

SoftwareX 31 (2025) 102269

A
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original Software Publication

NetCDFaster: Optimizing NetCDF data querying and geo-visualization using

high-performance machine learning
Zhenlei Song a , Zhe Zhang a ,∗, Alan Sussman b, Yuhang Xie a, Jorge Brenner c,d, Jikun Liu a

a Department of Geography, Texas A&M University, College Station, TX, USA
b Department of Computer Science, University of Maryland, College Park, MD, USA
c Department of Oceanography, Texas A&M University, College Station, TX, USA
d Gulf of America Coastal Ocean Observing System, College Station, TX, USA

A R T I C L E I N F O

Keywords:
NetCDF
Machine learning
Data visualization
Reading time optimization
Scientific workflow
Cyberinfrastructure

 A B S T R A C T

Extracting and visualizing multidimensional subsets from large NetCDF datasets is often repetitive, time-
consuming, and technically demanding. Existing tools typically trade off between performance and usability,
either optimizing data retrieval at the cost of user experience or providing user-friendly interfaces that struggle
with performance issues. NetCDFaster bridges this gap by integrating a lightweight CatBoost classifier model
into a web-based platform that automatically selects optimal data retrieval strategies. The benchmark results
demonstrate that NetCDFaster reduces end-to-end retrieval times by more than 80%, allowing researchers to
efficiently explore data subsets and visualize results. This significantly enhances the speed and effectiveness
of scientific workflows involving NetCDF data.

Metadata

 Current code version v0.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-25-00210
Permanent link to Reproducible Capsule Frontend: https://hub.docker.com/r/songzl8/netcdfaster-frontend/tags;

Backend: https://hub.docker.com/r/songzl8/netcdfaster-backend/tags

 Legal Code License MIT License
Code versioning system used git
Software code languages, tools, and services used Python for backend; node.js and pnpm for frontend

 Compilation requirements, operating environments & dependencies Python3.8, node.js, pnpm, netCDF4, flask, gunicorn
 If available Link to developer documentation/manual Frontend:

https://github.com/TAMUCIDI/netCDFaster-frontend/blob/main/README.md;
Backend:
https://github.com/TAMUCIDI/netCDFaster-backend/blob/main/README.md

Support email for questions songzl@tamu.edu

1. Motivation and significance

Large multidimensional datasets in climatology, oceanography, and
related fields are commonly stored in NetCDF format [1–3], but extract-
ing and visualizing information from these files remains a key scientific
challenge [4,5]. Researchers often face repetitive and time-consuming
tasks, such as writing custom scripts to extract data subsets and then
switching to separate tools for visualization. On the one hand, high-
performance I/O libraries (e.g., Parallel NetCDF [6]) and distributed

∗ Corresponding author.
E-mail addresses: songzl@tamu.edu (Z. Song), zhezhang@tamu.edu (Z. Zhang), als@cs.umd.edu (A. Sussman), xieyuhang1997@tamu.edu (Y. Xie),

Jorge.brenner@gcoos.org (J. Brenner), jikun@tamu.edu (J. Liu).

frameworks (e.g., SciHadoop [7]) can accelerate data access in special-
ized environments. However, such tools require complex setup (parallel
file systems, distributed clusters) and typically lack user-friendly in-
terfaces, making them impractical for many scientists [8–10]. While
graphical applications for NetCDF visualization exist, they generally
utilize default data access methods lacking optimization, which sig-
nificantly hampers performance on large datasets [11]. There remains
a critical gap: the lack of lightweight, web-based tools that integrate
https://doi.org/10.1016/j.softx.2025.102269
Received 30 March 2025; Received in revised form 20 June 2025; Accepted 8 July
vailable online 9 August 2025
352-7110/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
 2025

