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Abstract 

Identifying an object and distinguishing it from similar items depends upon the ability to perceive 

its component parts as conjoined into a cohesive whole, but the brain mechanisms underlying this 

ability remain elusive. The ventral visual processing pathway in primates is organized 

hierarchically: Neuronal responses in early stages are sensitive to the manipulation of simple visual 

features whereas neuronal responses in subsequent stages are tuned to increasingly complex 

stimulus attributes. It is widely assumed that feature-coding dominates in early visual cortex 

whereas later visual regions employ conjunction-coding in which object representations are 

different from the sum of their simple-feature parts. However, no study in humans has 

demonstrated that putative object-level codes in higher visual cortex cannot be accounted for by 

feature-coding and that putative feature-codes in regions prior to ventral temporal cortex are not 

equally well characterized as object-level codes. Thus the existence of a transition from feature- to 

conjunction-coding in human visual cortex remains unconfirmed, and, if a transition does occur, its 

location remains unknown. By employing multivariate analysis of functional imaging data, we 

measure both feature-coding and conjunction-coding directly, using the same set of visual stimuli, 

and pit them against each other to reveal the relative dominance of one versus the other 

throughout cortex. Our results reveal a transition from feature-coding in early visual cortex to 

conjunction-coding in both inferior temporal and posterior parietal cortices. This novel method 

enables the use of experimentally controlled stimulus features to investigate population-level 

feature- and conjunction-codes throughout human cortex. 
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New and Noteworthy 

We use a novel analysis of neuroimaging data to assess representations throughout visual cortex, 

revealing a transition from feature-coding to conjunction-coding along both ventral and dorsal 

pathways. Occipital cortex contains more information about spatial frequency and contour than 

about conjunctions of those features, whereas inferotemporal and parietal cortices contain 

conjunction coding sites in which there is more information about the whole stimulus than its 

component parts.  
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Introduction 

Object perception is underpinned by a hierarchical series of processing stages in the ventral 

visual pathway (Felleman & Van Essen, 1991; Hubel & Wiesel, 1965; Kobatake & Tanaka, 1994). At 

each successive stage from primary visual cortex (V1) to anterior inferotemporal (aIT) cortex, the 

complexity of the optimal stimuli increases: neurons in V1 are tuned to simple stimulus attributes 

such as orientation (Hubel & Wiesel, 1965; Mazer, Vinje, McDermott, Schiller, & Gallant, 2002); 

neurons in V4 and posterior inferotemporal cortex (pIT) are selective for moderately complex 

features (Brincat & Connor, 2004; Kobatake & Tanaka, 1994; Pasupathy & Connor, 1999; Rust & 

Dicarlo, 2010); and neurons in aIT prefer partial or complete views of complex objects (Desimone, 

Albright, Gross, & Bruce, 1984; Kobatake & Tanaka, 1994; Tanaka, 1996). Data from functional 

magnetic resonance imaging (fMRI) in humans corroborate these findings: the blood oxygenation 

level‐dependent (BOLD) signal exhibits selectivity for orientation, spatial frequency and color in 

early visual regions (Brouwer & Heeger, 2009; Henriksson, Nurminen, Hyvarinen, & Vanni, 2008; 

Kamitani & Tong, 2005; Serences, Saproo, Scolari, Ho, & Muftuler, 2009), but is sensitive to object-

level properties such as global contour or object category in higher visual regions (Drucker & 

Aguirre, 2009; Kanwisher, McDermott, & Chun, 1997; Kriegeskorte et al., 2008; Malach et al., 1995; 

Ostwald, Lam, Li, & Kourtzi, 2008). It is widely assumed that downstream, object‐specific 

representations are constructed through combination of the simple feature representations 

upstream, but the manner in which this combination occurs remains unknown. 

