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Abstract Proceedings of the 57th Annual ACM Symposium on Theory of Computing

(STOC °25), June 23-27, 2025, Prague, Czechia. ACM, New York, NY, USA,

We study the problem of detecting or recovering a planted ranked )
11 pages. https://doi.org/10.1145/3717823.3718280

subgraph from a directed graph, an analog for directed graphs of
the well-studied planted dense subgraph model. We suppose that,

among a set of n items, there is a subset S of k items having a latent 1 Introduction

ranking in the form of a permutation 7 of S, and that we observe a We study several statistical tasks associated with random directed
fraction p of pairwise orderings between elements of S which agree graphs' G on n vertices. Taken together, we call the two distribu-
with & with probability % + g and otherwise are uniformly random. tions of G we study the planted ranked subgraph (PRS) model.
Unlike in the planted dense subgraph and planted clique problems The aim of the PRS model is to describe situations of the follow-
where the community S is distinguished by its unusual density of ing kind: we observe directed social interactions among a collection
edges, here the community is only distinguished by the unusual of individuals, like the giving of gifts. Some subset of these individu-
consistency of its pairwise orderings. We establish computational als form a small community having a strict hierarchy, causing those
and statistical thresholds for both detecting and recovering such lower in this hierarchy to more often give gifts to those higher
a ranked community. In the log-density setting where k, p, and (or vice-versa). Yet, the frequency of gift-giving in the community
q all scale as powers of n, we establish the exact thresholds in overall is the same as in the population at large. Can we detect or
the associated exponents at which detection and recovery become identify this ranked community, purely from the effect of its hier-
statistically and computationally feasible. These regimes include a archy on the direction in which gifts are given, not the frequency
rich variety of behaviors, exhibiting both statistical-computational with which they are given?” See, e.g., [18, 27, 43, 50] for a small
and detection-recovery gaps. We also give finer-grained results selection of work discussing hierarchy in network data appearing
for two extreme cases: (1) p = 1, k = n, and q small, where a full in various social sciences.
tournament is observed that is weakly correlated with a global We formalize this question into two distributions of G. Under the
ranking, and (2) p = 1,q = %, and k small, where a small “ordered null model, denoted @, each edge of G is present with probability
clique” (totally ordered directed subgraph) is planted in a random % p in either the forwards or backwards direction, for a total prob-
tournament. ability p of being present at all, for a parameter p € [0, 1]. Under
the planted or alternative model, denoted P, we insert a ranked
CCS Concepts community into G. This structure depends on p and also on further

parameters 1 < k < nand g € [0, 1]. We then sample G by the

« Theory of computation — Random network models; Bayesian ) b2
following procedure:

analysis; « Mathematics of computing — Random graphs;

Hypothesis testing and confidence interval computation; (1) First, each vertex i € [n] is included in the ranked com-

Bayesian computation. munity, a subset S C [n], independently with probability
k/n.

Keywords (2) Next, we choose a permutation 7 € Sym(S) of the set S

uniformly at random. When we want to emphasize that this
permutation acts only on S, we write 7 = 7s.
(3) Finally, for every i,j € S with 7(i) < x(j), we add the

ACM Reference Format: directed edge (i, j) to G with probability p(% +q), add the
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community detection, random directed graphs, low-degree polyno-
mials, statistical-to-computational gaps

directed edge (j, i) with probability p (% - q), and add no
edge between i and j with the remaining probability 1 — p.

m 'We always refer to simple directed graphs where there is at most 1 directed edge

This work is licensed under a Creative Commons Attribution 4.0 International License. between any pair of vertices.
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For all other pairs i, j € [n] (where at most one of i and j
belongs to S), we add a directed edge between i and j with
probability % p in either direction, for a total probability p of
an edge being present at all.

We note that, under both Q and P, the undirected graph G formed
by “forgetting” the direction of each edge is merely an Erdés-Rényi
random graph with edge probability p. All the extra structure of
therefore lies in the directions of the edges between members of S,
as proposed above.

We consider two statistical problems. First, when is it possible to
detect that a planted ranked subgraph is present in G, i.e., to hypoth-
esis test between Q and P? And second, when is it possible given
G ~ P to recover or estimate S and 7 accurately from this observa-
tion? We also consider two variations of each question. First, when
is each task achievable statistically or information-theoretically, that
is, with computations of arbitrary runtime permitted? And second,
when is each task achievable computationally by a polynomial-time
algorithm?

It has been known for some time that statistical and computa-
tional hardness can be different: there can be regimes of problems
such as the one we propose where it is possible to solve the prob-
lem, but only at prohibitive computational cost (e.g., [5, 11, 51]).
On the other hand, for many problems, it was previously observed
that thresholds for the feasibility of detection and recovery coin-
cide; for instance, [1] discusses this point concerning the stochastic
block model and its variations. More recently, natural examples of
problems were found where this does not occur, for instance for
the planted dense subgraph [12, 16, 45] and planted dense cycle
[38] problems. We will see that different regimes of the PRS model
exhibit both detection-recovery and statistical-computational gaps
of this kind, and we hope that this model will be a valuable example
for understanding the interplay of these behaviors.

Our results concern two regimes of the parameters p = p(n),
k = k(n), g = q(n). First, by analogy with the well-studied planted
dense subgraph (PDS) model of undirected graphs [8, 28, 39], we
consider p, k, and g scaling polynomially with n, called the log-
density setting. Then, we give some finer-grained results about the
special case p = 1, in which case we observe a complete directed
graph, also called a tournament. Within this case, we consider the
two extremes of the remaining parameters k and g: when k = n
and q is small, then we observe a tournament weakly correlated
with a global ranking (as we will see, this may be viewed as a
digraph-valued version of a spiked matrix model), while when
q= % and k is small, then we observe a tournament with a small
subgraph on which the tournament induces a total ordering (which
may be viewed as a digraph version of the planted clique model
[3, 6, 21, 33]).