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://orcid.org/0009-0007-5205-3808
https://orcid.org/0000-0001-7108-182X
https://github.com/ElsevierSoftwareX/SOFTX-D-25-00210
https://hub.docker.com/r/songzl8/netcdfaster-frontend/tags
https://hub.docker.com/r/songzl8/netcdfaster-backend/tags
https://github.com/TAMUCIDI/netCDFaster-frontend/blob/main/README.md
https://github.com/TAMUCIDI/netCDFaster-backend/blob/main/README.md
mailto:songzl@tamu.edu
mailto:songzl@tamu.edu
mailto:zhezhang@tamu.edu
mailto:als@cs.umd.edu
mailto:xieyuhang1997@tamu.edu
mailto:Jorge.brenner@gcoos.org
mailto:jikun@tamu.edu
https://doi.org/10.1016/j.softx.2025.102269
https://doi.org/10.1016/j.softx.2025.102269
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2025.102269&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Z. Song et al. SoftwareX 31 (2025) 102269
Fig. 1. System-level design overview of the NetCDFaster architecture.

fast, optimized data retrieval with interactive visualization in a unified,
seamless workflow.

NetCDFaster fills this gap by offering a streamlined, web-based
solution for NetCDF data access and visualization. Its user-friendly
interface supports dataset upload, variable subsetting, and real-time
plotting, all within a single platform. Behind the scenes, it uses a
lightweight machine learning model (CatBoost [12]) to automatically
determine the most efficient data reading interface and parameter
settings for each query. By automatically tuning chunking strategies,
caching behavior, and API selection, NetCDFaster enables fast data
access without requiring expert knowledge or additional coding.

This unified approach delivers substantial and measurable per-
formance improvements. Benchmark experiments show that retrieval
times for identical NetCDF queries can vary by more than 50 times,
depending on the interface and parameter configurations, underscoring
the importance of optimized access strategies. By consistently select-
ing near-optimal settings, NetCDFaster reduces end-to-end data access
times by over 80%, achieving near-peak performance with minimal
overhead. In practical terms, this enables researchers to move from
raw data to visualization much more quickly, accelerating the analysis
cycle and supporting more interactive, insight-driven exploration of
large-scale geoscientific datasets.

2. Software description

2.1. Software architecture

NetCDFaster’s architecture is modular, splitting the front-end and
back-end into dedicated components to reduce communication over-
head and boost performance, as shown in Fig. 1. NetCDF data files
supported in this project include files in NetCDF3, NetCDF4 formats,
and in Climate and Forecast (CF), Cooperative Ocean-Atmosphere Re-
search Data Service (COARDS) data conventions [13,14]. The web-
based front-end handles all user interactions, built with Next.js [15]
and React [16] for a responsive interface. This enables users to upload
NetCDF files, inspect metadata (including coordinates and variables),
and define subset queries. Heavy data processing is delegated to the
Flask [17]-based back-end, which parses uploaded files and compiles
the characteristics of the data set alongside the user’s specified ranges

2
into an input feature vector for machine learning. A CatBoost [12] clas-
sifier model then analyzes this feature vector and predicts the optimal
method to execute the query (for example, suggesting whether to use
sequential or parallel reads), as shown in Fig. 2. Using these recom-
mendations, the back-end performs NetCDF data extraction (leveraging
parallel computation through Dask [18] when appropriate) to quickly
retrieve and aggregate the requested data. The resulting data subset
is finally returned to the front-end for visualization, allowing users to
efficiently explore the queried multidimensional data in real-time. The
interface parameter set refers to the specific software interface and
configuration used to execute subset querying tasks. The sequential
interface represents the default querying method provided by Xarray,
which operates in a single-threaded manner. In contrast, the 𝑀𝑇 _𝐴𝑙𝑙
and 𝑀𝑇 _𝑋𝑋 interfaces correspond to eight distinct parallel multi-
threading configurations, each defined by different combinations of
Dask-based settings. These multi-threaded strategies are detailed in the
Table 2. The technical details are as follows:

1. Front-end: The client interface is built with Next.js and Re-
act, providing a dynamic web interface for data upload and
visualization.

2. Back-end: The server side uses Python’s Flask framework to
handle API requests and coordinate data processing logic. The
‘‘model’’ layer performs efficient NetCDF reading using Dask for
parallelized queries.

3. Machine Learning Module: A CatBoost classifier is integrated
into the back-end to optimize the execution of query tasks.
Trained on NetCDF metadata and historical query behavior,
the model intelligently recommends optimal query parameters,
selects the fastest data access interface, and determines the
most suitable Dask multi-threading policy based on the dataset’s
properties and user-defined inputs.

