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Abstract

We study the problem of detecting or recovering a planted ranked

subgraph from a directed graph, an analog for directed graphs of

the well-studied planted dense subgraph model. We suppose that,

among a set of = items, there is a subset ( of : items having a latent

ranking in the form of a permutation c of ( , and that we observe a

fraction ? of pairwise orderings between elements of ( which agree

with c with probability 1
2 + @ and otherwise are uniformly random.

Unlike in the planted dense subgraph and planted clique problems

where the community ( is distinguished by its unusual density of

edges, here the community is only distinguished by the unusual

consistency of its pairwise orderings. We establish computational

and statistical thresholds for both detecting and recovering such

a ranked community. In the log-density setting where : , ? , and

@ all scale as powers of =, we establish the exact thresholds in

the associated exponents at which detection and recovery become

statistically and computationally feasible. These regimes include a

rich variety of behaviors, exhibiting both statistical-computational

and detection-recovery gaps. We also give �ner-grained results

for two extreme cases: (1) ? = 1, : = =, and @ small, where a full

tournament is observed that is weakly correlated with a global

ranking, and (2) ? = 1, @ =
1
2 , and : small, where a small “ordered

clique” (totally ordered directed subgraph) is planted in a random

tournament.

CCS Concepts

•Theory of computation→Randomnetworkmodels; Bayesian

analysis; • Mathematics of computing → Random graphs;

Hypothesis testing and con�dence interval computation;

Bayesian computation.
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community detection, random directed graphs, low-degree polyno-
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1 Introduction

We study several statistical tasks associated with random directed

graphs1 � on = vertices. Taken together, we call the two distribu-

tions of � we study the planted ranked subgraph (PRS) model.

The aim of the PRS model is to describe situations of the follow-

ing kind: we observe directed social interactions among a collection

of individuals, like the giving of gifts. Some subset of these individu-

als form a small community having a strict hierarchy, causing those

lower in this hierarchy to more often give gifts to those higher

(or vice-versa). Yet, the frequency of gift-giving in the community

overall is the same as in the population at large. Can we detect or

identify this ranked community, purely from the e�ect of its hier-

archy on the direction in which gifts are given, not the frequency

with which they are given?2 See, e.g., [18, 27, 43, 50] for a small

selection of work discussing hierarchy in network data appearing

in various social sciences.

We formalize this question into two distributions of� . Under the

null model, denoted Q, each edge of � is present with probability
1
2? in either the forwards or backwards direction, for a total prob-

ability ? of being present at all, for a parameter ? ∈ [0, 1]. Under
the planted or alternative model, denoted P, we insert a ranked

community into� . This structure depends on ? and also on further

parameters 1 ≤ : ≤ = and @ ∈ [0, 12 ]. We then sample � by the

following procedure:

(1) First, each vertex 8 ∈ [=] is included in the ranked com-

munity, a subset ( ⊆ [=], independently with probability

:/=.
(2) Next, we choose a permutation c ∈ Sym(() of the set (

uniformly at random. When we want to emphasize that this

permutation acts only on ( , we write c = c( .

(3) Finally, for every 8, 9 ∈ ( with c (8) < c ( 9), we add the

directed edge (8, 9) to � with probability ? ( 12 + @), add the

directed edge ( 9, 8) with probability ?
(
1
2 − @

)
, and add no

edge between 8 and 9 with the remaining probability 1 − ? .

1We always refer to simple directed graphs where there is at most 1 directed edge
between any pair of vertices.
2One could also ask about inference of a ranked community given a combination of
information of both kinds, where the community has both an unusual density of edges
and an unusual order compatibility of edges—we leave this interesting generalization
to future work.
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For all other pairs 8, 9 ∈ [=] (where at most one of 8 and 9

belongs to (), we add a directed edge between 8 and 9 with

probability 1
2? in either direction, for a total probability ? of

an edge being present at all.

We note that, under both Q and P, the undirected graph �̃ formed

by “forgetting” the direction of each edge is merely an Erdős-Rényi

random graph with edge probability ? . All the extra structure of P
therefore lies in the directions of the edges between members of ( ,

as proposed above.

We consider two statistical problems. First, when is it possible to

detect that a planted ranked subgraph is present in� , i.e., to hypoth-

esis test between Q and P? And second, when is it possible given

� ∼ P to recover or estimate ( and c accurately from this observa-

tion? We also consider two variations of each question. First, when

is each task achievable statistically or information-theoretically, that

is, with computations of arbitrary runtime permitted? And second,

when is each task achievable computationally by a polynomial-time

algorithm?

It has been known for some time that statistical and computa-

tional hardness can be di�erent: there can be regimes of problems

such as the one we propose where it is possible to solve the prob-

lem, but only at prohibitive computational cost (e.g., [5, 11, 51]).

On the other hand, for many problems, it was previously observed

that thresholds for the feasibility of detection and recovery coin-

cide; for instance, [1] discusses this point concerning the stochastic

block model and its variations. More recently, natural examples of

problems were found where this does not occur, for instance for

the planted dense subgraph [12, 16, 45] and planted dense cycle

[38] problems. We will see that di�erent regimes of the PRS model

exhibit both detection-recovery and statistical-computational gaps

of this kind, and we hope that this model will be a valuable example

for understanding the interplay of these behaviors.

Our results concern two regimes of the parameters ? = ? (=),
: = : (=), @ = @(=). First, by analogy with the well-studied planted

dense subgraph (PDS) model of undirected graphs [8, 28, 39], we

consider ? , : , and @ scaling polynomially with =, called the log-

density setting. Then, we give some �ner-grained results about the

special case ? = 1, in which case we observe a complete directed

graph, also called a tournament. Within this case, we consider the

two extremes of the remaining parameters : and @: when : = =

and @ is small, then we observe a tournament weakly correlated

with a global ranking (as we will see, this may be viewed as a

digraph-valued version of a spiked matrix model), while when

@ =
1
2 and : is small, then we observe a tournament with a small

subgraph on which the tournament induces a total ordering (which

may be viewed as a digraph version of the planted clique model

[3, 6, 21, 33]).

