [22]. Specifically, [22] considers a family of tests,
henceforth LSS, based on thresholding the value

2) > ha(p)  with  hy(p) = —log(1 — Au+A?),
=1

where @1 > pg > -+ - > uy, are the eigenvalues of Y, and the optimal function h) has been
carefully chosen. The LSS paradigm has been studied in a long line of work, including [3, 2,
4,7,13,22,41, 42, 66, 49, 25].

However, the spectrum of Y only contains information about the norm X of the rank-1
signal term, not its direction z:/||z||. Conceivably a better test can be constructed by exploiting
the eigenvectors of Y in addition to the eigenvalues. Indeed, for some (but not all) spike priors
w, there are (non-spectral) tests that achieve strong detection for some A < 1 [14, 61], beating
the spectral threshold. For instance, if m places enough mass on 0 so that z is sufficiently
sparse, strong detection is possible below the spectral threshold by exhaustively enumerating
all possible sparsity patterns. For any prior 7 with bounded support, [28] resolves the optimal
statistical performance among all possible tests, identifying the exact threshold A* = \*(7) <
1 above which strong detection is information-theoretically possible (confirming a conjecture
of [48]), and showing that the error tradeoff (between types I and II) of LSS is information-
theoretically optimal when A < \*.
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While the above results resolve the fundamental statistical limits of the spiked Wigner test-
ing problem, the computational complexity remains unclear: for all 7 and all A < 1, the best
known computationally efficient test is LSS. In other words, the best known computationally
efficient tests use only the spectrum, suggesting that the spectrum may be a “computation-
ally sufficient statistic.” In this work we aim to confirm this by answering (affirmatively) the
following question:

Do linear spectral statistics (LSS) achieve the best possible tradeoff between type I and type
I error rates among all polynomial-time tests for all ™ and all A < 1?

The regime of interest for this question is A* < A < 1, where strong detection is information-
theoretically possible but all known algorithms achieving this require exponential time. For
instance, optimal statistical performance is of course achieved by thresholding the likelihood
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but naive evaluation of this quantity requires a sum over exp(£2(n)) possible values for = (or
an integral of comparable complexity, if 7 is not discrete).

1.2. Average-case complexity. Our main question above lies in the realm of average-case
computational complexity, as we are interested in inherent limitations on both the runtime
and statistical properties of algorithms over a particular distribution of random inputs. While
such considerations are prevalent in high-dimensional statistics, we currently lack the tools
to prove a lower bound on the runtime of all algorithms in these settings, even under a stan-
dard complexity assumption such as P # NP. Instead, a rich landscape of frameworks have
emerged for giving various forms of “rigorous evidence” for computational hardness of sta-
tistical tasks. Most approaches either establish hardness conditional on the assumed hardness
of a “standard” statistical problem such as planted clique, or establish unconditional failure
of some restricted class of methods such as statistical query (SQ) algorithms or the sum-of-
squares (SoS) hierarchy. Some pioneering works in this area include [39, 23, 29, 18, 34, 15],
and we also refer the reader to [63, 46, 20, 33] for further exposition.

In this work we explore inherent computational barriers from the perspective of the low-
degree polynomial framework, which first arose from the work of [15, 38, 37, 36] (see also
the survey [46]) and was later refined and extended in various directions, e.g. [65, 32, 64, 44].
This approach amounts to studying the power and limitations of algorithms that can be rep-
resented as low-degree polynomial functions of the input variables (in our case, the entries
of V). The polynomial degree is thought of as a measure of the algorithm’s complexity and a
proxy for runtime, with degree D corresponding to runtime roughly n” (up to log n factors in
the exponent), which is the number of terms in such a polynomial. We refer to the low-degree
conjecture as the informal belief that the class of degree-D polynomials is as powerful as all
algorithms of the corresponding runtime, for a particular style of high-dimensional testing
problems. This heuristic is by now well-established as a reliable method for predicting and
rigorously vindicating suspected computational barriers in a wide array of statistical prob-
lems. For instance, in the spiked Wigner testing problem that we consider in this work, with
any prior 7 of bounded support, the following phase transition is known for low-degree poly-
nomials: if A < 1 then any degree-o(n/logn) polynomial fails to achieve strong detection
(in an appropriate sense), whereas degree w(1) suffices when A > 1 [46]. We consider this
as rigorous evidence that strong detection requires exponential runtime exp(nl_o(l)) when
A < 1, at least for a broad class of known approaches. In contrast, recall that strong detection
is possible in polynomial time when A > 1.



1.3. Our contributions. While a myriad of prior work has shown hardness in the low-
degree framework for strong (or weak) detection in various models, in this work we seek to
answer an even more precise question, as we are concerned with the exact error probability in
aregime where the type I and type II error rates will both converge to nontrivial constants. To
our knowledge, no existing tools allow us to approach this question — not in the low-degree
framework nor in any other framework for average-case complexity. Our main contribution
is a new way to argue, based on low-degree polynomials, about the exact error probabil-
ity achievable by computationally efficient algorithms. We illustrate this with the following
result in the spiked Wigner model.

THEOREM 1.2 (Main result, informal). Consider the spiked Wigner testing problem
(Definition 1.1) with any prior m of bounded support and any \ < 1. Assuming a natural
strengthening of the low-degree conjecture (Conjecture 2.15), any test with error tradeoff
(between types I and Il) asymptotically better than LSS requires runtime exp(nlfo(l)).

The precise statement of this result is presented in Section 2.3, particularly Corollary 2.21.

One consequence of our result is a certain computational universality with respect to the
prior. While the optimal statistical performance (namely the threshold A* for strong detec-
tion) depends on 7, our result shows that the best computationally efficient test only uses the
spectrum and thus its performance depends only on A (not 7). Put another way, the spectrum
is a sufficient statistic for computationally-efficient testing. It was known previously that the
low-degree threshold for strong detection does not depend on the prior [46], and our result
extends this to weak detection.

The computational universality for testing is in contrast to the related task of estimating the
rank-1 spike. For the estimation problem, the best known computationally efficient algorithm
uses approximate message passing (AMP) [27, 16], which achieves nontrivial mean squared
error whenever A > 1 and this error depends on both A and 7 [31, 54]. For more on the
estimation problem, we refer the reader to [52] and references therein.

The argument we use to prove Theorem 1.2 can be specialized to the case where there is
no restriction on runtime, in which case it yields a new approach for establishing the statis-
tically optimal error tradeoff. To our knowledge, this method has not appeared before in the
literature. We illustrate this by giving an alternate re-proof of the following result of [1, 28].

THEOREM 1.3 (Special case of [28], informal). Consider the spiked Wigner testing prob-
lem (Definition 1.1) where  is the Rademacher prior (uniform on {—1,+1}) and X\ < 1. No
test (regardless of runtime) has error tradeoff asymptotically better than LSS.

The precise statement of this result is presented in Section 2.2, particularly Theorem 2.5. The
proof of [28] characterizes the limiting distribution of the likelihood ratio by leveraging some
powerful machinery of Guerra and Talagrand from spin-glass theory. The same result can be
deduced from the earlier work [1, Proposition 2.2], which is specific to the Rademacher prior
and takes a combinatorial approach called cluster expansion. Our proof is quite different, and
arguably more elementary. We require two ingredients: first, a sharp bound on the second
moment of the likelihood ratio; and second, a positive result showing achievability of some
tradeoff curve (between errors of types I and II) that “saturates” the first bound. In the case of
Theorem 1.3, the positive result is the analysis of LSS from [22]. In a nutshell, the standard
approach requires a direct analysis of the likelihood ratio, whereas our approach requires the
analysis of any test combined with a matching second moment bound.
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Notation. By default, asymptotic notation refers to the limit n — oo with all other param-
eters held fixed (aside from those that are explicitly allowed to scale with n, suchas D = D,,).
In other words, notation such as O(-), €(-), o(+), w(-) may hide factors depending on con-
stants such as \, 7. We use poly(n) as shorthand for n°(), and polylog(n) as shorthand for
(logn)°™M). The term “polynomial time” refers to an algorithm of runtime poly (n).