4. Deployment: NetCDFaster is containerized using Docker [19],
allowing the application and all its dependencies to be bundled
together for consistent deployment across diverse computing
environments. The container is deployed on DigitalOcean [20], a
software-as-a-service (SaaS) platform, providing scalability and
resilience under heavy workloads.

Z. Song et al. SoftwareX 31 (2025) 102269
Fig. 2. Illustration of the dynamic interface parameter classifier in NetCDFaster.
Fig. 3. Illustration of NetCDFaster web application user interface design.

Table 1
Functions NetCDFaster supported.
 Functionalities NetCDFaster
 File Upload ✓
 Metainfo Preview ✓
 Custom Coord Range Query ✓
 Dynamic Querying Policy Choice ✓
 Online Visualization ✓

Several stages of NetCDFaster’s development, such as environment
setup, training data collection, and read-time evaluation, were carried
out on high-performance computing systems. High-performance com-
puting environments offered key advantages that enhanced the tool’s
performance and development efficiency. First, the distributed operat-
ing and file systems in high-performance computing settings provided
additional speedups for multi-threading read operations using Dask
within Xarray. Second, the module-based environment management
system simplified dependency and version control, which is critical for
ensuring the stability and reproducibility of the platform.

2.2. Software functionalities

Table 1 illustrates the major functionalities of NetCDFaster. 1
3
2.2.1. Data uploading & parsing
NetCDFaster provides an interactive web interface for importing

NetCDF datasets, retrieval, and visualization. Users can upload NetCDF
files directly through the browser. Upon upload, the system immedi-
ately parses the file’s metadata, including spatial coordinates, variable
definitions, and attributes, without loading the entire dataset into
memory.

Unlike conventional metadata viewers that display raw attribute
lists, NetCDFaster organizes metadata hierarchically:

• File-level: Format version (NetCDF3/4), conventions (CF/COARDS
[13,14]), global attributes

• Variable-level: Data types, chunking patterns, compression sta-
tus, valid ranges

• Coordinates: Dimension lengths, coordinate values
NetCDFaster’s UI/UX designs enabled users to visually verify coordinate
ranges and identify target variables by their coordinates, allowing them
to pre-configure subset parameters before executing querying tasks.

2.2.2. Query execution & optimization
When executing a data query, NetCDFaster enables users to de-

fine spatial (longitude and latitude coordinate) and temporal (time
coordinate) ranges, through the interface. Upon query submission, a
CatBoost classifier predicts the optimal data retrieval policy from 9

Z. Song et al.

SoftwareX 31 (2025) 102269
Table 2
Interface parameter set explanations.
 Interface Params Parallel Explanation
 Name Setting
 Sequential None Xarray’s default querying setting with

no parallel chunking

 MT_All_2 time: 2
lon: 2
lat: 2

multi-threading with 2 chunks on all
coordinates

 MT_All_4 time: 4
lon: 4
lat: 4

multi-threading with 4 chunks on all
coordinates

 MT_X_2 time: –
lon: 2
lat: –

multi-threading with 2 chunks only
on longitude

 MT_Y_2 time: –
lon: –
lat: 2

multi-threading with 2 chunks only
on latitude

 MT_T_2 time: 2
lon: –
lat: –

multi-threading with 2 chunks only
on time

 MT_XY_2 time: –
lon: 2
lat: 2

multi-threading with 2 chunks on
longitude and latitude

 MT_XT_2 time: 2
lon: 2
lat: –

multi-threading with 2 chunks on
longitude and time

 MT_YT_2 time: 2
lon: –
lat: 2

multi-threading with 2 chunks on
latitude and time

candidate strategies (1 sequential and 8 multi-threading configurations
with specific chunking parameters, as shown in Table 2). This classifier
was trained on over 55,000 query tasks across more than 200 NetCDF
datasets (including NetCDF3/4 datasets in CF [13] and COARDS [14]
conventions), using file attributes, variable metadata, and coordinate
ranges as input features to recommend the fastest extraction method.
The backend then executes the subset extraction with the selected
policy. When the classifier identifies multi-threading as optimal NetCD-
Faster partitions the task via Dask [18] across CPU cores. Note that
policy selection relies on empirical patterns; explicit decision thresholds
are unavailable due to model interpretability limits. This adaptive
pipeline maximizes efficiency without requiring manual performance
tuning.