As a final remark, we will very often work with the adjacency
matrix of the directed graph G. Unlike the symmetric adjacency
matrix of undirected graphs, we take this to be a skew-symmetric
matrix Y € {0, 21} (i.e,, having Y = =Y 7). We set ¥;; = 1 if
there is a directed edge from i to j, ¥;; = —1 if there is a directed
edge from j to i, and Y;; = 0 otherwise. We will view G and Y as
interchangeable, and will write G ~ Q or P and Y ~ Q or P as
equivalent notations. Several of the algorithms we propose will
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have straightforward algebraic or spectral interpretations in terms
of operations on Y.

Before proceeding to the statements of the main results in these
various settings, let us define what precisely we mean by detection
and recovery in the PRS model.

1.1 Detection and Recovery

We will consider the following two standard notions of what it
means for an algorithm to achieve detection between # and Q.

DEFINITION 1.1 (STRONG AND WEAK DETECTION). Consider a
sequence of functions A = A, that take as input a directed graph G
on n vertices (or equivalently its adjacency matrix Y) and output an
element of {0, 1}. We say that, asn — oo:

o A achieves strong detection between P and Q if

[A(G) = 01) —o;

lim
n—oo

( P [A(G)=1]+ P
G~Q G~P

o A achieves weak detection between P and Q if, for some § > 0,

¢z

limsup| P

[A(G)=1]+ P [A(G) = O]) <1-6.
n—oo G~P
We say that either of these notions is statistically possible if any A
achieves it, and that it is computationally possible if some A com-

putable in polynomial time in n achieves it.

The two error terms in each line above are the Type I and Type II
error probabilities respectively, or the respective probabilities of in-
correctly refuting or incorrectly failing to refute the null hypothesis.
The second definition is reasonable since a total error probability of
1 is achieved by the trivial algorithm A that always outputs either
0orl.

To formally define recovery under the planted model P, we
must fix metrics by which we will measure the amount of error
that an algorithm makes. This is a little bit subtle, because the
planted structure in # consists of the two objects S C [n] and 7 a
permutation of S. We define metrics for both objects individually.

DEFINITION 1.2 (HAMMING DISTANCE). The Hamming distance
between S,T C [n] isdy(S,T) = |SAT|, where A denotes the sym-
metric difference.

DEFINITION 1.3 (KENDALL TAU DISTANCE). The Kendall tau dis-
tance between o, T permutations of two, possibly different, subsets
S, T C [n], respectively, isdxr(0, 1) = #{{i, j} € (SQT) Fi <o Joi >t
Jj}

DEFINITION 1.4 (EXACT, STRONG, AND WEAK RECOVERY). Con-
sider a sequence of functions A = Ap, that take as input a directed
graph G on n vertices (or equivalently its adjacency matrix Y) and
output (S, 7) with S C [n] and & a permutation on S. We say that,
when G ~ P andn — oo:

o A achieves exact recovery if A(G) = (S, ) with high proba-

bility;
o A achieves strong recovery if
 Bdu(8.5)
lim sup - 0,
n—0oo
. Edgr (7, )
lim su * =0;
n—oo (2)
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Figure 1: Computational and statistical thresholds for detec-
tion and recovery in the planted ranked subgraph model in
the log-density setting. The green, yellow, and red regions
indicate where each problem is computationally tractable,
computationally hard but statistically tractable, and statisti-
cally impossible, respectively.

o A achieves weak support recovery if, for some § > 0,

Edu (S, S) <1-
k

We say that any of these notions is statistically possible if any A

achieves it, and that it is computationally possible if some A com-

putable in polynomial time in n achieves it.

lim sup d.

n—oo

The idea of exact recovery should be clear. A sequence of estimators
achieves strong recovery if it nearly perfectly recovers S, up to a
0(1) fraction of vertices erroneously either included or excluded,
and also nearly perfect recovers the latent ranking on S, up to a
0(1) fraction of total pairs (IZC) having an incorrect pairwise order-
ing. Weak support recovery only pertains to the estimate S of the
community itself (thus for an algorithm aspiring to weak support
recovery 7 may be arbitrary or just omitted from the setup entirely),
and is sensible only when k = o(n), in which case it demands that
an algorithm correctly identifies any constant fraction of members
of S.

1.2 Main Results: Log-Densities

We now proceed to the first collection of our main results. By the
log-density setting we mean a setting of the parameters of the PRS
model as follows:

a

q=q(n)=n""
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k =k(n) = nP,

p=pn)=n7",
for some further parameters , f,y € (0, 1). Our results on the log-
density setting completely characterize the feasibility of statistical
and computational detection and recovery in the PRS model for
any such choices. We leave informal for now the precise meaning
of our computational lower bounds. These are carried out in the
framework of analysis of low-degree polynomial algorithms, which
we describe in detail in Section 3.1. Modulo the details of what
those lower bounds mean, our results explicitly decompose the
three-dimensional cube of log-density parameters (a, f,y) € (0,1)3
into regions where each problem is computationally easy, computa-
tionally hard but statistically possible, and statistically impossible.
These turn out to be straightforward polyhedral decompositions of
the cube, which we illustrate in Figure 1.

There are eight questions we must answer to establish this de-
composition: for each of computational and statistical detection
and recovery, we must prove upper and lower bounds describing
when it is possible or impossible. These are addressed in the four
theorems below, which each give a pair of upper and lower bounds.

THEOREM 1.5 (COMPUTATIONAL DETECTION IN LOG-DENSITY SET-
TING). The following hold:

o Iff> %a + %y + % then strong detection is computationally
possible. It is achieved in this case by computing and thresh-
olding a polynomial of degree 2 in the entries of Y.

o (Informal) If f < %a+ %y+ L then no sequence of polynomials
of degree bounded by O((log n)?~¢) achieves weak detection.