2. Main Results.
2.1. Background.

2.1.1. ROC curve. We recall some basic notions from the theory of hypothesis testing,
referring the reader to [47] for a standard reference. Given two distributions P, Q on a set €2,
we consider testing the null hypothesis Y ~ Q against the (simple) alternative Y ~ P. (Some
authors use the opposite meaning of P and Q but we use the mnemonic P = “planted.”) A test
is a (possibly random) function ¢ : Q@ — {p, q}, where the symbols p, q encode the assertion
that Y was drawn from P or Q respectively. The size o € [0, 1] of a test (also called the type
I error rate or false positive rate) is defined as

4) a=Q(t(Y) =p),
and the power (3 € [0, 1] (or true positive rate) is defined as
(5) B=P(Y)=p)

(Here we follow the convention of [47] but note that some authors use (5 for the type II error
rate, which is 1 — S in our notation.) Constrained to a given value of «, it is desirable to find
a test maximizing .

For a class of tests C, let N = N¢ C [0, 1]? denote the set of (c, 3) pairs for which there
exists a test ¢ € C satisfying (4) and (5). There are trivial tests achieving the points (0,0) and
(1,1), so these are contained in /N (assuming the class C contains these trivial tests). Also,
by considering probabilistic mixtures of two tests (i.e., run £; with probability p and 2 with
probability 1 — p), it is clear that N is a convex set (assuming C is closed under probabilistic
mixtures). Finally, by flipping the output of a test, /N is symmetric with respect to the point
(1/2,1/2) in the sense that (a, ) € N if and only if (1 — a,1 — /) € N (again assuming C
is closed under flipping the output). We therefore restrict our attention to (v, ) pairs in the
upper triangle

A:={(a,B)€[0,1]*: a < B}.
The curve ¢ : [0, 1] — [0, 1] that bounds the upper edge of the region N, namely

¢(a) =sup{B : (o, f) € N},

is called the ROC (receiver operating characteristic) curve for the class C. The properties
of N discussed above imply that ¢ is increasing and concave, with ¢(«) > «. This curve
describes the possible tradeoffs between type I and type II errors achievable by C. At one
extreme, C could be the class of tests that thresholds a particular statistic at varying thresholds.
At the other extreme, C could be the class of all tests, in which case the corresponding optimal
ROC curve describes the fundamental limits for testing error.

REMARK 2.1 (Terminology). The ROC curve is a popular notion in machine learning.
A related notion from classical statistics is the power function of a test, although typically
this describes the power as a function of the alternative hypothesis (e.g., the parameter A
in the spiked Wigner model), rather than a function of a. Similarly, the optimal ROC curve
(when C is the class of all tests) is related to the notion of power envelope (or envelope power
function).



We will be interested in an asymptotic setting where P = P,, and Q = Q,, are sequences
of distributions, namely the spiked Wigner distributions Q,, = P » , and P,, = IP) ,,, for
a fixed choice of A\, 7. Further, we will often restrict ourselves to tests ¢ = ¢,, with a given
runtime 7,,, where 7, may stand for a class of asymptotic runtimes such as O(n) or poly(n).

DEFINITION 2.2. Fix sequences Py, (alternative) and Q,, (null), and a runtime bound
Tn- A point (o, 5) € A is asymptotically achievable in time Ty, if there is a sequence of tests
t = t,, computable in time Ty, such that

O (tn(Y)=p) <a+o(1) and  Pp(tn(Y)=p)>B—o0(1)

as n — oQ.

We emphasize that «, 5 do not depend on n. For given sequences P,,, @,, and a given runtime
bound 7, one can define the set of asymptotically achievable («, 3) pairs analogous to NN,
as well as the associated asymptotic ROC curve.

REMARK 2.3 (Model of computation). 7o rigorously define the notion of runtime, we
must specify a model of computation for real-valued inputs. The arguments we use in this pa-
per are not particularly sensitive to the model of computation, and for our purposes we need a
model that is powerful enough to implement the LSS test in polynomial time (Theorem 2.10)
but weak enough that we believe the strong low-degree conjecture (Conjecture 2.15). The
PhD thesis of Hopkins [36], which introduced the original low-degree conjecture, proposes
(in a footnote on pg. 80) to use the real RAM model. For concreteness, one can take the real
RAM model as the model of computation throughout this paper, specifically the variant de-
fined by Blum—Shub—Smale [19]. The proof of Theorem 2.10 will include an explanation of
how to implement the LSS test in this model. The real RAM model is an abstract model of
computation where each memory cell can hold a real number, and the operations of addition,
subtraction, multiplication, division, and comparison can be performed in a single step. This
is arguably an unrealistic model for real-world digital computers because issues of numeri-
cal precision are ignored, but it is a convenient and popular theoretical abstraction. Plus, we
are ultimately proving a negative result, which only becomes stronger when using a stronger
model of computation. As a final note, we will allow algorithms to depend on the known pa-
rameters \, T, «, 3 (rather than, say, taking these as input), which means that any real-valued
constants depending on these parameters may be “hard-coded” into the algorithm.

2.1.2. Likelihood ratio and second moment. Again consider sequences of distributions
Pn,Qn on a set §2,, and further assume P, is absolutely continuous with respect to
Q,, for each n. The likelihood ratio L, = L,(Y) is defined to be the Radon—-Nikodym
derivative dP,,/dQ,,. Working in the function space £2(Q,,) with inner product (f,g) :=
Ey~o,[f(Y) g(Y)] and norm || f|| := +/(f, f), an important quantity is the squared norm
(or second moment) of the likelihood ratio:

Lo|?=_ E_ [L,(Y)}=_E [L,(Y)].
1Lal? = B (Ea(V)?) = | B [La(Y)
It is a standard fact that asymptotic bounds on || L, || as n — oo have implications for statis-
tical indistinguishability of P,, and Q,, (see e.g. [53, Lemma 2]), namely:

o If |[L,,]| = O(1) then strong detection is impossible, or in other words, («,8) = (0,1) is
not asymptotically achievable (by any test, regardless of runtime).

o If ||L,|| =1 4 o(1) then weak detection is impossible, or in other words, no («,3) € A
with o < 3 is asymptotically achievable.
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(We always have || L, || > 1, using Jensen’s inequality and the fact Eg, [L,] = 1.) This gives a
powerful tool for ruling out strong or weak detection via a relatively tractable second moment
calculation, which is carried out for the spiked Wigner model in [53, 14, 61].

However, to exactly pin down the optimal asymptotic ROC curve in a regime where weak
(but not strong) detection is possible, a more refined strategy is needed. The standard ap-
proach is the following. The Neyman—Pearson lemma implies that the optimal ROC curve
is swept out by tests that threshold L, (Y"), as the threshold is varied. It therefore suffices to
determine the limiting distribution of L,, under both P,, and Q,,. This is often shown directly
for one of the two hypotheses (P, or Q,,), and then the distribution of L,, under the other
can be deduced immediately via Le Cam’s third lemma. This approach is carried out for the
spiked Wigner model in [28].