2.2.3. Visualization & interaction
Once the data subset is retrieved, NetCDFaster visualizes the results

using the same web interface — no separate tools or downloads re-
quired. The front-end GUI is split into two primary sections: a control
panel for user input on the left, and an output display on the right that
renders the requested data subset. The extracted subset can be explored
through interactive plots that respond in real-time to user interactions.
For example, if a user requests a spatio-temporal subset of a climate
variable, the application can display an interactive map where one
can zoom and pan to examine regional details, or a time-series chart
with tool tips to inspect precise values. These built-in visualization
capabilities allow users to investigate patterns and anomalies in the
data subset on the fly. By integrating data retrieval with immediate
graphical exploration, NetCDFaster eliminates the need for external
visualization software in the workflow. This lowers the barrier for
scientists to analyze their data, aligning with open-science goals of
making geospatial data more accessible and readily usable straight from
the source.

Although there are many NetCDF data file hosting platforms avail-
able [21,22], NetCDFaster offers a different user experience. The differ-
ences between its features and those of other widely used data hosting
platforms are shown in Table 3.
4
Table 3
Function comparison between NetCDFaster and other platforms.
 THREDDS [21] ERDDAP [22] NetCDFaster
 Meta Info
Preview

✓ ✓ ✓

 Coordinate
Subset
Querying

✓ ✓ ✓

 Data Hosting ✓ ✓ ×
 Dynamic
Query Interface
Parameters

× × ✓

 Online
Visualization

× Only with Grid-
dap

✓

3. Illustrative examples

In this section, we demonstrate how to perform a multidimensional
range query on a variable from a sample NetCDF file and visualize
the resulting subset using the web application. First, we launch the
front-end and back-end containers on the deployment server. Then,
we upload the example NetCDF file to NetCDFaster. The test NetCDF
file [23] contains the surface data for July 2002 from the ECMWF
Reanalysis v5 (ERA5) [24] 40 Years Re-Analysis, daily fields. NetCD-
Faster file parsing module will parse the meta information first and
return variable attributes and coordinate ranges back to the front-
end (as shown in the left subplot of Fig. 3), marked as feature set 1.
Then users can specify their interested variable and the corresponding
coordinate ranges (as shown in the widgets of the right subplot in Fig.
3) to query and visualize, marked as feature set 2. The front-end passes
an HTTP POST request (composed of feature sets 1 and 2) to the back-
end querying module. The extracted features are passed to the machine
learning module, which predicts the optimal querying interface along
with the corresponding parameters. The querying module then uses
this recommendation to retrieve the specified data subset, enhancing
read efficiency. Finally, the queried data is returned to the front-end
for visualization, as illustrated in the right subplot of Fig. 3.

4. Impact

NetCDFaster fundamentally transforms multidimensional scientific
data workflows by dramatically accelerating end-to-end processing.
To quantify its advantages, we benchmarked NetCDFaster against two
standard approaches: the serial-only NetCDF4 Python API [25] and
the multi-interface Xarray library. Our evaluation leveraged more than
200 variables from ECMWF Reanalysis v5 (ERA5) [24] and Global
Ocean Data Assimilation System (GODAS) [26] datasets (2 MB–2.5 GB),
filtered to retain only three-dimensional variables (time/longitude/
latitude). For each variable, we generated 50 randomized subset queries
spanning diverse coordinate ranges, executing more than 10,000 tasks
through three methods: (1) NetCDF4’s baseline APIs [25]; (2) 9 Xar-
ray’s interfaces (1 sequential and 8 parallel configurations with dis-
tinct chunking strategies, detailed in Table 2), and (3) NetCDFaster
dynamically selects the optimal Xarray interface using a CatBoost
classifier.

The results showed promising performance by comparing with
NetCDF4’s serial approach. For large datasets (larger than 1 GB),
NetCDFaster has demonstrated median speedups of 6.96 times, as illus-
trated in the Fig. 5. For smaller datasets (smaller than 500MB), NetCD-
Faster performed close to NetCDF4, as shown in Fig. 4. These findings
highlight NetCDFaster’s superior parallel acceleration capabilities in
processing large datasets, which are not supported by NetCDF4.