THEOREM 1.6 (STATISTICAL DETECTION IN LOG-DENSITY SETTING).
The following hold:
o If f > min{2a + y, %a + %y + %}, then strong detection is
statistically possible.
o Iff < min{2a +y, %a + %y + %}, then weak detection (and
therefore also strong detection) is statistically impossible.

THEOREM 1.7 (COMPUTATIONAL RECOVERY IN LOG-DENSITY SET-
TING). The following hold:

o Iff > a+ %y + % then strong recovery is computationally
possible. It is achieved in this case by a spectral algorithm
using the Hermitian complex-valued adjacency matrixiY. This
result holds not only under the log-density setting with the
condition above, but also under the less stringent assumptions

It
that q = w(%),p =Q( 05"), and k = w(1).

o (Informal) If f < o + %y + % then no sequence of polynomials

of degree bounded by n®(1) achieves weak support recovery.

THEOREM 1.8 (STATISTICAL RECOVERY IN LOG-DENSITY SETTING).
The following hold:
o If f > 2a +y, then strong recovery is statistically possible.
It is achieved in this case by computing a minor variant of a
maximum likelihood estimator.
o IfB < 2a +y, then strong recovery is statistically impossible.

1.3 Main Results: Extreme Parameter Scalings

Finally, we examine two special cases that are not covered by the log-
density setting, where some parameters are taken to their extreme
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values. In both cases, we fix p = 1, in which case we observe all
edges of G. Such a choice of directions for the complete graph is
also called a tournament.

1.3.1  Planted Global Ranking Observed Through a Tournament. We
first consider the special case where we fix k = n, p = 1, and let ¢
vary. This is the case of the PRS model where the ranked subgraph
is actually the entire graph, so we observe a full set of pairwise
comparisons that are weakly correlated with 7 € Sym([n]).

Detection. For detection, the same threshold obtained by plug-
ging @ = 0, f = 1 into the results of the log-density framework
holds (though it does not follow entirely from our analysis of the
log-density setting), which we may further sharpen in this setting
as follows.

THEOREM 1.9 (DETECTION OF GLOBAL RANKING THROUGH TOUR-
NAMENT). The following hold in the PRS model withp = 1,k = n,
and q = q(n) € [0, %]:

o Ifg= w(n=3/4), then there exists a polynomial-time algorithm
that achieves strong detection.

o Ifqg= O(n~3/%), then strong detection is statistically impossi-
ble.

o There exists a constant ¢ > 0 such that, ifq > c - n=3/4 then
there exists a polynomial-time algorithm that achieves weak
detection.

o Ifq= o(n=3/%), then weak detection is statistically impossible.

The polynomial-time algorithms above are the same as those refer-
enced in Theorem 1.5.

Suboptimality of Spectral Algorithm for Detection. As an addi-
tional point of comparison, we give the following analysis of a
natural spectral algorithm for detection. If Y is an adjacency matrix
as we have defined, then, for i the imaginary unit, iY is a Hermit-
ian matrix, and thus this latter matrix has real eigenvalues, whose
absolute values are also the singular values of Y. We consider the
performance of an algorithm thresholding the largest eigenvalue of
this matrix (equivalently, the largest singular value of Y), and find
that its performance is inferior by a polynomial factor in n in the
required signal strength g compared to our algorithm based on a
simple low-degree polynomial.

THEOREM 1.10 (SPECTRAL DETECTION THRESHOLDS). Suppose q =
c-n~ Y2 Then, the following hold:

o IfY ~Q, then %Amax(iY) — 2 in probability.

o IfY ~P andc < /4, then #Amax(iY) — 2 in probability.

o IfY ~P andc > /4, then ‘/Lﬁﬂtmax(iY) > 2+ f(c) for some
f(c) > 0 with high probability.

In words, the result says that the success of a detection algorithm
computing and thresholding the leading order term of Amax (iY)
undergoes a transition around the critical value q = %n‘l/ 2 much
greater than the scale ¢ ~ n=3/% for which the success of a sim-
pler algorithm computing a low-degree polynomial undergoes the
same transition (per Theorem 1.9). The proof of this result relates
iT to a complex-valued spiked matrix model, a low-rank additive
perturbation of a Hermitian matrix of i.i.d. noise.
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REMARK 1.11. Technically, Theorem 1.10 does not rule out the
existence of a spectral algorithm that successfully distinguishes P and
Q by thresholding Amax (iY) when g is below %n’l/z, since we only
focused on the behavior of Amax (iY) to leading order and ignored the
smaller o(\/n) fluctuations. For some q < %n_l/z, potentially there
could exist e = e(n, q) > 0 such that Amax (iY) > (2 +¢€)v/n w.h.p. for
Y ~ P but Amax(iY) < (2 + e)v/n wh.p. for Y ~ Q, thus leaving
open the possibility of the success of the spectral algorithm below the
threshold mentioned in Theorem 1.10; however, our results imply that
such ¢ would need to have ¢ = 0(1) as n — co. We believe this is an
interesting issue to address in future work.

Recovery. We introduce an extra notion of weak recovery for this
setting, which is clearer to define here versus in the general PRS
model, since we may compare the performance of a given estimate
of the permutation 7 with a random guess.

DEFINITION 1.12 (RECOVERY OF GLOBAL RANKINGS). Consider a
sequence of functions A = A, that take as input a directed graph
G on n vertices (or equivalently its adjacency matrix Y) and output
7 € Sym([n]). We say that, when G ~ P withk = n andn — oo:

o A achieves strong recovery if

Eldgr (7, 7)]

n

(z)
the same as Definition 1.4 if we view the algorithm as auto-
matically outputting S = [n];

o A achieves weak recovery if there exists § > 0 such that

E[dkr (7, 7)]
(2)
As before, we say that either of these notions is statistically possible

if any A achieves it, and that it is computationally possible if some A
computable in polynomial time in n achieves it.

lim

n—oo

>

<=--6.

