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Abstract

High-dimensional planted problems, such as �nding a hidden dense

subgraph within a random graph, often exhibit a gap between sta-

tistical and computational feasibility. While recovering the hidden

structure may be statistically possible, it is conjectured to be com-

putationally intractable in certain parameter regimes. A powerful

approach to understanding this hardness involves proving lower

bounds on the e�cacy of low-degree polynomial algorithms. We in-

troduce new techniques for establishing such lower bounds, leading

to novel results across diverse settings: planted submatrix, planted

dense subgraph, the spiked Wigner model, and the stochastic block

model. Notably, our results address the estimation task — whereas

most prior work is limited to hypothesis testing — and capture sharp

phase transitions such as the “BBP” transition in the spiked Wigner

model (named for Baik, Ben Arous, and Péché) and the Kesten–

Stigum threshold in the stochastic block model. Existing work on

estimation either falls short of achieving these sharp thresholds

or is limited to polynomials of very low (constant or logarithmic)

degree. In contrast, our results rule out estimation with polynomi-

als of degree =X where = is the dimension and X > 0 is a constant,

and in some cases we pin down the optimal constant X . Our work

resolves open problems posed by Hopkins & Steurer (2017) and

Schramm & Wein (2022), and provides rigorous support within the

low-degree framework for conjectures by Abbe & Sandon (2018)

and Lelarge & Miolane (2019).
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1 Introduction

The task of discovering a hidden “signal” of interest buried in a

large noisy dataset, is central to modern statistics and data science.

In addition to the statistical question of discerning the weakest pos-

sible signal, the high-dimensionality of these problems also poses

the computational challenge of �nding an algorithm of practical

runtime. As a testbed for studying the fundamental limitations of

what is achievable in these settings, we focus on the following four

canonical models for planted signal in a random matrix or random

graph.

• Planted Submatrix: For a sparsity parameter d ∈ [0, 1]
and a signal-to-noise parameter _ ≥ 0, we observe the = × =
matrix . = _\\⊤ + / where \ ∈ R= has i.i.d. Bernoulli(d)
entries and / ∈ R=×= is a symmetric matrix with {/8 9 }8≤ 9

i.i.d. N(0, 1). Given . , the goal is to estimate \ .

• Planted Dense Subgraph: For a sparsity parameter d ∈
[0, 1] and edge probabilities 0 ≤ ?0 ≤ ?1 ≤ 1, we observe

a random graph on = vertices whose adjacency matrix . =

(.8 9 )1≤8< 9≤= ∈ {0, 1}(
=
2) is generated as follows. First draw

\ ∈ R= with i.i.d. Bernoulli(d) entries. Conditioned on \ ,

draw .8 9 ∼ Bernoulli(?0 + (?1 − ?0)\8\ 9 ) independently for

each 8 < 9 . Thus, edges within the planted subgraph have

probability ?1 while others have probability ?0. Given . , the

goal is to estimate \ .

• Spiked Wigner Model: This is a canonical model for a

low-rank matrix corrupted by additive Gaussian noise. Let

* ∈ R=×< have entries i.i.d. from some prior c with mean

0 and variance 1. We observe the = × = matrix . = - + /
where / ∈ R=×= is symmetric with {/8 9 }8≤ 9 i.i.d. N(0, 1),
and - =

√
_/=**⊤ for a signal-to-noise parameter _ ≥ 0.

Given . , the goal is to estimate - . Unlike most prior work,

we allow< to potentially grow with =.

• Stochastic Block Model (SBM): This is a canonical model

for community detection in random graphs. To generate

an =-vertex graph, �rst each vertex 8 ∈ [=] is indepen-

dently assigned a community label f★8 , drawn uniformly

from [@] where @ is the number of communities. For edge

probabilities 0 ≤ ?0 ≤ ?1 ≤ 1, we observe the graph

with adjacency matrix . = (.8 9 )1≤8< 9≤= ∈ {0, 1}(
=
2) gen-

erated as follows. Independently for each 8 < 9 , draw .8 9 ∼
Bernoulli(?0 + (?1 − ?0)1f★

8 =f
★

9
). Thus, within-community

edges have probability ?1 while cross-community edges have

probability ?0. Given . , the goal is to estimate whether two

given vertices (say, vertices 1, 2) are in the same community.
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We will also consider the more general SBM where the com-

munities can have di�erent relative sizes and each pair of

communities can have a di�erent connection probability.

In each of these models we will be assuming an asymptotic regime

where = → ∞, and the other parameters (such as d, ?0, ?1,<) may

scale with = in some prescribed way or may be designated as �xed

“constants” (such as c, @) that do not depend on =. Asymptotic

notation such as $ (·), > (·), Ω(·), l (·), Θ(·) will always pertain
to this limit. The objective will be to estimate (a.k.a. recover) the

planted signal (such as \ ) to some desired accuracy, which may be

measured in terms of mean squared error, or in terms of achieving

some success metric with high probability, i.e., success probability

1 − > (1) as = → ∞. We assume the parameters of the model (such

as _, d, c ) are known to the statistician, but not the latent variables

such as \,* .

The models de�ned above are all well studied, and we defer a

thorough literature review to Section 2. Some prior work focuses on

determining the statistical limits, that is, for what values of the pa-

rameters is it possible versus impossible to succeed, with no restric-

tions on the estimator. Other work focuses on �nding estimators

that can be computed e�ciently (say, in polynomial time). Notably,

all the above models appear to exhibit statistical-computational

gaps, meaning there is a “possible-but-hard” regime of parameters

where some estimator is known to succeed via “brute-force” search,

yet no polynomial-time algorithm is known to succeed. In such

cases, it is desirable to understand whether this hardness is inher-

ent: does there really not exist a poly-time algorithm, or do we just

need to work harder to �nd one? Our focus in this work will be on

identifying this transition between “easy” (poly-time solvable) and

“hard.” Notably, the best known algorithms for the above models

have “sharp” phase transitions in their behavior, where the problem

abruptly becomes easy once a signal-to-noise parameter passes a

certain threshold. Our aim will be to prove matching lower bounds,

showing hardness below this precise threshold.

A key challenge in this endeavor is that classical notions of

complexity such as NP-hardness are not applicable here, since we

are dealing with average-case problems where the goal is to succeed

for (not all but) “most” random inputs from a particular distribution.

Instead, a popular and versatile approach for rigorously vindicating

the type of phase transitions we are interested in, is to study the

behavior of low-degree polynomial estimators [101]. To this end, we

consider the task of estimating a particular scalar quantity, denoted

G . For instance, in the planted submatrix problem, a natural choice

is G := \1, the �rst entry of the signal vector. The class of algorithms

wewill consider are multivariate polynomials 5 ∈ R[. ] in the input
variables .8 9 , of degree (at most) some parameter � (which may

scale with =). The best performance over all such algorithms is

measured by the degree-� minimum mean squared error,

MMSE≤� := inf
5 ∈R[. ]

deg(5 )≤�

E[(5 (. ) − G)2], (1)

where the expectation is over the joint distribution of (G,. ) as
speci�ed by the model. This scalar MMSE can generally be di-

rectly related to its vector analogue; see Section 2.2. If the quantity

MMSE≤� is “small” (appropriately de�ned), we will say degree-�

polynomials succeed at the estimation task, and if MMSE≤� is

“large” then we will say degree-� polynomials fail. The degree �

serves as a measure of an algorithm’s complexity, and the above

framework allows us to quantify the di�culty of an estimation

task by the degree that is required to solve it. Our main results

will establish that in the conjectured “hard” regimes for each of the

four models,MMSE≤� does not even beat the “trivial” estimator

5 (. ) ≡ E[G], that is,MMSE≤� ≥ (1 − > (1))MMSE≤0, for some �

scaling as =X for a constant X > 0.