As a �nal remark, we will very often work with the adjacency

matrix of the directed graph � . Unlike the symmetric adjacency

matrix of undirected graphs, we take this to be a skew-symmetric

matrix . ∈ {0,±1}=×= (i.e., having . = −.⊤). We set .8 9 = 1 if

there is a directed edge from 8 to 9 , .8 9 = −1 if there is a directed
edge from 9 to 8 , and .8 9 = 0 otherwise. We will view � and . as

interchangeable, and will write � ∼ Q or P and . ∼ Q or P as

equivalent notations. Several of the algorithms we propose will

have straightforward algebraic or spectral interpretations in terms

of operations on . .

Before proceeding to the statements of the main results in these

various settings, let us de�ne what precisely we mean by detection

and recovery in the PRS model.

1.1 Detection and Recovery

We will consider the following two standard notions of what it

means for an algorithm to achieve detection between P and Q.

Definition 1.1 (Strong and weak detection). Consider a

sequence of functions � = �= that take as input a directed graph�

on = vertices (or equivalently its adjacency matrix . ) and output an

element of {0, 1}. We say that, as = → ∞:

• � achieves strong detection between P and Q if

lim
=→∞

(
P

�∼Q
[�(�) = 1] + P

�∼P
[�(�) = 0]

)
= 0;

• � achievesweak detection betweenP andQ if, for some X > 0,

lim sup
=→∞

(
P

�∼Q
[�(�) = 1] + P

�∼P
[�(�) = 0]

)
≤ 1 − X.

We say that either of these notions is statistically possible if any �

achieves it, and that it is computationally possible if some � com-

putable in polynomial time in = achieves it.

The two error terms in each line above are the Type I and Type II

error probabilities respectively, or the respective probabilities of in-

correctly refuting or incorrectly failing to refute the null hypothesis.

The second de�nition is reasonable since a total error probability of

1 is achieved by the trivial algorithm � that always outputs either

0 or 1.

To formally de�ne recovery under the planted model P, we

must �x metrics by which we will measure the amount of error

that an algorithm makes. This is a little bit subtle, because the

planted structure in P consists of the two objects ( ⊆ [=] and c a

permutation of ( . We de�ne metrics for both objects individually.

Definition 1.2 (Hamming distance). The Hamming distance

between (,) ⊆ [=] is 3H ((,) ) = |(△) |, where △ denotes the sym-

metric di�erence.

Definition 1.3 (Kendall tau distance). The Kendall tau dis-

tance between f, g permutations of two, possibly di�erent, subsets

(,) ⊆ [=], respectively, is3KT (f, g) = #{{8, 9} ∈
((∩)

2

)
: 8 <f 9, 8 >g

9}.
Definition 1.4 (Exact, strong, and weak recovery). Con-

sider a sequence of functions � = �= that take as input a directed

graph � on = vertices (or equivalently its adjacency matrix . ) and

output ((̂, ĉ) with (̂ ⊆ [=] and ĉ a permutation on ( . We say that,

when � ∼ P and = → ∞:

• � achieves exact recovery if �(�) = ((, c) with high proba-

bility;

• � achieves strong recovery if

lim sup
=→∞

E3H ((, (̂)
:

= 0,

lim sup
=→∞

E3KT (c, ĉ)(:
2

) = 0;
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Figure 1: Computational and statistical thresholds for detec-

tion and recovery in the planted ranked subgraph model in

the log-density setting. The green, yellow, and red regions

indicate where each problem is computationally tractable,

computationally hard but statistically tractable, and statisti-

cally impossible, respectively.

• � achieves weak support recovery if, for some X > 0,

lim sup
=→∞

E3H ((, (̂)
:

≤ 1 − X.

We say that any of these notions is statistically possible if any �

achieves it, and that it is computationally possible if some � com-

putable in polynomial time in = achieves it.

The idea of exact recovery should be clear. A sequence of estimators

achieves strong recovery if it nearly perfectly recovers ( , up to a

> (1) fraction of vertices erroneously either included or excluded,

and also nearly perfect recovers the latent ranking on ( , up to a

> (1) fraction of total pairs
(:
2

)
having an incorrect pairwise order-

ing. Weak support recovery only pertains to the estimate (̂ of the

community itself (thus for an algorithm aspiring to weak support

recovery ĉ may be arbitrary or just omitted from the setup entirely),

and is sensible only when : = > (=), in which case it demands that

an algorithm correctly identi�es any constant fraction of members

of ( .

1.2 Main Results: Log-Densities

We now proceed to the �rst collection of our main results. By the

log-density setting we mean a setting of the parameters of the PRS

model as follows:

@ = @(=) := =−U ,

: = : (=) := =V ,

? = ? (=) := =−W ,

for some further parameters U, V,W ∈ (0, 1). Our results on the log-

density setting completely characterize the feasibility of statistical

and computational detection and recovery in the PRS model for

any such choices. We leave informal for now the precise meaning

of our computational lower bounds. These are carried out in the

framework of analysis of low-degree polynomial algorithms, which

we describe in detail in Section 3.1. Modulo the details of what

those lower bounds mean, our results explicitly decompose the

three-dimensional cube of log-density parameters (U, V,W) ∈ (0, 1)3
into regions where each problem is computationally easy, computa-

tionally hard but statistically possible, and statistically impossible.

These turn out to be straightforward polyhedral decompositions of

the cube, which we illustrate in Figure 1.

There are eight questions we must answer to establish this de-

composition: for each of computational and statistical detection

and recovery, we must prove upper and lower bounds describing

when it is possible or impossible. These are addressed in the four

theorems below, which each give a pair of upper and lower bounds.

Theorem 1.5 (Computational detection in log-density set-

ting). The following hold:

• If V >
2
3U + 1

3W + 1
2 , then strong detection is computationally

possible. It is achieved in this case by computing and thresh-

olding a polynomial of degree 2 in the entries of . .

• (Informal) If V <
2
3U +

1
3W +

1
2 , then no sequence of polynomials

of degree bounded by $ ((log=)2−Y ) achieves weak detection.
Theorem 1.6 (Statistical detection in log-density setting).

The following hold:

• If V > min{2U + W, 23U + 1
3W + 1

2 }, then strong detection is

statistically possible.

• If V < min{2U + W, 23U + 1
3W + 1

2 }, then weak detection (and

therefore also strong detection) is statistically impossible.

Theorem 1.7 (Computational recovery in log-density set-

ting). The following hold:

• If V > U + 1
2W + 1

2 , then strong recovery is computationally

possible. It is achieved in this case by a spectral algorithm

using the Hermitian complex-valued adjacency matrix i. . This

result holds not only under the log-density setting with the

condition above, but also under the less stringent assumptions

that @ = l (
√
=

:
√
?
), ? = Ω( log== ), and : = l (1).