. 1
lim sup 2

n—oo

THEOREM 1.13 (RECOVERY THRESHOLDS). Suppose0 < q = q(n) <
1/4. The following hold:

e Ifqg = w(n~1/?), then a polynomial-time algorithm achieves
strong recovery.

o Ifqg = ©(n~1/2), then strong recovery is statistically impossi-
ble.

e Ifqg = ©(n1/2), then a polynomial-time algorithm achieves
weak recovery.

o Ifg= o(n~12), then weak recovery is statistically impossible.

Unlike the more complicated spectral recovery algorithm in the
log-density setting when the ranking is planted on only a subset of
vertices, here our results in fact show that the following simpler
recovery algorithm is optimal.

DEFINITION 1.14 (RANKING BY WINS). The Ranking By Wins al-
gorithm takes as input a directed adjacency matrix Y of a tournament
and outputs a permutation 7 € Sym([n]) in the following way:

(1) For eachi € [n], compute a score s; = Yige[n] Yiks
(2) Rank the elements i € [n] according to the scores s; from the
highest to the lowest, under an arbitrary tie-breaking rule (say,

ranking i below j ifi < j whens; = sj).
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REMARK 1.15. In the proof of Theorem 1.13, we actually obtain a
quantitative bound for the recovery error. Namely, we show that the
Ranking By Wins algorithm outputs a permutation 7 that achieves

Eldkr(r,m)] _ C 2
———— < ——=-exp|(—q'n
(2) qvn ()
for a constant C > 0. We also establish the following lower bound on
the expected error achievable by any algorithm A:
E[dkr(7, A(G))]

(3)

1 4gyn 1 8¢°n
Zamax l——,Eexp T
Vi-¢ i

Alignment Maximization. Finally, we state an ancillary result on
finding a permutation that is maximally aligned with an observed
tournament, maximizing the objective function:

align(7, G)

(L{z() < Z()H} = 1z (D) > Z()}).
(i.j)€E(G)

Let us first draw a connection to maximum likelihood estimation
to explain why the alignment objective is an interesting one. Let
G ~ P. The likelihood function L(7 | G) in this case can be
expressed as

L(7|G)
= P [G]| 7]
~p
(1 Hz(@)<z(} 4 Hz(@)>7(j)}
L
(L)<E©) \2 2
1 Y(ijee) Hm() <z ()} 1 Y jee) HE(D>7()}
g
(1 )5(3) (1 )i('z’) (%Jrq)%'ahgn(’?ﬁ)
=(5-q) |;+q :
2 2 %_q

where the last line follows from ¥ (; jyep(g) IH{7() < 7(j)} +
Y jeE) Ha) > 7(j)} = (5). Thus, the maximizer of the
alignment objective has the pleasant statistical interpretation of
being the maximum likelihood estimator of the hidden permuta-
tion under the planted distribution #, given the observation G.
Unfortunately, computing the maximum likelihood estimator or
(equivalently) optimizing the alignment objective for a general
worst-case input G is known to be NP-hard [2].

Nevertheless, as our results below will show, when we consider
draws from the planted model when strong recovery is information-
theoretically possible, then the same simple Ranking By Wins algo-
rithm nearly maximizes the likelihood.

THEOREM 1.16 (ALIGNMENT MAXIMIZATION). Suppose 0 < q =
q(n) < 1/4. For q = w(n~"/2), there exists a polynomial-time algo-
rithm which, given G ~ P, outputs a permutation 7 € Sym([n])
that with high probability satisfies

align(7,G) = (1-0(1)) - Lnr«gx align(7, G). (1)
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REMARK 1.17. We focus on the case g < 1/4 for technical reasons.
In the case of y > 1/4, the maximum likelihood estimator can be com-
puted exactly in polynomial time with high probability [10], which
equivalently exactly maximizes the alignment objective.

While this algorithm will be the same Ranking By Wins algo-
rithm as for estimating the hidden permutation under the Kendall
tau distance, we emphasize that a good such estimator 7 does
not necessarily a priori give a good approximate maximizer of the
alignment objective. Yet, it turns out that the Ranking By Wins
estimator does have this property, which requires further analysis
of its behavior.

1.3.2  Planted Ordered Clique in a Tournament. Finally, we consider
the case of the PRS model with p =1, ¢ = %, and k = k(n) varying.
This is a directed version of the planted clique model, where we
observe a tournament Y drawn from # having a hidden subset
S C [n] and a latent permutation g on S such that all the directed
edges between vertices in S are oriented according to rs.

While Theorem 1.7 shows that a spectral algorithm successfully
recovers S and g approximately once k = w (vn), we can actually
do better. Here we show, analogous to the results of [3] on the
undirected planted clique model, that a slightly modified spectral
algorithm works all the way down to k = Q (v/n) and achieves
exact recovery of S and rg, rather than just strong recovery.

THEOREM 1.18 (RECOVERY OF PLANTED ORDERED CLIQUE). Fix
p=1landq = % There exists a constant C > 0 such that if k =
k(n) > C+/n, then there is a polynomial-time algorithm that with
high probability achieves exact recovery (in the sense of Definition 1.4).

Adapting another idea of [3], we may reduce the constant in
front of v/n and further show the following.

COROLLARY 1.19. Fixp =1andq= % For any constant ¢ > 0, if
k = k(n) > cv/n, then there exists a polynomial time algorithm that
with high probability achieves exact recovery.