The above notion of “degree complexity” has conjectural connec-

tions to the more traditional notion of time complexity (runtime).

For the style of problems we are considering, polynomials of degree

$ (log=) tend to be powerful enough to capture the best known

poly-time algorithms, so if we can prove failure of super-logarithmic

polynomials, this is considered an indication that there is no poly-

time algorithm for the task (see [52, Conjecture 2.2.4]). For this

reason, “low” degree typically means $ (log=), unless stated other-

wise. More generally, polynomials of degree � are expected to have

the same power as algorithms of runtime =$̃ (� ) where $̃ (·) hides
a polylog(=) factor (see [52, Hypothesis 2.1.5]), so for example, de-

gree =X corresponds to time exp(=X±> (1) ) for �xed X > 0. We refer

the reader to [101] and references therein for further discussion

of this framework. For the four models studied in this work, we

will give low-degree upper bounds, con�rming that degree-$ (log=)
polynomials succeed at estimation in the “easy” regime where poly-

time algorithms are known. This shows that low-degree estimators

are a meaningful class of algorithms to consider here.

It is worth noting that we will depart from most prior work on

low-degree complexity: the original work on this topic considered

the setting of hypothesis testing (a.k.a. detection) rather than esti-

mation [53, 54] (see [52, 68] for exposition), and there have been

numerous follow-up works in this setting, some of which are dis-

cussed in Section 2. The case of estimation that we consider here

has also received attention [55, 56, 62, 67, 73, 74, 78, 86, 101, 107]

but it is more di�cult to analyze and our mathematical toolbox is

less complete. While results on testing can sometimes shed light

on hardness of estimation, this is not the case for many problems

— including some that we study here — due to gaps between the

testing and estimation thresholds. For this reason it is important to

have tools that directly address the estimation task. Existing lower

bounds for low-degree estimation either do not reach the type of

sharp thresholds that we aim for in this work, or are limited to

very low degree (falling short of the super-logarithmic standard

discussed above). Some examples of sharp thresholds at very low

degree appear in [55, 86, 101]. Lower bounds at very low degree are

already interesting but do not necessarily give a reliable prediction

for the true computational threshold, as discussed in, e.g., [109].

Our work is the �rst to simultaneously capture sharp thresholds

and rule out super-logarithmic degree in estimation. Speci�cally,

our results will rule out polynomials of degree =X for a constant

X > 0, sometimes for the optimal constant X . Being the �rst results

of this type, our work gives further credibility to the low-degree

polynomial framework by demonstrating its ability to capture sharp

estimation thresholds that coincide with the suspected computa-

tional limits. We note that concurrent and independent work of [56]

also proves hardness at degree =X up to a sharp threshold, namely
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the Kesten–Stigum threshold in the broadcast tree model, using

techniques that are rather di�erent from ours.

We remark that there are other frameworks for explaining statistical-

computational gaps, including average-case reductions (see [20]),

the statistical query model (see [22]), the sum-of-squares hierarchy

(see [97]), and the overlap gap property (see [46]). However, none

of these appear able to capture the sharp estimation thresholds

that we study here, at least with current techniques. One exception

is the methods based on statistical physics (see [66, 110]), which

tend to be non-rigorous but do have an extraordinary track record

of predicting sharp thresholds in estimation problems, such as

the Kesten–Stigum (KS) threshold in the stochastic block model

(SBM) [34] which we will also study here. These methods essen-

tially postulate the optimality of speci�c algorithms such as belief

propagation (BP) or approximate message passing (AMP), which tend

to be captured by the low-degree class (see [27, 58, 60, 86]). Since

physics-style methods are quite di�erent from low-degree methods,

it is valuable to corroborate those predictions with rigorous evi-

dence from low-degree approaches. This is especially true because

low-degree methods appear to make more reliable predictions for a

wider range of problems and scaling regimes, with tensor PCA [98]

being a prime example of a setting where the physics methods

struggle (see [108]). For some models — namely planted dense sub-

graph and spiked Wigner — we will uncover a new phase transition

in a scaling regime where no physics-style prediction of hardness

exists (and even if physics methods were applied here, it’s not so

well-established whether they should be considered reliable in such

regimes).

Finally, we note that concurrent and independent work [39] gives

a di�erent form of low-degree evidence for one of the threshold phe-

nomena that we study, namely the KS threshold in the SBM. Rather

than our approach of giving unconditional bounds onMMSE≤� ,
their work assumes a conjecture on a certain optimality of low-

degree polynomials for hypothesis testing, and uses this to deduce

hardness of non-trivial recovery by exp(=0.99)-time algorithms. We

refer to this type of argument as a detection-to-recovery reduction.

We discuss the comparison to our work further in Section 2.5. An-

other recent independent work is [72], which gives evidence for

sharp recovery thresholds in certain graph matching models, also

using a detection-to-recovery reduction.

1.1 Our Contributions

1.1.1 Example: Planted Submatrix. We now illustrate our results in

more detail, focusing on the planted submatrix problem. To recap

the setting, a principal submatrix of size roughly d= × d= with

elevated mean _ is planted in an = × = symmetric Gaussian matrix.

The goal is to estimate \1, the indicator for whether vertex 1 belongs

to the planted submatrix. We state (a simpli�cation of) our main

result for this setting.

Theorem 1.1 (See Theorem 2.2). Consider the planted submatrix

model with d = > (1). For any constant n > 0 there exists a constant

� ≡ � (n) > 0 such that the following holds for all su�ciently large

=. If

_ ≤ (1 − n) (d
√
4=)−1 and � ≤ _−2/�

then

MMSE≤� := inf
5 ∈R[. ]

deg(5 )≤�

E[(5 (. ) − \1)2] ≥ d −�d2 .

To interpret this, we restrict the following discussion to the

regime Ω(1/
√
=) ≤ d ≤ > (1) for ease of exposition, with the gen-

eral case discussed in Section 2.2. First note that the trivial MSE

achieved by 5 (. ) ≡ E[\1] = d is Var(\1) = d − d2, so we have

met our stated goal of showing MMSE≤� ≥ (1 − > (1))MMSE≤0.
Next, a poly-time algorithm based on approximate message passing

(AMP) is known to achieve near-perfect estimation of \ — mean-

ing > (d=) misclassi�cation errors, with high probability — when

_ ≥ (1+n) (d
√
4=)−1 for an arbitrary constant n > 0 [49]. Our condi-

tion on _ holds below this sharp threshold. Finally, below the AMP

threshold _ ≤ (1 − n) (d
√
4=)−1, the best known algorithms have

runtime exp($̃ (_−2)) [40, 51] (so long as _ ≫ (d=)−1/2, which
is information-theoretically necessary [25, 63]; we use ≫ to hide

polylog(=) factors). Recalling the heuristic correspondence between
degree and runtime discussed above, our condition on � coincides

with this runtime exp($̃ (_−2)). Thus, our lower bound suggests

that below the sharp AMP threshold, runtime exp(Ω̃(_−2)) is re-
quired. This shows optimality of the existing algorithms in a strong

sense, pinning down both the sharp AMP threshold and also the

precise degree Ω(_−2). This resolves two di�erent open questions

of [101], where coarser low-degree lower bounds were shown.

We emphasize that the hardness of estimation established above

cannot be deduced from the statistical limits of estimation [25, 63]

nor the computational limits of hypothesis testing [21, 75], since

these have di�erent thresholds; see [101].

1.1.2 Other Models. We now summarize our contributions for the

other three models presented above, with more details in Section 2.

