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 A B S T R A C T

Extracting and visualizing multidimensional subsets from large NetCDF datasets is often repetitive, time-
consuming, and technically demanding. Existing tools typically trade off between performance and usability, 
either optimizing data retrieval at the cost of user experience or providing user-friendly interfaces that struggle 
with performance issues. NetCDFaster bridges this gap by integrating a lightweight CatBoost classifier model 
into a web-based platform that automatically selects optimal data retrieval strategies. The benchmark results 
demonstrate that NetCDFaster reduces end-to-end retrieval times by more than 80%, allowing researchers to 
efficiently explore data subsets and visualize results. This significantly enhances the speed and effectiveness 
of scientific workflows involving NetCDF data.
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1. Motivation and significance

Large multidimensional datasets in climatology, oceanography, and 
related fields are commonly stored in NetCDF format [1–3], but extract-
ing and visualizing information from these files remains a key scientific 
challenge [4,5]. Researchers often face repetitive and time-consuming 
tasks, such as writing custom scripts to extract data subsets and then 
switching to separate tools for visualization. On the one hand, high-
performance I/O libraries (e.g., Parallel NetCDF [6]) and distributed
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frameworks (e.g., SciHadoop [7]) can accelerate data access in special-
ized environments. However, such tools require complex setup (parallel 
file systems, distributed clusters) and typically lack user-friendly in-
terfaces, making them impractical for many scientists [8–10]. While 
graphical applications for NetCDF visualization exist, they generally 
utilize default data access methods lacking optimization, which sig-
nificantly hampers performance on large datasets [11]. There remains
a critical gap: the lack of lightweight, web-based tools that integrate 
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Fig. 1. System-level design overview of the NetCDFaster architecture.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

fast, optimized data retrieval with interactive visualization in a unified,
seamless workflow.

NetCDFaster fills this gap by offering a streamlined, web-based
solution for NetCDF data access and visualization. Its user-friendly 
interface supports dataset upload, variable subsetting, and real-time 
plotting, all within a single platform. Behind the scenes, it uses a
lightweight machine learning model (CatBoost [12]) to automatically 
determine the most efficient data reading interface and parameter 
settings for each query. By automatically tuning chunking strategies,
caching behavior, and API selection, NetCDFaster enables fast data 
access without requiring expert knowledge or additional coding.

This unified approach delivers substantial and measurable per-
formance improvements. Benchmark experiments show that retrieval
times for identical NetCDF queries can vary by more than 50 times, 
depending on the interface and parameter configurations, underscoring 
the importance of optimized access strategies. By consistently select-
ing near-optimal settings, NetCDFaster reduces end-to-end data access 
times by over 80%, achieving near-peak performance with minimal
overhead. In practical terms, this enables researchers to move from 
raw data to visualization much more quickly, accelerating the analysis 
cycle and supporting more interactive, insight-driven exploration of 
large-scale geoscientific datasets.

2. Software description

2.1. Software architecture

NetCDFaster’s architecture is modular, splitting the front-end and 
back-end into dedicated components to reduce communication over-
head and boost performance, as shown in Fig.  1. NetCDF data files 
supported in this project include files in NetCDF3, NetCDF4 formats, 
and in Climate and Forecast (CF), Cooperative Ocean-Atmosphere Re-
search Data Service (COARDS) data conventions [13,14]. The web-
based front-end handles all user interactions, built with Next.js [15] 
and React [16] for a responsive interface. This enables users to upload 
NetCDF files, inspect metadata (including coordinates and variables), 
and define subset queries. Heavy data processing is delegated to the 
Flask [17]-based back-end, which parses uploaded files and compiles 
the characteristics of the data set alongside the user’s specified ranges
 

2 
into an input feature vector for machine learning. A CatBoost [12] clas-
sifier model then analyzes this feature vector and predicts the optimal 
method to execute the query (for example, suggesting whether to use 
sequential or parallel reads), as shown in Fig.  2. Using these recom-
mendations, the back-end performs NetCDF data extraction (leveraging
parallel computation through Dask [18] when appropriate) to quickly 
retrieve and aggregate the requested data. The resulting data subset 
is finally returned to the front-end for visualization, allowing users to
efficiently explore the queried multidimensional data in real-time. The 
interface parameter set refers to the specific software interface and 
configuration used to execute subset querying tasks. The sequential
interface represents the default querying method provided by Xarray, 
which operates in a single-threaded manner. In contrast, the 𝑀𝑇 _𝐴𝑙𝑙
and 𝑀𝑇 _𝑋𝑋 interfaces correspond to eight distinct parallel multi-
threading configurations, each defined by different combinations of 
Dask-based settings. These multi-threaded strategies are detailed in the
Table  2. The technical details are as follows:

1. Front-end:  The client interface is built with Next.js and Re-
act, providing a dynamic web interface for data upload and
visualization.