There are at least three possible combination schemes. The first assumes that downstream 

object-level representations perform ‘and-like’ operations on upstream feature representations 

(Rust & DiCarlo, 2012), transforming the feature-code into conjunction-sensitive representations in 

inferotemporal (IT) cortex. This feature-to-conjunction transition scheme is assumed by many 

models of object processing (Bussey & Saksida, 2002; Cowell, Bussey, & Saksida, 2010; Fukushima, 
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1980; Perrett & Oram, 1993; Riesenhuber & Poggio, 1999; Serre, Oliva, & Poggio, 2007; Wallis & 

Rolls, 1997) and accords with electrophysiological findings of IT neurons selective for complex 

objects (Desimone et al., 1984; Fujita, Tanaka, Ito, & Cheng, 1992; Kobatake & Tanaka, 1994). 

However, when tested with large stimulus sets many IT neurons show broad tuning, responding to 

multiple complex objects (Desimone et al., 1984; Kreiman et al., 2006; Zoccolan, Kouh, Poggio, & 

DiCarlo, 2007). Therefore, apparent object-level selectivity in an IT neuron tested with a small 

stimulus set might instead reflect selectivity for a low-level feature possessed by only a few objects 

in the set. Thus the data do not rule out a second scheme: a global feature-coding hypothesis, in 

which simple features are coded separately in visual cortex and are bound by the synchronization 

of neural activity rather than by convergence onto a cortically localized representation of the 

conjunction (Eckhorn, 1999a, 1999b; Singer & Gray, 1995). Finally, a third possible coding scheme 

is a global conjunction-coding hypothesis, in which all stations in the hierarchy bind simple features 

together non-linearly to produce conjunctions (Shigihara & Zeki, 2013, 2014). Under this scheme, 

the apparent feature-selectivity of early visual cortex belies a neural code that is optimized for 

discriminating complex objects that contain those features. Supporting this account, several studies 

have reported coding of simple conjunctions of features such as color, form, motion and orientation, 

in early visual regions (Anzai, Peng, & Van Essen, 2007; Engel, 2005; Gegenfurtner, Kiper, & Levitt, 

1997; Johnson, Hawken, & Shapley, 2008; Seymour, Clifford, Logothetis, & Bartels, 2009, 2010), and 

coding of complex conjunctions in both early and higher-level visual regions (Erez, Cusack, Kendall, 

& Barense, 2015). 

To differentiate between the three alternative schemes, we must measure not just the 

presence of feature-coding and conjunction-coding throughout visual cortex, but the relative 

contribution of each. Using fMRI in humans, we devised a novel stimulus set and multi-variate 

pattern analysis (MVPA) technique to pit feature-coding against conjunction-coding. We created 

stimuli by building conjunctions from binary features, thereby allowing each cortical region to be 
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probed for information at two levels: features or conjunctions. Feature-information and 

conjunction-information were assessed using the same neuroimaging dataset and placed in a ratio, 

allowing direct comparison of the two coding schemes throughout cortex. 

Methods and Materials 

Methods Overview 

Participants in the scanner viewed visual stimuli constructed hierarchically from four binary 

features to give sixteen unique, conjunctive objects. We verified by means of a one-back repetition 

detection task that participants were attending to the stimuli sufficiently well to discriminate 

between distinct objects, i.e., between different unique conjunctions of features (Table 1). We used 

a support vector machine (SVM) to classify patterns of BOLD responses evoked by the stimuli. For 

each session in each subject, we constructed four two-way feature-level SVM classifiers (one 

classifier for each binary feature) and one sixteen-way object-level SVM classifier (Figure 1). This 

yielded both feature- and object-level classification accuracy for a given region of interest (ROI) 

(Tables 2 and 3). We next constructed a Feature Conjunction Index (FCI) for each ROI by comparing 

the output of the feature- and object-level classifiers (Figure 1; Table 4). A positive FCI indicates 

that the ROI contains more information about individual objects than is predicted from the 

information it contains about the separate object features, suggesting that its activation pattern is 

modulated by the presence or absence of specific objects rather than by individual features. A 

negative FCI indicates that the ROI contains more information about individual features than about 

whole objects, suggesting that voxel activations are primarily modulated by individual feature 

dimensions rather than by whole-object identity. These interpretations of FCI were confirmed via 

analyses of synthetic data. 