For planted dense subgraph, we give the same lower bound as for

planted submatrix but with the substitution _2 = (?1−?0)2/[?0 (1−
?0)]; see Theorem 2.4. In particular, our lower bound reaches a

sharp threshold, and we also show that degree-$ (log=) polynomi-

als succeed above this threshold. However, the matching poly-time

algorithm does not seem to be known. Thus, our result suggests a

new phase transition phenomenon that may be achievable with an

AMP-style algorithm.

The spiked Wigner model and stochastic block model both have

well-established conjectured computational thresholds for the onset

of weak recovery, i.e., non-trivial estimation. These thresholds are

known as the BBP transition (after Baik, Ben Arous, and Péché [8])

and Kesten–Stigum (KS) bound [34, 61], respectively. Speci�cally,

it was conjectured in [69, Conjecture 10] (based on [65, 71]) and

[3, Conjecture 2] (based on [34]) that below the BBP transition

and the KS bound, respectively, non-trivial estimation is impossible

in polynomial time for these models. Existing low-degree lower

bounds show hardness of the associated hypothesis testing prob-

lem below these thresholds [9, 54, 68], but no such results were

known for estimation and this was stated as an open problem by

Hopkins and Steurer in one of the �rst papers on the low-degree

framework [54]. We resolve this, giving estimation lower bounds at

degree =X for a constant X > 0, below the sharp BBP and KS thresh-

olds. We refer to Theorem 2.6 for the spiked Wigner model, and to

Theorem 2.8 for the SBM. Altogether, our results provide rigorous
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evidence towards the conjectures of [69] and [3] by establishing

the corresponding low-degree hardness. (We do not realistically

expect to resolve these conjectures outright, as this would imply a

solution to the P versus NP problem.) In the spiked Wigner model,

we additionally go beyond the setting of the conjecture by allowing

the rank< to grow with =.

1.1.3 Low-Degree Upper Bounds. In the discussion above, we have

focused on low-degree lower bounds, that is, proving failure of

degree-� polynomials. Such results are most meaningful when com-

plemented by the corresponding low-degree upper bound, that is,

we would like to show MMSE≤� is “small” for some � = $ (log=)
in the “easy” regime where e�cient algorithms are known, in or-

der to rigorously establish a phase transition in the behavior of

polynomials.

Indeed, we will show for our four models of interest that degree-

$ (log=) polynomials succeed above the sharp thresholds appear-

ing in our lower bounds. More speci�cally, for planted submatrix

and planted dense subgraph we will show that degree-$ (log=)
polynomials achieve strong recovery above the threshold, meaning

MMSE≤� = > (MMSE≤0). For spiked Wigner and SBM we will

give a similar result but for weak recovery, meaning MMSE≤� =

(1−Ω(1))MMSE≤0. The full details, along with further discussion,

are presented in Section 2.

For planted submatrix and planted dense subgraph, our upper

bound is proved by constructing a polynomial estimator that is

the average of certain “tree-structured” monomials with a par-

ticular structure. For spiked Wigner, a sharp low-degree upper

bound above the BBP transition was previously known in the rank-

1 case (< = 1), based on self-avoiding walks [54]. We will extend

this to larger<. Similarly, for the SBM, a sharp low-degree upper

bound above the KS threshold is known, also based on self-avoiding

walks [54]. We will include the proof for completeness.

1.2 Proof Techniques

Here we present the main ideas in the lower bound proofs. The full

proofs can be found in the full version [104].

1.2.1 Overview of the Proof Strategy. Consider for now the generic

setting where the goal is to estimate some scalar G given . . Instead

ofMMSE≤� , it will be more convenient to work with the degree-�

maximum correlation

Corr≤� := sup
5 ∈R[. ]

deg(5 )≤�

E[5 (. ) · G]√
E[5 (. )2] · E[G2]

.

We have taken a normalization such that Corr≤� ∈ [0, 1], which
deviates from the one used by [101]. The following fact shows that

Corr≤� and MMSE≤� are directly related.

Fact 1.2 ([101], Fact 1.1). MMSE≤� = (1 − Corr2≤� ) E[G
2].

We aim to give an upper bound on Corr≤� , and the main di�culty

is the factor E[5 (. )2] in the denominator, since . does not have

independent entries. We will make use of the underlying indepen-

dent random variables from which . is generated, for instance /

and \ in the planted submatrix problem.

Choose a basis {qU }U∈I for R[. ]≤� (polynomials in the entries

of . of degree ≤ �) so that any candidate polynomial estimator

can be expanded as

5 (. ) =
∑
U

5̂UqU (. )

for some vector of (real) coe�cients 5̂ = ( 5̂U )U∈I . In the set-

tings we consider there will always be a vector , of indepen-

dent random variables from which G and . are generated. We will

need to construct an orthonormal collection {kV }V∈J of polyno-

mials in (the entries of), . The meaning of “orthonormal” here is

⟨kV ,kV ′ ⟩ := E[kV (, ) ·k ′
V
(, )] = 1V=V ′ . There is no requirement

on the degrees of the polynomialskV nor on their span (they need

not form a full basis), but it will be advantageous to use a “rich" col-

lection of polynomials. We emphasize that, unlike {kV }, the basis
{qU } need not be orthogonal. Working in the Hilbert space of ran-

dom variables, we can bound the norm of 5 (. ) using its projections
onto the orthonormal directionskV :

E[5 (. )2] ≥
∑
V

E[5 (. ) ·kV (, )]2 .

Equivalently, E[5 (. )2] ≥ ∥"5̂ ∥2 where " = ("VU )V∈J,U∈I is

de�ned by

"VU = E[qU (. ) ·kV (, )] .
Also de�ne the vector 2 = (2U )U∈I by

2U = E[qU (. ) · G] .
The core of our approach will be to construct a certain vector D,

which then implies a bound on Corr≤� .

Proposition 1.3. Suppose there is a vector D = (DV )V∈J satisfy-

ing the linear equations D⊤" = 2⊤, or equivalently,∑
V∈J

DV"VU = 2U (2)

for all U ∈ I. Then

Corr≤� ≤ ∥D∥√
E[G2]

:=

√√∑
V∈J D

2
V

E[G2]
.

Proof. Recalling the fact E[5 (. )2] ≥ ∥"5̂ ∥2,
√
E[G2] · Corr≤� = sup

5

E[5 (. ) · G]√
E[5 (. )2]

≤ sup

5̂

2⊤ 5̂

∥"5̂ ∥

= sup

5̂

D⊤"5̂

∥"5̂ ∥
≤ sup

5̂

∥D∥ · ∥"5̂ ∥
∥"5̂ ∥

= ∥D∥ .

□

Provided G lies in the span of {kV }, it is not di�cult to con-

struct some vector D satisfying the constraints D⊤" = 2⊤, as one
solution is DV = E[kV · G] which can be seen from the expansion

G =
∑

V E[G · kV ]kV . However, this gives only the trivial bound

Corr≤� ≤ 1. Ideally, we would take D to be the minimum-norm

solution to the constraints, which can be found using the Moore–

Penrose pseudoinverse:D⊤ = 2⊤"+. The issue here is that this value
of D seems di�cult to work with explicitly since we do not have

a closed-form expression for"+. Instead, our approach will be to

manually construct a more tractable solutionD with a small enough
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norm. As we will see in the subsequent sections, our proof lever-

ages a key geometric insight that “tree-structured” polynomials are

most informative for estimation in the planted submatrix/subgraph

problems whereas “path-shaped” polynomials are most e�ective for

spiked Wigner and SBM. In Section 1.2.4, we illustrate our construc-

tion of D for the planted submatrix model. Although this solution

is explicit in that model, we emphasize that for the stochastic block

model, our construction of D is de�ned recursively over certain set

of graphs, necessitating a delicate analysis to control its ℓ2 norm.