• (Informal) If V < U + 1
2W + 1

2 , then no sequence of polynomials

of degree bounded by => (1) achieves weak support recovery.

Theorem 1.8 (Statistical recovery in log-density setting).

The following hold:

• If V > 2U + W , then strong recovery is statistically possible.

It is achieved in this case by computing a minor variant of a

maximum likelihood estimator.

• If V < 2U + W , then strong recovery is statistically impossible.

1.3 Main Results: Extreme Parameter Scalings

Finally, we examine two special cases that are not covered by the log-

density setting, where some parameters are taken to their extreme
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values. In both cases, we �x ? = 1, in which case we observe all

edges of � . Such a choice of directions for the complete graph is

also called a tournament.

1.3.1 Planted Global Ranking Observed Through a Tournament. We

�rst consider the special case where we �x : = =, ? = 1, and let @

vary. This is the case of the PRS model where the ranked subgraph

is actually the entire graph, so we observe a full set of pairwise

comparisons that are weakly correlated with c ∈ Sym( [=]).

Detection. For detection, the same threshold obtained by plug-

ging U = 0, V = 1 into the results of the log-density framework

holds (though it does not follow entirely from our analysis of the

log-density setting), which we may further sharpen in this setting

as follows.

Theorem 1.9 (Detection of global ranking through tour-

nament). The following hold in the PRS model with ? = 1, : = =,

and @ = @(=) ∈ [0, 12 ]:
• If@ = l (=−3/4), then there exists a polynomial-time algorithm

that achieves strong detection.

• If @ = $ (=−3/4), then strong detection is statistically impossi-

ble.

• There exists a constant 2 > 0 such that, if @ ≥ 2 · =−3/4, then
there exists a polynomial-time algorithm that achieves weak

detection.

• If @ = > (=−3/4), then weak detection is statistically impossible.

The polynomial-time algorithms above are the same as those refer-

enced in Theorem 1.5.

Suboptimality of Spectral Algorithm for Detection. As an addi-

tional point of comparison, we give the following analysis of a

natural spectral algorithm for detection. If . is an adjacency matrix

as we have de�ned, then, for i the imaginary unit, i. is a Hermit-

ian matrix, and thus this latter matrix has real eigenvalues, whose

absolute values are also the singular values of . . We consider the

performance of an algorithm thresholding the largest eigenvalue of

this matrix (equivalently, the largest singular value of . ), and �nd

that its performance is inferior by a polynomial factor in = in the

required signal strength @ compared to our algorithm based on a

simple low-degree polynomial.

Theorem 1.10 (Spectral detection thresholds). Suppose @ =

2 · =−1/2. Then, the following hold:
• If . ∼ Q, then 1√

=
_max ( i. ) → 2 in probability.

• If . ∼ P and 2 ≤ c/4, then 1√
=
_max ( i. ) → 2 in probability.

• If . ∼ P and 2 > c/4, then 1√
=
_max ( i. ) ≥ 2 + 5 (2) for some

5 (2) > 0 with high probability.

In words, the result says that the success of a detection algorithm

computing and thresholding the leading order term of _max ( i. )
undergoes a transition around the critical value @ =

c
4 =

−1/2, much

greater than the scale @ ∼ =−3/4 for which the success of a sim-

pler algorithm computing a low-degree polynomial undergoes the

same transition (per Theorem 1.9). The proof of this result relates

i) to a complex-valued spiked matrix model, a low-rank additive

perturbation of a Hermitian matrix of i.i.d. noise.

Remark 1.11. Technically, Theorem 1.10 does not rule out the

existence of a spectral algorithm that successfully distinguishes P and

Q by thresholding _max ( i. ) when @ is below c
4 =

−1/2, since we only
focused on the behavior of _max ( i. ) to leading order and ignored the
smaller > (

√
=) �uctuations. For some @ <

c
4 =

−1/2, potentially there
could exist Y = Y (=, @) > 0 such that _max ( i. ) > (2 + Y)

√
= w.h.p. for

. ∼ P but _max ( i. ) < (2 + Y)
√
= w.h.p. for . ∼ Q, thus leaving

open the possibility of the success of the spectral algorithm below the

threshold mentioned in Theorem 1.10; however, our results imply that

such Y would need to have Y = > (1) as = → ∞. We believe this is an

interesting issue to address in future work.

Recovery. We introduce an extra notion of weak recovery for this

setting, which is clearer to de�ne here versus in the general PRS

model, since we may compare the performance of a given estimate

of the permutation c with a random guess.

Definition 1.12 (Recovery of global rankings). Consider a

sequence of functions � = �= that take as input a directed graph

� on = vertices (or equivalently its adjacency matrix . ) and output

ĉ ∈ Sym( [=]). We say that, when � ∼ P with : = = and = → ∞:

• � achieves strong recovery if

lim
=→∞

E[3KT (c, ĉ)](=
2

) = 0,

the same as De�nition 1.4 if we view the algorithm as auto-

matically outputting (̂ = [=];
• � achieves weak recovery if there exists X > 0 such that

lim sup
=→∞

E[3KT (c, ĉ)](=
2

) ≤ 1

2
− X.

As before, we say that either of these notions is statistically possible

if any � achieves it, and that it is computationally possible if some �

computable in polynomial time in = achieves it.

Theorem 1.13 (Recovery thresholds). Suppose 0 ≤ @ = @(=) ≤
1/4. The following hold:

• If @ = l (=−1/2), then a polynomial-time algorithm achieves

strong recovery.

• If @ = Θ(=−1/2), then strong recovery is statistically impossi-

ble.

• If @ = Θ(=−1/2), then a polynomial-time algorithm achieves

weak recovery.

• If @ = > (=−1/2), then weak recovery is statistically impossible.

Unlike the more complicated spectral recovery algorithm in the

log-density setting when the ranking is planted on only a subset of

vertices, here our results in fact show that the following simpler

recovery algorithm is optimal.

