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Although the publication of high-quality reference genomes is steadily increasing, many clades remain chronically neglected. Skinks (or-
der, Squamata; family, Scincidae) are one of the most diverse lizard families (1,785 species), yet there are currently just six published
chromosome-level skink genomes. Here, we present the first telomere-to-telomere, chromosome-level reference genome for one of
the most abundant lizards in the eastern United States, the common five-lined skink (Plestiodon fasciatus). Through the sequencing
of RNA, long-read DNA, and Hi-C chromatin interactions, we produced an annotated reference genome (N50 = 227MB, L50 = 3) con-
sisting of 6 macrochromosome pairs and 7 microchromosome pairs with 98% of BUSCO genes represented (lineage, Sauropsida; 7480
BUSCO markers), providing one of the most complete skink genomes to date: rPleFas1. 1. Functional annotation predicts 32,520 protein-
coding genes (16,100 unique, named genes) with an average gene length of 9,372 bp. Repeat annotations estimate that transposable
elements comprise 46.7% of the genome, for which we show the amount and content is remarkably conserved across Scincidae.
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Introduction

With the advent of whole-genome sequencing, numerous genom-
ic resources are now available for many clades across the verte-
brate tree of life, with birds and mammals comprising most of
these genomes. Despite the abundance of ecological and evolu-
tionary research on squamate reptiles, the availability of high-
quality genomes has, until recently, lagged far behind other amni-
ote groups. There has been a recent drastic push to increase the
production of long-read genomes for many squamate groups
(Gable et al. 2023). As a result, the number of reference-level gen-
omes of NCBI has risen from 115 in 2023 to 292 in Spring of 2025, a
~150% increase over the last year and a half. Still, there is an
underrepresentation of diverse families such as skinks, geckos,
chameleons, and amphisbaenids (Pinto et al. 2023). Generating
high-quality reference genomes across squamates is paramount,
as broad sampling is an important aspect of understanding and
preserving a genetic record of biodiversity, hypothesizing species
relationships, and conservation of endangered taxa (Worley
et al. 2017; Brandies et al. 2019).

For example, there is a large variation of chromosomal archi-
tecture within squamates, with karyotypes ranging from 2n =16
in the gecko Gonatodes taniae to 2n=62 in the microteiid
Notobachia ablephara and the chameleon Rieppeleon brevicaudatus
(Schmid et al. 1994; Pellegrino et al. 1999; Rovatsos et al. 2017;
Mezzasalma et al. 2024). In skinks, the number of chromosomes
ranges from 2n =22 to 2n =32, and genomic architecture is rela-
tively conserved (Deweese and Wright 1970; Giovannotti et al.
2009). Most Plestiodon have 13 chromosome pairs, where 2n =26
with 6 macrochromosome pairs and 7 microchromosome pairs

(Xu and Zhu 2024), though Plestiodon anthracinus has 12 chromo-
some pairs (Hardy et al. 2017).

There is also great diversity of sex-determination systems in
squamates (Janzen and Phillips 2006; Ezaz et al. 2009; Alam et al.
2018), ranging from temperature-dependent sex determination
to genotypic sex determination with XY/XX (male heterogamy)
and ZZ/ZW (female heterogamy). Sex-determining systems are ex-
tremely labile in squamates (Ezaz et al. 2009; Mezzasalma et al.
2021). For example, it is estimated that there have been 17 to 25
in sex-determination transitions in geckos, with multiple sex-
determining systems in some genera (Gamble et al. 2015). Unlike
geckos but similar to iguanas, skinks have a conserved XY sex-
determining system (male heterogamy) with homomorphic sex
chromosomes that are difficult to distinguish (Kostmann et al.
2021; Xu et al. 2024). There is little apparent variation in the sex-
determining system of skinks, but this may be an artifact of limited
genomic resources (Dodge et al. 2025). It has been hypothesized
that the XY sex-determination system may have evolved inde-
pendently from that of other squamates, such as Podarcis mularis
(Lacertidae) and Anolis carolinensis (Dactyloidae), which are com-
monly used in comparative studies (Kostmann et al. 2021).