We are hopeful that the above strategy may be useful to prove

new low-degree lower bounds in settings beyond those considered

in this work. This new approach has not appeared before in its

current form, although it takes some inspiration from the prior

works [101, 107]1 which also crucially use orthogonal polynomi-

als in the underlying independent random variables. Compared

to [107], our approach is a generalization (the kV may not form

a basis) and simpli�cation (we only need to construct D solving

D⊤" = 2⊤ rather than a left-inverse for"). While [107] studies a

di�erent problem from us (tensor decomposition, which does not

appear to have sharp threshold behavior), [101] studies some of

the same problems that we do, and we sharpen the bounds in a

qualitative way, allowing us to capture sharp thresholds. We will

give more details on the comparison to [101] in Section 1.2.4 below.

1.2.2 Removing “Bad” Terms. We will designate some values of U

and V as “good,” denoted U ∈ Î or V ∈ Ĵ , and all others as “bad”

(denoted, e.g., U ∉ Î). The choice of Î ⊆ I and Ĵ ⊆ J will be

problem-speci�c and will depend on the estimand G , but intuitively

the good basis elements represent those that are potentially useful,

or “informative,” for estimation of G whereas the bad ones repre-

sent those that “uninformative.” Under certain conditions we will

be able to remove the bad terms from consideration. We refer to

Sections 1.2.4 and 1.2.5 for speci�c examples.

Lemma 1.4. Suppose the following conditions are met:

• DV = 0 for all V ∉ Ĵ .

• For each U ∉ Î there exist Û ∈ Î and ` ∈ R such that 2U = `2Û
and"VU = `"VÛ ∀V ∈ Ĵ .

If (2) holds for all U ∈ Î then (2) holds for all U ∈ I.

Proof. Fix U ∉ Î and the corresponding Û, `. We verify (2):

2U = `2Û = `
∑
V

DV"VÛ = `
∑
V∈ Ĵ

DV"VÛ =

∑
V∈ Ĵ

DV"VU =

∑
V

DV"VU .

□

Remark 1.5. In our applications of this framework, J will be a

set consisting of pairs (V,W) where V ∈ I and W is a certain “coloring”

of V that encodes the signal structure. The analogous construction

applies to the sets Î and Ĵ . Thus, the role of V in Lemma 1.4 will be

played by a pair (V,W), abbreviated as VW .

1Additionally, we thank Jonathan Niles-Weed for discussions that helped inspire this
approach.

1.2.3 Notation. For indexing polynomials we will often use ele-

ments U ∈ {0, 1}( or U ∈ N( for some �nite set ( , where N :=

{0, 1, 2, . . .}. For such elements U, V we de�ne |U | := ∑
:∈( U: , U ! :=∏

:∈( U: !, and
(U
V

)
:=

∏
:∈(

(U:
V:

)
. Also, V ≤ U means V: ≤ U: for

all : ∈ ( ; and V ⪇ U means V ≤ U and there exists : ∈ ( where

V: < U: . For a vector - = (-: ):∈( , we write -U :=
∏

:∈( (-: )U: .
An element U ∈ {0, 1}( can equivalently be viewed as a subset of

( , speci�cally the subset {: ∈ ( : U: = 1}. We may abuse notation

and identify U with this subset. For U, V ∈ {0, 1}( , the meaning of

V ≤ U is V ⊆ U , and the meaning of V ⪇ U is V ⊊ U . An element

U ∈ N( can be viewed as a multiset, containing U: copies of each

: ∈ ( .
One common choice of ( will be [=] := {1, 2, . . . , =}. Another

will be either {(8, 9) : 1 ≤ 8 < 9 ≤ =} or {(8, 9) : 1 ≤ 8 ≤ 9 ≤ =},
which we will abbreviate as

([=]
2

)
or

(([=]
2

))
(“multichoose” notation)

respectively. We will also abbreviate U (8, 9 ) as U8 9 in this case. Note

that U ∈ {0, 1}(
[=]
2 ) can be viewed as a (simple) graph on vertex set

[=], namely the graph that includes edge (8, 9) whenever U8 9 = 1.

Similarly U ∈ N (( [=]
2 )) can be viewed as a multigraph on vertex

set [=] (now with self-loops and parallel edges allowed), namely

the multigraph with U8 9 copies of edge (8, 9) for all 8 ≤ 9 . With

this view, we will often refer to graph-theoretic properties of U .

We use + (U) ⊆ [=] to denote the vertex set of U , by which we

mean the set of non-isolated vertices. In other words, 8 ∈ + (U) if
there exists some edge (8, 9), possibly a self-loop (8, 8). We call U

connected if every pair of vertices in + (U) has a path connecting

them. The empty graph U = 0 is considered to be connected. We

write U = 1(8, 9 ) for the graph consisting of a single edge between

vertices 8 and 9 . As above, we may abuse notation and identify U

with the associated edge set, e.g., writing U ∩ V for the common

edges between two graphs. We may also explicitly write � (U) for
the edge set of U , that is, the (multi)set of pairs (8, 9) with 8 ≤ 9

corresponding to the edges of U (where parallel edges are included

multiple times based on their multiplicity).

1.2.4 Example: Planted Submatrix. We now sketch how to apply

the above framework to planted submatrix, and how this di�ers

from the prior work [101]. To recap the setup, we have parameters

_ ≥ 0 and d ∈ [0, 1], and the observed data is (.8 9 )1≤8≤ 9≤= gener-

ated as follows: . = - + / where -8 9 = _\8\ 9 , \ ∈ {0, 1}= is i.i.d.

Bernoulli(d), and {/8 9 }8≤ 9 are i.i.d.N(0, 1). The goal is to estimate

G := \1.

To construct orthogonal polynomials, we will make use of the

multivariate Hermite polynomials {�U } for U ∈ N (( [=]
2 )) (see [105]).

These are well known to be orthogonal with respect to Gaussian

measure, and we use the normalization for which they are orthonor-

mal: E[�U (/ ) · �V (/ )] = 1U=V . As our basis for R[. ]≤� , choose
qU (. ) := �U (. ) for U ∈ I := {U ∈ N (( [=]

2 )) : |U | ≤ �}. For our
orthonormal polynomials in the underlying independent random

variables, = (/, \ ), choose

kVW (/, \ ) = �V (/ )
(

\ − d√
d (1 − d)

)W

for VW ∈ J := {(V,W) : V ∈ N (( [=]
2 )) , |V | ≤ �, W ∈ {0, 1}=}. We

will often view W as a subset W ⊆ [=] as described above. Note that
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{kVW } is orthonormal as required. With this setup, we will compute

(with details deferred to the full version [104])

2U =
_ |U |d |+ (U )∪{1} |

√
U!

,

"VW,U = 1V≤U ·1W⊆+ (U−V ) ·
√
V!

U!

(
U

V

)
_ |U−V |d |+ (U−V ) |

(
1 − d
d

) |W |/2
.

Towards applying Lemma 1.4, we de�ne Î and Ĵ as follows.

• By convention, 0 ∈ Î. For |U | ≥ 1 we include U in Î if and

only if U (when viewed as a multigraph) is connected with

1 ∈ + (U).
• We include VW in Ĵ if and only if V ∈ Î and W ⊆ + (V) ∪ {1}.
(The union with {1} only matters in the case V = 0.)