2.1.3. Low-degree testing. Luckily, some parts of the above theory have natural ana-
logues in the setting where we restrict our attention to computationally efficient tests —
or rather, to low-degree polynomial tests as a proxy for this [38, 37, 36] (see also the sur-
vey [46]). We consider the same asymptotic setting as above and additionally assume the
domain €2, is a subset of R for some M = M,, so that we may speak of (multivariate)
polynomial functions f : 2, — R. The analogue of the likelihood ratio L (suppressing n-
dependence for ease of notation) is the low-degree likelihood ratio L=", which is the or-
thogonal projection in £2(Q) of L onto the subspace of degree-D polynomial functions. The
norm of L=P plays a similar role as its statistical analogue (see e.g. [11, Proposition 6.2]),
namely:

o If | L=P| = O(1) for some D = D,, then no degree-D polynomial f = f,, achieves strong
separation between P and Q, defined as

\/max {Vgr[f],Vgr[f]} =0 <

as n — 0o. Note that strong separation is a natural sufficient condition for strong detection
by thresholding f(Y).

o If |L=P| = 1 + o(1) for some D = D,, then no degree-D polynomial f = f,, achieves
weak separation between P and Q. Weak separation has the same definition as strong
separation but with O(- - - ) in place of o(- - - ), and is a natural sufficient condition for weak
detection using the value of f(Y") [11, Proposition 6.1].

P Q

(11 - 511

Results of this form are considered “evidence” that the associated strong/weak detection
problem is inherently hard for algorithms of the corresponding runtime.

CONJECTURE 2.4 (Low-degree conjecture, informal). If degree-D polynomials fail to
solve a testing problem (in the sense of strong/weak separation) for some D = w(logn),
then there is no polynomial-time algorithm for the associated strong/weak (respectively) de-
tection task. In general, if degree-D polynomials fail then there is no algorithm of runtime
exp(Q(D)) where Q(-) hides a polylog(n) factor.

This informal conjecture is inspired by [36, Hypothesis 2.1.5 & Conjecture 2.2.4], along with
the fact that low-degree polynomials capture the best known algorithms for a wide variety
of statistical tasks. The conjecture appears to hold up for distributions P, Q of a particular
style that often arises in high-dimensional statistics (including the spiked Wigner and Wishart
models [12, 46, 26, 10]), but it does not hold for all distributions P, O, and we refer the reader
to [36, 46, 35, 45, 43, 67, 24] for further discussion on which distributions are appropriate.
Given the current state of average-case complexity theory, we do not realistically hope to
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prove any variant of the low-degree conjecture. Rather, its purpose is to serve as a guide for
making principled conjectures about average-case complexity in settings where we would
otherwise have no way to make progress.

The above framework provides a useful tool for probing the computational feasibility of
strong or weak detection, but our goal in this work is to ask a more refined question: we
seek the best possible ROC curve achievable by algorithms of a given runtime, in a regime
where weak (but not strong) detection is possible by this class of algorithms. As discussed
previously, the statistical analogue of this question is traditionally attacked via the Neyman—
Pearson lemma combined with Le Cam’s third lemma. This approach does not seem viable
in the computationally bounded setting because there is no analogue of Neyman—Pearson,
that is, there is no guarantee that thresholding L=" achieves the best possible ROC curve
among low-degree tests. We will overcome this by taking a different approach, explained in
the following sections.

2.2. Our Approach: Statistical Limits. To explain our approach, we first consider the
purely statistical question of determining the optimal ROC curve with no constraints on run-
time. This section serves as a “warm-up” to the more general framework presented in the
next section, which accounts for computational complexity. The ideas in this section may
also be of independent interest, as they provide a way to indirectly characterize the optimal
ROC curve without analyzing the distribution of the likelihood ratio.

We will illustrate our approach by re-proving the following known result in the spiked
Wigner model. For A > 0 and « € [0, 1], define

(6) pr(a) :=1—® !@-1(1—a)—\/;1og <1_1)\2>]

where ® denotes the standard normal CDF function, and we take the conventions ¢ (0) = 0,
¢(1) = 1. This is the ROC curve achieved by linear spectral statistics (LSS) [22]. We will
show this is statistically optimal for the Rademacher spike prior.

THEOREM 2.5 (Special case of [28]). Consider the spiked Wigner testing problem (Def-
inition 1.1) where 7 is uniform on {—1,+1} and X € (0,1). Any (a, ) € [0,1]% with
B > ¢x(«) is not asymptotically achievable (in the sense of Definition 2.2), regardless of
runtime.

Since we are considering the Rademacher prior, the model lacks spherical symmetry, which
precludes approaches such as [57, 7, 8]. The proof of [28] uses machinery developed by
Guerra and Talagrand in their study of the Sherrington—Kirkpatrick spin-glass model, and the
same result also follows from [1, Proposition 2.2], which takes a combinatorial approach spe-
cific to the Rademacher prior. Our alternate proof instead uses the analysis of LSS from [22],
combined with a relatively simple second moment calculation from [61].

We begin with the second moment calculation.

THEOREM 2.6 (Special case of [61], Theorem 3.10). Consider the spiked Wigner testing
problem (Definition 1.1) where 7 is uniform on {—1,+1} and X € (0,1). The likelihood ratio
Ly :=dP)y/dPqy has L*(Py)-norm (as defined in Section 2.1)

(7 lim ||Ly| = (1= A\2)~1/4,
n—od
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The utility of this result stems from the following well-known operational definition for the
norm of the likelihood ratio, which is a special case of (13) below:

Ey~p, [f(Y)]
Eyp,[f(Y)?]
where the supremum is over all real-valued functions f € £?(IPy). The fact (8) on its own

places some constraints on what the optimal ROC curve can look like. For instance, the
relation

(®) LAl = sup

)

2 _
9) i+(1 f)

2
INE
2

must be satisfied by every achievable pair («, 3) € (0,1)? [61, Proposition 2.5]. This is a
weaker condition than the desired one, 5 < ¢, («). However, the information we get from (8)
is more subtle than (9) alone. At this point there remain many viable candidates for the
optimal ROC curve — one of which is ¢, — that are incomparable to each other. To illus-
trate, each (v, ) pair satisfying (9) with equality is achieved by one such viable ROC curve,
namely a straight line from (0,0) to («, 3) followed by a straight line from («, 3) to (1,1).
However, it is not possible that all the (o, 3) pairs satisfying (9) are simultaneously achieved
by the true ROC curve, or else we could construct a function f that yields a too-good-to-be-
true value for the ratio in (8). We will use the positive result on the achievability of ¢ to
disambiguate between these candidate ROC curves and conclude that ¢, is in fact the true
ROC curve.

Now in more detail: as we will show (see Section 2.5), the fact that ¢, is achievable allows
us to construct a function f that makes the ratio in (8) asymptotically equal to

1
val(gb/\) = /O (QZ)//\(OL))Q do = (1 _ )\2)—1/4’

saturating (7). Any hypothetical improvement to ¢, even at a single point, would allow us to
construct an even better function f, leading to an even larger value for the ratio, contradict-
ing (7). This is formalized in Proposition 2.7 below and illustrated in Figure 1.

PROPOSITION 2.7 (Special case of Proposition 2.19).  Given sequences of distributions
P =P, and Q= Q, on Q = Q,, consider testing the null hypothesis Y ~ Q against the
alternative Y ~ P. For some \ € (0,1), suppose we have the following positive result: for
every a, € [0,1] with o < 8 < ¢x(«), there is a test that asymptotically achieves (v, [3),
in the sense of Definition 2.2. Suppose further there exists some (a*, 3*) € [0,1] with B* >
o (a*) that is also asymptotically achievable. Then there exists a function f = f, : Q,, = R
such that

(10) limint 2 ~PLF (V)]

R R oy Y

Our desired conclusion now follows by combining the ingredients above.

PROOF OF THEOREM 2.5. We will apply Proposition 2.7 with P =Py and Q = Py. The
required positive result follows from the LSS analysis of [22], which is stated formally as
Theorem 2.10 in the next section. Assume on the contrary that some (a*,3*) with g* >
¢ (a*) is asymptotically achievable. By Proposition 2.7 we obtain f such that

o B V)
n—=oo /By p, [f(Y)?]