2. Back-end:  The server side uses Python’s Flask framework to
handle API requests and coordinate data processing logic. The 
‘‘model’’ layer performs efficient NetCDF reading using Dask for
parallelized queries.

3. Machine Learning Module:  A CatBoost classifier is integrated 
into the back-end to optimize the execution of query tasks. 
Trained on NetCDF metadata and historical query behavior, 
the model intelligently recommends optimal query parameters,
selects the fastest data access interface, and determines the 
most suitable Dask multi-threading policy based on the dataset’s
properties and user-defined inputs.

4. Deployment:  NetCDFaster is containerized using Docker [19], 
allowing the application and all its dependencies to be bundled 
together for consistent deployment across diverse computing
environments. The container is deployed on DigitalOcean [20], a
software-as-a-service (SaaS) platform, providing scalability and 
resilience under heavy workloads.
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Fig. 2. Illustration of the dynamic interface parameter classifier in NetCDFaster.
Fig. 3. Illustration of NetCDFaster web application user interface design.
 

 

 

Table 1
Functions NetCDFaster supported.
 Functionalities NetCDFaster 
 File Upload ✓  
 Metainfo Preview ✓  
 Custom Coord Range Query ✓  
 Dynamic Querying Policy Choice ✓  
 Online Visualization ✓  

Several stages of NetCDFaster’s development, such as environment
setup, training data collection, and read-time evaluation, were carried 
out on high-performance computing systems. High-performance com-
puting environments offered key advantages that enhanced the tool’s 
performance and development efficiency. First, the distributed operat-
ing and file systems in high-performance computing settings provided 
additional speedups for multi-threading read operations using Dask 
within Xarray. Second, the module-based environment management 
system simplified dependency and version control, which is critical for 
ensuring the stability and reproducibility of the platform.

2.2. Software functionalities

Table  1 illustrates the major functionalities of NetCDFaster. 1
3 
2.2.1. Data uploading & parsing
NetCDFaster provides an interactive web interface for importing 

NetCDF datasets, retrieval, and visualization. Users can upload NetCDF
files directly through the browser. Upon upload, the system immedi-
ately parses the file’s metadata, including spatial coordinates, variable 
definitions, and attributes, without loading the entire dataset into 
memory.

Unlike conventional metadata viewers that display raw attribute 
lists, NetCDFaster organizes metadata hierarchically:

• File-level: Format version (NetCDF3/4), conventions (CF/COARDS
[13,14]), global attributes

• Variable-level: Data types, chunking patterns, compression sta-
tus, valid ranges

• Coordinates: Dimension lengths, coordinate values
NetCDFaster’s UI/UX designs enabled users to visually verify coordinate 
ranges and identify target variables by their coordinates, allowing them 
to pre-configure subset parameters before executing querying tasks.

2.2.2. Query execution & optimization
When executing a data query, NetCDFaster enables users to de-

fine spatial (longitude and latitude coordinate) and temporal (time 
coordinate) ranges, through the interface. Upon query submission, a 
CatBoost classifier predicts the optimal data retrieval policy from 9
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Table 2
Interface parameter set explanations.
 Interface Params Parallel Explanation  
 Name Setting  
 Sequential None Xarray’s default querying setting with 

no parallel chunking
 

 MT_All_2 time: 2
lon: 2
lat: 2

multi-threading with 2 chunks on all 
coordinates

 

 MT_All_4 time: 4
lon: 4
lat: 4

multi-threading with 4 chunks on all 
coordinates

 

 MT_X_2 time: –
lon: 2
lat: –

multi-threading with 2 chunks only 
on longitude

 

 MT_Y_2 time: –
lon: –
lat: 2

multi-threading with 2 chunks only 
on latitude

 

 MT_T_2 time: 2
lon: –
lat: –

multi-threading with 2 chunks only 
on time

 

 MT_XY_2 time: –
lon: 2
lat: 2

multi-threading with 2 chunks on 
longitude and latitude

 

 MT_XT_2 time: 2
lon: 2
lat: –

multi-threading with 2 chunks on 
longitude and time

 

 MT_YT_2 time: 2
lon: –
lat: 2

multi-threading with 2 chunks on 
latitude and time

 

candidate strategies (1 sequential and 8 multi-threading configurations 
with specific chunking parameters, as shown in Table  2). This classifier 
was trained on over 55,000 query tasks across more than 200 NetCDF 
datasets (including NetCDF3/4 datasets in CF [13] and COARDS [14] 
conventions), using file attributes, variable metadata, and coordinate
ranges as input features to recommend the fastest extraction method.
The backend then executes the subset extraction with the selected 
policy. When the classifier identifies multi-threading as optimal NetCD-
Faster partitions the task via Dask [18] across CPU cores. Note that 
policy selection relies on empirical patterns; explicit decision thresholds 
are unavailable due to model interpretability limits. This adaptive
pipeline maximizes efficiency without requiring manual performance 
tuning.