Definition 1.14 (Ranking by wins). The Ranking By Wins al-

gorithm takes as input a directed adjacency matrix . of a tournament

and outputs a permutation ĉ ∈ Sym( [=]) in the following way:

(1) For each 8 ∈ [=], compute a score B8 =
∑
:∈[=] .8,: ,

(2) Rank the elements 8 ∈ [=] according to the scores B8 from the

highest to the lowest, under an arbitrary tie-breaking rule (say,

ranking 8 below 9 if 8 < 9 when B8 = B 9 ).
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Remark 1.15. In the proof of Theorem 1.13, we actually obtain a

quantitative bound for the recovery error. Namely, we show that the

Ranking By Wins algorithm outputs a permutation ĉ that achieves

E[3KT (c, ĉ)](=
2

) ≤ �

@
√
=
· exp

(
−@2=

)

for a constant � > 0. We also establish the following lower bound on

the expected error achievable by any algorithm �:

E[3KT (c,�(�))](=
2

)

≥ 1

2
max



1 − 4@

√
=√

1
4 − @2

,
1

2
exp

(
− 8@2=

1
4 − @2

)

.

Alignment Maximization. Finally, we state an ancillary result on

�nding a permutation that is maximally aligned with an observed

tournament, maximizing the objective function:

align(ĉ,�)

=

∑

(8, 9 ) ∈� (� )

(
1{ĉ (8) < ĉ ( 9)} − 1{ĉ (8) > ĉ ( 9)}

)
.

Let us �rst draw a connection to maximum likelihood estimation

to explain why the alignment objective is an interesting one. Let

� ∼ P. The likelihood function L(ĉ | �) in this case can be

expressed as

L(ĉ | �)
= P

�∼P
[� | ĉ]

=

∏

(8, 9 ) ∈� (� )

(
1

2
+ @

)
1{ĉ (8 )<ĉ ( 9 ) } (

1

2
− @

)
1{ĉ (8 )>ĉ ( 9 ) }

=

(
1

2
+ @

)∑
(8,9 ) ∈� (� ) 1{ĉ (8 )<ĉ ( 9 ) } (

1

2
− @

)∑
(8,9 ) ∈� (� ) 1{ĉ (8 )>ĉ ( 9 ) }

=

(
1

2
− @

) 1
2 (=2) (

1

2
+ @

) 1
2 (=2)

(
1
2 + @
1
2 − @

) 1
2 ·align(ĉ,� )

,

where the last line follows from
∑

(8, 9 ) ∈� (� ) 1{ĉ (8) < ĉ ( 9)} +∑
(8, 9 ) ∈� (� ) 1{ĉ (8) > ĉ ( 9)} =

(=
2

)
. Thus, the maximizer of the

alignment objective has the pleasant statistical interpretation of

being the maximum likelihood estimator of the hidden permuta-

tion under the planted distribution P, given the observation � .

Unfortunately, computing the maximum likelihood estimator or

(equivalently) optimizing the alignment objective for a general

worst-case input � is known to be NP-hard [2].

Nevertheless, as our results below will show, when we consider

draws from the planted model when strong recovery is information-

theoretically possible, then the same simple Ranking By Wins algo-

rithm nearly maximizes the likelihood.

Theorem 1.16 (Alignment maximization). Suppose 0 ≤ @ =

@(=) ≤ 1/4. For @ = l (=−1/2), there exists a polynomial-time algo-

rithm which, given � ∼ P, outputs a permutation ĉ ∈ Sym( [=])
that with high probability satis�es

align(ĉ,�) ≥ (1 − > (1)) · max
c̃∈(=

align(c̃,�). (1)

Remark 1.17. We focus on the case @ ≤ 1/4 for technical reasons.
In the case of W ≥ 1/4, the maximum likelihood estimator can be com-

puted exactly in polynomial time with high probability [10], which

equivalently exactly maximizes the alignment objective.

While this algorithm will be the same Ranking By Wins algo-

rithm as for estimating the hidden permutation under the Kendall

tau distance, we emphasize that a good such estimator ĉ does

not necessarily a priori give a good approximate maximizer of the

alignment objective. Yet, it turns out that the Ranking By Wins

estimator does have this property, which requires further analysis

of its behavior.

1.3.2 Planted Ordered Clique in a Tournament. Finally, we consider

the case of the PRS model with ? = 1, @ =
1
2 , and : = : (=) varying.

This is a directed version of the planted clique model, where we

observe a tournament . drawn from P having a hidden subset

( ⊆ [=] and a latent permutation c( on ( such that all the directed

edges between vertices in ( are oriented according to c( .

While Theorem 1.7 shows that a spectral algorithm successfully

recovers ( and c( approximately once : = l
(√
=
)
, we can actually

do better. Here we show, analogous to the results of [3] on the

undirected planted clique model, that a slightly modi�ed spectral

algorithm works all the way down to : = Ω
(√
=
)
and achieves

exact recovery of ( and c( , rather than just strong recovery.

Theorem 1.18 (Recovery of planted ordered cliqe). Fix

? = 1 and @ =
1
2 . There exists a constant � > 0 such that if : =

: (=) ≥ �
√
=, then there is a polynomial-time algorithm that with

high probability achieves exact recovery (in the sense of De�nition 1.4).

Adapting another idea of [3], we may reduce the constant in

front of
√
= and further show the following.

Corollary 1.19. Fix ? = 1 and @ =
1
2 . For any constant 2 > 0, if

: = : (=) ≥ 2
√
=, then there exists a polynomial time algorithm that

with high probability achieves exact recovery.

1.4 Related Work

Numerous models for random digraphs, either fully or partially

observed, having some hidden structure have been proposed in the

literature. One of the most popular for generating noisy pairwise

comparisons between = elements, the Bradley-Terry-Luce (BTL)

model, was introduced in [9, 36]. In the BTLmodel, there is a hidden

preference vector F = (F1, . . . ,F=) ∈ R=
>0, such that one observes

a noisy label)8, 9 that takes value +1 with probabilityF8/(F8 +F 9 ),
and −1 with probability F 9/(F8 + F 9 ). Such models are usually

studied in terms of query complexity, with multiple independent

queries of the same pair (8, 9) allowed. There have been extensive

studies of when one can approximate the preference vectorF (see

e.g. [41, 42, 48], though [48] actually work under a substantially

more general model than BTL) or recover the top : elements (see

e.g. [15, 32, 40]) in the BTLmodel. But, even aside from not including

community structure, the BTL model is quite di�erent from ours,

because the magnitudes of the F8 can create a broader range of

biases in the observations than our single parameter @.