>Va|(¢)\)7



10

and the computation val(¢y) = (1 — A2)~'/4 is Lemma 2.12 in the next section. This now
contradicts (7),(8). ]

The next section contains a more general form of this argument that also considers compu-
tational complexity. The general form of Proposition 2.7 (i.e., Proposition 2.19) applies to a
wide class of curves ¢ rather than simply ¢,. We note, however, that ROC curves of the form
¢y are “common’ in that they arise from thresholding a statistic whose limiting distributions
under null and alternative are two different Gaussians with the same variance.

For simplicity, we have focused here on recovering the result of [28] for one particular
spike prior — Rademacher. The main obstacle to recovering the full result of [28] for other
priors 7 is establishing || Ly || = O(1) for all X below the critical threshold A*(7). For some
priors this is simply not true and would need to be replaced with a conditional second moment
calculation. See [14, 61] for some results of this form, albeit only reaching the sharp threshold
A* () for certain priors.

REMARK 2.8. Theorem 2.5 can be generalized to a modified spiked Wigner testing prob-
lem where the noise matrix W has diagonal entries Wy; ~ N (0,02 /n) instead of N'(0,2/n)
for a constant o > 0, and everything else is unchanged. This case is covered by [28],
and our method also extends to this case in a straightforward way. As in the proof of
Theorem 2.10, the results of [22] imply that LSS asymptotically achieves the ROC curve

drola) =1—d [@*1(1 —a) - \/,L/Q} with ju:= —log(1 — A\2) + \2(2 — 02) /o2. As in

the proof of Lemma 2.12, val(¢y o) = exp(u/4) = (1 —A2)"Y4exp(A\2(2 — 02)/(40?)). For
the analysis of the likelihood ratio L) ., we have the standard formula (see Lemma 1 of [14])

W e (1 1\ & a2
|Lyol?= E exp | o 2l o + X0 | — — = _ti\ti)
Eoo\ T Rl T 2) el

where x is i.i.d. Rademacher and z' is an independent copy of x. This differs from the
original second moment ||Ly||? due to the additional second term in exp(---), which
(due to the Rademacher prior) is equal to the constant \*(2 — 02)/(20?), i.e, |Ly o[> =
|LA]|2 exp(A2(2 — 62)/(20%)) = (1 — A2) "2 exp(\2(2 — 02)/(202)). Therefore, the lim-
iting value of ||Ly || matches val(¢y o). The conclusion for the modified model is identical
to Theorem 2.5 except the optimal ROC curve is ¢y  in place of ¢.

To what extent is our new proof of Theorem 2.5 simpler or more broadly applicable than
the existing proofs of [1, 28]? Certainly the second moment bound (Theorem 2.6) is more
elementary than the interpolation methods used in [28], and it also seems more broadly ap-
plicable than the combinatorial approach of [1] (see [61]). On the other hand, our argument
also relies on the LSS analysis of [22], which is rather involved (although quite different
from [1, 28]). At the very least, our approach gives the flexibility to trade off one argument
for another, and if one is planning to do the LSS analysis anyway then the matching impos-
sibility result is obtained essentially for free. Perhaps the greatest strength of our approach is
its ability to generalize to the computationally bounded setting, which we discuss next.

2.3. Our Approach: Computational Limits. Building on ideas from the previous section,
we now outline our approach for arguing that no (computationally) efficient algorithm can
beat the ROC curve of LSS in the spiked Wigner model. As this is a statement about average-
case complexity, there will inevitably need to be a conjecture involved (Conjecture 2.15). Our
final conclusion, conditional on the conjecture, is Corollary 2.21. The proofs of the results in
this section are deferred to Section 3.
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Fig 1: Illustration of the proof of Theorem 2.5. Left: The curve ¢ = ¢ for A = 0.9. All
points («, 3) below the curve ¢ (and above the “trivial” dashed line) are achievable. Right:
If hypothetically there were an achievable point («*, 3*) above the curve ¢ then every point
below ) — the upper concave envelope of ¢ and (a*, 3*) — would also be achievable. The
improved curve i) would allow us to construct a function f that makes the ratio in (8) equal
to val(t)), which is strictly greater than val(¢y) = (1 — A?)~'/4, contradicting (7).

Throughout this section, we consider the spiked Wigner testing problem described in Def-
inition 1.1: we are testing the null hypothesis Y ~ [Py against a specific alternative ¥ ~ P,
in the regime n — oo with A, 7 fixed. We place the following mild assumptions on the spike
prior 7.

ASSUMPTION 2.9. The spike prior 7 is a probability distribution on R such that:

* (Centered) E[r] =0,

* (Unit variance) E[r?] = 1,

* (Subgaussian) there exists a constant ¢ > 0 such that Elexp(tr)] < exp(ct?) forall t € R.
(This is satisfied by any distribution with bounded support, by Hoeffding’s lemma.)

While we focus on the spiked Wigner model here, it will be clear that our approach can
potentially be applied more generally.

2.3.1. Step 1: Guess the ROC curve and prove a positive result. The first step in our
approach is to “guess” the ROC curve that we aim to show is optimal among efficient algo-
rithms. While our final goal is to show a hardness result, it will (perhaps counterintuitively)
be important to prove the corresponding positive result, that is, our ROC curve is achievable
by an efficient algorithm. In our case, we choose the ROC curve (6) that is known to be
achievable by LSS, which we repeat here for convenience:

(11) or(a):=1—® [q)_l(l—a)—\/;log <1_1A2>]

where ® denotes the standard normal CDF function, and we take the conventions ¢ (0) = 0,
¢ (1) = 1. We now state the corresponding positive result, which will be extracted from [22]
in a straightforward way; the details of the proof are deferred to the Supplement.

THEOREM 2.10. Fix any X € (0,1), any spike prior 7, and any «, 3 € [0,1] with a <
B < éa(a). There is a polynomial-time algorithm that asymptotically achieves («, [3) for the
spiked Wigner testing problem (in the sense of Definition 2.2).
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We have defined spike priors to have mean O and variance 1 throughout the paper, but
Theorem 2.10 holds with no assumptions on 7 (as long as = # 0 with probability 1 — o(1)).
Due to GOE rotational invariance, the LSS test is not affected by the direction of the spike.

2.3.2. Step 2: Matching bound on |L="|. A key step in our approach is to establish
a sharp bound on the norm of the low-degree likelihood ratio (defined in Section 2.1) that
matches the “value” of our ROC curve, defined as follows.

DEFINITION 2.11.  For a function ¢ : [0,1] — [0, 1] whose derivative ¢’ exists on (0,1)
except at finitely many points, define

1
(12) wal() =/ [ (@()2da.
0
provided the (improper Riemann) integral exists.

The intuition for this value is the following fact, which will be implicit in the proof of Propo-
sition 2.19 and is discussed further in Section 2.5: if some (concave) ¢ is achievable then
we can construct a function f that makes a particular ratio — namely Ry (f) defined in (14)
below — equal to val(¢).

LEMMA 2.12.  For the function ¢y defined in (11),
val(gy) = (1 — A2)~ V4,

The details of the above calculation are deferred to the Supplement.

THEOREM 2.13.  Fix any X\ € (0,1) and any 7 satisfying Assumption 2.9. Let Ly =
Ly xn denote the spiked Wigner likelihood ratio dPy/dPy. Let D = D,, be any sequence
satisfying D = w(1) and D = o(n/logn). The L?(Pg)-norm of the degree-D likelihood ra-
tio (as defined in Section 2.1) satisfies

lim [(Ly)=P]| = (1 - %)~
n—oo

Crucially, the value on the right-hand side above matches val(¢, ). The assumption D = w(1)
is only needed for the lower bound, i.e., the upper bound ||(L,)=P|| < (1 — X2)~/4 4+ o(1)
still holds without this assumption. The proof of Theorem 2.13 builds on some existing tools
for similar second moment calculations [61, 12, 46, 10, 11].