2.2.3. Visualization & interaction
Once the data subset is retrieved, NetCDFaster visualizes the results 

using the same web interface — no separate tools or downloads re-
quired. The front-end GUI is split into two primary sections: a control 
panel for user input on the left, and an output display on the right that 
renders the requested data subset. The extracted subset can be explored 
through interactive plots that respond in real-time to user interactions. 
For example, if a user requests a spatio-temporal subset of a climate
variable, the application can display an interactive map where one
can zoom and pan to examine regional details, or a time-series chart
with tool tips to inspect precise values. These built-in visualization
capabilities allow users to investigate patterns and anomalies in the
data subset on the fly. By integrating data retrieval with immediate
graphical exploration, NetCDFaster eliminates the need for external 
visualization software in the workflow. This lowers the barrier for 
scientists to analyze their data, aligning with open-science goals of 
making geospatial data more accessible and readily usable straight from 
the source.

Although there are many NetCDF data file hosting platforms avail-
able [21,22], NetCDFaster offers a different user experience. The differ-
ences between its features and those of other widely used data hosting 
platforms are shown in Table  3.
4 
Table 3
Function comparison between NetCDFaster and other platforms.
 THREDDS [21] ERDDAP [22] NetCDFaster 
 Meta Info 
Preview

✓ ✓ ✓  

 Coordinate 
Subset 
Querying

✓ ✓ ✓  

 Data Hosting ✓ ✓ ×  
 Dynamic 
Query Interface 
Parameters

× × ✓  

 Online 
Visualization

× Only with Grid-
dap

✓  

3. Illustrative examples

In this section, we demonstrate how to perform a multidimensional 
range query on a variable from a sample NetCDF file and visualize
the resulting subset using the web application. First, we launch the
front-end and back-end containers on the deployment server. Then, 
we upload the example NetCDF file to NetCDFaster. The test NetCDF 
file [23] contains the surface data for July 2002 from the ECMWF 
Reanalysis v5 (ERA5) [24] 40 Years Re-Analysis, daily fields. NetCD-
Faster file parsing module will parse the meta information first and 
return variable attributes and coordinate ranges back to the front-
end (as shown in the left subplot of Fig.  3), marked as feature set 1.
Then users can specify their interested variable and the corresponding
coordinate ranges (as shown in the widgets of the right subplot in Fig.
3) to query and visualize, marked as feature set 2. The front-end passes
an HTTP POST request (composed of feature sets 1 and 2) to the back-
end querying module. The extracted features are passed to the machine 
learning module, which predicts the optimal querying interface along
with the corresponding parameters. The querying module then uses
this recommendation to retrieve the specified data subset, enhancing
read efficiency. Finally, the queried data is returned to the front-end
for visualization, as illustrated in the right subplot of Fig.  3.

4. Impact

NetCDFaster fundamentally transforms multidimensional scientific
data workflows by dramatically accelerating end-to-end processing. 
To quantify its advantages, we benchmarked NetCDFaster against two
standard approaches: the serial-only NetCDF4 Python API [25] and 
the multi-interface Xarray library. Our evaluation leveraged more than 
200 variables from ECMWF Reanalysis v5 (ERA5) [24] and Global
Ocean Data Assimilation System (GODAS) [26] datasets (2 MB–2.5 GB),
filtered to retain only three-dimensional variables (time/longitude/
latitude). For each variable, we generated 50 randomized subset queries
spanning diverse coordinate ranges, executing more than 10,000 tasks
through three methods: (1) NetCDF4’s baseline APIs [25]; (2) 9 Xar-
ray’s interfaces (1 sequential and 8 parallel configurations with dis-
tinct chunking strategies, detailed in Table  2), and (3) NetCDFaster 
dynamically selects the optimal Xarray interface using a CatBoost 
classifier.

The results showed promising performance by comparing with
NetCDF4’s serial approach. For large datasets (larger than 1 GB), 
NetCDFaster has demonstrated median speedups of 6.96 times, as illus-
trated in the Fig.  5. For smaller datasets (smaller than 500MB), NetCD-
Faster performed close to NetCDF4, as shown in Fig.  4. These findings 
highlight NetCDFaster’s superior parallel acceleration capabilities in
processing large datasets, which are not supported by NetCDF4.

When compared to Xarray’s full suite of interfaces, NetCDFaster’s 
end-to-end time 𝑡𝑒2𝑒 (comprising model prediction time 𝑡𝑝, and op-
timized read time 𝑡𝑟 approached the theoretical optimum 𝑡𝑚𝑖𝑛 (the
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Fig. 4. Comparison of time cost (log scale) between NetCDFaster and NetCDF4 Python APIs on small datasets (≤ 500MB).
Fig. 5. Comparison of time cost (log scale) between NetCDFaster and NetCDF4 Python APIs on large datasets (≥ 1 GB).
 

