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Although the publication of high-quality reference genomes is steadily increasing, many clades remain chronically neglected. Skinks (or
der, Squamata; family, Scincidae) are one of the most diverse lizard families (1,785 species), yet there are currently just six published 
chromosome-level skink genomes. Here, we present the first telomere-to-telomere, chromosome-level reference genome for one of 
the most abundant lizards in the eastern United States, the common five-lined skink (Plestiodon fasciatus). Through the sequencing 
of RNA, long-read DNA, and Hi-C chromatin interactions, we produced an annotated reference genome (N50 = 227MB, L50 = 3) con
sisting of 6 macrochromosome pairs and 7 microchromosome pairs with 98% of BUSCO genes represented (lineage, Sauropsida; 7480 
BUSCO markers), providing one of the most complete skink genomes to date: rPleFas1.1. Functional annotation predicts 32,520 protein- 
coding genes (16,100 unique, named genes) with an average gene length of 9,372 bp. Repeat annotations estimate that transposable 
elements comprise 46.7% of the genome, for which we show the amount and content is remarkably conserved across Scincidae.
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Introduction
With the advent of whole-genome sequencing, numerous genom
ic resources are now available for many clades across the verte
brate tree of life, with birds and mammals comprising most of 
these genomes. Despite the abundance of ecological and evolu
tionary research on squamate reptiles, the availability of high- 
quality genomes has, until recently, lagged far behind other amni
ote groups. There has been a recent drastic push to increase the 
production of long-read genomes for many squamate groups 
(Gable et al. 2023). As a result, the number of reference-level gen
omes of NCBI has risen from 115 in 2023 to 292 in Spring of 2025, a 
∼150% increase over the last year and a half. Still, there is an 
underrepresentation of diverse families such as skinks, geckos, 
chameleons, and amphisbaenids (Pinto et al. 2023). Generating 
high-quality reference genomes across squamates is paramount, 
as broad sampling is an important aspect of understanding and 
preserving a genetic record of biodiversity, hypothesizing species 
relationships, and conservation of endangered taxa (Worley 
et al. 2017; Brandies et al. 2019).

For example, there is a large variation of chromosomal archi
tecture within squamates, with karyotypes ranging from 2n = 16 
in the gecko Gonatodes taniae to 2n = 62 in the microteiid 
Notobachia ablephara and the chameleon Rieppeleon brevicaudatus 
(Schmid et al. 1994; Pellegrino et al. 1999; Rovatsos et al. 2017; 
Mezzasalma et al. 2024). In skinks, the number of chromosomes 
ranges from 2n = 22 to 2n = 32, and genomic architecture is rela
tively conserved (Deweese and Wright 1970; Giovannotti et al. 
2009). Most Plestiodon have 13 chromosome pairs, where 2n = 26 
with 6 macrochromosome pairs and 7 microchromosome pairs 

(Xu and Zhu 2024), though Plestiodon anthracinus has 12 chromo
some pairs (Hardy et al. 2017).

There is also great diversity of sex-determination systems in 
squamates (Janzen and Phillips 2006; Ezaz et al. 2009; Alam et al. 
2018), ranging from temperature-dependent sex determination 
to genotypic sex determination with XY/XX (male heterogamy) 
and ZZ/ZW (female heterogamy). Sex-determining systems are ex
tremely labile in squamates (Ezaz et al. 2009; Mezzasalma et al. 
2021). For example, it is estimated that there have been 17 to 25 
in sex-determination transitions in geckos, with multiple sex- 
determining systems in some genera (Gamble et al. 2015). Unlike 
geckos but similar to iguanas, skinks have a conserved XY sex- 
determining system (male heterogamy) with homomorphic sex 
chromosomes that are difficult to distinguish (Kostmann et al. 
2021; Xu et al. 2024). There is little apparent variation in the sex- 
determining system of skinks, but this may be an artifact of limited 
genomic resources (Dodge et al. 2025). It has been hypothesized 
that the XY sex-determination system may have evolved inde
pendently from that of other squamates, such as Podarcis mularis 
(Lacertidae) and Anolis carolinensis (Dactyloidae), which are com
monly used in comparative studies (Kostmann et al. 2021).