Theorem 2.13 gives a surprisingly sharp phase transition: for a fixed A € (0, 1), the limiting
value of ||(Ly)=P|| has no dependence on D when D ranges between w(1) and o(n/logn).
Once D reaches order n, the value of ||(L)<"|| can (for some priors) suddenly jump to size
exp(£2(n)) as discussed in Remark 2.14 below. This behavior is consistent with the fact that
we do not know any algorithm of subexponential time exp(O(n?)) for a constant § < 1 that
beats the ROC curve of LSS, but some priors do admit such an algorithm of exponential time

exp(O(n)).

REMARK 2.14. Regarding the condition D = o(n/logn) in Theorem 2.13: while the log
factor might be an artifact of the proof. it is necessary to assume D = o(n), or else || (Ly)=P ||
can diverge to infinity (for some choices of A € (0,1) and 7). To see this, take 7 to be the
sparse Rademacher prior which takes values 1/./p each with probability p/2 and value
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0 with probability 1 — p, for a small constant p > 0 to be chosen later. With x € R™ having
entries i.i.d. from w and x' an independent copy of x, a standard formula (20) gives

D d D
1 Az, 2')? 1 \n

<D 2: J— (R N A > — / M .
S dzod!r%[(zuxr\?nww) > gy Prie =201 (75"

Using the bounds Pr{z =2’ # 0} > Pr{z =" = e1/,/p} = (p/2)*(1 — p)*"~Y) and D! <
DP| the above is at least exp[Dlog(\’n/(2D)) + 2nlog(1 — p) + 2log(p/2)]. Set D =

|en| for a constant € > 0 small enough so that \?/(2¢) > 1. Now choosing p small enough
(depending on \, ¢), we have ||(Ly)<P||? = exp(Q(n)).

2.3.3. Step 3: Strengthening of the low-degree conjecture. As discussed in Section 2.1,
the low-degree conjecture posits that (for certain testing problems) low-degree polynomials
are at least as powerful as all algorithms of the corresponding runtime (where the corre-
spondence is described in Conjecture 2.4). For instance, in the spiked Wigner model with
A < 1, we have from Theorem 2.13 that ||(Ly)=P| = O(1) for any D = o(n/logn), and we
consider this to be evidence that strong detection requires runtime exp(nl_o(l)). It is well
known (see [36, 46]) that the norm of the low-degree likelihood ratio admits the operational

definition
03 '<d7>)fl’ g Ererlf0)
dQ frdeg()<D /Ey~olf(Y)?]

where the supremum is over polynomials f : {2 — R of degree at most D. In fact, the supre-
mum is achieved and the optimizer is f = (dP/dQ)<P. For our purposes, we introduce a
natural refinement of the low-degree conjecture: we posit that low-degree polynomials per-
form at least as well as all algorithms of the corresponding runtime in terms of the value of
the ratio on the right-hand side of (13). In the spiked Wigner case, this ratio is

Ey~p, [f(Y)]

VEyr, [f (V)]

CONJECTURE 2.15. Consider the spiked Wigner testing problem (Definition 1.1). Fix
any 0 < 61 < 99, any X € (0,1), and any 7 satisfying Assumption 2.9. Any sequence of func-
tions f = f,, computable in time exp(O(n®)) must satisfy

(14) Ry(f) =

(15) limsup Ry(f) <limsup sup  Ra(g).

n—oo n—oo g: deg(g)§n52

Recalling (13) and Theorem 2.13, the specific case of interest for us will be the following:
for any fixed € > 0, any f = f,, computable in time exp(O(n'~¢)) must satisfy

(16) limsup Ry(f) < (1—A%)~Y4
n—oo
To be conservative, we have stated Conjecture 2.15 only for the spiked Wigner model,
but one can imagine making similar conjectures in other settings. As with the standard low-
degree conjecture we cannot realistically hope to prove Conjecture 2.15, but we can continue
to amass evidence in its favor.

REMARK 2.16. To justify Conjecture 2.15, one must believe that low-degree polyno-
mials capture the most powerful approaches in our algorithmic toolkit. To this end, it
may be instructive to see how the best known efficient algorithm for maximizing Ry(f) —
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which uses LSS — can be implemented as a low-degree polynomial. Recall the LSS statis-
tic HY) := """ ha(pi) from (2). After appropriate shifting and scaling, this is shown
in [22] to converge to a Gaussian limit: aH(Y) + b = N(£c,1) where the plus sign
holds under Py and the minus sign holds under Py, and c := \/—log(1 — \2)/8. Now let
f(Y)=p(aH(Y)+b) and choose the optimal function p to maximize R (f), which turns out
to be the likelihood ratio between N (c,1) and N'(—c,1), i.e., p(z) = exp(2cz). This yields
Rx(f) — (1 = X2)~Y/4, matching (16). To approximate this with a polynomial, consider

polynomial approximations hy and p for hy and p, of degrees D1 and D respectively. Now
f(Y):=p(a > ha(pi) +b) = pla - Te(ha(Y)) + b) is a polynomial of degree D = Dy Do
that approximates f. We expect that any slowly growing degree D = w(1) should suffice to
construct such an f achieving R,\(f) — (1 — X2)~Y/4. While we have not attempted to rig-
orously analyze this polynomial approximation, we do know from Theorem 2.13 that some
degree-w(1) polynomial achieves Ry — (1 — \?)~1/4,

2.3.4. Steps 1,2,3 are sufficient. 'We now argue that the above steps are sufficient to de-
duce our desired conclusion. The idea is the following, which is similar to Figure 1. Our
achievable ROC curve ¢, allows us to construct an efficiently computable function f that
achieves R (f) = val(¢,). If hypothetically there were an efficient algorithm achieving some
point (v, 3) above the curve ¢, this could be combined with f to produce an efficiently com-
putable g that achieves R (g) > val(¢) ), contradicting our refined low-degree conjecture.

We will state this part of the argument (Proposition 2.19) in high generality so that it can
potentially be used for other problems beyond spiked Wigner in the future. We will require
some conditions on the ROC curve ¢ (which in our case is ¢, ). As discussed in Section 2.1, an
ROC curve should be increasing and concave with ¢(1) = 1. We also impose some additional
technical conditions (some of which are likely removable, but they allow for a cleaner proof).

ASSUMPTION 2.17.  Assume ¢ : [0,1] — [0, 1] has the following properties:

« 6(0) =0 and (1) =1,
* ¢ is continuous on [0, 1] and differentiable on (0,1),

» @' is continuous, strictly positive, and decreasing on (0,1),
e lim, 0+ ¢' (@) = +00 and lim,,_,1- ¢'(a) =0,

o the integral (12) defining val(¢) is finite.

Some immediate consequences are that ¢ is concave and strictly increasing, and ¢(«) > «
for all « € [0, 1].

LEMMA 2.18. For any A € (0,1), the function ¢y defined in (11) satisfies Assump-
tion 2.17.

The proof of Lemma 2.18 is deferred to the Supplement.

The result below refers to a runtime bound 7, which may stand for a class of asymptotic
runtimes such as O(n) or poly(n), or it may be oo (no bound on runtime). We will elaborate
on this further in Remark 2.20 below.