 

 

 

 
 
 

 

fastest of Xarray’s nine strategies), yielding a median ratio 𝑡𝑒2𝑒∕𝑡𝑚𝑖𝑛
of 1.08. Crucially, NetCDFaster outperformed Xarray’s average perfor-
mance 𝑡𝑚𝑒𝑎𝑛 by over 10% in 90% of all queries and by up to 80%
in worst-case scenarios, as shown in Fig.  6, while adding negligible 
prediction overhead (0.2–6 ms). 

𝑡𝑒2𝑒 = 𝑡𝑟 + 𝑡𝑝

𝑡𝑚𝑖𝑛 = min
𝑖∈[0,8]

𝑡𝑟𝑖

𝑡𝑚𝑎𝑥 = max
𝑖∈[0,8]

𝑡𝑟𝑖

𝑡𝑚𝑒𝑎𝑛 =
8
∑

𝑖=0
𝑡𝑟𝑖∕9

(1)

Where, 𝑡𝑟𝑖  is the reading time cost using the 𝑖th Xarray’s interface in 
Table  2; 𝑡𝑝 is the prediction time cost using the optimal model; 𝑡𝑟 is 
the reading time using the predicted class.

NetCDFaster enables researchers to iterate on data exploration six to 
nine times faster than with conventional tools. By leveraging machine
learning to automate interface selection, it eliminates the need for 
5 
manual tuning while delivering near-peak theoretical performance. 
More than just a speed enhancement, NetCDFaster offers a web-based 
platform that abstracts complex I/O optimizations, integrates acceler-
ated data retrieval, and supports real-time visualization—positioning it 
as a practical tool for daily scientific workflows. Crucially, NetCDFaster 
is built to exploit high-performance computing (HPC) environments: it
utilizes distributed file systems for Dask-based multi-threading, ensures 
version compatibility through robust module dependency management,
and supports large-scale training and evaluation via Slurm job schedul-
ing. This work has been validated across full HPC workflows, from 
processing to model deployment, which enables integration into the 
modern scientific cyberinfrastructure (CI). This extensibility empowers
collaborative, data-intensive research, allowing scientists to focus on
discovery over data-handling bottlenecks while taking advantage of
scalable compute resources.

5. Conclusions

Previous approaches, such as Parallel NetCDF[6], NetCDF4 APIs
[25], in multidimensional data range indexing are often constrained
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Fig. 6. Box plot comparison of time cost ratios: Total time cost to minimum time cost (𝑡𝑒2𝑒∕𝑡𝑚𝑖𝑛), average time cost to minimum time cost (𝑡𝑚𝑒𝑎𝑛∕𝑡𝑚𝑖𝑛), and maximum time cost to 
inimum time cost (𝑡𝑚𝑎𝑥∕𝑡𝑚𝑖𝑛) using the NetCDFaster optimal classifier.
 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

by a key limitation: they are typically optimized for a narrow class of 
tasks, leading to inefficiencies when applied across diverse configura-
tions. NetCDFaster addresses this challenge by offering a CI-integrated, 
web-based platform that accepts flexible task configurations and user 
inputs. At the core of NetCDFaster’s design is a CatBoost classification 
model that predicts the optimal data access interface and corresponding
parameter settings, significantly reducing read times across diverse
multidimensional indexing scenarios. This approach introduces a novel, 
machine learning–driven methodology for optimizing read-time per-
formance in complex data access workflows. By automating interface 
selection and tuning, NetCDFaster streamlines the analysis pipeline,
enabling faster and more efficient data exploration and visualization
across a broad range of scientific domains.

The current version of NetCDFaster is optimized for rectilinear grids 
with 1D longitude and latitude coordinates. This design choice reflects 
the reality that most publicly available NetCDF datasets, particularly
those following CF or COARDS conventions, use simple 1D coordinate
systems at moderate spatial resolutions. Given that our primary users
work with large-scale, regularly gridded atmospheric, oceanographic, 
and geospatial data, efficient 1D slicing was prioritized for this initial 
release. We plan to incorporate full curvilinear support in a future 
version, including front-end visualization enhancements and backend 
slicing logic tailored to 2D coordinate structures.

Finally, Dask is employed for multi-threading querying when the 
CatBoost classification model identifies it as the optimal interface for a 
given task. However, there is currently no explicit threshold or rule for 
when Dask is chosen, as the current CatBoost classifier model cannot 
provide interpretable boundaries for the interface selection. In the 
future, we plan to enhance the model’s interpretability to offer more
transparent decision-making.
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