Participants, Stimuli, Task and Data Acquisition 

Participants 
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Eight healthy participants (4 female) with normal or corrected-to-normal vision completed two 

scan sessions. All participants provided written informed consent as approved by the Institutional 

Review Board at UCSD, and were compensated at $20/hr for fMRI scan sessions and $10/hr for 

behavioral test sessions.  

Stimulus and Task Parameters 

Motivated by evidence that the integration of contour elements into global shape (Brincat & 

Connor, 2004) and local image features into global texture (Goda, Tachibana, Okazawa, & Komatsu, 

2014; Hiramatsu, Goda, & Komatsu, 2011) are key mechanisms by which the ventral pathway 

constructs complex object representations, we created novel object stimuli by building 

conjunctions from binary features defined by contour and spatial frequency (Figure 1). To examine 

whether conjunction-coding emerged from an upstream feature-code, it was important to choose 

stimulus features that are encoded by early visual regions. Although shape contour is often 

considered a relatively high-level property of a visual stimulus and is known to be represented in 

areas like LOC, the binary contour features we used must be encoded as a collection of simple, 

oriented line segments in early visual regions such as V1 and V2, because of small receptive field 

size (see also Brincat & Connor, 2006; Yau, Pasupathy, Brincat, & Connor, 2013). The sensitivity of 

neurons in early visual cortex to spatial frequency is well-documented (e.g., Foster, Gaska, Nagler, & 

Pollen, 1985; von der Heydt, Peterhans, & Dursteler, 1992). Stimuli subtended approximately 7-10⁰ 

of visual angle, except in one session in one participant (subject AF) in which they subtended 

approximately 5-7⁰ (visual inspection of multi-variate pattern analysis (MVPA) results did not give 

any indication of greater between-session differences in any of the MVPA measures for subject AF 

than for other subjects). Visual displays were presented to participants via back-projection onto a 

screen at the foot of the scanner bore, which was viewed in a mirror fixed to the head coil, over a 

distance of approximately 380cm. To ensure that all pixel locations emitted the same average 

luminance over the course of a trial (and therefore that all stimuli possessed the same average 
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luminance), visual stimuli cycled continuously from a positive to a negative image, with every pixel 

oscillating from minimum to maximum luminance according to a temporal sine wave with 

frequency of 2Hz.  

Each scan session contained 10 experimental task runs. Each task run lasted 274 seconds (44 trials 

lasting 6 s each, in addition to a 10 s post-task scanning window). Participants were instructed to 

fixate a circular, colored fixation point that appeared at the center of the screen throughout all 

trials. Each run comprised 32 'stimulus' trials, 2-4 'immediate repeat' trials, and 8-10 'null' trials. 

On stimulus and immediate repeat trials, the fixation point was red, and stimulus onset began 0.2-

0.7 s after the start of the trial (with exact onset randomly jittered within that window); stimulus 

presentation lasted 3 s and was followed by a 2.3-2.8 s response window in which only the fixation 

point appeared, to give a total trial duration of 6 s. The variable cue onset time produced an inter-

stimulus interval that varied between 2.5 and 3.5 s. The 32 stimulus trials comprised 2 pseudo-

randomly ordered presentations of each of the 16 unique stimuli. To generate immediate repeat 

trials, a pseudo-randomly chosen stimulus was inserted into the sequence such that it created a 

repeat of the stimulus in the immediately preceding trial; functional data from these trials were 

removed from multi-variate analyses. On null trials, the fixation point changed from red to green 

and participants were required to press any button whenever they detected a slight dimming of the 

green fixation point, which could occur once or twice per null trial; a response was required within 

1 s of each dimming event for a trial to be scored as correct. This task was designed to reduce the 

tendency for mind-wandering, known to affect baseline measures of BOLD (Stark & Squire, 2001). 