When compared to Xarray’s full suite of interfaces, NetCDFaster’s
end-to-end time 𝑡𝑒2𝑒 (comprising model prediction time 𝑡𝑝, and op-
timized read time 𝑡𝑟 approached the theoretical optimum 𝑡𝑚𝑖𝑛 (the

Z. Song et al. SoftwareX 31 (2025) 102269
Fig. 4. Comparison of time cost (log scale) between NetCDFaster and NetCDF4 Python APIs on small datasets (≤ 500MB).
Fig. 5. Comparison of time cost (log scale) between NetCDFaster and NetCDF4 Python APIs on large datasets (≥ 1 GB).

fastest of Xarray’s nine strategies), yielding a median ratio 𝑡𝑒2𝑒∕𝑡𝑚𝑖𝑛
of 1.08. Crucially, NetCDFaster outperformed Xarray’s average perfor-
mance 𝑡𝑚𝑒𝑎𝑛 by over 10% in 90% of all queries and by up to 80%
in worst-case scenarios, as shown in Fig. 6, while adding negligible
prediction overhead (0.2–6 ms).

𝑡𝑒2𝑒 = 𝑡𝑟 + 𝑡𝑝

𝑡𝑚𝑖𝑛 = min
𝑖∈[0,8]

𝑡𝑟𝑖

𝑡𝑚𝑎𝑥 = max
𝑖∈[0,8]

𝑡𝑟𝑖

𝑡𝑚𝑒𝑎𝑛 =
8
∑

𝑖=0
𝑡𝑟𝑖∕9

(1)

Where, 𝑡𝑟𝑖 is the reading time cost using the 𝑖th Xarray’s interface in
Table 2; 𝑡𝑝 is the prediction time cost using the optimal model; 𝑡𝑟 is
the reading time using the predicted class.

NetCDFaster enables researchers to iterate on data exploration six to
nine times faster than with conventional tools. By leveraging machine
learning to automate interface selection, it eliminates the need for
5
manual tuning while delivering near-peak theoretical performance.
More than just a speed enhancement, NetCDFaster offers a web-based
platform that abstracts complex I/O optimizations, integrates acceler-
ated data retrieval, and supports real-time visualization—positioning it
as a practical tool for daily scientific workflows. Crucially, NetCDFaster
is built to exploit high-performance computing (HPC) environments: it
utilizes distributed file systems for Dask-based multi-threading, ensures
version compatibility through robust module dependency management,
and supports large-scale training and evaluation via Slurm job schedul-
ing. This work has been validated across full HPC workflows, from
processing to model deployment, which enables integration into the
modern scientific cyberinfrastructure (CI). This extensibility empowers
collaborative, data-intensive research, allowing scientists to focus on
discovery over data-handling bottlenecks while taking advantage of
scalable compute resources.

5. Conclusions

Previous approaches, such as Parallel NetCDF[6], NetCDF4 APIs
[25], in multidimensional data range indexing are often constrained

Z. Song et al.

m

SoftwareX 31 (2025) 102269
Fig. 6. Box plot comparison of time cost ratios: Total time cost to minimum time cost (𝑡𝑒2𝑒∕𝑡𝑚𝑖𝑛), average time cost to minimum time cost (𝑡𝑚𝑒𝑎𝑛∕𝑡𝑚𝑖𝑛), and maximum time cost to
inimum time cost (𝑡𝑚𝑎𝑥∕𝑡𝑚𝑖𝑛) using the NetCDFaster optimal classifier.

by a key limitation: they are typically optimized for a narrow class of
tasks, leading to inefficiencies when applied across diverse configura-
tions. NetCDFaster addresses this challenge by offering a CI-integrated,
web-based platform that accepts flexible task configurations and user
inputs. At the core of NetCDFaster’s design is a CatBoost classification
model that predicts the optimal data access interface and corresponding
parameter settings, significantly reducing read times across diverse
multidimensional indexing scenarios. This approach introduces a novel,
machine learning–driven methodology for optimizing read-time per-
formance in complex data access workflows. By automating interface
selection and tuning, NetCDFaster streamlines the analysis pipeline,
enabling faster and more efficient data exploration and visualization
across a broad range of scientific domains.