1.4 Related Work

Numerous models for random digraphs, either fully or partially
observed, having some hidden structure have been proposed in the
literature. One of the most popular for generating noisy pairwise
comparisons between n elements, the Bradley-Terry-Luce (BTL)
model, was introduced in [9, 36]. In the BTL model, there is a hidden
preference vector w = (w1, ..., Wy) € R';O,
a noisy label T; ; that takes value +1 with probability w;/(w; +w;),
and —1 with probability w;/(w; + wj). Such models are usually
studied in terms of query complexity, with multiple independent
queries of the same pair (i, j) allowed. There have been extensive
studies of when one can approximate the preference vector w (see
e.g. [41, 42, 48], though [48] actually work under a substantially
more general model than BTL) or recover the top k elements (see
e.g.[15,32,40]) in the BTL model. But, even aside from not including
community structure, the BTL model is quite different from ours,
because the magnitudes of the w; can create a broader range of
biases in the observations than our single parameter q.

The case k = n, p = 1 of our model, a global tournament weakly
correlated with a hidden ranking, is often referred to as a noisy
sorting model. For g > 0 a constant, the results in [37, 49], further

such that one observes
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improved by [26], give tight bounds on the number of noisy compar-
isons needed to recover the hidden permutation. In this same “high
signal” setting, [10] proposed an efficient algorithm that with high
probability exactly computes the MLE of the hidden permutation,
for the signal scaling ¢ = ©(1).> Moreover, it is shown that the MLE
is close to the hidden permutation. A faster O(n?)-time algorithm
is given in [34] in the same setting as [10], but that algorithm does
not output the exact MLE and has a worse guarantee on the total
“dislocation distance.” As our results show, the scaling ¢ = ©(1)
is also far greater than the thresholds for efficiently recovering or
detecting a hidden ranking with other algorithms.

Improving on this scaling, [44] gave an efficient algorithm that
again with high probability exactly computes the MLE, now for
q = Q((loglogn/logn) 1/6). The sequence of works [24, 25] yielded
an algorithm that achieves the same approximation guarantee as in
[10] with an improved running time of O(nlogn), but that again
does not compute the exact MLE and operates under an even more
stringent assumption that ¢ > 7/16 is a sufficiently large constant.

The Ranking By Wins algorithm has appeared in various guises
in the past. It may be viewed as a relative of the Condorcet method in
the theory of elections and social choice [22]. More recently, it has
appeared in works including [14, 47, 48]. Some of these results are
close to our analysis of the noisy sorting setting; e.g., [14] obtains
a threshold for recovery of a certain signal matrix in that setting
that is worse than our Theorem 1.13 only by logarithmic factors.
None of these or the previously mentioned works consider ranking
problems in the presence of community structure, however.

Spectral algorithms for sorting or ranking problems have ap-
peared in the past such as in [13, 46]. But, it appears that our work
is the first to directly link such questions to the literature on fine-
grained results on spiked matrix models, and also to observe that
such an algorithm (at least in our noisy sorting model) is inferior
to a seemingly more naive combinatorial one for the detection task.
In the log-density setting with the presence of a hidden ranked
community, we show that a spectral method not only recovers the
hidden community but also the latent permutation down to the
computational threshold evidenced by the so-called low-degree
conjecture as stated in Conjecture 3.7.

2 Notations

We write Sym(S) for the symmetric group on a set S. If # € Sym(S),
we sometimes write s to emphasize the set on which 7 acts (espe-
cially when S C [n] but 7 € Sym(S) rather than Sym([n])).

We use Rad(g) to denote the distribution of a skewed Rademacher
random variable that takes value 1 with probability q and —1 with
probability 1 — g. We use SparseRad(p, q) to denote the distribution
of a random variable that takes value 0 with probability 1 — p, and
follows Rad(q) with probability p. We write dry (-, -) for the total
variation distance between two probability measures, dg (-, ) for
the Kullback-Leibler divergence, and y?(- || -) for the y2-divergence.

The directed graphs in this paper are always simple, in the sense
that between every pair of vertices i, j € [n], there is at most one
directed edge. The symbol Y always denotes the skew-symmetric
adjacency matrix of a directed graph, with entries in {-1,0,+1}.

3We use the term with high probability for sequences of events occurring with proba-
bility converging to 1 as n — oo.
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For a general n X n matrix Z and A C ([g]) a subset of edge indices,

we write

{i,jyeAii<j

74 = Zij.

We also write Z°2 for the entrywise square of Z. Note that for Y
a directed adjacency matrix, Y°2 is an ordinary graph adjacency
matrix, of the graph formed from forgetting the directions in the
graph whose adjacency matrix Y gave.

We write ()k{) for the subsets of X of size k. Most often, we will
[n]

run into ( ) in our arguments. We use letters A, B for subsets of

2
([;]), which we also interpret as graphs on a set of vertices labelled
by [n]. In this situation, we write V(A) for the vertex set of A,
including only those vertices that are incident with some edge of
A, and cc(A) for the number of connected components, likewise
omitting isolated vertices.
For a permutation 7 of a set S C [n], we write i >, j if 7(i) >
7(j), and write

n(i,j) = (-t

The matrix of these values, with zeroes on the diagonal, gives
the adjacency matrix of the directed graph associated to the total
ordering 7 gives to S.

The asymptotic notations o(+), O(:), Q(:), w(-), O(-), <, >, <, 2
have their usual definitions, always with respect to the limit n —
co. Subscripts on these symbols refer to quantities the implicit
constants depend on.

3 Proof Techniques
3.1 Low-Degree Polynomial Algorithms

Our computational lower bounds will be in the framework of view-
ing polynomials as algorithms for statistical problems, with the
polynomial degree as a measure of complexity. This idea originates
in the literature on sum-of-squares optimization, where it plays an
important technical role in the lower bound technique of pseudocal-
ibration. Since then, it has become an independent form of evidence
of computational hardness of statistical problems [6, 29-31, 35].