Accuracy on null trials was monitored to ensure participant wakefulness, and the degree of fixation 

point dimming was adjusted between runs to produce below ceiling performance such that 

attention was maintained. Participants performed a one-back repetition detection task, indicating 

by button press whether the stimulus was the same (button 2) or different (button 1) from that of 

the previous trial. Good performance on this task required wakefulness and attention to the stimuli. 
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All participants were familiarized with the stimuli and task in a brief practice session before the 

first scan.  

Visual Search Training 

All subjects completed several daily sessions of discrimination training on the set of sixteen stimuli, 

interposed between the two scan sessions. These behavioral training sessions were conducted 

outside of the scanner. The task was adapted from a visual search task used by Shiffrin and 

Lightfoot (Shiffrin & Lightfoot, 1997). On each trial, a target stimulus chosen pseudo-randomly from 

the set of 16 was displayed singly, in the center of the screen, for 3 sec. Immediately after stimulus 

offset a search array appeared, which contained between 1 and 8 stimuli located at 8 equally 

eccentric spatial locations (the assignment of stimuli to locations was random, with slots left empty 

when the search array comprised fewer than 8 stimuli). Participants were allowed up to 20 seconds 

to indicate by button press whether the target was present or absent in the display. Feedback in the 

form of a low or high auditory beep indicated whether the response was correct or incorrect, 

respectively. In each daily session, participants completed ten blocks of 32 trials, comprising two 

trials with each of the 16 stimuli serving as target. Accuracy and response time (RT) data were 

collected. This visual search task required that participants attend to the specific conjunction of 

visual features comprising the target, in order to discriminate the target from the distractor stimuli, 

which shared features with the target. In conjunctive visual search, which requires inspection of 

each stimulus in series, RTs are typically longer when a subject must search a display containing 

more stimuli; this produces a positive slope for the relationship between search display set size and 

RT (Treisman & Gelade, 1980). However, Shiffrin and Lightfoot (1997) showed that training on a 

conjunctive visual search task causes RT-set size slopes to decrease in magnitude, presumably as 

the conjunctions become unitized such that 'pop-out' occurs, obviating the need for serial search. 

Because our aim was that participants' representations of the stimulus conjunctions would become 

unitized, the dependent variable of interest was the RT-set size slope and how it changed across 
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daily training sessions. Accordingly, training was terminated for each subject when the RT-set size 

slope appeared to be approaching an asymptotically low value (mean 11.1 days; range 7 - 15 days). 

Participants completed their second scan within 3 days of the last training session. 

Acquisition of fMRI data 

Each scan session lasted 2 hours and included ten experimental runs and two retinotopic localizer 

runs. We scanned participants on a 3T GE MR750 scanner at the UCSD Keck Center for Functional 

Magnetic Resonance Imaging, using a 32 channel head coil (Nova Medical, Wilmington, MA). 

Functional data were acquired using a gradient echo planar imaging (EPI) pulse sequence with TR = 

2000 ms, TE = 30 ms, flip angle = 90°, voxel size 2 × 2 × 3 mm, ASSET factor=2, 19.2 × 19.2 cm field 

of view, 96 × 96 matrix size, 35 slices of 33 mm thickness with 0 mm spacing, slice stack obliquely-

oriented passing through occipital, ventral temporal, inferior frontal and posterior parietal cortex. 