Later, we will check the conditions in Lemma 1.4, allowing the “bad”

terms U ∉ Î and V ∉ Ĵ to be disregarded. This step is analogous

to [101], where disconnected graphs were similarly removed from

consideration. Now, combining Proposition 1.3 and Lemma 1.4, our

goal is to choose values (DVW )VW ∈ Ĵ and verify

∑
VW ∈ Ĵ

DVW"VW,U = 2U ∀U ∈ Î .

Then our �nal bound will be

Corr≤� ≤ ∥D∥√
E[G2]

= d−1/2
√ ∑

VW ∈ Ĵ
D2
VW

since we are choosing DVW = 0 for VW ∉ Ĵ .

Using the support structure of " and the fact "U0,U = 1, our

constraints can be written as

DU0 = 2U −
∑
V⪇U

©­«
∑

W⊆+ (U−V )
DVW"VW,U

ª®¬
∀U ∈ Î . (3)

For all UW ∈ Ĵ with W ≠ 0, we refer to the values DUW as free vari-

ables. We are free to choose values for these variables and then

the remaining values DU0 are determined by the recurrence (3).

Setting all free variables to zero recovers the existing method

of [101]. This amounts to using only the orthonormal polynomials

kV (/ ) = �V (/ ), which means only the “noise” is being used to

lower-bound E[5 (. )2]. We will improve on this by using both the

signal and noise. Speci�cally, we will set the free variables in such

a way to zero out the term in parentheses in (3). As a result, we

will have simply DU0 = 2U for all U ∈ Î. This avoids some di�cult-

to-control recursive blowup of the D values that is present in [101].

Our speci�c construction for D is

DUW =

(
−
√

d

1 − d

) |W |
· 2U ∀UW ∈ Ĵ .

The remaining details, including the computation of ∥D∥, are de-
ferred to the full version [104]. The dominant contributions to ∥D∥
come from U that (viewed as a multigraph) are trees containing

vertex 1.

1.2.5 OtherModels. Wenow summarize how the arguments change

for the other models we consider. For the planted dense subgraph

problem, the choice for the orthonormal set {kVW } is more subtle.

However, we ultimately manage to use a similar construction for D

as above. In particular, the set of “good” terms and “bad” terms are

the same as those used for the planted submatrix problem, besides

the consideration of simple graphs rather than multigraphs.

The proofs for the spiked Wigner model and SBM are more

involved. A key di�erence lies in the de�nition of the “good” terms.

This di�erence stems, in part, from the dependence of the estimand

G on both vertices 1 and 2. Speci�cally, “good” U now satisfy 1, 2 ∈
+ (U) and every E ∈ + (U) \ {1, 2} has degree at least 2. The intuition
behind the last condition is that U that contains a leaf node which

is not 1, 2 is “uninformative” for the estimation of G .

Furthermore, we cannot obtain a closed-form solution for D as in

the prior cases. Consequently, the values of D = (DVW ) are de�ned
implicitly through a recursive formula: (DUW )W is constructed based

on the values of (DVW )W for |V | < |U |. The construction is designed to
minimize

∑
W D

2
UW subject to a linear constraint at each step. The key

aspect of the analysis involves controlling their growth. Crucially,

we show that
∑
W D

2
UW does not grow exponentially in |U | (as in the

bounds from [101]) but exponentially in |U | − |+ (U) | + 1 (which

represents edges in excess of a tree). This turns out to be crucial to

capture the sharp thresholds that we aim for at degree =X .

For planted submatrix and planted dense subgraph, the dom-

inant contributions to ∥D∥ come from trees containing vertex 1,

where vertex 1 is distinguished because we are estimating \1. The

importance of trees here appears sensible, given that the optimal

algorithm is AMP, which can essentially be expressed as a sum of

such “tree-structured” polynomials [13, 27, 58, 60, 86]. For spiked

Wigner and SBM, there are two distinguished vertices 1, 2 since we

will be estimating pairwise quantities, and the dominant contribu-

tions to ∥D∥ come from simple paths from vertex 1 to 2. This re�ects

the fact that the optimal algorithms are based on (self-avoiding or

non-backtracking) paths [19, 54, 64, 81].

2 Main Results

We now present our main results, with the proofs deferred to the

full version [104].

2.1 Correlation and Weak Recovery

In all the models we consider, the observation will be called . and

the scalar quantity to be estimated will be called G . We will state

our results in terms of Corr≤� , as de�ned in Section 1.2.1:

Corr≤� := sup
5 ∈R[. ]≤�

E[5 (. ) · G]√
E[5 (. )2] · E[G2]

∈ [0, 1] .

To show low-degree hardness of estimation, our goal will be to rule

out weak recovery, de�ned as Corr≤� = Ω(1). That is, we aim to

prove Corr≤� = > (1) for � = =Ω (1) , which by Fact 1.2 implies

MMSE≤� ≥ (1 − > (1))E[G2] ≥ (1 − > (1))MMSE≤0,

meaning degree-� polynomials have no signi�cant advantage over

the trivial estimator 5 (. ) ≡ E[G].
For our low-degree upper bounds, we will assume a regime

where E[G]2 = > (E[G2]), implying MMSE≤0 = (1 − > (1))E[G2].
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We will aim to establish either strong recovery, meaning Corr≤� =

1 − > (1) or equivalently MMSE≤� = > (MMSE≤0), or weak re-

covery, meaning Corr≤� = Ω(1) or equivalently MMSE≤� =

(1 − Ω(1))MMSE≤0.

2.2 Planted Submatrix

Definition 2.1 (Planted Submatrix Model). For parameters

_ ≥ 0 and d ∈ [0, 1], observe the = × = matrix . = _\\⊤ + / where

\ ∈ {0, 1}= is i.i.d. Bernoulli(d), and / has entries /8 9 = / 98 ∼
N(0, 1) where {/8 9 } are independent. The goal is to estimate G := \1.

Theorem 2.2. Consider the planted submatrix model. For any

constant n > 0 there exists a constant � ≡ � (n) > 0 for which the

following holds. If

_ ≤ (1 − n) (d
√
4=)−1

√
1 − d and � ≤ _−2/�

then

Corr≤� ≤ �
√

d

1 − d .

The full version [104] also includes a matching upper bound

(added after the STOC submission): Corr≤$ (log=) approaches 1 for
_ above a sharp threshold. Provided d = > (1), the thresholds for _
in the lower and upper bounds match, and the lower bound shows

Corr≤� = > (1) as desired.
As discussed in Section 2.1, the lower bound impliesMMSE≤� ≥

(1 − > (1))MMSE≤0, so that the degree-� MMSE is essentially no

better than the trivialMMSE, which in this case isMMSE≤0 = d−d2.
As pointed out in [101], the (scalar)MMSE≤� that we are working

with can be directly related to its vector analogue (see the full

version [104]).

Discussion. This model has been thoroughly studied. The statisti-

cal limits are well understood [24, 25, 63], as are the computational

limits of hypothesis testing between the planted submatrix model

and the “null” model _ = 0 [21, 75]. Our focus is instead on the

computational limits of estimation, which has a di�erent threshold

(see [101]).

We will focus on the regime d = =W−1 for a constant W ∈ (0, 1).
When W > 1/2, an algorithm based on approximate message pass-

ing (AMP) achieves near-perfect estimation of \ — meaning > (d=)
misclassi�cation errors, with high probability — provided _ ≥
(1 + n) (d

√
4=)−1 [49]. This sharp threshold represents the best

known performance of any poly-time algorithm. Aside from a gen-

eral belief that AMP algorithms are powerful, there were no con-

vincing lower bounds reaching this sharp threshold prior to our

work. Low-degree lower bounds were given in [101, Appendix E]

showing that polynomials of very low degree (a speci�c constant

times log=) fail to reach the sharp threshold, but the bound falls

away from the threshold as the degree increases beyond that.