PROPOSITION 2.19. Given sequences of distributions P =P, and Q = Q,, on ) =
O, consider testing the null hypothesis Y ~ Q against the alternative Y ~ P. Suppose we
have a function ¢ satisfying Assumption 2.17 and a runtime bound T = T, along with the
corresponding positive result: for every a, 8 € [0,1] with o < < ¢(«v), there is an algorithm
that asymptotically achieves («, [3) in time T, in the sense of Definition 2.2. Suppose further
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there exists some (o*, 3*) € [0,1)% with B* > ¢(a*) that is also asymptotically achievable in
time T. Then there is a function f = f, : Q, — R computable in time O(T) such that

a7 lim inf

REMARK 2.20 (Runtime). The runtime bound T may stand for a class of asymptotic
runtimes such as O(n) or poly(n), or it may be oo (no bound on runtime). The runtime for
the positive result need not be uniform in «, 3, e.g., if T = poly(n) it would be fine to have a
different algorithm for each o, 8 with runtime O(n¢ @),

The precise meaning of the runtime O(T) for f is as follows. A finite list of («, B) pairs,
depending only on ¢, ™, 3* (not n), is chosen in advance and hard-coded into the algorithm.
The algorithm runs the corresponding tests that asymptotically achieve these points, to get
a vector of responses s € {p,q}" where r = r(¢,a*, B*). Finally, a hard-coded lookup table
maps each of the 2" = O(1) possible values for s to a corresponding output f(Y).

We now state our conclusion specialized to the case of spiked Wigner: ¢, is the best possible
ROC curve for computationally efficient algorithms.

COROLLARY 2.21. Consider the spiked Wigner testing problem and assume Conjec-
ture 2.15. Fix any € > 0, any X € (0,1), and any 7 satisfying Assumption 2.9. Any («, 3) €
[0,1]2 with B > ¢ () is not asymptotically achievable in time exp(O(n~¢)).

In general, the runtime bound exp(O(n'~¢)) cannot be made any larger: for some A, 7 pairs,
strong detection is possible in time exp(O(n)) by directly evaluating the likelihood ratio (3).

PROOF. We will apply Proposition 2.19 with P =P,, Q =Py, ¢ = ¢, (which satisfies
Assumption 2.17 by Lemma 2.18), and 7 = exp(O(n'~¢)). Theorem 2.10 gives the required
positive result. Assume on the contrary that some (a*, 5*) with 5* > ¢, (a*) is asymptoti-
cally achievable in time exp(O(n'~¢)). By Proposition 2.19 we obtain f computable in time
exp(O(n'~¢)) such that

(18) liminf Ry(f) > val(¢x) = (1 =A%) /4,

where the final equality is Lemma 2.12. On the other hand, Conjecture 2.15 implies that any
f computable in time exp(O(n'~¢)) must satisfy

(19) limsup Ry (f) < limsup sup Ra(g)=(1— )\2)71/4,

n—o0 n—oo g;deg(g)gnlfe/Z
where the final equality is Theorem 2.13 combined with (13). Together, (18) and (19) give a
contradiction. O

2.4. Discussion. In this work we have presented a general-purpose framework for ar-
guing about the precise testing error achievable by computationally efficient algorithms —
the first such framework, to our knowledge. Our method involves a two-stage argument: we
first conjecture that low-degree polynomials are optimal for the related task of optimizing
the ratio R (f), and we then provably characterize the best possible ROC curve for efficient
algorithms conditional on this conjecture.

An alternative approach, and a potential direction for future work, would be to prove un-
conditionally that a particular class of tests (say, those based on thresholding low-degree
polynomials) cannot surpass a particular ROC curve. At this point, even the simpler task
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of showing that polynomial threshold functions fail to achieve strong detection is not fully
understood, as the existing results along these lines have technical conditions that are likely
unnecessary (see Section 4.1 of [46] and Section 2.3 of [50]).

While we view unconditional results as an important future direction, we also emphasize
the merits of our current approach. Notably, the only low-degree calculation required is to
bound || L="||, which tends to be relatively simple. This has allowed us to prove a very sharp
result that captures the precise threshold at A = 1, the precise asymptotic ROC curve ¢},
and the nearly optimal degree D = o(n/logn). In contrast, other low-degree arguments not
based on || L="|| — such as [65, 55], which deal with estimation rather than testing — tend
to be more difficult, and the known results are less sharp. For this reason, the approach we
have presented in this work appears to be an especially user-friendly tool that may be useful
for other problems.

We now discuss some specific extensions of our result that appear to be feasible directions
for future work. First, we have considered the spiked Wigner model with GOE noise, but one
can imagine relaxing the assumptions on the noise matrix W. For instance, one non-GOE
(but still Gaussian) noise model takes the diagonal entries of W to be /(0,52 /n) instead of
N(0,2/n), while the off-diagonal entries remain A (0,1/n). The analysis of LSS has been
extended to this case [22] (with a different ROC curve that depends on o), and we have shown
in Remark 2.8 how our method can prove statistical optimality of LSS when the spike prior
is Rademacher. We expect it should also be possible to prove computational optimality of
LSS for more general priors, generalizing our Corollary 2.21. This would require a proba-
bilistic analysis of the additional second term discussed in Remark 2.8, which is no longer
deterministic for general priors.

A more significant generalization of the Wigner model would allow a known non-Gaussian
distribution for the entries of W. While LSS has also been analyzed here, it is not the optimal
test: a better test involves first applying an entrywise transformation followed by LSS [22].
We expect this modified test to be optimal among computationally efficient tests for a broad
class of spike priors, and this can potentially be approached using our method. This would
require a precise analysis of the low-degree likelihood ratio in this more general setting.

Throughout, we have assumed the spike prior 7 is subgaussian, and it is plausible that
this could be relaxed. Doing so may require a more complicated argument such as a condi-
tional second moment computation. Certainly it is necessary to make some assumption on
the growth of 7’s moments or else LSS may cease to be the optimal test: if 7 is so heavy-
tailed that the maximum of n independent copies exceeds O(n'/*) then the maximum entry
of the observed matrix Y will achieve strong detection for all A > 0. We also note that our
assumption that m have mean 0 is needed, or else LSS will be sub-optimal compared to a
simple test based on the sum of all entries of Y.

We also hope that our approach may become useful beyond the spiked Wigner setting. A
key ingredient in our approach is a precise bound on the norm of the low-degree likelihood
ratio. The main step in deriving this precise limit is to show boundedness of the norm, as
this allows us to deduce the desired convergence in expectation from the corresponding con-
vergence in distribution. There are many settings where this boundedness has already been
established, including spiked Wishart matrices [12] and the stochastic block model [38, 10],
just to name a few. However, the precise positive results for testing do not yet seem to be
known in these settings.

2.5. Proof Overview. The bulk of our technical work goes into proving Proposition 2.19.
A key fact underlying the proof is the following: given an achievable ROC curve ¢, one can
construct a function f with Ep[f]/+/Eg[f?] = val(¢). We will give an overview of how this
is done and where the formula for val(-) comes from.
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For intuition it will help to consider a simplified setting: imagine our ROC curve ¢ is
achieved by thresholding a particular test statistic that only takes r different values. There
are 7 + 1 choices for the threshold, yielding  + 1 different tests. Say test ¢ achieves («, ) =
(aj,b;) fori=0,1,...,r,where 0 =ap < a1 <---<a,=land 0=by < by <--- < b, = 1.
Also assume that no (a;, b;) is dominated by the convex hull of other (a;, b;) pairs, or else test
7 is redundant and can be removed. This means ¢ is the concave piecewise linear function
formed by connecting each (a;,b;) to (ait+1,b;1+1) with a line segment. (These points are
achieved by taking appropriate probabilistic combinations between tests ¢ and ¢ + 1.) Since
we’re assuming all our tests are thresholding the same underlying statistic, there will be, for
any input Y, a unique i* = i*(Y') € {0,1,...,r — 1} such that all tests ¢ < i* output q and
all tests ¢ > ¢* output p. By definition of a;, b;, the probability that i* = ¢ is a;11 — a; under
Q and b; 11 — b; under P. Letting Q* and P* denote the distributions of * under Q and
P respectively, it is a standard fact that the function f maximizing Ep[f]/v/Eo[f?] (given
access to ¢*) is the likelihood ratio (see e.g., [46, Proposition 1.9])

i
= 1 =
dQ* Qi1 — Qg ’

which is the slope of the line connecting (a;«, b;«) and (a;«41,b;«41). For this choice of f,
both Ep[f] and Eg[f?] are equal to

bi«41 — b=

fY)

r—1 r—1 2
(bi+1 — bz‘)z <bz‘+1 - bi > 2
—_— = _— ai+1 — a;) = val ,
; Ai+1 — Q5 Zz:; Qi1 — G4 ( i ) (d))

and so Ep|[f]/+/Eg[f?] = val(¢) as desired.