The case : = =, ? = 1 of our model, a global tournament weakly

correlated with a hidden ranking, is often referred to as a noisy

sorting model. For @ > 0 a constant, the results in [37, 49], further
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improved by [26], give tight bounds on the number of noisy compar-

isons needed to recover the hidden permutation. In this same “high

signal” setting, [10] proposed an e�cient algorithm that with high

probability exactly computes the MLE of the hidden permutation,

for the signal scaling @ = Θ(1).3 Moreover, it is shown that the MLE

is close to the hidden permutation. A faster $ (=2)-time algorithm

is given in [34] in the same setting as [10], but that algorithm does

not output the exact MLE and has a worse guarantee on the total

“dislocation distance.” As our results show, the scaling @ = Θ(1)
is also far greater than the thresholds for e�ciently recovering or

detecting a hidden ranking with other algorithms.

Improving on this scaling, [44] gave an e�cient algorithm that

again with high probability exactly computes the MLE, now for

@ = Ω((log log=/log=)1/6). The sequence of works [24, 25] yielded
an algorithm that achieves the same approximation guarantee as in

[10] with an improved running time of $ (= log=), but that again
does not compute the exact MLE and operates under an even more

stringent assumption that @ > 7/16 is a su�ciently large constant.

The Ranking By Wins algorithm has appeared in various guises

in the past. It may be viewed as a relative of the Condorcet method in

the theory of elections and social choice [22]. More recently, it has

appeared in works including [14, 47, 48]. Some of these results are

close to our analysis of the noisy sorting setting; e.g., [14] obtains

a threshold for recovery of a certain signal matrix in that setting

that is worse than our Theorem 1.13 only by logarithmic factors.

None of these or the previously mentioned works consider ranking

problems in the presence of community structure, however.

Spectral algorithms for sorting or ranking problems have ap-

peared in the past such as in [13, 46]. But, it appears that our work

is the �rst to directly link such questions to the literature on �ne-

grained results on spiked matrix models, and also to observe that

such an algorithm (at least in our noisy sorting model) is inferior

to a seemingly more naive combinatorial one for the detection task.

In the log-density setting with the presence of a hidden ranked

community, we show that a spectral method not only recovers the

hidden community but also the latent permutation down to the

computational threshold evidenced by the so-called low-degree

conjecture as stated in Conjecture 3.7.

2 Notations

Wewrite Sym(() for the symmetric group on a set ( . If c ∈ Sym((),
we sometimes write c( to emphasize the set on which c acts (espe-

cially when ( ⊆ [=] but c ∈ Sym(() rather than Sym( [=])).
We useRad(@) to denote the distribution of a skewed Rademacher

random variable that takes value 1 with probability @ and −1 with
probability 1−@. We use SparseRad(?, @) to denote the distribution
of a random variable that takes value 0 with probability 1 − ? , and

follows Rad(@) with probability ? . We write 3TV (·, ·) for the total
variation distance between two probability measures, 3KL (·, ·) for
the Kullback-Leibler divergence, and j2 (· ∥ ·) for the j2-divergence.

The directed graphs in this paper are always simple, in the sense

that between every pair of vertices 8, 9 ∈ [=], there is at most one

directed edge. The symbol . always denotes the skew-symmetric

adjacency matrix of a directed graph, with entries in {−1, 0, +1}.

3We use the term with high probability for sequences of events occurring with proba-
bility converging to 1 as = → ∞.

For a general = ×= matrix / and � ⊆
([=]
2

)
a subset of edge indices,

we write

/� :=
∏

{8, 9 }∈�:8< 9

/8, 9 .

We also write /◦2 for the entrywise square of / . Note that for .
a directed adjacency matrix, . ◦2 is an ordinary graph adjacency

matrix, of the graph formed from forgetting the directions in the

graph whose adjacency matrix . gave.

We write
(-
:

)
for the subsets of - of size : . Most often, we will

run into
([=]
2

)
in our arguments. We use letters �, � for subsets of([=]

2

)
, which we also interpret as graphs on a set of vertices labelled

by [=]. In this situation, we write + (�) for the vertex set of �,

including only those vertices that are incident with some edge of

�, and cc(�) for the number of connected components, likewise

omitting isolated vertices.

For a permutation c of a set ( ⊆ [=], we write 8 >c 9 if c (8) >
c ( 9), and write

c (8, 9) := (−1)1{8>c 9 } .

The matrix of these values, with zeroes on the diagonal, gives

the adjacency matrix of the directed graph associated to the total

ordering c gives to ( .

The asymptotic notations > (·),$ (·),Ω(·), l (·),Θ(·),≪,≫,≲,≳

have their usual de�nitions, always with respect to the limit = →
∞. Subscripts on these symbols refer to quantities the implicit

constants depend on.

3 Proof Techniques

3.1 Low-Degree Polynomial Algorithms

Our computational lower bounds will be in the framework of view-

ing polynomials as algorithms for statistical problems, with the

polynomial degree as a measure of complexity. This idea originates

in the literature on sum-of-squares optimization, where it plays an

important technical role in the lower bound technique of pseudocal-

ibration. Since then, it has become an independent form of evidence

of computational hardness of statistical problems [6, 29–31, 35].

Much of the early work [29–31] concerned simple hypothesis

testing problems, like in our case the problem of trying to distin-

guish Q from P, in particular when one distribution is a “natural”

null distribution, like our Q. Later extensions treated the complex-

ity of other statistical tasks, including recovery (or estimation, in

statistical terminology) [45], which we will use for our results.

We �rst specify what it means for a polynomial to solve a detec-

tion task between two probability measures Q and P.

Definition 3.1 (Strong and weak separation). Let Q = Q=

and P = P= be two sequences of probability measures over R# for

some # = # (=). We say that a sequence of polynomials 5 (. ) =

5= (.1, . . . , .# ) strongly separates Q from P if

EP [5 (. )] − EQ [5 (. )] = l (max{
√
VarQ [5 (. )],

√
VarP [5 (. )]}),

and that it weakly separates Q from P if

EP [5 (. )] − EQ [5 (. )] = Ω(max{
√
VarQ [5 (. )],

√
VarP [5 (. )]}),

both requirements referring to the limit = → ∞.

2112



Statistical Inference of a Ranked Community in a Directed Graph STOC ’25, June 23–27, 2025, Prague, Czechia

In words, strong separation means that Chebyshev’s inequality

implies that thresholding 5 at, say, (EP [5 (. )] + EQ [5 (. )])/2 dis-
tinguishes Q and P with high probability, while weak separation

implies that this holds with some probability bounded above 1/2.
The following measurement of “one-sided separation” is a useful

proxy for these notions.