Much of the early work [29-31] concerned simple hypothesis
testing problems, like in our case the problem of trying to distin-
guish Q from P, in particular when one distribution is a “natural”
null distribution, like our Q. Later extensions treated the complex-
ity of other statistical tasks, including recovery (or estimation, in
statistical terminology) [45], which we will use for our results.

We first specify what it means for a polynomial to solve a detec-
tion task between two probability measures Q and P.

DEFINITION 3.1 (STRONG AND WEAK SEPARATION). Let Q = Qy,
and P = Py, be two sequences of probability measures over RN for
some N = N(n). We say that a sequence of polynomials f(Y) =
fa(Y1,...,YN) strongly separates Q from P if

Ep[f(Y)] - EQ[f (V)] = w(max{yVarq[f(Y)], VVarp [f(V)]}),
and that it weakly separates Q from P if

Ep[f(Y)] - Eq[f (V)] = Q(max{yVarg[f ()], VVarp[f(Y)]}),

both requirements referring to the limitn — co.




Statistical Inference of a Ranked Community in a Directed Graph

In words, strong separation means that Chebyshev’s inequality
implies that thresholding f at, say, (Ep [f(Y)] +Eq[f(Y)])/2 dis-
tinguishes Q and # with high probability, while weak separation
implies that this holds with some probability bounded above 1/2.

The following measurement of “one-sided separation” is a useful
proxy for these notions.

DEFINITION 3.2 (LOW-DEGREE ADVANTAGE). For Q and P as
above, we define

By-pf(Y)
Adv<p(Q P) = sup —_— 2)
’ fer[Y]ep VEy.@f(Y)?

Ey-af (Y)*#0

In particular, bounding the advantage shows that separation is
impossible in the following ways.

ProposITION 3.3 ([17, LEMMA 7.3]). In the setting of Definition 3.1,
if Adv<p(Q,P) = O(1) for some choice of D = D(n), then there
exists no sequence of f, € R[Y] with deg(f,) < D(n) that weakly
separates Q from P. If Adv<p(Q, P) = 1+ 0(1), then there exists no
such sequence that strongly separates Q from P.

REMARK 3.4. The advantage diverging only shows a part of the
strong separation criterion, since we must also bound the variance
of the polynomial involved under P. A number of recent examples
show that the advantage may in fact diverge while still no low-degree
polynomial achieves strong separation [4, 17, 19, 20].

For reconstruction tasks, success is naturally measured in terms
of mean squared error. We focus on the task of recovering just the
support of the ranked community with a low-degree polynomial,
not the permutation itself—a kind of weak support recovery by
low-degree polynomials.

DEFINITION 3.5 (LOW-DEGREE MINIMUM MEAN SQUARED ERROR [45]).

Under the distribution P of the PRS model, write 0 € {0,1}" for the
indicator vector of membership in the planted community S. We then
write

MMSE<p(P) := inf E Y) - 0]
<p(P) feR[Y]’S‘D(H,Y)~¢)”f( )= ol
=n inf (f(Y) - 61)2.

E
feR[Y]<p (6,Y)~P

Following Fact 1.1 of [45], this can be equivalently formulated
in terms of a “low-degree correlation”:

MMSE<p (P) = E||9]|? - nCorr<p(P)? = k — nCorr<p(P)% (3)
where Corr<p is defined below.

DEFINITION 3.6 (LOW-DEGREE CORRELATION WITH 61). For P as
above, viewed as a joint distribution over (0,Y), we define

E(g,y)~p 011 (Y)

Corr<p(P) = sup
feR[Ylep  VEy-pf(Y)?

Eywpf(Y)zio

We thus say that weak support recovery is hard for degree D = D(n)

polynomials if MMSE<p (P) = k(1 — 0(1)), which by the above is
k

equivalent to having Corr<p(P)? < e
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3.2 Low-Degree Conjecture

One reason why the class of low-degree polynomial algorithms is
interesting is due to the following low-degree conjecture, which is
an informal statement of [29, Conjecture 2.2.4].

CONJECTURE 3.7 (INFORMAL). For “sufficiently nice” Q and P, if
there existse > 0 andD = D(n) > (log n)'*¢ for which Adv<p(Q, P)
remains bounded as n — oo, then there is no polynomial-time algo-
rithm that achieves strong detection between Q and P.

REMARK 3.8. We remark that the original conjecture in [29] is
stated in terms of the notion of coordinate degree rather polynomial
degree, but it turns out that for spaces where each coordinate is sup-
ported on a constant-sized alphabet, the two notions of degree are
equivalent up to a constant.

Therefore, hardness results against the class of low-degree poly-
nomial algorithms may on the one hand be viewed as uncondi-
tional lower bounds for a class of general algorithms in the sense
stated in Proposition 3.3, and on the other hand as evidence that no
polynomial-time algorithm works for the detection task, provided
that we believe Conjecture 3.7.

3.3 Low-Degree Analysis of Planted Ranked
Subgraph Model

We develop some tools for working with polynomials and their
expectations under the PRS distributions. The following gives some
initial calculations of expectations of monomials.

PROPOSITION 3.9 (PLANTED EXPECTATIONS). Let A C (['21]). Then,

E [Y4]
Y~P

V(A
= (S) (2pg)!