Skinks represent 4% of amniote diversity, yet there are current-
ly only 6 chromosome-level skink genomes, 4 of which are
Australian. To increase both the phylogenetic and biogeographic
diversity of genomic resources for skinks, we present a
telomere-to-telomere annotated reference genome for Plestiodon
fasciatus. The common five-lined skink, P. fasciatus (Linnaeus
1758), is one of the most abundant lizards of the eastern United
States and southeastern Canada (Powell et al. 2016). These

Received on 02 July 2025; accepted on 18 November 2025

© The Author(s) 2025. Published by Oxford University Press on behalf of The Genetics Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

920z Aenuer |z uo Jasn AIOISIH [einjeN 0 wnasnpy ueouswy Aq 828/ £8/zosieNl/jeuinoleb/s601 01 /10p/ao1le-soueApe/eulnolgb/woo dno-olwapeoe)/:sdiy Wwolj papeojumo(]


https://orcid.org/0009-0007-2021-6318
https://orcid.org/0000-0001-6687-8332
https://orcid.org/0000-0003-2524-1794
mailto:jhoffman1@amnh.org
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/g3journal/jkaf302

2 | Hoffmanetal

generalist skinks are small (total length, 12.5 to 22.2 cm; max-
imum snout-vent length, 8.6 cm), are found in mesic wooded
areas, and reside in cover materials, such as rock crags, logs,
and tree bark but will emerge to thermoregulate or search for in-
vertebrate prey (Fitch and Fitch 1954; Brazeau et al. 2015; Powell
et al. 2016). This genome is the seventh chromosome-level in
the family Scincidae, which currently includes Bassiana duperreyi
(Hanrahan et al. 2025), Spondylurus nitidus (Rivera et al. 2024),
Carinascincus ocellatus, Tiliqua scincoides, Cryptoblepharus egeriae
(Dodge et al. 2025), and the congener Plestiodon gilberti
(Richmond et al. 2026). Barring P. gilberti, all of the other species re-
presented which shares a common ancestor with P. fasciatus
~115 Ma (Title et al. 2024), while P. gilberti and P. fasciatus diverged
~17 Ma (Brandley et al. 2011).

Materials and methods

Sample acquisition

We collected an individual female Plestiodon fasciatus in Allegan
County, Michigan (Lat, 42.5394; Long, —85.9949), and euthanized
with MS-222 prior to tissue collection following Michigan DNR
permits and approved IACUC protocols at the American
Museum of Natural History (AMNH). We sampled liver, lung,
heart, skeletal muscle, kidney, and skin from the individual and
stored them in NAP buffer (Camacho-Sanchez et al. 2013) to pre-
serve the RNA. Due to a suboptimal PacBio Revio whole-genome
sequencing effort of the NAP-preserved liver tissue from this indi-
vidual, we collected a female P. fasciatus in McCracken County,
Kentucky (Lat, 37.1501; Long, -88.7953), with Kentucky
Department of Fish and Wildlife permits to provide a blood sam-
ple (stored in EDTA) for genomic sequencing. Despite the 650 km
between these localities, there are no major biogeographical bar-
riers (Soltis et al. 2006). Furthermore, there is little mitochondrial
phylogeographic structure within the population (Howes and
Lougheed 2008) and therefore likely little genomic variation,
though this has not been tested. Both individuals are vouchered
specimens, cataloged in the Herpetology Collections at the
AMNH as AMNH-179334 (Allegan County, MI) and
AMNH-179327 (McCracken County, KY).

RNA extraction and sequencing

For RNA sequencing, we sent 6 tissues (liver, lung, heart, skeletal
muscle, kidney, and skin) to Azenta/Genewiz for extraction, li-
brary preparation with poly(A) selection to target eukaryotic
strand-specific mRNA, and sequencing on an Illumina NovaSeq
2x150bp, generating ~100 M paired-end reads. All RNA se-
quences passed the initial quality check run with FastQC (Brown
et al. 2017). Sequencing adapters in the resulting sequences
were filtered and trimmed with trimmomatic using the default
settings (Bolger et al. 2014).

Genomic DNA extraction and sequencing

Genomic DNA was extracted from blood stored in EDTA from
AMNH-179327 using the Qiagen MagAttract High Molecular
Weight DNA Kit following their “Manual Purification of
High-Molecular Weight Genomic DNA from Whole Blood” proto-
col from the MagAttract HMW DNA Handbook in the AMNH
ICG. The extracted DNA was then sent to Azenta/Genewiz, where
it was sequenced with PacBio Revio HiFi sequencing on 1 SMRT
cell, which typically results in ~15 million reads and ~100 GB of
data, depending on the quality of the input sample. We expected
a coverage of ~66x based on an estimated 1.5 GB genome size.
Sequencing generated ~6.3 million read-pairs and ~79 GB of

data, with an average read length of ~12,000 bp, resulting in
~53x coverage.