The current version of NetCDFaster is optimized for rectilinear grids
with 1D longitude and latitude coordinates. This design choice reflects
the reality that most publicly available NetCDF datasets, particularly
those following CF or COARDS conventions, use simple 1D coordinate
systems at moderate spatial resolutions. Given that our primary users
work with large-scale, regularly gridded atmospheric, oceanographic,
and geospatial data, efficient 1D slicing was prioritized for this initial
release. We plan to incorporate full curvilinear support in a future
version, including front-end visualization enhancements and backend
slicing logic tailored to 2D coordinate structures.

Finally, Dask is employed for multi-threading querying when the
CatBoost classification model identifies it as the optimal interface for a
given task. However, there is currently no explicit threshold or rule for
when Dask is chosen, as the current CatBoost classifier model cannot
provide interpretable boundaries for the interface selection. In the
future, we plan to enhance the model’s interpretability to offer more
transparent decision-making.

CRediT authorship contribution statement

Zhenlei Song: Writing – review & editing, Writing – original draft,
Visualization, Validation, Software, Resources, Project administration,
Methodology, Investigation, Formal analysis, Data curation, Conceptu-
alization. Zhe Zhang: Writing – review & editing, Supervision, Project
administration, Methodology, Investigation, Funding acquisition, Con-
ceptualization. Alan Sussman: Writing – review & editing, Supervision,
Methodology, Conceptualization. Yuhang Xie: Writing – review &
editing. Jorge Brenner: Writing – review & editing. Jikun Liu: Writing
– review & editing, Investigation.
6
Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Zhe Zhang reports financial support was provided by National Science
Foundation. If there are other authors, they declare that they have
no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

Acknowledgments

This material is based on work funded by the National Science Foun-
dation under Grant No. #2137684 #2019129 #2321069 #2339174
#2519476 #2526748.

References

[1] Rew R, Davis G. NetCDF: an interface for scientific data access. IEEE Comput
Graph Appl 1990;10:76–82. http://dx.doi.org/10.1109/38.56302.

[2] Gordov E, Shiklomanov A, Okladnikov I, Prusevich A, Titov A. Development of
Distributed Research Center for analysis of regional climatic and environmental
changes. IOP Conf Ser: Earth Environ Sci 2016;48:012033. http://dx.doi.org/10.
1088/1755-1315/48/1/012033.

[3] Guo Q, Zhang Y, He Z, Min Y. Web-based data integration and interop-
erability for a massive spatial-temporal dataset of the Heihe river basin
escience framework. Adv Meteorol 2015;1:1–13. http://dx.doi.org/10.1155/
2015/982062.

[4] Rieder B. Studying facebook via data extraction. In: Proceedings of the 5th
annual ACM web science conference. 2013, http://dx.doi.org/10.1145/2464464.
2464475, URL https://dl.acm.org/citation.cfm?id=2464475.

[5] Singh SS, Kumawate B, Vaishnav A, Kumar L, Bushra S, Teitsana DS. Exploring
data visualization techniques for large datasets. In: 2024 1st international
conference on advances in computing, com- munication and networking. IEEE;
2024, p. 1318–23. http://dx.doi.org/10.1109/ICAC2N63387.2024.10895382.

[6] Li J-W, Liao W-k, Choudhary A, Ross R, Thakur R, Gropp W, Latham R,
Siegel AF, Gallagher B, Zingale M. Parallel netCDF. In: SC ’03: Proceedings
of the 2003 ACM/IEEE conference on supercomputing (11 2003). 2003, http:
//dx.doi.org/10.1145/1048935.1050189.

[7] Buck JB, Watkins N, LeFevre J, Ioannidou K, Maltzahn C, Polyzotis N, Brandt S.
SciHadoop. In: SC ’11: Proceedings of 2011 international conference for high
performance computing, networking, storage and analysis (11 2011). 2011,
http://dx.doi.org/10.1145/2063384.2063473.