The full proof of Proposition 2.19 is more involved for a number of reasons. We do not as-
sume the ROC curve is piecewise linear, but the proof will involve an appropriate discretiza-
tion. We also do not assume the ROC curve is achieved by thresholding a single statistic
at varying thresholds: there may be no relation between the tests that achieve two different
(a, B) pairs. Finally, we must show that given a hypothetical achievable point (a*, 3*) above
the graph of ¢, we can achieve an improved ROC curve whose value is strictly larger than
val(¢) (see Figure 1 for illustration). We note that the value val(¢) is only meaningful for
concave functions ¢.

3. Proofs.

3.1. Proof of Theorem 2.13. A standard formula for ||(Ly)<"| gives (see Theorem 2.6
of [46])

Nz, x')?
20) 02 = e (G50 )
o P a7 P

where 2’ is an independent copy of x (with entries ii.d. from 7), and exp=P(z) :=

25:0 z%/d! (the degree-D Taylor polynomial for exp(z)). Define the random variable
A=A, >0by

An{x,z')?
2D A=

2|jz|2||="|?
so that

(22)  [(LA)=7I° =Eexp=P(A) = E[La<t - exp="(A4)] + E[Lase - exp=P(A)]
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where ¢ = ¢, > 0 is a threshold to be chosen later. The first term on the right-hand side is
bounded by

0 d
t
23)  E[la<i-exp(A)] - Y S <E[lac- exp=P(A)] <E[14<; - exp(4)],
d=D+1
where the second inequality relies on A > 0 so that every term in the Taylor series for exp is
non-negative. We will proceed to bound the various terms in (22) and (23) separately.

LEMMA 3.1. Ift=o0(D) then

d=D+1

PROOF. Using the standard bound d! > (d/e)?,

i ﬁ < i el ! < i St ! < i St ! — (1)
d = d) = D) = D) ~ %)
d=D+1 d=D+1 d=D+1
since t = o(D). O

LEMMA 3.2. Ift=w(1l) and t < pn for a particular constant p = p(\,7) > 0, then

lim E[1a<;-exp(A)] = (1 —A2)~Y/2,

n—oo

. L d
PROOF. By the central limit theorem, we have convergence in distribution (z,z') /v/n —

N(0,1). Also, ||z]|?/n % 1 and the same for z’. As a result, 4 % A2x3/2 where 2
is a chi-squared random variable with 1 degree of freedom. Since ¢ = w(1), we have

Ta<:-exp(A) LN exp(A2x?/2). We aim to conclude the corresponding convergence of the
expectation E[1 4<; - exp(A)] — E[exp(A\2x3/2)]. This completes the proof because, using
the chi-squared moment-generating function, Eexp(A2x?/2)] = (1 — A2)~1/2,

Convergence in distribution plus uniform integrability implies convergence of the expec-
tation, so it remains to verify that the sequence X, := 14, <, - exp(A,) is uniformly inte-
grable, i.e., for every € > 0 there exists K > 0 such that for all n we have E[1|x, |>x - | Xn|] <
¢. Lemma 3.3 below establishes for all n that E[| X,,|'*7] < C for some positive constants
~,C (depending on A, 7). This implies uniform integrability because

Ellix, >k [ Xnl] =E[Lx, 5Kk - | Xal "7 Xn| ] <E[Lx, 5k [ Xal VK< CK 7,

which can be made smaller than € by choosing K sufficiently large. 0

We note that the rest of the argument is similar to [46, Theorem 3.9], with the main differ-
ence being that we have normalized the spike (a convention we have adopted for consistency
with [22]). We will defer many of the details to the Supplement and state only the main
claims here. The following lemma, proved in the Supplement, was used to establish uniform
integrability above.

LEMMA 3.3. Fix X € (0,1) and choose ~ > 0 small enough so that (1 + v)\? < 1. If
t < pn for a particular constant p = p(\,m,7) > 0 then

E[la< - exp((147)A)] = O(1).
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We now return to the final term in (22).

LEMMA 3.4. For any sequences D = D,, and t = t,, that scale as D = o(n/logn) and
t=Q(n),

E[Las - exp="(A4)] = o(1).

The proof of Lemma 3.4 is deferred to the Supplement. The proof of Theorem 2.13 now
follows by combining the ingredients above; the full details of this are also deferred to the
Supplement.

3.2. Proof of Proposition 2.19. We will first argue that o* € (0, 1) without loss of gen-
erality. First, since ¢(1) =1 and ¢(a*) < 5* < 1, we must have o* # 1. Second, if o* =0,
we will find a different asymptotically achievable point («, ) with 5 > ¢(a) and a > 0, to
use in place of (o, 3*). Since ¢ is continuous, this can be done via the following test: with
probability p for a sufficiently small constant p > 0, output p; otherwise, apply the original
decision rule that achieved (a*, 5*). In the sequel we therefore assume o™ > 0.

Define ¢ : [0, 1] — [0, 1] to be the upper concave envelope of ¢ and (a*, 5*), as illustrated
in Figure 1. By this we mean the minimal concave curve such that ¥ (a) > ¢(«) for all
a € [0,1] and ¥(a*) = B*. Note that ¢ has the following structure for certain constants
0<Ai<a* <Ay <.

* For a € [0, A1] U [A2,1], ¥(a) = ¢(a).

» For a € [A1, o], the graph of ¢ is a straight line connecting (A1, $(A1)) and (a*, 5*),
and this line has slope ¢'(A1).

* For a € [a*, As], the graph of ¢ is a straight line connecting (o, 5*) and (Az, $(A2)),
and this line has slope ¢'(A3).

* Finally, ¢/(A41) > ¢(A2), since ¢ is concave and (a*, 8*) lies strictly above the graph of

.

Here we have used some basic properties of ¢ from Assumption 2.17, namely the fact that ¢’
is continuous and decreasing, as well as the limits of ¢’ near 0 and 1.

LEMMA 3.5. val(%)) exists and val(t)) > val(¢).

PROOF. The existence of val(¢) is immediate from the existence of val(¢) and the piece-
wise structure of ¢ discussed above. Since ¢ and 1) coincide outside the interval [A;, As], it
suffices to show

As Ay
24) / (#/(0))da > / (¢/())? do

1

Introduce the shorthand A := a® — Ay and A := Ay — . Since v is piecewise linear on
[A1, Ag], the left-hand side can be computed directly:

Az
es) | @) da= @ (40P A1 + (¢/(42) 0
Since ¢p(A1) =9 (A1), p(a*) <P(a*), and ¢p(Az) =1p(A2), we have for some 1 > 0,

(26) A ¢ (@) do = A P (@) do— = ¢' (A1) A1 —
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and

Ao A
27) ~da)da= | J(a)datn=¢'(A2)A + 1.
Also note that an integrable function f on [a,b] with 0 < m < f(x) < M for all = € [a,]]
must satisfy
b b
[ rapde= [ (@) = m)(s@) 4 m)da 0 - a)
b
< (M+m)/ (f(x) —m)dz +m?*(b—a)

b
(28) :(M—l-m)/ f(z)dx — Mm(b—a).