The oblique orientation (i.e. tilted downward at the front of the brain) ensured good coverage of 

ventral temporal and posterior parietal cortices and the medial temporal lobe. One consequence 

was incomplete coverage of prefrontal cortex (PFC), meaning that stimulus representations in PFC 

could not be examined. Anatomical images were acquired with T1-weighted sequence (TR/TE = 

11/3.3 ms, TI = 1,100 ms, 172 slices, flip angle = 18°, 1 mm3 resolution).  

fMRI Data Analyses 

fMRI Data Pre-processing 

Pre-processing of anatomical and functional images was carried out using BrainVoyager (Brain 

Innovations) and custom Matlab scripts. Pre-processing included co-registration of functional scans 

to each individual's anatomical scan, slice-time correction, motion-correction, high-pass filtering 

(cut-off: 3 cycles/run), transformation to Talairach space (Talairach & Tournoux, 1988) and 

normalization (Z-scoring) of the functional timeseries data within each voxel for each run. 

Functional data from immediate repeat trials were removed from all multivariate pattern analyses 
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(MVPA). BOLD data for subsequent MVPA were extracted by snipping out the z-scored functional 

timeseries data for each stimulus trial from the 3rd and 4th TRs after stimulus onset (i.e., the period 

4-8 seconds after stimulus onset) and averaging over the two datapoints. 

Definition of ROIs 

Retinotopic mapping was performed to define visual areas V1, V2v, V2d, V3v and V3d (Engel et al., 

1994; Sereno et al., 1995). Data were collected in one or two scans per participant, using a 

flickering checkerboard wedge (8Hz flicker, 60⁰ of polar angle) alternately presented at the 

horizontal and vertical meridians (20 s duration at each presentation). Because we did not collect 

functional localizer data for area LOC, we took an approximate ― and therefore conservative ― 

approach of defining a spherical ROI of radius 7mm centered upon the mean of the Talairach 

coordinates in each of left and right LOC reported by a set of 7 studies (Epstein, Higgins, Parker, 

Aguirre, & Cooperman, 2006; Grill-Spector, 2003; Grill-Spector et al., 1998; Large, Aldcroft, & Vilis, 

2005; Lerner, Hendler, Ben-Bashat, Harel, & Malach, 2001; Song & Jiang, 2006; Xu, 2009). 

Coordinates were converted to from MNI to Talairach where necessary, yielding mean values in 

Talairch coordinates of Left LOC center [-44 -70 -4] and right LOC center [43 -67 -4]. Voxels were 

further screened for inclusion into each ROI (V1 through LOC) by taking the functional data from 

the ten experimental runs and performing a simple contrast of stimulus on versus stimulus off, 

testing against a liberal threshold of p=0.05, uncorrected. In all ROI-based multi-variate analyses, 

data from left and right hemispheres were combined into a single ROI, but the dorsal and ventral 

portions of areas V2 and V3 were kept separate.  

Multivariate Pattern Analyses (MVPA) 

After pre-processing, classification analyses were carried out using the libSVM software package 

(Chang & Lin, 2011) publicly available at https://www.csie.ntu.edu.tw/~cjlin/libsvm/. We used 

default parameters (e.g., cost parameter =1) and a linear kernel. For multi-class classification 
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problems, libSVM uses a one-versus-one method, the performance of which is comparable to a one-

versus-all method (Hsu & Lin, 2002). All classifier analyses were performed on each session in each 

subject individually; reported classifier accuracies are averaged over both sessions in each subject 

unless otherwise indicated. To ensure that over-fitting did not contribute to classifier performance 

we used hold-one-out cross-validation: classifiers were trained with BOLD data from nine (all but 

one) runs and tested with the tenth (held-out) run, with the process repeated ten times such that 

each run served as the test set once. 

Comparing Feature- and Conjunction-Coding: The Feature Conjunction Index (FCI) 

In order to determine how the relative levels of feature-based versus conjunction-based knowledge 

varied across brain regions, we devised a novel measure – the FCI – by placing classifier accuracies 

in a ratio (Figure 1). Positive FCI values indicate conjunction-coding, negative values indicate 

feature-coding, and zero values – provided classifier performance is above chance; which we 

ensured was the case by screening voxels or ROIs according to classifier performance – likely 

indicate a transition zone in which neither feature- nor conjunction-coding is strongly dominant. 

(See Results and Figure 2 for a demonstration and discussion of these properties of the FCI). 