In the other regime, W < 1/2, the AMP threshold can be beaten

by a very simple algorithm: thresholding the diagonal entries of

the observed matrix gives exact recovery of \ (with high proba-

bility) provided _ ≫ 1 (where throughout we use ≫ to hide a

polylog(=) factor). This regime does not have a sharp threshold but

rather a smooth tradeo� between signal strength and runtime, with

the best known algorithms achieving exact recovery in runtime

exp($̃ (_−2)) for all _ in the range (d=)−1/2 ≪ _ ≤ polylog(=)

[40, 51]; estimation becomes statistically impossible when _ ≪
(d=)−1/2 [25, 63]. These algorithms also work for W ≥ 1/2. The
low-degree lower bounds of [101] rule out degree-� polynomials

when _ ≤ Ω(min{1, (d
√
=)−1}/�2), which captures the poly-time

threshold at _ ≈ 1 but not the speci�c runtime needed when _ ≪ 1.

Prior to our work, the only known lower bounds that capture this

speci�c runtime exp($̃ (_−2)) were of a rather di�erent nature,

ruling out certain Markov chains [14].

Theorem 2.2 gives a comprehensive low-degree lower bound

showing optimality of the algorithms above in a strong sense: if

_ lies below the AMP threshold, namely _ ≤ (1 − n) (d
√
4=)−1,

then the polynomial degree required for estimation is Ω(_−2), sug-
gesting that runtime exp(Ω̃(_−2)) is necessary. This resolves two
di�erent open questions of [101]: pinning down the sharp AMP

threshold and also the precise degree Ω(_−2).
The lower and upper bounds together establish an “all-or-nothing”

phase transition for low-degree polynomials in the regime W > 1/2:
the low-degree MMSE jumps sharply from near-trivial to near-

perfect at the AMP threshold. This can be viewed as a computational

analogue of, e.g., [93]. While the upper bound con�rms that degree-

$ (log=) polynomials succeed above the AMP threshold, it remains

open to show that degree-$̃ (_−2) polynomials succeed below the

AMP threshold for (d=)−1/2 ≪ _ ≪ 1. Success of degree-$ (log=)
polynomials for _ ≫ 1 is established by [101].

The case d = Θ(1) has also been studied [35, 47, 71, 86]. In this

case the relevant scaling for _ is _ = 2/
√
= for a constant 2 . The

best known algorithm is again based on AMP [35, 71], but here its

MSE converges to some nontrivial constant depending on 2, d in

contrast to the all-or-nothing behavior above. It has been shown

that constant-degree polynomials cannot surpass the precise MSE

achieved by AMP [86], and extending this result to higher degree

remains an interesting open question. The bound that we prove

here applies to higher degree polynomials but does not reach the

optimal MSE value. In fact, our bound Corr≤� ≤ �
√
d/(1 − d)

becomes vacuous in the regime d = Θ(1) unless d is a very small

constant.

2.3 Planted Dense Subgraph

Definition 2.3 (Planted Dense Subgraph Model). For param-

eters d ∈ [0, 1] and ?0, ?1 ∈ [0, 1], we observe. = (.8 9 ) ∈ {0, 1}(
[=]
2 )

generated as follows.

• A planted signal \ = (\8 )1≤8≤= ∈ {0, 1}= is drawn with i.i.d.

Bernoulli(d) entries.
• Conditioned on \ , .8 9 ∼ Bernoulli(?0 + (?1 − ?0)\8\ 9 ) is
sampled independently for each 8 < 9 .

The goal is to estimate G := \1.

Without loss of generality we will assume ?0 ≤ ?1, since otherwise

one can consider the complement graph instead. The main result is

as follows.

Theorem 2.4. Consider the planted dense subgraph model with

0 < ?0 ≤ ?1 ≤ 1, and de�ne

_ :=
?1 − ?0√
?0 (1 − ?0)

. (4)
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For any constant n > 0, there exists a constant � ≡ � (n) > 0 for

which the following holds. If

_ ≤ (1 − n) (d
√
4=)−1

√
1 − d and � ≤ _−2/�

then

Corr≤� ≤ �
√

d

1 − d .

Note that this matches our result for planted submatrix (Theo-

rem 2.2) with the substitution (4). The full version [104] also in-

cludes a matching upper bound (added after the STOC submission).

Discussion. Compared to planted submatrix, the planted dense

subgraph problem has a wider variety of di�erent regimes with

di�erent behaviors, depending on the scaling of ?0, ?1. Many sta-

tistical results exist for this model [7, 28, 106], as well as compu-

tational lower bounds for testing [48], and positive algorithmic

results [6, 16, 28, 84]. Computational limits for estimation were

considered by [101], and our result provides a sharper re�nement.

To simplify the discussion, we focus for now on the regime

considered by [48] where 1/=2 ≪ ?0 ≪ 1 and ?1 = 2?0 for a

constant 2 > 1, and furthermore we restrict our attention to the

case 1/
√
= ≪ d ≪ 1 which is most relevant for us due to the

detection-recovery gap (see [21, Conjecture 2.2]). Under these as-

sumptions, the results of [101] already give matching upper and

lower bounds for low-degree polynomials on a coarse scale, namely,

the threshold occurs at =d2?0 = Θ̃(1). This is achieved by a very

simple algorithm that selects vertices of large degree. Our result

re�nes this, showing a low-degree phase transition at the sharp

threshold =d2?0 = [4 (2 − 1)2]−1. To our knowledge, this threshold

has not appeared before in the literature, except in one speci�c

scaling regime considered by [84] where ?0, ?1 = Θ(1/=), d = Θ(1)
and d → 0 after = → ∞. Notably, a matching poly-time algo-

rithm that achieves this threshold has not appeared in the literature

(outside the speci�c regime of [84]). Our upper bound implies an

algorithm of quasi-polynomial runtime =$ (log=) , by directly evalu-

ating the polynomial term-by-term. We expect it should be possible

to give a poly-time algorithm by approximately evaluating this

“tree-structured” polynomial via the “color coding” trick [5, 54],

which has been used by [79, 80] to approximate tree-structured

polynomials. We also expect that a more practical algorithm should

be possible using an AMP approach similar to [36, 49], and we leave

this for future work.

Another aspect in which our result improves on [101] is in the

bound on � , namely, in the above scaling regime of [48] we show

that degree � = Ω(1/?0) is necessary below the sharp threshold.

We expect this is essentially optimal: while it has not appeared in the

literature, an algorithm of runtime exp($̃ (1/?0)) can be obtained

for (d=)−1 ≪ ?0 ≪ 1 by a simple adaptation of the spiked Wigner

results in [40]. The algorithm is based on a brute-force search over

size-ℓ subsets of vertices, with ℓ = Θ̃(1/?0).
We will discuss a few other popular scaling regimes. While not

a focus of our work, a notable special case of the planted dense

subgraph model is the well-known planted clique problem, where

?1 = 1 and ?0 = 1/2. Here, the testing and estimation problems coin-

cide in di�culty, both transitioning from hard to easy at d ≈ 1/
√
=.