Recalling that ¢’ is positive and decreasing, combine (26),(27),(28) to bound the right-hand
side of (24):

/ " (¢(0))do = | @ardas [ " (¢(0))2da

A, A, ar
< [¢'(A1) + ¢'(@)][¢' (A1) A1 — 1] — ¢ (A1) ¢ (™) Ay
+ [0/ (@) + ¢/ (A2)][¢'(A2) Az + 1] — ¢ (™) ¢/ (A2) Ag
= (¢/(A1))? A1 + (¢ (A2))* A2 — [ (A1) — ¢ (A2)].
Compare this with (25) and recall ¢'( A1) > ¢'(Az2) to complete the proof. O

Our next step will be to approximate ¢ using a finite collection of points u = (uyg, . .., u;)
where u; = (a;,1(a;)) for some choice of 0 = ap < a1 < -+ < a, = 1. By virtue of lying on
the graph of 1), these points will be in “concave position,” which we define as follows.

DEFINITION 3.6 (Concave position and conc). Let u = (ug,...,u,) be a sequence of
points in [0, 1%, sorted by strictly ascending first coordinate, with ug = (0,0) and u, = (1,1).
We say w is in concave position if the slope of the line through u; and u;1 is strictly positive
and strictly decreasing as a function of i. In this case, we let conc(u) denote the upper
convex envelope of these points, i.e., the piecewise linear function [0, 1] — [0, 1] whose graph
on [a;,a;+1] is a straight line connecting u; and u; 4.

LEMMA 3.7. There exist values r > 1 and 0 = ag < a1 < --- < a, = 1 such that the
points u = (ug, . .., u,) where u; = (a;,1(a;)) are in concave position with

val(conc(u)) > val(¢).

PROOF. In light of Lemma 3.5 we can write val(1))? = val(¢)? + € for some € > 0. Since
val(7)) exists, it is possible to choose a1, a,—1 with 0 < a; < A; and Ay < a,—; < 1 so that
o (¥ (@))*da < €/6 and falT_l (¢ ()% da < €/6. We will also include Ay, a*, As in the
list of @;’s. It remains to partition the intervals [a1, A1] and [A2, a,—1]. In each case, choose
a fine enough partition so that each sub-interval [a;, a;4+1] satisfies ¥’ (a;) < (1 + 7)Y (ai+1)
for a constant y > 0 to be chosen later. This is possible because ¢’ is continuous and strictly
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positive, and ¢’ = ¢’ on [a1, A1] U [Ag,ar—1]. Let T denote the set of 4 that index the sub-
intervals [a;, a;+1] of [a1, A1] U [A2,a,—1]. For each i € I, the mean value theorem implies
that the slope m; of the line connecting u; and ;41 satisfies

P (aiy1) <mi <9P'(ai) < (14 7)Y (aigr).

Note that the interval [A;, As] has the same contribution to both val(conc(u)) and val(v)),
and so

val(vp)?—val(conc(u))? < Z [/a a))? doe —m3 (aiy1 — ag)

el
+ / (W (@))? dor
[0,a1]V[ar—1,1]

< Z 2(aip1 — a;) —mF(aip1 — ai)] +€/3
icl
<Z [(1+7)*mi(ais1 — ;) — mi(aip1 —a;)] +€/3
icl
= (27 +7%))_mi(air —ai) +¢/3 < (27 +77) (¥ (a1))” + ¢/3,
i€l

implying val(1)? — val(conc(u))? < 2¢/3 for a sufficiently small choice of 7y > 0. Recalling
val(¢0)? = val(¢)? + ¢, this completes the proof that val(conc(u)) > val(¢). Finally, remove
any redundant u;’s for which m;_; = m,, noting that this has no effect on val(conc(u)). The
remaining points are in concave position because they lie on the graph of ¢, which is concave
and strictly increasing. 0

Next we modify the points u slightly to create a new sequence of points v = (vp, ..., v,)
where v; = (a;,b;). The a-coordinates are inherited from the «’s and the S-coordinates will
be decreased slightly to ensure these points are asymptotically achievable. This step is only
necessarily because we have only assumed asymptotic achievability for points strictly below
the graph of ¢, not on it. The proof is deferred to the Supplement.

LEMMA 3.8. Letr and {a;} be as in Lemma 3.7. There exist values 0 = by < b; < -+- <
b, = 1 such that the points v = (vy, ..., v,) where v; = (a;,b;) are in concave position with

val(conc(v)) > val(¢),
and furthermore, b; < (a;) for each i ¢ {0,r}.

We now have a finite number of points vy, . .., v, such that each is asymptotically achiev-
able in time 7. These points depend only on ¢,a*, 5* but not n. To complete the proof,
we construct an algorithm to compute a function f achieving (17). The points vy, ..., v, as
well as the algorithms for asymptotically achieving each of them, will be hard-coded into our
algorithm for f.

PROOF OF PROPOSITION 2.19. Given input Y, we describe the algorithm to compute
f(Y). Let to,...,t,. denote the tests that asymptotically achieve the points v, ..., v, from

Lemma 3.8, and let s = (sq,..., ;) denote the sequence of outputs s; = ¢;(Y"). Since vy =

(0,0) and v, = (1,1), we always have sy = q and s, = p. Our goal is to choose f(Y") so that
Ey~ Y

(29) replf(V)] val(conc(v)) — o(1),

Ey~o[f(Y)?]
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which implies (17) since val(conc(v)) > val(¢) by Lemma 3.8.

For intuition, it is natural to expect the rejection regions of the ¢;’s to be nested in the sense
that ¢;11(Y) = p whenever ¢;(Y") = p. If this is the case then the sequence s is always equal
to one of the “monotone” sequences

S(O):(q7p7p7"’7p)7 S(l):(q7q7p7”‘7p)7 M S(Til):(q7q7“‘7q7p)'

If s = SU) for some J, let f(Y') =¢;, which, recall, is the slope of the line connecting v; and
vi+1. In the case where the rejection regions of the ¢;’s are nested, this rule achieves (29).
However, there is no guarantee that the rejection regions will be nested, and so we need to
also decide on f(Y") for non-monotone s.

The general construction for f(Y") is as follows. For i =0,...,r — 1 define

+1 ifs;=4q, sit1 =9,
oi(s)=q -1 ifsi=p,si11=q,
0 otherwise.

Then choose any f(Y) > 0 satisfying

for example, f(Y') can be defined to simply equal the left-hand side above. The interval for
possible f(Y') values is nonempty due to Lemma 3.9 below, using the following facts: ¢; is
positive and decreasing in ¢, by definition of concave position; and the nonzero o;’s alternate
in sign, starting with positive. Since there are only a finite number of possible values for s, a
lookup table with the corresponding f(Y") values can be hard-coded into the algorithm. Note
that if s is a monotone sequence S/), we recover the rule f(Y) = ¢; from above.

Since f(Y') depends only on s, we write f(s) = f(Y). Now compute

r—1 r—1
= ZP(s)f(s) > Zvﬂ(s)Zm(sm =>4 oi(s)P(s
=0 1=0 S

= ZP(S,- =p)(li—1 — ¥;) where ¢, := 0 and using P(so=p) =0
r—1

> Zb ic1— ) —0(1) = Li(biy1 — bi) — o(1) = val(conc(v))* — o(1).
i=0

Similarly,

r—1 r—1
= Z Q(s)f()° < Z Qs) D _ai(s)F =D €7y 0i(s)Q(s)
=0 =0 s
= Ze (siv1=p) = Qsi=p)] =D Qsi =p) (6 — £7)
=1

r—1

<Zalf —2)—o(1)=> £ (aip1 —a;) — o(1) = val(conc(v))* — o(1).

=0
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Together, the above calculations imply (29) as desired. O

Finally, the following fact was used above. Its proof is deferred to the Supplement.

LEMMA 3.9. For an integer m > 1, suppose ho > h1 > -+ > hy—1 > 0. Then
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SUPPLEMENTARY MATERIAL

Supplement to “Precise Error Rates for Computationally Efficient Testing”
Contains some additional proofs that were omitted from the main text.
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