Examining the Coding of Mid-level Conjunctions 

In addition to measuring decoding accuracy for simple features and for four-featured conjunctions, 

we also assessed 4-way classification of ‘mid-level’ conjunctions, i.e., combinations of just two of the 

four binary features possessed by each stimulus. There are six possible mid-level conjunctions: 

Feature 1 with Feature 2 (‘Global Shape’), Feature 3 with Feature 4 (‘Texture’), Feature 1 with 

Feature 3 (‘Right Component’), Feature 2 with Feature 4 (‘Left Component’); and two less plausible, 

unnameable conjunctions: Feature 1 with Feature 4, and Feature 2 with Feature 3. The mid-level 

conjunction classification accuracy allowed us to construct two further indices, by entering it into 

two ratios, (1) comparing feature versus mid-level conjunction knowledge in a Feature vs. Mid-Level 
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Conjunction Index (FMI), and (2) comparing mid-level conjunction versus whole-object conjunction 

knowledge in a Mid-Level vs. Whole-Object Conjunction Index (MCI). These indices were constructed 

analogously to the FCI (Figure 1). Calculation of FMI was performed separately for each unique, 

mid-level conjunction. For each mid-level conjunction, feature-classifier outputs were used to 

predict mid-level conjunction accuracy on a trial by trial basis, using only the two features that 

comprised the mid-level conjunction. Next, the predicted mid-level accuracy was compared with 

the empirical mid-level accuracy in a log ratio. The mean FMI value was an average over the four 

plausible mid-level conjunctions. For calculation of MCI values, we took the four plausible mid-level 

conjunction accuracies (i.e., outputs of four of the 4-way, mid-level conjunction classifiers) and 

combined them into two pairs to make two separate predictions for the whole-conjunction 

accuracy (Feat1-Feat2 combined with Feat3-Feat4; and Feat1-Feat3 with Feat2-Feat4), on a trial-

by-trial basis. Reported MCI values were obtained by averaging across the two predictions and 

comparing this with the empirical whole-object conjunction accuracy in a log ratio. 

Screening to Remove ROIs with Chance-level Classifier Accuracy 

For both ROI-based and searchlight analyses, before computing the Feature Conjunction Index (FCI) 

we screened out ROIs in any session in any subject in which accuracy did not exceed chance for 

either feature-based or object-based classification. Analogously, for the FMI and MCI, we screened 

out any ROIs in which accuracy did not exceed chance for any of the classifiers contributing to the 

ratio. Chance level was determined using a binomial test, with binomial distribution parameters n = 

320 trials, p = 0.5 for the two-way feature classifiers and p = 0.0625 for the sixteen-way object 

classifier, and with a statistical threshold α = 0.05. The alpha level was adjusted for multiple 

comparisons by the Sidak method of assuming independent probabilities: αSID = 1 ― (1 ― α)^(1/n) 

(where n=4 in the case of the 4 feature-classifiers). For the object-level object classifier, αSID = 0.05 

because there is only one classifier. For each of the 4 feature classifiers, αSID = 0.0128 (i.e., αSID = 1 

― (1 ― α)^(1/n), where α = 0.05 and n=4). Because above-chance performance in either the object-
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classifier or any of the 4 feature classifiers qualified an ROI for inclusion, Sidak correction among 

the feature classifiers ensured that screening was unbiased with respect to feature-based versus 

object-based classifier accuracy. Binomial p values and Sidak adjustment were computed 

analogously for the FMI and MCI indices, according to the number of classifier outcomes and the 

number of comparisons in each case. The accuracy screening procedure ensured that ROIs with 

below-chance performance in all classifiers ― from which computed FCI values are meaningless ― 

were removed from the analysis. We did not correct for multiple comparisons when performing the 

binomial screening tests, because the outcomes of these tests were not our results of interest, they 

merely served to remove noise from the measure of interest, the FCI. In the searchlight FCI 

analyses, screening resulted in the removal of many centroid voxels. In the ROI-based analyses, for 

the FCI, screening resulted in the removal of one datapoint from a single session in one subject, in 

region LO (but removal of this datapoint did not significantly affect the results); for the FMI, 

screening resulted in the removal of several datapoints in region LO, described in the Results; and 

for the MCI, screening resulted in the removal of no datapoints. 