E (_l)z(i,j}eA:i<j Hr(D)>r()}]
7~Unif (Sym([n]))

ProoF. Recall that, to sample a directed graph Y from £, one
may first sample a permutation 7 € Sym([n]) uniformly at random
and a random subset S C [n] that includes every vertex with
probability k/n, and then generate Y that correlates suitably with =
on S. For a fixed pair of (S, 7), let us denote by Ps , the distribution
% conditional on the ranked community being S and the hidden
permutation being 7. In particular, notice that Ps , is a product
distribution, where each Y; j is chosen independently between all
pairs of i, j (but with different distributions depending on (S, r)).
Then, we have

E E

S ~Unif (Sym([n])) Y~Ps »
E

S

E E [Y', ]

~Unif (Sym([n])) {i,j}le_f[hi<j Y~Psn v
E

~Unif(Sym([n]))

[T (eti)esyntr®>m00) 2pg))
{i,j}eAii<j
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k

£

[V(A)]
—) (2pq)! !
(_1)Z{i,j}eA;i<j Lz (i)>n(j)} ,

E
~Unif (Sym([n]))

completing the proof. O

PrROPOSITION 3.10 (COMPONENT-WISE INDEPENDENCE). Let A C
(['Zl]) be A = Aj U Ay with two vertex-disjoint components A1 and
Ay. Then,

E [Y4 = E [
Y~P Y~P

YA B [Y2].
Y~P

PRrOOF. Since Aj, Ay are vertex disjoint, the distribution of yAi
and Y42 under 9 are independent, as we can independently sample
a permutation 77 on the vertex set of A; and a permutation
on the vertex set of Az, and then sample the directed edges used
in A; and Ay which correlate with 7; and 7, respectively. Thus,
Ep[YA1H42] = Ep [YAI] Ep [Y42]. o

PROPOSITION 3.11 (ADJACENCY MATRIX MONOMIAL BOUNDS). Let
ABC (['2']) be edge-disjoint. Call A even if, when viewed as a graph,
all of its connected components have an even number of edges. Then

E [Y4] = 1{A =2},
Y~Q
B (Y4 =pH,
Y~Q
E YA(r)P]=plPli{a= o},
Q

o\ VA
E [Y4]| < (-) (2pq)A11{A even}, (5)
Y~P n
o\ VA
]E YA (v°2)5) s(—) PP (2pg) 411 (A even),  (6)
Y~P n
4 (k\3
YPP[Yi,jYi,k] =3 (;) ¢

Proor. The first three identities are easy to verify, and the last
identity can be computed using Proposition 3.9. We will mainly
discuss how to derive (5) and (6), and in particular, the no-odd-
connected-component condition.

Let us first consider (5). By Proposition 3.9 and Proposition 3.10,

E[Y4]
P

E[Y5]'
sec(a)'?

where C(A) denotes the collection of connected components of A,

k

£

5eC(A)

(2pq)"?!

)IV(5)

(1) Ztipyesi<s n{n<i>>n(j>}]

E ol
~Unif (Sym([n]))
k)|V(A)|

A
( " (2pq)
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B [(_1)2(,-,,->55:,-<J- n{n<i>>n(j)}]
7~Unif (Sym([n]))

5eC(A)

Clearly, for any J, we have

(_1)Z{i,j)e5:i<j ﬂ{ﬂ(i)>”(j)}] <1.

E o
m~Unif (Sym([n]))
We will argue that if |§] is odd, then

E [(_I)Z(i,j)ea:iq]1{”(i)>”(j)}] =0.
7~Unif (Sym([n]))
Let us denote

Ix (i) > n(j)}-

swaps(r, d) := Z
{i,j}ed:i<j
For any 7 € Sym([n]), we let rev(r) € Sym([n]) denote the re-
verse of 7, given by rev(r)(i) = n+1—x(i) foralli € [n]. We may
then pair up 7 with rev(r) to get

E [(_1)Z{i,j}e(s:i<j ﬂ{”(i)>7f(j)}]
7~Unif (Sym([n]))

= E
~Unif (Sym([n
1

T2 Unif(Sym([n]))

) [yt

[(_1)swaps(ﬂ,5) + (_l)swaps(rev(n,§))] )

For any fixed = € Sym([n]), we observe that
swaps(, 8) + swaps(rev(r, §)) = |J].

Since |§] is odd, for every 7 € Sym([n]), one of the quantities above
is odd and the other is even. We thus find that if |§] is odd,

E (_1)Z(i,j)ea;i<j H{x(D)>r(N}H| = .
7~Unif (Sym([n]))

This concludes the proof that

E[Y4]
1)

k

£

[V(A)|
) (2pg) A

(=1)Ztii)esi< n{n<i>>n<j>}]

E
SeC(A) 7~Unif (Sym([n]))

<

V(4]
(;) (2pq)|A|1{A even}.

The proof for (6) is similar, as we can separate out the part (Y°2)B
from Y4. Each Yl.2 j is distributed as Bern(p) independent of S and

7, which leads to an additional p'B | term in the upper bound. O

Next, the following describes an orthonormal basis of polynomi-
als for the null distribution Q (really a product basis formed from
an orthonormal basis for the one-dimensional sparse Rademacher
distribution).

DEFINITION 3.12. For A,B C ([g]) disjoint subsets, we define the
polynomial
1
(p(1-p))IBI/2

A

hap(Y) := (Y2 -p)b.

PIAIZ
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PROPOSITION 3.13. The hy g over all pair of disjoint A, B C ([g])
form an orthonormal basis of polynomials for Q.

Proor. For the first claim of orthonormality, first note that every
polynomial in Y in the support of Q, i.e. any adjacency matrix of
a directed graph, has entries satisfying Yf} =Y; j, and thus every
polynomial in Y is equivalent to one where each entry occurs in
each monomial with degree at most 2. The dimension of the space
of polynomials in Y is then at most

= S (O g0
A 2 5
21 = 28 =32/,
> =2l

Ag([';]) k=0

And, this is precisely the number of A,B C (['21]) disjoint, which
may be computed as

n n () n
PR UEC NGRS |A|_2(>(2) _5()

Ac('3h Ac('h
Thus, it suffices to show that the hy g are a set of orthonormal
polynomials for Q.