Finally, we generated Hi-C data with Phase Genomics using the
Proximo Hi-C animal genome scaffolding platform from a col-
lected blood sample. Proximity-ligated fragments were sequenced
on an [llumina NovaSeq to produce 2 x 150 bp paired-end reads.
The sequencing generated 300 million read-pairs, of which 56%
were high quality, yielding 1,721,863 read-pairs per contig that
were “usable,” indicating that they mapped to different >5kb
contigs.

Draft genome assembly

A draft genome assembly was made from the HiFi long-read se-
quencing using Hifiasm v0.25.0, a haplotype-resolved de novo as-
sembly tool for PacBio HiFireads (Cheng et al. 2021). Hifiasm was
run without the Hi-C sequences as its inclusion led to a drastic in-
crease of contigs, from 34 without Hi-C to ~6,000 with Hi-C. Due to
the high content of low-divergence repeats, we soft-masked the
draft genome with the Earlgrey v4.1.1pipeline (Baril et al. 2024)
prior to Hi-C mapping, which also provide transposable element
(TE) annotations (see below).

Hi-C incorporation

Toincorporate the Hi-C sequencing with the draft genome assem-
bly, we initially aligned the Hi-C sequences to the HiFi draft gen-
ome with a Burrow-Wheeler Alignment (BWA v 0.7.19) (Li, 2013).
Then, we processed the resulting alignments with SAMtools
v1.22.1 (Danecek et al. 2021) to remove duplicate sequences. We
then scaffolded the assembly using the de novo YAHS v1.2.2 as-
sembly pipeline (Zhou et al. 2023). From there, we used Juicer
Tools to generate a Hi-C contact map (Durand et al. 2016).
Finally, we visualized the scaffolding of the chromosome-level as-
sembly with Juicebox Assembly Tools v2.20.0 (Robinson et al. 2018).

TE and gene annotation

We annotated the final assembly by first modeling and quantify-
ing TEs by soft-masking the genome with EarlGrey v4.1.1, a fully
automated TE annotation pipeline (Baril et al. 2024) with the de-
fault settings, which includes a 100 bp minimum length and 10
iterations of the BLAST, extract, and extend process. Next, we
functionally annotated the predicted gene regions using the train,
predict, update, fix, and annotate steps of the funannotate pipeline
(Palmer and Stajich 2020). The “train” step aligns RNA-seq data,
assembles it with Trinity (Grabherr et al. 2011), and runs PASA,
which models gene structures based on alignments of expressed
transcripts (Haas et al. 2003). The “predict” step uses PASA gene
models to train Augustus, a de novo gene finder (Stanke et al.
2008), prior to running EvidenceModeler (Haas et al. 2008). We in-
cluded RNA-seq data from the liver, lung, heart, skeletal muscle,
kidney, and skin as evidence for EvidenceModeler. We used the
Tetrapoda BUSCO database with Taeniopygia guttata as the seed
species for the “predict” step and kept the default options for
each step. The “update” step fixes gene models that disagree
with RNA-seq data, which are corrected in the “Ax” step. Prior to
running the “annotate” step, we ran InterProScan v5.74-105.0
(Jones et al. 2014) to run predicted genes against the InterPro data-
base for gene families and downloaded Eggnog-mapper v2.1.12
(Cantalapiedra et al. 2021) locally to be run during the “annotate”
step. The “annotate” step incorporates the generated data into an
annotated genome. We used the default functional annotation data-
bases in the annotation step. To compare across existing
chromosome-level skink genomes, we ran the above pipeline on
the assemblies of T. scincoides, S. nitidus, B. duperreyi, and C. ocellatus.
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Table 1. Assembly statistics of the genome of Plestiodon fasciatus before and after Hi-C incorporation.