Skinks represent 4% of amniote diversity, yet there are current
ly only 6 chromosome-level skink genomes, 4 of which are 
Australian. To increase both the phylogenetic and biogeographic 
diversity of genomic resources for skinks, we present a 
telomere-to-telomere annotated reference genome for Plestiodon 
fasciatus. The common five-lined skink, P. fasciatus (Linnaeus 
1758), is one of the most abundant lizards of the eastern United 
States and southeastern Canada (Powell et al. 2016). These 
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generalist skinks are small (total length, 12.5 to 22.2 cm; max
imum snout–vent length, 8.6 cm), are found in mesic wooded 
areas, and reside in cover materials, such as rock crags, logs, 
and tree bark but will emerge to thermoregulate or search for in
vertebrate prey (Fitch and Fitch 1954; Brazeau et al. 2015; Powell 
et al. 2016). This genome is the seventh chromosome-level in 
the family Scincidae, which currently includes Bassiana duperreyi 
(Hanrahan et al. 2025), Spondylurus nitidus (Rivera et al. 2024), 
Carinascincus ocellatus, Tiliqua scincoides, Cryptoblepharus egeriae 
(Dodge et al. 2025), and the congener Plestiodon gilberti 
(Richmond et al. 2026). Barring P. gilberti, all of the other species re
presented which shares a common ancestor with P. fasciatus 
∼115 Ma (Title et al. 2024), while P. gilberti and P. fasciatus diverged 
∼17 Ma (Brandley et al. 2011).

Materials and methods
Sample acquisition
We collected an individual female Plestiodon fasciatus in Allegan 
County, Michigan (Lat, 42.5394; Long, −85.9949), and euthanized 
with MS-222 prior to tissue collection following Michigan DNR 
permits and approved IACUC protocols at the American 
Museum of Natural History (AMNH). We sampled liver, lung, 
heart, skeletal muscle, kidney, and skin from the individual and 
stored them in NAP buffer (Camacho-Sanchez et al. 2013) to pre
serve the RNA. Due to a suboptimal PacBio Revio whole-genome 
sequencing effort of the NAP-preserved liver tissue from this indi
vidual, we collected a female P. fasciatus in McCracken County, 
Kentucky (Lat, 37.1501; Long, −88.7953), with Kentucky 
Department of Fish and Wildlife permits to provide a blood sam
ple (stored in EDTA) for genomic sequencing. Despite the 650 km 
between these localities, there are no major biogeographical bar
riers (Soltis et al. 2006). Furthermore, there is little mitochondrial 
phylogeographic structure within the population (Howes and 
Lougheed 2008) and therefore likely little genomic variation, 
though this has not been tested. Both individuals are vouchered 
specimens, cataloged in the Herpetology Collections at the 
AMNH as AMNH-179334 (Allegan County, MI) and 
AMNH-179327 (McCracken County, KY).

RNA extraction and sequencing
For RNA sequencing, we sent 6 tissues (liver, lung, heart, skeletal 
muscle, kidney, and skin) to Azenta/Genewiz for extraction, li
brary preparation with poly(A) selection to target eukaryotic 
strand-specific mRNA, and sequencing on an Illumina NovaSeq 
2 × 150 bp, generating ∼100 M paired-end reads. All RNA se
quences passed the initial quality check run with FastQC (Brown 
et al. 2017). Sequencing adapters in the resulting sequences 
were filtered and trimmed with trimmomatic using the default 
settings (Bolger et al. 2014).

Genomic DNA extraction and sequencing
Genomic DNA was extracted from blood stored in EDTA from 
AMNH-179327 using the Qiagen MagAttract High Molecular 
Weight DNA Kit following their “Manual Purification of 
High-Molecular Weight Genomic DNA from Whole Blood” proto
col from the MagAttract HMW DNA Handbook in the AMNH 
ICG. The extracted DNA was then sent to Azenta/Genewiz, where 
it was sequenced with PacBio Revio HiFi sequencing on 1 SMRT 
cell, which typically results in ∼15 million reads and ∼100 GB of 
data, depending on the quality of the input sample. We expected 
a coverage of ∼66× based on an estimated 1.5 GB genome size. 
Sequencing generated ∼6.3 million read-pairs and ∼79 GB of 

data, with an average read length of ∼12,000 bp, resulting in 
∼53× coverage.