Definition 3.2 (Low-degree advantage). For Q and P as

above, we de�ne

Adv≤� (Q,P) := sup
5 ∈R[. ]≤�

E.∼Q 5 (. )2≠0

E.∼P 5 (. )√
E.∼Q 5 (. )2

. (2)

In particular, bounding the advantage shows that separation is

impossible in the following ways.

Proposition 3.3 ([17, Lemma 7.3]). In the setting of De�nition 3.1,

if Adv≤� (Q,P) = $ (1) for some choice of � = � (=), then there

exists no sequence of 5= ∈ R[. ] with deg(5=) ≤ � (=) that weakly
separates Q from P. If Adv≤� (Q,P) = 1 +> (1), then there exists no

such sequence that strongly separates Q from P.

Remark 3.4. The advantage diverging only shows a part of the

strong separation criterion, since we must also bound the variance

of the polynomial involved under P. A number of recent examples

show that the advantage may in fact diverge while still no low-degree

polynomial achieves strong separation [4, 17, 19, 20].

For reconstruction tasks, success is naturally measured in terms

of mean squared error. We focus on the task of recovering just the

support of the ranked community with a low-degree polynomial,

not the permutation itself—a kind of weak support recovery by

low-degree polynomials.

Definition 3.5 (Low-degreeminimummean sqared error [45]).

Under the distribution P of the PRS model, write \ ∈ {0, 1}= for the

indicator vector of membership in the planted community ( . We then

write

MMSE≤� (P) := inf
5 ∈R[. ]=≤�

E
(\,. )∼P

∥ 5 (. ) − \ ∥2

= = inf
5 ∈R[. ]≤�

E
(\,. )∼P

(5 (. ) − \1)2 .

Following Fact 1.1 of [45], this can be equivalently formulated

in terms of a “low-degree correlation”:

MMSE≤� (P) = E∥\ ∥2 − =Corr≤� (P)2 = : − =Corr≤� (P)2, (3)

where Corr≤� is de�ned below.

Definition 3.6 (Low-degree correlation with \1). For P as

above, viewed as a joint distribution over (\,. ), we de�ne

Corr≤� (P) := sup
5 ∈R[. ]≤�

E.∼P 5 (. )2≠0

E(\,. )∼P \1 5 (. )√
E.∼P 5 (. )2

. (4)

We thus say that weak support recovery is hard for degree� = � (=)
polynomials if MMSE≤� (P) = : (1 − > (1)), which by the above is

equivalent to having Corr≤� (P)2 ≪ :
= .

3.2 Low-Degree Conjecture

One reason why the class of low-degree polynomial algorithms is

interesting is due to the following low-degree conjecture, which is

an informal statement of [29, Conjecture 2.2.4].

Conjecture 3.7 (Informal). For “su�ciently nice” Q and P, if

there exists Y > 0 and� = � (=) ≥ (log=)1+Y for whichAdv≤� (Q,P)
remains bounded as = → ∞, then there is no polynomial-time algo-

rithm that achieves strong detection between Q and P.

Remark 3.8. We remark that the original conjecture in [29] is

stated in terms of the notion of coordinate degree rather polynomial

degree, but it turns out that for spaces where each coordinate is sup-

ported on a constant-sized alphabet, the two notions of degree are

equivalent up to a constant.

Therefore, hardness results against the class of low-degree poly-

nomial algorithms may on the one hand be viewed as uncondi-

tional lower bounds for a class of general algorithms in the sense

stated in Proposition 3.3, and on the other hand as evidence that no

polynomial-time algorithm works for the detection task, provided

that we believe Conjecture 3.7.

3.3 Low-Degree Analysis of Planted Ranked

Subgraph Model

We develop some tools for working with polynomials and their

expectations under the PRS distributions. The following gives some

initial calculations of expectations of monomials.

Proposition 3.9 (Planted expectations). Let � ⊆
([=]
2

)
. Then,

E
.∼P

[.�]

=

(
:

=

) |+ (�) |
(2?@) |� |

E
c∼Unif (Sym( [=] ) )

[
(−1)

∑
{8,9 }∈�:8< 9 1{c (8 )>c ( 9 ) }

]
.

Proof. Recall that, to sample a directed graph . from P, one

may �rst sample a permutation c ∈ Sym( [=]) uniformly at random

and a random subset ( ⊆ [=] that includes every vertex with

probability :/=, and then generate . that correlates suitably with c

on ( . For a �xed pair of ((, c), let us denote by P(,c the distribution

P conditional on the ranked community being ( and the hidden

permutation being c . In particular, notice that P(,c is a product

distribution, where each .8, 9 is chosen independently between all

pairs of 8, 9 (but with di�erent distributions depending on ((, c)).
Then, we have

E
.∼P

[.�]

= E
(

E
c∼Unif (Sym( [=] ) )

E
.∼P(,c

[.( ]

= E
(

E
c∼Unif (Sym( [=] ) )

∏

{8, 9 }∈�:8< 9

E
.∼P(,c

[.8, 9 ]

= E
(

E
c∼Unif(Sym( [=] ) )

∏

{8, 9 }∈�:8< 9

(
1{8, 9 ∈ (}(−1)1{c (8 )>c ( 9 ) } (2?@)

)
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=

(
:

=

) |+ (�) |
(2?@) |� |

E
c∼Unif (Sym( [=] ) )

[
(−1)

∑
{8,9 }∈�:8< 9 1{c (8 )>c ( 9 ) }

]
,

completing the proof. □

Proposition 3.10 (Component-wise independence). Let � ⊆([=]
2

)
be � = �1 ⊔ �2 with two vertex-disjoint components �1 and

�2. Then,

E
.∼P

[.�] = E
.∼P

[.�1 ] E
.∼P

[.�2 ] .