Metric Draft genome Hi-C informed genome
Basic Stats Total assembly size (bp) 1,537,706,373 1,537,706,373
Number of contigs 34 34
Number of scaffolds 34 31
GC content (%) 45.6 456
Contiguity Contigs N50 (bp) 166,278,287 166,278,287
Contigs L50 (bp) 3 3
Largest contig (bp) 244,253,184 244,253,184
Scaffolds N50 (bp) 166,278,287 227,050,938
Scaffolds L50 3 2
Largest scaffold (bp) 244 253,184 304,269,845
Completeness BUSCO complete (%) 98.17 98.17
Missing BUSCOs (%) 1.24 1.24
Fragmented BUSCOs (%) 0.19 0.19
Sequencing coverage (X) 53 116
Telomere-to-telomere chromosomes 6 13
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Fig. 1. Ideogram for Plestiodon fasciatus. Row A represents chromosome number and relative size. Row Bis a heatmap of gene density for 50 kb windows, where
darker colors represent a higher density of genes. Row Cis a heatmap of repeat elements for 50 kb windows, where darker colors represent a higher density of
repeat elements. Row D s a line chart of GC content across the genome. Row E is the region of the genome thatis syntenic with the X chromosome of Bassiana
duperreyi. Row F is a photograph of an adult male and juvenile P. fasciatus (photo via Herps of Arkansas). Plot made with Circos (Krzywinski et al. 2009).

Synteny analysis

To assess genomic synteny of the P. fasciatus genome and other
chromosome-level squamate assemblies, we created a custom
pipeline called Synk (https:/github.com/jomhoff/Synk) that uses
the output files from compleasm (Huang and Li 2023) and isolates

the BUSCO genes to create comparative text files and uses
RIdeogram (Hao et al. 2020) to plot the syntenic chromosomal re-
gions from BUSCO genes between species in one script.
Compared to methods for calculating and visualizing whole-
genome synteny, Synk runs much faster. In addition, limiting
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the dataset to BUSCO genes minimizes paralogy issues, as BUSCO
genes are highly conserved, single-copy orthologs. This is espe-
cially effective in ensuring appropriate estimates of synteny in
cross-species and cross-genera comparisons. Here, we show syn-
teny between P. fasciatus, B. duperreyi, S. nitidus, C. ocellatus, T. scin-
coides, and P. gilberti.

Results and discussion

Assembly of the P. fasciatus genome

After completing Hifiasm with the long-read PacBio sequences, the
draft assembly of the genome was close to complete, with an L50
of 3 and a total of 34 contigs, 9 of which represented near
telomere-to-telomere chromosomes (Table 1). With the Hi-C

Table 2. Annotation statistics of the genome after the Funannotate
pipeline.

Category Metric Value

Gene content Number of protein-coding genes 32,520
Unique genes with common 16,100

names

Gene structure Average gene length (bp) 9,372.34
Total number of exons 252,300
Average exon length (bp) 255.27
Multiple-exon transcripts 25,572

Single-exon transcripts 7,372

Functional Genes with GO term annotations 21,578
annotation Genes with InterProScan hits 24,316
Genes with eggNOG annotations 26,007
Genes with Pfam domains 19,449

CAZyme-annotated genes 319
MEROPS-annotated genes 1,143
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data incorporated, we successfully generated a chromosome-
level assembly of Plestiodon fasciatus with 18 unplaced scaffolds
that we refer to as rPleFas1.1 after Vertebrate Genome Project
naming rules (Rhie et al. 2021) (Table 1; Fig. 1). One of the 18 un-
placed scaffolds includes the complete mitochondrial genome.
The other 17 unplaced scaffolds range in size from 8,262 bp to
1,241,752 bp and consist of unplaced TEs and mRNA sequences.
For the complete autosomal genome, the presence of telomeres
was estimated with the characteristic rise in GC content at the
ends of chromosomes (Fig. 1) and confirmed with tidk v0.2.65, a
toolkit for identifying telomeres that outputs a count of telomeric
repeatsin windows across the genome (Brown et al. 2025). There is
also a large spike in GC content in the middle of the second
chromosome, which corresponds to a repeat-dense region con-
sisting of Long Interspersed Nuclear Elements (LINEs), simple,
and unclassified repeats.

Annotation of genes and TEs

The resulting annotations from the funannotate pipeline consist of
an estimated 32,520 genes. Filtering for named genes and remov-
ingisoforms resulted in 16,100 unique genes with common names
(Table 2). Like other squamates, the genome of P. fasciatus has a
high proportion of repetitive regions which account for 46.7% of
the genome (Pasquesi et al. 2018). Unclassified repeats account
for 23.3% of the genome, while DNA repeats and LINEs, respective-
ly, make up 7.0% and 9.3% of the genome (Fig. 2). The Kimura
2-parameter distance between the repeat sequences produces
an approximately bimodal distribution, with a peak indicating a
large degree of moderately diverged repeats and a peak indicating
recently diverged repeats (Fig. 2). The more diverged peak is
mainly driven by unclassified repeats. Interestingly, this a pattern
that is seen in all 5 skinks tested. Furthermore, the more recently