Finally, we generated Hi-C data with Phase Genomics using the 
Proximo Hi-C animal genome scaffolding platform from a col
lected blood sample. Proximity-ligated fragments were sequenced 
on an Illumina NovaSeq to produce 2 × 150 bp paired-end reads. 
The sequencing generated 300 million read-pairs, of which 56% 
were high quality, yielding 1,721,863 read-pairs per contig that 
were “usable,” indicating that they mapped to different >5 kb 
contigs.

Draft genome assembly
A draft genome assembly was made from the HiFi long-read se
quencing using Hifiasm v0.25.0, a haplotype-resolved de novo as
sembly tool for PacBio HiFi reads (Cheng et al. 2021). Hifiasm was 
run without the Hi-C sequences as its inclusion led to a drastic in
crease of contigs, from 34 without Hi-C to ∼6,000 with Hi-C. Due to 
the high content of low-divergence repeats, we soft-masked the 
draft genome with the Earlgrey v4.1.1pipeline (Baril et al. 2024) 
prior to Hi-C mapping, which also provide transposable element 
(TE) annotations (see below).

Hi-C incorporation
To incorporate the Hi-C sequencing with the draft genome assem
bly, we initially aligned the Hi-C sequences to the HiFi draft gen
ome with a Burrow-Wheeler Alignment (BWA v 0.7.19) (Li, 2013). 
Then, we processed the resulting alignments with SAMtools 
v1.22.1 (Danecek et al. 2021) to remove duplicate sequences. We 
then scaffolded the assembly using the de novo YAHS v1.2.2 as
sembly pipeline (Zhou et al. 2023). From there, we used Juicer 
Tools to generate a Hi-C contact map (Durand et al. 2016). 
Finally, we visualized the scaffolding of the chromosome-level as
sembly with Juicebox Assembly Tools v2.20.0 (Robinson et al. 2018).

TE and gene annotation
We annotated the final assembly by first modeling and quantify
ing TEs by soft-masking the genome with EarlGrey v4.1.1, a fully 
automated TE annotation pipeline (Baril et al. 2024) with the de
fault settings, which includes a 100 bp minimum length and 10 
iterations of the BLAST, extract, and extend process. Next, we 
functionally annotated the predicted gene regions using the train, 
predict, update, fix, and annotate steps of the funannotate pipeline 
(Palmer and Stajich 2020). The “train” step aligns RNA-seq data, 
assembles it with Trinity (Grabherr et al. 2011), and runs PASA, 
which models gene structures based on alignments of expressed 
transcripts (Haas et al. 2003). The “predict” step uses PASA gene 
models to train Augustus, a de novo gene finder (Stanke et al. 
2008), prior to running EvidenceModeler (Haas et al. 2008). We in
cluded RNA-seq data from the liver, lung, heart, skeletal muscle, 
kidney, and skin as evidence for EvidenceModeler. We used the 
Tetrapoda BUSCO database with Taeniopygia guttata as the seed 
species for the “predict” step and kept the default options for 
each step. The “update” step fixes gene models that disagree 
with RNA-seq data, which are corrected in the “fix” step. Prior to 
running the “annotate” step, we ran InterProScan v5.74-105.0 
(Jones et al. 2014) to run predicted genes against the InterPro data
base for gene families and downloaded Eggnog-mapper v2.1.12 
(Cantalapiedra et al. 2021) locally to be run during the “annotate” 
step. The “annotate” step incorporates the generated data into an 
annotated genome. We used the default functional annotation data
bases in the annotation step. To compare across existing 
chromosome-level skink genomes, we ran the above pipeline on 
the assemblies of T. scincoides, S. nitidus, B. duperreyi, and C. ocellatus.
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Synteny analysis
To assess genomic synteny of the P. fasciatus genome and other 
chromosome-level squamate assemblies, we created a custom 
pipeline called Synk (https://github.com/jomhoff/Synk) that uses 
the output files from compleasm (Huang and Li 2023) and isolates 

the BUSCO genes to create comparative text files and uses 
RIdeogram (Hao et al. 2020) to plot the syntenic chromosomal re
gions from BUSCO genes between species in one script. 
Compared to methods for calculating and visualizing whole- 
genome synteny, Synk runs much faster. In addition, limiting 

Table 1. Assembly statistics of the genome of Plestiodon fasciatus before and after Hi-C incorporation.