Proof. Since �1, �2 are vertex disjoint, the distribution of .�1

and .�2 under P are independent, as we can independently sample

a permutation c1 on the vertex set of �1 and a permutation c2
on the vertex set of �2, and then sample the directed edges used

in �1 and �2 which correlate with c1 and c2 respectively. Thus,

EP [.�1⊔�2 ] = EP [.�1 ] EP [.�2 ]. □

Proposition 3.11 (Adjacency matrix monomial bounds). Let

�, � ⊆
([=]
2

)
be edge-disjoint. Call � even if, when viewed as a graph,

all of its connected components have an even number of edges. Then

E
.∼Q

[.�] = 1{� = ∅},

E
.∼Q

[(. ◦2)�] = ? |� | ,

E
.∼Q

[.� (. ◦2)�] = ? |� |1{� = ∅},
���� E
.∼P

[.�]
���� ≤

(
:

=

) |+ (�) |
(2?@) |� |

1{� even}, (5)

���� E
.∼P

[.� (. ◦2)�]
���� ≤

(
:

=

) |+ (�) |
? |� | (2?@) |� |

1{� even}, (6)

E
.∼P

[.8, 9.8,: ] =
4

3

(
:

=

)3
?2@2 .

Proof. The �rst three identities are easy to verify, and the last

identity can be computed using Proposition 3.9. We will mainly

discuss how to derive (5) and (6), and in particular, the no-odd-

connected-component condition.

Let us �rst consider (5). By Proposition 3.9 and Proposition 3.10,
����EP
[.�]

����

=

∏

X∈� (�)

����EP
[.X ]

����

where � (�) denotes the collection of connected components of �,

=

∏

X∈� (�)

�����

(
:

=

) |+ (X ) |
(2?@) |X |

E
c∼Unif (Sym( [=] ) )

[
(−1)

∑
{8,9 }∈X :8< 9 1{c (8 )>c ( 9 ) }

] �����

=

(
:

=

) |+ (�) |
(2?@) |� |

∏

X∈� (�)

����� E
c∼Unif (Sym( [=] ) )

[
(−1)

∑
{8,9 }∈X :8< 9 1{c (8 )>c ( 9 ) }

] ����� .

Clearly, for any X , we have
����� E
c∼Unif (Sym( [=] ) )

[
(−1)

∑
{8,9 }∈X :8< 9 1{c (8 )>c ( 9 ) }

] ����� ≤ 1.

We will argue that if |X | is odd, then

E
c∼Unif (Sym( [=] ) )

[
(−1)

∑
{8,9 }∈X :8< 9 1{c (8 )>c ( 9 ) }

]
= 0.

Let us denote

swaps(c, X) :=
∑

{8, 9 }∈X :8< 9

1{c (8) > c ( 9)}.

For any c ∈ Sym( [=]), we let rev(c) ∈ Sym( [=]) denote the re-
verse of c , given by rev(c) (8) = = + 1−c (8) for all 8 ∈ [=]. We may

then pair up c with rev(c) to get

E
c∼Unif (Sym( [=] ) )

[
(−1)

∑
{8,9 }∈X :8< 9 1{c (8 )>c ( 9 ) }

]

= E
c∼Unif (Sym( [=] ) )

[
(−1)swaps(c,X )

]

=
1

2
· E
c∼Unif(Sym( [=] ) )

[
(−1)swaps(c,X ) + (−1)swaps(rev(c,X ) )

]
.

For any �xed c ∈ Sym( [=]), we observe that
swaps(c, X) + swaps(rev(c, X)) = |X |.

Since |X | is odd, for every c ∈ Sym( [=]), one of the quantities above
is odd and the other is even. We thus �nd that if |X | is odd,

E
c∼Unif (Sym( [=] ) )

[
(−1)

∑
{8,9 }∈X :8< 9 1{c (8 )>c ( 9 ) }

]
= 0.

This concludes the proof that
����EP
[.�]

����

=

(
:

=

) |+ (�) |
(2?@) |� |

∏

X∈� (�)

����� E
c∼Unif (Sym( [=] ) )

[
(−1)

∑
{8,9 }∈X :8< 9 1{c (8 )>c ( 9 ) }

] �����

≤
(
:

=

) |+ (�) |
(2?@) |� |

1{� even}.

The proof for (6) is similar, as we can separate out the part (. ◦2)�
from .� . Each . 2

8, 9 is distributed as Bern(?) independent of ( and

c , which leads to an additional ? |� | term in the upper bound. □

Next, the following describes an orthonormal basis of polynomi-

als for the null distribution Q (really a product basis formed from

an orthonormal basis for the one-dimensional sparse Rademacher

distribution).

Definition 3.12. For �, � ⊆
([=]
2

)
disjoint subsets, we de�ne the

polynomial

ℎ�,� (. ) :=
1

? |� |/2.
� 1

(? (1 − ?)) |� |/2
(. ◦2 − ? � )� .
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Proposition 3.13. The ℎ�,� over all pair of disjoint �, � ⊆
([=]
2

)

form an orthonormal basis of polynomials for Q.

Proof. For the �rst claim of orthonormality, �rst note that every

polynomial in . in the support of Q, i.e. any adjacency matrix of

a directed graph, has entries satisfying . 3
8, 9 = .8, 9 , and thus every

polynomial in . is equivalent to one where each entry occurs in

each monomial with degree at most 2. The dimension of the space

of polynomials in . is then at most

∑

�⊆( [=]
2 )

2 |� |
=

(=2)∑

:=0

( (=
2

)

:

)
2: = 3(

=
2) .

And, this is precisely the number of �, � ⊆
([=]
2

)
disjoint, which

may be computed as

∑

�⊆( [=]
2 )

2(
=
2)−|� |

= 2(
=
2)

∑

�⊆( [=]
2 )

2−|� |
= 2(

=
2)

(
3

2

) (=2)
= 3(

=
2) .

Thus, it su�ces to show that the ℎ�,� are a set of orthonormal

polynomials for Q.

To do that, we compute:

E
Q
[ℎ�1,�1

(. )ℎ�2,�2
(. )]

=

∏

{8, 9 }∈�1∩�2:
8< 9

E
Q

[
1

?
. 2
8, 9

] ∏

{8, 9 }∈�1∩�2:
8< 9

E
Q

[
1

? (1 − ?) (.
2
8, 9 − ?)2

]

∏

{8, 9 }∈ (�1∩�2 )∪(�2∩�1 ) :
8< 9

E
Q

[
1

?
√
1 − ?

.8, 9

(
. 2
8, 9 − ?

)]

∏

{8, 9 }∈ (�1\(�2∪�2 ) )∪(�2\(�1∪�1 ) ) :
8< 9

E
Q

[
1
√
?
.8, 9

]

∏

{8, 9 }∈ (�1\(�2∪�2 ) )∪(�2\(�1∪�1 ) ) :
8< 9

E
Q

[
1√

? (1 − ?)