T. scincoides

TE Classification

[l DNA
M Rolling Circle
B Penelope
B LINE
B SINE
B LR
Other
7 Unclassified
Il Non-Repeat

0.2 0.1

B. duperreyi

Fig. 2. Divergence estimates of TEs shown with Kimura 2-parameter distance for 5 chromosome-level skink genomes. Higher Kimura 2-parameter
distance indicates more diverged sequences. The proportion of each TE subdivision in the genome for each species is displayed with a pie chart.
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Fig. 3. Synteny of BUSCO genes between Plestiodon fasciatus and other skinks. a) Plestiodon gilberti; b) Tiliqua scincoides; c) Spondylurus nitidus; d) Carascincus

ocellatus; e) Bassiana duperreyi.
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diverged peak is driven by a large proportion of both DNA and
LINE repeats and is also conserved across the species analyzed
(Fig. 2).

Although the impact of TEs on the diversification and adapta-
tion of squamates has yet to be studied in detail, it has been hy-
pothesized that variation in TEs can impact phenotypic
adaptation through TE domestication, exaptation, host-gene
regulation, formation of retrogenes, and genomic plasticity (re-
viewed in Schrader and Schmitz 2019) and that TEs contribute sig-
nificantly to genomic variation (Catlin and Josephs 2022). Since
TEs are highly mobile across the genome, are abundant and labile,
and have been major players in the evolution of eukaryotic gen-
omes (Bowen and Jordan 2002; Oliver and Greene 2009), we expect
variation of TEs among distantly diverged clades. Despite originat-
ing around ~115 mya, the skinks in this study display remarkable
conservation of TE composition, especially when considering the
variation seen in younger clades, such as extant mammals (Platt
et al. 2018) and plethodontid salamanders (Sun et al. 2012).

Synteny of skink genomes

The genomes of P. gilberti and P. fasciatus appear highly syntenic,
with the only rearrangement being an inversion in the eighth
chromosome. Despite ~150 ma divergence (Title et al. 2024), the
macrochromosomes are largely conserved across the skink spe-
cies analyzed here, aside from a large inversion on chromosome
1 between T. scincoides and all other species (Fig. 3). Compared to
the other scincids, P. fasciatus and P. gilberti have fewer microchro-
mosomes, where chromosomes 14, 15, and 16 in S. nitidus and T.
scincoides are syntenic with chromosome 8 in P. fasciatus and P. gil-
berti. Thereis also a rearrangement creating syntenic blocks relat-
ing chromosomes 6 and 7 in S. nitidus and T. scincoides to
chromosome 5 in P. fasciatus and P. gilberti.

Due to the cryptic, homogametic XY sex-determining system in
many skinks, little is known about the position of sex-determining
regions on the chromosomes; however, hypothetical sex chromo-
somes have been identified in B. duperreyi (Dissanayake et al. 2020;
Hanrahan et al. 2025). Here, we show that a block of chromosome
5 is syntenic with the X chromosome in B. duperreyi, indicating a
potential location for sex-determining regions in P. fasciatus
(Fig. 3). The same block of the fifth chromosome of P. gilbertiis syn-
tenic with the X chromosome of B. duperreyi (Richmond et al. 2026).
In an attempt to further identify sex-linked regions, we used the
FindZX pipeline (Sigeman et al. 2022) with 2 male and 2 female P.
fasciatus; however, the results were inconclusive. Despite some
preliminary work, more research is required to further classify
sex determination in skinks, ideally with population-level sam-
pling of populations with numerous representatives from both
sexes across Scincidae.

Conclusion

We present a high-quality, telomere-to-telomere, chromosome-
level annotated reference assembly of the North American com-
mon five-lined skink Plestiodon fasciatus (Linnaeus 1758), repre-
senting one of the most complete reference genomes
(rPleFas1.1) to date of any species of Scincidae. We find that
macrochromosome structure is conserved across the family,
but there are common rearrangements of the microchromo-
somes, including a likely fusion in P. fasciatus, which has fewer
microchromosomes than many other skink species. We also
present insight into the content and evolution of TEs in skinks,
which show remarkable conservation between species over
the last ~115 Ma.

Data availability

The data presented in the paper is available on NCBI (BioProject
PRJNA1278702). The code for analyses can be found at https://
github.com/jomhoff/Chromosome-level_genome_assembly and
https://github.com/jomhoff/Genome-Annotation.
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