Metric Draft genome Hi-C informed genome

Basic Stats Total assembly size (bp) 1,537,706,373 1,537,706,373
Number of contigs 34 34
Number of scaffolds 34 31
GC content (%) 45.6 45.6

Contiguity Contigs N50 (bp) 166,278,287 166,278,287
Contigs L50 (bp) 3 3
Largest contig (bp) 244,253,184 244,253,184
Scaffolds N50 (bp) 166,278,287 227,050,938
Scaffolds L50 3 2
Largest scaffold (bp) 244,253,184 304,269,845

Completeness BUSCO complete (%) 98.17 98.17
Missing BUSCOs (%) 1.24 1.24
Fragmented BUSCOs (%) 0.19 0.19
Sequencing coverage (X) 53 116
Telomere-to-telomere chromosomes 6 13

Fig. 1. Ideogram for Plestiodon fasciatus. Row A represents chromosome number and relative size. Row B is a heatmap of gene density for 50 kb windows, where 
darker colors represent a higher density of genes. Row C is a heatmap of repeat elements for 50 kb windows, where darker colors represent a higher density of 
repeat elements. Row D is a line chart of GC content across the genome. Row E is the region of the genome that is syntenic with the X chromosome of Bassiana 
duperreyi. Row F is a photograph of an adult male and juvenile P. fasciatus (photo via Herps of Arkansas). Plot made with Circos (Krzywinski et al. 2009).
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the dataset to BUSCO genes minimizes paralogy issues, as BUSCO 
genes are highly conserved, single-copy orthologs. This is espe
cially effective in ensuring appropriate estimates of synteny in 
cross-species and cross-genera comparisons. Here, we show syn
teny between P. fasciatus, B. duperreyi, S. nitidus, C. ocellatus, T. scin
coides, and P. gilberti.

Results and discussion
Assembly of the P. fasciatus genome
After completing Hifiasm with the long-read PacBio sequences, the 
draft assembly of the genome was close to complete, with an L50 
of 3 and a total of 34 contigs, 9 of which represented near 
telomere-to-telomere chromosomes (Table 1). With the Hi-C 

data incorporated, we successfully generated a chromosome- 
level assembly of Plestiodon fasciatus with 18 unplaced scaffolds 
that we refer to as rPleFas1.1 after Vertebrate Genome Project 
naming rules (Rhie et al. 2021) (Table 1; Fig. 1). One of the 18 un
placed scaffolds includes the complete mitochondrial genome. 
The other 17 unplaced scaffolds range in size from 8,262 bp to 
1,241,752 bp and consist of unplaced TEs and mRNA sequences. 
For the complete autosomal genome, the presence of telomeres 
was estimated with the characteristic rise in GC content at the 
ends of chromosomes (Fig. 1) and confirmed with tidk v0.2.65, a 
toolkit for identifying telomeres that outputs a count of telomeric 
repeats in windows across the genome (Brown et al. 2025). There is 
also a large spike in GC content in the middle of the second 
chromosome, which corresponds to a repeat-dense region con
sisting of Long Interspersed Nuclear Elements (LINEs), simple, 
and unclassified repeats.

Annotation of genes and TEs
The resulting annotations from the funannotate pipeline consist of 
an estimated 32,520 genes. Filtering for named genes and remov
ing isoforms resulted in 16,100 unique genes with common names 
(Table 2). Like other squamates, the genome of P. fasciatus has a 
high proportion of repetitive regions which account for 46.7% of 
the genome (Pasquesi et al. 2018). Unclassified repeats account 
for 23.3% of the genome, while DNA repeats and LINEs, respective
ly, make up 7.0% and 9.3% of the genome (Fig. 2). The Kimura 
2-parameter distance between the repeat sequences produces 
an approximately bimodal distribution, with a peak indicating a 
large degree of moderately diverged repeats and a peak indicating 
recently diverged repeats (Fig. 2). The more diverged peak is 
mainly driven by unclassified repeats. Interestingly, this a pattern 
that is seen in all 5 skinks tested. Furthermore, the more recently 

Table 2. Annotation statistics of the genome after the Funannotate 
pipeline.