(
. 2
8, 9 − ?

)]
.

Here, the �rst two products are always 1, while any of the last three

products is 0 if it is non-empty (and 1 otherwise). Thus, the entire

expression is 0 if �1 ≠ �2 or �1 ≠ �2, and 1 otherwise, completing

the proof. □

Having an explicit orthonormal basis of polynomials is espe-

cially useful for carrying out low-degree calculations. Below is an

alternative expression (c.f. [35, Proposition 2.8]) for the low-degree

advantage de�ned in De�nition 3.2.

Proposition 3.14.

Adv≤� (Q,P)2 =
∑

�,�⊆( [=]
2 ) disjoint:

|� |+2 |� | ≤�

(
E

.∼P

[
ℎ�,� (. )

] )2
. (7)

Proof. For any polynomial 5 ∈ R[. ]≤� , we may expand it

using the basis of polynomials ℎ�,� as

5 (. ) =
∑

�,�

5̂�,� · ℎ�,� (. ).

Note deg(ℎ�,�) = |�| + 2|� |. Since deg(5 ) ≤ � , the coe�cients

satisfy 5̂�,� = 0 for any pair of�, � ∈
([=]
2

)
such that |�| + 2|� | > � .

Then, we may rewrite

Adv≤� (Q,P)2

= sup
5 ∈R[. ]≤�
EQ 5 (. )2≠0

(EP 5 (. ))2

EQ 5 (. )2

= sup

5̂ ={ 5̂�,� }≠0
5 =

∑
�,� 5̂�,� ·ℎ�,�

deg(5 )≤�

(EP 5 (. ))2

EQ 5 (. )2

= sup

5̂ ={ 5̂�,� }≠0
5 =

∑
�,� 5̂�,� ·ℎ�,�

deg(5 )≤�

(∑
�,� 5̂�,� · EP

[
ℎ�,� (. )

] )2

∑
�,�,�′,�′ 5̂�,� 5̂�′,�′ · EQ

[
ℎ�,� (. )ℎ�′,�′ (. )

]

= sup

5̂ ={ 5̂�,� }≠0
5 =

∑
�,� 5̂�,� ·ℎ�,�

deg(5 )≤�

(∑
�,� 5̂�,� · EP

[
ℎ�,� (. )

] )2

∑
�,�

(
5̂�,�

)2

by orthonormality of ℎ�,� as stated in Proposition 3.13,

=

∑

�,�⊆( [=]
2 ) disjoint:

|� |+2 |� | ≤�

(
E

.∼P

[
ℎ�,� (. )

] )2
,

completing the proof. □

3.4 Tools for Analysis of Ranking By Wins

Algorithm

We also introduce some tools that will be useful in analyzing the

Ranking By Wins algorithm (De�nition 1.14). Its analysis will boil

down to estimating the expected error or value achieved by the

algorithm as well as controlling the �uctuations of this quantity.

To bound the �uctuation of solution output by the Ranking By

Wins algorithm, we will use the following results on tail bounds

for weakly dependent random variables.

Definition 3.15 (Read-: families [23]). Let-1, . . . , -< be inde-

pendent random variables. Let.1, . . . , .= be Boolean random variables

such that .9 = 59 ((-8 )8∈% 9
) for some Boolean functions 59 and index

sets % 9 ⊆ [<]. If the index sets satisfy |{ 9 : 8 ∈ % 9 }| ≤ : for every

8 ∈ [<], we say that {.9 }=9=1 forms a read-: family.

Theorem 3.16 (Tail bounds for read-: families [23]). Let

.1, . . . , .A be a read-: family of Boolean random variables. Write

` := E
∑A
8=1 .8 . Then, for any C ≥ 0,

P

[
A∑

8=1

.8 ≥ ` + C

]
≤ exp

(
−2C2

A:

)
,

P

[
A∑

8=1

.8 ≤ ` − C

]
≤ exp

(
−2C2

A:

)
.
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To estimate the expectation of the error or alignment objective

value achieved by the Ranking By Wins algorithm, we will use the

following version of the Berry-Esseen quantitative central limit

theorem.

Theorem 3.17 (Berry-Esseen theorem for non-identically

distributed summands [7]). Let-1, . . . , -= be independent random

variables with E[-8 ] = 0,E[- 2
8 ] = f28 , and E[|-8 |

3] = d8 < ∞. Let

(= =

∑=
8=1 -8√∑=
8=1 f

2
8

.

Then, there exists an absolute constant � > 0 independent of = such

that for any G ∈ R,

|P [(= ≤ G] − Φ(G) | ≤ � ·
max1≤8≤=

d8
f2
8√∑=

8=1 f
2
8

,

where Φ : R → [0, 1] is the cumulative distribution function (cdf) of

the standard normal distribution.

After applying the Berry-Esseen theorem above, naturally we

need to deal with expressions involving Φ, the cdf of the standard

normal distribution. We state a useful lemma for bounding certain

sums involving the function Φ.

Lemma 3.18. Let 0, 1 ≥ 0. As a function of ~,

(1 − ~) · Φ(−0~ − 1)

is concave for ~ ∈ [0, 1].

Proof of Lemma 3.18. We compute the �rst and the second de-

rivative of (1 − ~)Φ(−0~ − 1).

3

3~
(1 − ~)Φ (−0~ − 1)

=
3

3~
(1 − ~)

∫ −0~−1

−∞

1
√
2c

4−
1
2I

2
3I

= −
∫ −0~−1

−∞

1
√
2c

4−
1
2I

2
3I + (1 − ~) 1

√
2c

4−
(0~+1)2

2 ,

32

3~2
(1 − ~)Φ (−0~ − 1)

=
3

3~

[
−

∫ −0~−1

−∞

1
√
2c

4−
1
2I

2
3I + (1 − ~) 1

√
2c

4−
(0~+1)2

2

]

= − 1
√
2c

4−
(0~+1)2

2 − 1
√
2c

4−
(0~+1)2

2

+ (1 − ~) 1
√
2c

(−0(0~ + 1)) 4−
(0~+1)2

2

=
1

√
2c

4−
(0~+1)2

2 (0(~ − 1) (0~ + 1) − 2) .

We observe that the second derivative is negative for ~ ∈ [0, 1].
Thus, (1 − ~)Φ(−0~ − 1) is concave on [0, 1]. □
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