[8] Feng K, Sun X, Yang X, Zhou S. SciDP: Support HPC and big data applications
via integrated scientific data processing. In: 2018 IEEE International Conference
on Cluster Computing (CLUSTER). 2018, p. 114–23. http://dx.doi.org/10.1109/
CLUSTER.2018.00023.

http://dx.doi.org/10.1109/38.56302
http://dx.doi.org/10.1088/1755-1315/48/1/012033
http://dx.doi.org/10.1088/1755-1315/48/1/012033
http://dx.doi.org/10.1088/1755-1315/48/1/012033
http://dx.doi.org/10.1155/2015/982062
http://dx.doi.org/10.1155/2015/982062
http://dx.doi.org/10.1155/2015/982062
http://dx.doi.org/10.1145/2464464.2464475
http://dx.doi.org/10.1145/2464464.2464475
http://dx.doi.org/10.1145/2464464.2464475
https://dl.acm.org/citation.cfm?id=2464475
http://dx.doi.org/10.1109/ICAC2N63387.2024.10895382
http://dx.doi.org/10.1145/1048935.1050189
http://dx.doi.org/10.1145/1048935.1050189
http://dx.doi.org/10.1145/1048935.1050189
http://dx.doi.org/10.1145/2063384.2063473
http://dx.doi.org/10.1109/CLUSTER.2018.00023
http://dx.doi.org/10.1109/CLUSTER.2018.00023
http://dx.doi.org/10.1109/CLUSTER.2018.00023

Z. Song et al.

SoftwareX 31 (2025) 102269
[9] Wilson B, Palamuttam R, Whitehall K, Mattmann C, Goodman A, Boustani M,
Shah S, Zimdars P, Ramirez P. SciSpark: Highly interactive inmemory science
data analytics. In: 2016 IEEE International Conference on Big Data (Big Data).
2016, p. 2964–73. http://dx.doi.org/10.1109/BigData.2016.7840948.

[10] Biookaghazadeh S, Zhou S, Zhao M. Kaleido: Enabling efficient scientific data
processing on bigdata systems. In: 2017 International Conference on Networking,
Architecture, and Storage (NAS). 2017, p. 1–10. http://dx.doi.org/10.1109/NAS.
2017.8026864.

[11] Su Y, Agrawal G, Woodring J. 2012 41st international conference on parallel
processing. In: Indexing and parallel query processing support for visualizing
climate datasets. 2012, p. 249–58. http://dx.doi.org/10.1109/ICPP.2012.33.

[12] Prokhorenkova LO, Gusev G, Vorobev A, Dorogush AV, Gulin A. CatBoost:
unbiased boosting with categorical features. 2017, http://dx.doi.org/10.48550/
arxiv.1706.09516, ArXiv (Cornell University).

[13] Eaton B, Gregory J, Drach B, Taylor K, Hankin S, Caron J. NetCDF climate and
forecast (CF) metadata conventions. CF Community 2024. http://dx.doi.org/10.
5281/zenodo.14275599, URL https://zenodo.org/records/14275599.

[14] Laboratory PME. COARDS NetCDF conventions | science data integration group
- ferret support. 2024, URL https://ferret.pmel.noaa.gov/Ferret/documentation/
coards-netcdf-conventions.

[15] Vercel. Next.js by vercel - the react framework. 2024, URL https://nextjs.org/.
[16] React. React – a JavaScript library for building user interfaces. 2022, URL

https://reactjs.org/.
[17] Flask. Welcome to flask — Flask documentation (2.0.x). 2024, URL https://flask.

palletsprojects.com.
[18] core developers D. Dask | scale the python tools you love. 2024, URL https:

//www.dask.org/.
7
[19] Merkel D. Docker: lightweight linux containers for consistent development and
deployment. Linux J 2014;2014(239).

[20] DigitalOcean. API overview | DigitalOcean documentation. 2025, URL https:
//docs.digitalocean.com/reference/api/.

[21] UCAR. Unidata | THREDDS data server (TDS). 2023, URL https://www.unidata.
ucar.edu/software/tds/.

[22] Wilson C, Robinson D, Simons RA. Erddap: Providing easy access to remote
sensing data for scientists and students. In: IGARSS 2020- 2020 IEEE interna-
tional geoscience and remote sensing symposium. 2020, http://dx.doi.org/10.
1109/igarss39084.2020.9323962.