ROI-based Statistical Tests 

Differences in classifier accuracy per se were not of primary interest; our main goal was to calculate 

FCI by placing classifier accuracies in a ratio, in order to determine how the relative levels of 

feature-based versus conjunction-based knowledge varied across brain regions. Therefore, we 

examined differences in classifier accuracy only to provide preliminary descriptive characterization 

of the data, to verify that classifier performance was above chance, and to investigate whether there 

was an effect of scan session on the multivariate results. To test for differences in classifier 

accuracies across ROIs and sessions, accuracy scores for both feature- and object- classifiers in each 

session and subject separately were transformed into log likelihood ratios (log odds; LLR(Acc) = 

ln(Acc/(1-Acc)). Log odds accuracy values for both feature- and object-classifiers were submitted to 

a two-way repeated measures ANOVA with Scan Session (1,2) and ROI (V1, V2v, V2d, V3v, V3d, 
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LOC) as factors. Because this ANOVA revealed a significant effect of ROI for both feature- and 

object- classifier accuracy, we checked for adequate classifier performance in the lowest accuracy 

ROI (area LOC) by comparing LLR(acc) in LOC to chance performance (for features, chance 

LLR(acc) = 0; for objects, chance LLR(acc) = -2.71) via a one-sample t-test (one-tailed, alpha = 0.05). 

Ninety-five percent Confidence Intervals (CIs) for classifier accuracies and FCI (Tables 2-4), were 

determined by 10,000 iterations of bootstrap resampling with replacement. Resampling of 

classifier accuracy was conducted within-subjects, separately for each classifier and hold-out run, 

and these resampled values were averaged over the ten hold-out runs. To compute classifier 

accuracy CIs, the classifier accuracies were averaged across the two sessions and all subjects for 

each iteration and compiled into a distribution of mean classifier accuracies. To compute CIs for the 

FCI mean, an FCI value was computed from the classifier accuracies for each iteration (separately 

for each classifier and ROI) and averaged across the two sessions and across subjects, before being 

compiled into a distribution of mean FCI values. Finally, 95% CIs were drawn from these 

distributions by taking the 250th and 9750th ranked values. Comparison of CIs between pairs of 

ROIs provides an assessment of differences in classifier accuracy or FCIs between ROIs.  

The FCI is a log ratio centered on zero, therefore we performed no further transformation before 

submitting it to a two-way repeated measures ANOVA with factors Scan Session (1,2) and ROI (V1, 

V2v, V2d, V3v, V3d, LOC). Because there was a significant effect of ROI, we performed Sidak-

adjusted pairwise comparisons to test for differences between ROIs. For the FCI, ninety-five percent 

CIs (Figure 2; Table 4) were determined by 10,000 iterations of bootstrap resampling with 

replacement, providing a secondary assessment of differences between ROIs. We also performed 

two-way repeated measures ANOVAs on the FMI and MCI values, but in the case of the FMI we 

tested only 5 ROIs, excluding LOC, because of missing datapoints for LOC following screening. 

Searchlight Analyses 
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To assess the relative dominance of feature- versus conjunction-coding throughout all of visual 

cortex we computed FCI using a searchlight approach (Kriegeskorte, Goebel, & Bandettini, 2006). 