Category Metric Value

Gene content Number of protein-coding genes 32,520
Unique genes with common 

names
16,100

Gene structure Average gene length (bp) 9,372.34
Total number of exons 252,300
Average exon length (bp) 255.27
Multiple-exon transcripts 25,572
Single-exon transcripts 7,372

Functional 
annotation

Genes with GO term annotations 21,578
Genes with InterProScan hits 24,316
Genes with eggNOG annotations 26,007
Genes with Pfam domains 19,449
CAZyme-annotated genes 319
MEROPS-annotated genes 1,143

Fig. 2. Divergence estimates of TEs shown with Kimura 2-parameter distance for 5 chromosome-level skink genomes. Higher Kimura 2-parameter 
distance indicates more diverged sequences. The proportion of each TE subdivision in the genome for each species is displayed with a pie chart.
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Fig. 3. Synteny of BUSCO genes between Plestiodon fasciatus and other skinks. a) Plestiodon gilberti; b) Tiliqua scincoides; c) Spondylurus nitidus; d) Carascincus 
ocellatus; e) Bassiana duperreyi.
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diverged peak is driven by a large proportion of both DNA and 
LINE repeats and is also conserved across the species analyzed 
(Fig. 2).

Although the impact of TEs on the diversification and adapta
tion of squamates has yet to be studied in detail, it has been hy
pothesized that variation in TEs can impact phenotypic 
adaptation through TE domestication, exaptation, host-gene 
regulation, formation of retrogenes, and genomic plasticity (re
viewed in Schrader and Schmitz 2019) and that TEs contribute sig
nificantly to genomic variation (Catlin and Josephs 2022). Since 
TEs are highly mobile across the genome, are abundant and labile, 
and have been major players in the evolution of eukaryotic gen
omes (Bowen and Jordan 2002; Oliver and Greene 2009), we expect 
variation of TEs among distantly diverged clades. Despite originat
ing around ∼115 mya, the skinks in this study display remarkable 
conservation of TE composition, especially when considering the 
variation seen in younger clades, such as extant mammals (Platt 
et al. 2018) and plethodontid salamanders (Sun et al. 2012).

Synteny of skink genomes
The genomes of P. gilberti and P. fasciatus appear highly syntenic, 
with the only rearrangement being an inversion in the eighth 
chromosome. Despite ∼150 ma divergence (Title et al. 2024), the 
macrochromosomes are largely conserved across the skink spe
cies analyzed here, aside from a large inversion on chromosome 
1 between T. scincoides and all other species (Fig. 3). Compared to 
the other scincids, P. fasciatus and P. gilberti have fewer microchro
mosomes, where chromosomes 14, 15, and 16 in S. nitidus and T. 
scincoides are syntenic with chromosome 8 in P. fasciatus and P. gil
berti. There is also a rearrangement creating syntenic blocks relat
ing chromosomes 6 and 7 in S. nitidus and T. scincoides to 
chromosome 5 in P. fasciatus and P. gilberti.

Due to the cryptic, homogametic XY sex-determining system in 
many skinks, little is known about the position of sex-determining 
regions on the chromosomes; however, hypothetical sex chromo
somes have been identified in B. duperreyi (Dissanayake et al. 2020; 
Hanrahan et al. 2025). Here, we show that a block of chromosome 
5 is syntenic with the X chromosome in B. duperreyi, indicating a 
potential location for sex-determining regions in P. fasciatus 
(Fig. 3). The same block of the fifth chromosome of P. gilberti is syn
tenic with the X chromosome of B. duperreyi (Richmond et al. 2026). 
In an attempt to further identify sex-linked regions, we used the 
FindZX pipeline (Sigeman et al. 2022) with 2 male and 2 female P. 
fasciatus; however, the results were inconclusive. Despite some 
preliminary work, more research is required to further classify 
sex determination in skinks, ideally with population-level sam
pling of populations with numerous representatives from both 
sexes across Scincidae.

Conclusion
We present a high-quality, telomere-to-telomere, chromosome- 
level annotated reference assembly of the North American com
mon five-lined skink Plestiodon fasciatus (Linnaeus 1758), repre
senting one of the most complete reference genomes 
(rPleFas1.1) to date of any species of Scincidae. We find that 
macrochromosome structure is conserved across the family, 
but there are common rearrangements of the microchromo
somes, including a likely fusion in P. fasciatus, which has fewer 
microchromosomes than many other skink species. We also 
present insight into the content and evolution of TEs in skinks, 
which show remarkable conservation between species over 
the last ∼115 Ma.

Data availability
The data presented in the paper is available on NCBI (BioProject 
PRJNA1278702). The code for analyses can be found at https:// 
github.com/jomhoff/Chromosome-level_genome_assembly and 
https://github.com/jomhoff/Genome-Annotation.
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