More precisely, there is an AMP algorithm for exact recovery above

d = 1/
√
4= [36], but there are in fact better poly-time algorithms

that reach d = n/
√
= for an arbitrary constant n > 0 [4]; so there

is not actually a sharp threshold here but rather a smooth trade-

o� between runtime and clique size. Our result, as it should, does

not indicate a sharp threshold here, as it becomes limited to con-

stant degree in the planted clique regime. Stronger low-degree

lower bounds for planted clique estimation were known previously,

reaching the “correct” degree � ≈ log2 = [101], and the analogous

result for testing was known even earlier (see [52]). However, we

note that planting a clique with 1/
√
= ≪ d ≪ 1 in a dense graph

with ?0 = 1 − 2/(=d2), or equivalently planting an independent set

of size =d with ?0 = 2/(=d2), exhibits a sharp threshold at 2 = 1/4
for estimation by low-degree polynomials, as we establish in The-

orem 2.4. To our knowledge, this sharp phase transition has not

appeared in the previous literature.

Another interesting regime of planted dense subgraph that we

do not focus on is the log-density regime where d ≪ 1/
√
= and

?1 = =−U , ?0 = =−V for constants 0 < U < V [16]. We do not

expect a sharp threshold here, and the low-degree limits for testing

have been characterized using a somewhat delicate conditioning

argument [37]. The known algorithms for estimation match the

lower bounds for testing (which is an easier problem), so we expect

the limits of estimation and testing to coincide. Still, proving optimal

bounds onMMSE≤� remains a di�cult technical challenge, which

we leave for future work.

2.4 Spiked Wigner Model

Definition 2.5 (Spiked Wigner Model). For a parameter _ ≥ 0,

let

- =

√
_

=
**⊤

where* ∈ R=×< with entries i.i.d. from some prior c . Observe

.8 9 = -8 9 + /8 9 for 1 ≤ 8 ≤ 9 ≤ =,
where /8 9 are i.i.d. N(0, 1). The goal is to estimate G := -1,2.

The estimand -1,2 is representative of any o�-diagonal entry of - ,

by symmetry, while the diagonal entries have negligible contribu-

tion to the matrix mean squared error ∥-̂−- ∥2
�
. It is common to put

N(0, 2) instead of N(0, 1) on the diagonal of / , which would only

make the problem harder, so our lower bound still holds (see [101,

Claim A.2]). The upper bound below also remains valid because it

does not use the diagonal entries.

Theorem 2.6. Consider the spiked Wigner model and assume the

prior c satis�es E[c] = 0 and E[c2] = 1.

(a) (Lower Bound) Suppose that for some 2, a > 0, E|c |: ≤ (2:)a:
for any integer : ≥ 1. There exist constants X,� > 0 depending

only on 2, a such that if � ≤ =X then

Corr≤� ≤ �

√√√
<

=

�∑
3=1

_3 .

Consequently,

• if _ < 1 is �xed and � ≤ =X , then Corr≤� ≤ �
√

<_
= (1−_) ,

• if _ = 1 and � ≤ =X , then Corr≤� ≤ �
√
�</=, and

• if _ = $ (1),< ≤ =1−Ω (1) , and� = > (log=), thenCorr≤� =

> (1).
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(b) (Upper Bound) Suppose that  ≡ E[c4] < ∞ and _ ≥ 1 + [,
where  and [ ∈ (0, 1) are constants (not depending on =).

Then there exist a constant 2 ≡ 2 ( ) > 0 and a universal

constant � > 0 such that if< = <= satis�es< = > (=), then
for � ≥ �

[ log(=/<) and large enough =,
Corr≤� ≥ 2[.

Discussion. Most prior work pertains to the case< = $ (1) (and
often< = 1), and we focus on this case for now.We also assume that

_ and the spike prior c are �xed, i.e., not depending on=. The spiked

Wigner model was �rst studied in random matrix theory, where a

sharp phase transition at _ = 1 was discovered in the eigenvalues

and eigenvectors of. [15, 26, 44, 76, 94]. This is known as the “BBP”

transition, by analogy to the similar phase transition discovered by

Baik, Ben Arous, and Péché in the related spiked Wishart model [8].

These results immediately imply an algorithm, based on the <

leading eigenvectors, for weak recovery when _ > 1. Here, weak

recovery means ⟨-̂ , - ⟩/(∥-̂ ∥� ∥- ∥� ) converges to some positive

constant depending on _, where the estimator -̂ is obtained from .

by truncating the eigendecomposition to the< leading terms.When

_ ≤ 1, the< leading eigenvectors fail to achieve weak recovery.

Later, a number of works asked the statistical question of whether

any method can estimate the signal below the BBP threshold [38,

42, 45, 69, 70] (see [83] for a survey), or even detect its presence [11,

43, 85, 95]. Statistically speaking, the answer turns out to be “yes”

for some spike priors c , including su�ciently sparse priors but

not N(0, 1) or Unif ({±1}). However, regardless of the prior (as

long as it does not depend on =), no poly-time algorithm is known

to achieve weak recovery below _ = 1. It has been conjectured

that this hardness is inherent, on the basis of statistical physics

methods, namely AMP and the associated free energy barriers [70]

(see Conjecture 10 in [69]). Low-degree lower bounds show hard-

ness for hypothesis testing against the “null” model (_ = 0) when-

ever _ < 1 [9, 68], providing indirect evidence that the seemingly

more di�cult estimation task should also be hard. We note that

our focus is on weak recovery because strong recovery, meaning

⟨-̂ , - ⟩/(∥-̂ ∥� ∥- ∥� ) → 1, is information-theoretically impossible;

see [69, 96].

Our lower bound shows low-degree hardness of weak recovery

when _ ≤ 1, notably covering the critical case _ = 1. This holds for

all priors c satisfying a mild moment condition (which, for instance,

covers all priors with bounded support). We rule out polynomials

of degree =X for a particular constant X > 0 depending only on

2, a . This resolves the conjecture mentioned above, within the low-

degree framework. The testing results [9] suggest that this hardness

can be extended to any X < 1, and this remains an open problem.

Another consequence of our lower bound is that logarithmic

degree is required, even in the easy regime. Combined with the

upper bound, we know that when _ > 1 is �xed and< ≤ =1−Ω (1) ,
the degree complexity of weak recovery is exactly on the order

� = Θ(log=).
Our results also extend to the case of growing< (a.k.a. symmetric

matrix factorization), which has received recent attention [12, 23,

57, 77, 96, 102]. We show that the above phenomenon persists,

that is, the low-degree threshold for weak recovery remains at

_ = 1 as long as < ≪ =. To our knowledge, no prior work has

explored computational hardness in the growing-< regime, so our

results uncover a new phase transition that was not previously

substantiated. As< grows, the testing and estimation thresholds

separate, so this new phenomenon could not have been uncovered

by studying the testing problem.

Our low-degree upper bound is an extension of [54], which

handles the< = 1 case using self-avoiding walks. We expect that

our estimator can be made into a poly-time algorithm using the

“color coding” trick [5], as in [54]. Alternatively, poly-time weak

recovery based on eigenvectors might be deduced from the spectral

analysis by [57]. More sophisticated poly-time algorithms that aim

to optimize the precise mean squared error are discussed in [23, 96,

102].

Our lower bound becomes vacuous once< = Ω(=), and for good
reason: in this regime, the degree-1 estimator 5 (. ) = .1,2 achieves
correlation

√
<_/=

<_/=+1 , which gives weak recovery as long as _ is of

constant order.

2.5 Stochastic Block Model

Definition 2.7 (Stochastic Block Model). Let @ ≥ 2 be the

number of communities. Let c = (c: ):∈[@ ] ∈ R
@
>0 be a vector whose

entries sum to 1, representing a probability distribution over [@].
Let & ∈ R@×@

>0 be a symmetric matrix with positive entries. Observe

. ∈ {0, 1}(
[=]
2 ) , the adjacencymatrix for a graph, generated as follows.