To do that, we compute:

]g[hAl,B1 (Y)ha,B,(Y)]

1 1
= 1] = EY’?"] [ &l W p)]
{i,j}€A1NA;: {i,j}€B1NBy:
i<j i<j

1
[ E[—Yu Yf-—p]
(i.J} € (AiNBy)U(A;nBy): A LPVI =P ( ! )
i<j

1
E|:_Yllj:|
(1) € (A (A2UB) U(A (A,UBy)): @ L VP
i<j
1 2
E|——— (2 -p)|.
Q vpu—p)( i)

{i.j} € (B1\(A2UB;))U(B2\ (A1UBy)):
i<j

Here, the first two products are always 1, while any of the last three
products is 0 if it is non-empty (and 1 otherwise). Thus, the entire
expression is 0 if A; # Ap or By # By, and 1 otherwise, completing
the proof. O

Having an explicit orthonormal basis of polynomials is espe-
cially useful for carrying out low-degree calculations. Below is an
alternative expression (c.f. [35, Proposition 2.8]) for the low-degree
advantage defined in Definition 3.2.

ProrosITION 3.14.

Adv<p(Q,P)? =

2.

A BC( ) disjoint:
|Al+2|B| <D

E

2
[hA,B<Y)]) Lo

Proor. For any polynomial f € R[Y]<p, we may expand it
using the basis of polynomials hy4 g as

FO) =) fan-has(Y).
AB
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Note deg(hAB) = |A| + 2|B|. Since deg(f) < D, the coefficients
sat1sfyfAB = 0 for any pair of A, B € (["]) such that |A| +2|B| > D.
Then, we may rewrite

Adv<p(Q P)?

(Bp f(Y))?

feR[Y]ep B f(Y)?
Eq f(Y)%#0

(Ep f(V))?

P Eqf(Y)?

F={faB}#0

f=Sapfashas
deg(f)<D

(ZA,B fap - Ep [hA,B(Y)])2

2 ABA B fasfap Eq [hap(Vhap (Y)]

sup
F={faB}#0

f=Yas fashas
deg(f)<D

(ZA,B fap-Ep [hA,B(Y)])2
2AB (ﬁx,B)z

sup
F={faB}#0

f=Yap fashas
deg(f)<D

by orthonormality of h p as stated in Proposition 3.13,

2

ABc (1) disjoint:
|A]+2|B|<D

2
]EP [hA,B(Y)]) ,

completing the proof.

3.4 Tools for Analysis of Ranking By Wins
Algorithm

We also introduce some tools that will be useful in analyzing the
Ranking By Wins algorithm (Definition 1.14). Its analysis will boil
down to estimating the expected error or value achieved by the
algorithm as well as controlling the fluctuations of this quantity.

To bound the fluctuation of solution output by the Ranking By
Wins algorithm, we will use the following results on tail bounds
for weakly dependent random variables.

DEFINITION 3.15 (READ-k FAMILIES [23]). Let X, ..., Xy, be inde-
pendent random variables. Let Y1, . . ., Y, be Boolean random variables
such that Yj = fj((Xi)iep;) for some Boolean functions fj and index
sets Pj C [m]. If the index sets satisfy |{j : i € Pj}| < k for every
i € [m], we say that {Yj};?:1 forms a read-k family.

THEOREM 3.16 (TAIL BOUNDS FOR READ-k FAMILIES [23]). Let

Yi,..., Y be a read-k family of Boolean random variables. Write
p=EX!_, Y. Then, foranyt >0,
2t
Z Yi > pu+t| <exp Pk
i=1
r 2
2t
P ;Y, Sy—t} <exp(——k).
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To estimate the expectation of the error or alignment objective
value achieved by the Ranking By Wins algorithm, we will use the
following version of the Berry-Esseen quantitative central limit
theorem.

THEOREM 3.17 (BERRY-ESSEEN THEOREM FOR NON-IDENTICALLY
DISTRIBUTED SUMMANDS [7]). LetXj, ..., X, be independent random
variables with E[X;] = O,E[Xiz] = 01.2, and E[|X;|3] = pi < co. Let

Sn = —;1:1 Xi .

Then, there exists an absolute constant C > 0 independent of n such
that for any x € R,

maxi<i<n

- — >
n 2
V2iz1 9

where @ : R — [0, 1] is the cumulative distribution function (cdf) of
the standard normal distribution.

Pi
2
o;

P[S, <x]-®(x)|<C-

After applying the Berry-Esseen theorem above, naturally we
need to deal with expressions involving ®, the cdf of the standard
normal distribution. We state a useful lemma for bounding certain
sums involving the function &.

LEMMA 3.18. Leta,b > 0. As a function of y,
(1-y) - @(-ay - b)

is concave fory € [0,1].

PRrROOF OF LEMMA 3.18. We compute the first and the second de-
rivative of (1 — y)®(—ay — b).

d
@(l -y (-ay-b)

£Gmg [ Lt
=—(1- —e 2" az
dy v —00 21
—ay=b 1.2 1 (ay+b)?
=- —e P dz+(1-y)——e 2 ,
[m 21 ( y) VZﬂ'
d2
— 1 -y)®(-ay-b
dyz( Y@ (-ay —b)
d “ay=b . (ay+h)’
=— |- —e 2 dz+(1-y)—e 2
dy| Jow NEm T
1 _ (ay+b)? 1 _ (ay+b)?
= ——0e 2 - —e 2

Var Var

1 _
# (1) = (alay +b) e
= L (ay-1)ay+b) - 2).

Var

(ay+b)?
2

We observe that the second derivative is negative for y € [0, 1].
Thus, (1 — y)®(—ay — b) is concave on [0, 1]. O
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