[23] UNIDATA. Example netcdf files. 2023, URL https://www.unidata.ucar.edu/
software/netcdf/examples/files.html.

[24] Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J,
Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S,
Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, Chiara G,
Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M,
Geer A, Haimberger L, Healy S, Hogan RJ, Hólm E, Janisková M, Keeley S,
Laloyaux P, Lopez P, Lupu C, Radnoti G, Rosnay P, Rozum I, Vamborg F,
Villaume S, Thépaut J. The ERA5 global reanalysis. Q J R Meteorol Soc 2020;146.
http://dx.doi.org/10.1002/qj.3803.

[25] UCAR. netCDF4 API documentation. 2019, URL https://unidata.github.io/
netcdf4-python/.

[26] Behringer DW, Ji M, Leetmaa A. An improved coupled model for ENSO predic-
tion and implications for ocean initialization. Part I: The ocean data assimilation
system. Mon Weather Rev 1998;126:1013–21. http://dx.doi.org/10.1175/1520-
0493(1998)126<1013:aicmfe>2.0.co;2.

http://dx.doi.org/10.1109/BigData.2016.7840948
http://dx.doi.org/10.1109/NAS.2017.8026864
http://dx.doi.org/10.1109/NAS.2017.8026864
http://dx.doi.org/10.1109/NAS.2017.8026864
http://dx.doi.org/10.1109/ICPP.2012.33
http://dx.doi.org/10.48550/arxiv.1706.09516
http://dx.doi.org/10.48550/arxiv.1706.09516
http://dx.doi.org/10.48550/arxiv.1706.09516
http://dx.doi.org/10.5281/zenodo.14275599
http://dx.doi.org/10.5281/zenodo.14275599
http://dx.doi.org/10.5281/zenodo.14275599
https://zenodo.org/records/14275599
https://ferret.pmel.noaa.gov/Ferret/documentation/coards-netcdf-conventions
https://ferret.pmel.noaa.gov/Ferret/documentation/coards-netcdf-conventions
https://ferret.pmel.noaa.gov/Ferret/documentation/coards-netcdf-conventions
https://nextjs.org/
https://reactjs.org/
https://flask.palletsprojects.com
https://flask.palletsprojects.com
https://flask.palletsprojects.com
https://www.dask.org/
https://www.dask.org/
https://www.dask.org/
http://refhub.elsevier.com/S2352-7110(25)00236-5/sb19
http://refhub.elsevier.com/S2352-7110(25)00236-5/sb19
http://refhub.elsevier.com/S2352-7110(25)00236-5/sb19
https://docs.digitalocean.com/reference/api/
https://docs.digitalocean.com/reference/api/
https://docs.digitalocean.com/reference/api/
https://www.unidata.ucar.edu/software/tds/
https://www.unidata.ucar.edu/software/tds/
https://www.unidata.ucar.edu/software/tds/
http://dx.doi.org/10.1109/igarss39084.2020.9323962
http://dx.doi.org/10.1109/igarss39084.2020.9323962
http://dx.doi.org/10.1109/igarss39084.2020.9323962
https://www.unidata.ucar.edu/software/netcdf/examples/files.html
https://www.unidata.ucar.edu/software/netcdf/examples/files.html
https://www.unidata.ucar.edu/software/netcdf/examples/files.html
http://dx.doi.org/10.1002/qj.3803
https://unidata.github.io/netcdf4-python/
https://unidata.github.io/netcdf4-python/
https://unidata.github.io/netcdf4-python/
http://dx.doi.org/10.1175/1520-0493(1998)126<1013:aicmfe>2.0.co;2
http://dx.doi.org/10.1175/1520-0493(1998)126<1013:aicmfe>2.0.co;2
http://dx.doi.org/10.1175/1520-0493(1998)126<1013:aicmfe>2.0.co;2

	NetCDFaster: Optimizing NetCDF data querying and geo-visualization using high-performance machine learning
	Metadata
	Motivation and significance
	Software description
	Software architecture
	Software functionalities
	Data Uploading & Parsing
	Query Execution & Optimization
	Visualization & Interaction

	Illustrative examples
	Impact
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