The community labels f★ = (f★8 )1≤8≤= ∈ [@]= for the = vertices are

drawn as f★8
883∼ c . Conditional on f★, .8 9 ∼ Bernoulli(&f★

8 ,f
★

9
)

is sampled independently for each 8 < 9 . The goal is to estimate

G := &f★

1 ,f
★

2
− E[&f★

1 ,f
★

2
].

Equivalently, the probability of having an edge between 8 and 9 ,

conditioned on f★, is&f★

8 ,f
★

9
/=. We will mostly focus on the sparse

regime with a �xed number of communities, i.e. regard @, c,& as

�xed and consider the limit = → ∞, although our proof for the low-

degree lower bound applies more generally, e.g. when @ ≪ =1/8

in the symmetric SBM where c: ≡ 1/@ and the diagonal (resp.

o�-diagonal) entries of & are the same (see Remark 2.9). In the

sparse regime, we cannot hope to achieve strong recovery, even

information-theoretically, due to the presence of isolated vertices,

and thus we focus on weak recovery.

We are interested in recovering (&f★

8 ,f
★

9
)1≤8< 9≤= , the member-

ship matrix. We have chosen G so that Corr≤� is directly related

to the MMSE

MMSE≤� = inf
5 ∈R[. ]≤�

E[(5 (. ) −&f★

1 ,f
★

2
)2], (5)

as described in Section 2.1. Here, note that the centering term

E[&f★

1 ,f
★

2
] that appears in G has been omitted from (5) because it

does not a�ectMMSE≤� . Note that in the symmetric SBM, estimat-

ing &f★

1 ,f
★

2
is equivalent to estimating 1f★

1 =f
★

2
. In fact, our lower

bound also rules out estimation of (1f★

1 =:
− c: ) (1f★

2 =ℓ
− cℓ ) for

any :, ℓ ∈ [@]; see the full version [104].

De�ne 3 := E[&f★

1 ,f
★

2
] > 0, which is (asymptotically) the aver-

age degree of the observed graph. Assume that the average degree

of each vertex is the same regardless of its community label:

@∑
ℓ=1

&:,ℓcℓ = 3 ∀: ∈ [@] . (6)
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Violation of condition (6) allows for weak recovery, regardless of

@, c,& as long as these are �xed as = → ∞, via simple degree

counting (see e.g. [92, Proposition 4.1]). Thus, we may assume the

condition (6) without loss of generality (see also [3, 10, 54]). De�ne

the stochastic matrix

) :=
1

3
diag(c)& (7)

and let 1 = _1 () ) ≥ |_2 () ) | ≥ . . . ≥ |_@ () ) | denote the eigenvalues
of) in decreasing order of magnitude. A central role will be played

by the parameter

_ := |_2 () ) |.

Theorem 2.8. Consider the stochastic blockmodel with parameters

@, c,& such that Eq. (6) holds.

(a) (Lower Bound) There exist constants X,� > 0 depending only

on @, c,& such that if � ≤ =X then

Corr≤� ≤

√√√
�

=

�∑
C=1

(3_2)C .

Consequently, if 3_2 ≤ 1 and � ≤ =X , then Corr≤� = > (1).
(b) (Upper Bound [3, 54]) If @, c,& are �xed with 3_2 > 1, then for

large enough = we have Corr≤� log= ≥ [ for some constants

� ≡ � (@, c,&) > 0 and [ ≡ [ (@, c,&) > 0.

Remark 2.9. Although Theorem 2.8 is stated only for the sparse

SBM with a constant number of communities, our proof reveals that

if Condition (6) is satis�ed, the low-degree lower bound remains valid

when ∥& ∥∞ ≤ =1−n and
(

@
cmin

)4
3

&min
≤ =1−n for a constant n > 0

where cmin := min:∈[@ ] c: and &min := min:,ℓ∈[@ ] &:,ℓ . Namely,

if 3_2 ≤ 1 − [ for a constant [ > 0 then Corr≤=X = > (1) holds for
some X = X (n, [) > 0.

Note that in De�nition 2.7, we assumed c ∈ R@
>0 and & ∈ R@×@

>0 .

We may assume the former without loss of generality since other-

wise we can remove the empty communities. On the other hand, the

latter condition that the connectivity matrix & has positive entries

is likely a proof artifact, and we leave the question of resolving

the low-degree hardness when some entries of & are 0 as an open

problem.

The upper bound (b) for 3_2 > 1 follows from the upper bounds

derived in theworks [3, 54], whichwe include for completeness. The

main contribution of this work is the lower bound (a) for 3_2 ≤ 1.

Discussion. The stochastic block model (SBM) is a special case

of inhomogeneous random graphs [18] that has been extensively

studied as a model for communities in statistics and social sciences,

see e.g. [17, 50, 100, 103], and for analyzing clustering algorithms in

computer science, see e.g. [30, 32, 41, 59, 82]. See [1, 87] for survey

articles.

Our focus is on the sparse regime where the edge probabilities

are proportional to 1/=, the number of communities @ is held con-

stant, and the objective is weak recovery. In the sparse regime, the

landmark work [34] �rst predicted a sharp computational phase

transition at the so-called Kesten–Stigum (KS) threshold 3_2 = 1

based on a heuristic analysis of the belief propagation (BP) algo-

rithm. First identi�ed by Kesten and Stigum [61] in the context of

multi-type branching processes, the KS threshold 3_2 = 1 has since

played an important role in other areas, including phylogenetic

reconstructions [33, 90, 99].

To simplify the discussion, we focus on the symmetric SBM

where the diagonal (resp. o�-diagonal) entries of & are the same.

A sequence of works has established that poly-time algorithms

achieve weak recovery above the KS threshold 3_2 > 1 for @ =

2 [19, 81, 89] and for general @ ≥ 3 [3]. Below the KS threshold

3_2 ≤ 1, weak recovery is information-theoretically impossible for

@ = 2 [88] or @ = 3, 4 and3 large enough [91]. For @ ≥ 5, a statistical-

computational gap appears: no known poly-time algorithm suc-

ceeds below the KS threshold, yet it is information-theoretically

possible to do so [2, 10, 31]. However, regardless of the prior c or

the probability matrix& , it has been conjectured by [3] based on the

prediction by [34] that no poly-time algorithm can achieve weak

recovery below 3_2 < 1. Low-degree lower bounds for hypothe-

sis testing support the presumed hardness below the KS thresh-

old [9, 54], and the concurrent work [39] makes this precise with

a detection-to-recovery reduction. However, proving bounds on

MMSE≤� remained a di�cult technical challenge that was posed

as an open question by Hopkins and Steurer in one of the �rst

papers on the low-degree framework [54]. We resolve this, proving

that degree-=X polynomials fail to achieve weak recovery below the

sharp KS threshold 3_2 ≤ 1. We show this for a particular constant

X > 0 but we expect the result to hold for any constant X < 1, as

suggested by [39], and we leave this as an open problem.

Prior to our work, coarser low-degree lower bounds for estima-

tion were obtained by [73], who additionally studied the case of a

growing number of communities and the related task of graphon es-

timation. Our proof of Theorem 2.8(a) reveals that, in the symmetric

SBM where the average degree 3 is of order constant, community

detection is low-degree hard below the KS threshold as long as

@ ≪ =1/8 (see Remark 2.9). The work [29] extends our techniques

to show that the KS bound remains the threshold for low-degree

recovery as long as @ ≪ =1/2, and this is tight in the sense that the

KS threshold can be surpassed in polynomial time when @ ≫ =1/2.
The concurrent work [39] also argues hardness of weak recovery

below the KS bound for slowly growing @ = => (1) . Since their ap-
proach exploits hardness of testing, we expect it may not work for

@ = =Ω (1) , due to the large detection-recovery gap that appears

here [29].
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