The imaged volume in each session in each subject was first screened using a subject-specific gray-

matter mask encompassing occipital, temporal and posterior parietal cortices; the approximate 

volume encompassed for each participant can be seen in Figure 4. A sphere of radius 5 functional 

voxels was sampled around each voxel in this volume (any sphere containing fewer than 100 voxels 

falling within the gray-matter mask was excluded); feature- and object-classifiers were trained on 

the BOLD data from the spherical ROI, and the resulting FCI was recorded at the centroid voxel in 

the map. To create the group average FCI map in Figure 4, we first took the FCI map for each 

session and subject performed spatial smoothing using a Gaussian kernel with FWHM of 2. The 

spatially smoothed FCI value at each voxel was computed by performing spatial smoothing of (1) 

object classifier accuracy and (2) feature-predicted object classification accuracy, and placing the 

two smoothed values into a log ratio, as in Equation 1. At each voxel, any neighboring voxels that 

were disqualified from inclusion in the analysis by our standard criteria ― falling outside of the 

anatomical mask, possessing fewer than 100 voxels in their associated spherical ROI, or yielding 

above chance classifier accuracy for neither features nor objects ― were treated as missing values 

in the Gaussian averaging calculation. Next, for each subject, the smoothed maps were averaged 

over two sessions. (The collapsing of data across two sessions was justified because in the ROI-

based analyses we found no effect of session on FCI, nor any interaction of session with ROI; see 

Results. In addition, for the single-session FCI maps generated by searchlight analysis, we conducted 

a group-level t-test at each voxel for a difference of FCI across sessions and found no voxels passing 

an FDR-corrected threshold of alpha=0.05). Finally, the group average FCI map (Figure 4) was 

constructed by averaging over all subjects' smoothed session-averaged FCI values at each voxel, 

with the constraint that for a voxel to appear in the map it had to possess a numeric FCI value 
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(rather than a missing value, indicating that the voxel had been screened out) for at least 5 of the 8 

subjects.  

Group-level Statistical Tests on Searchlight Data 

To find cortical locations of reliably non-zero FCI values ― either positive indicating conjunction-

coding or negative indicating feature-coding ― we performed a group-level t-test at each voxel in 

the searchlight analysis, comparing the group mean FCI to zero. To do so, we took FCI maps from 

individual subjects and sessions that had been spatially smoothed using a Gaussian kernel with 

FWHM of 2 functional voxels, and averaged over the two sessions for each subject, as described 

above. We tested only voxels that were associated with numeric FCI values for all 8 subjects (i.e., 

voxels that did not contain an empty value after spatial smoothing, owing to disqualification during 

the screening process). We used a False Discovery Rate (FDR)-corrected alpha level of 0.05 (two-

tailed) against a t-distribution with 7 degrees of freedom. Anatomical labels for identified sites in 

cortex were derived from the Automated Talairach Atlas available at www.talairach.org (Lancaster 

et al., 2000). 

Quantifying the transition from feature- to conjunction-coding 

In order to quantify the transition from feature to conjunction-coding along the ventral and dorsal 

pathways, we examined the FCI as a function of location along each pathway. To specify the location 

of a voxel in the ventral and dorsal pathways, we first defined three vectors in Talaraich co-

ordinates: (1) a 'Posterior Ventral' vector with its origin in the occipital pole (Tal co-ords, L: [-8 -

101 -6]; R: [8 -101 -6 ]) extending to the center of LOC (Tal co-ords, L: [-44 -70 -4]; R: [43 -67 -4]); 

(2) an 'Anterior Ventral' vector with its origin at the center of LOC, extending to the anterior tip of 

the temporal pole (Tal co-ords, L: [-35 28 -29]; R: [35 28 -29]); and (3) a 'Dorsal' vector with its 

origin in inferior posterior occipital cortex (Tal Co-ords L: [-10 -99 -14]; R: [10 -99 -14]) extending 

to the most superior/anterior point of the dorsal pathway contained in the scanned volume, in 
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Brodmann Area 7 (Tal Co-ords L: [-14 -67 53]; R: [14 -67 53]). The goal was to project the Talairach 

co-ordinates of each voxel in the dorsal and ventral pathways onto the three vectors we defined, to 

produce a single, scalar metric specifying the location of each voxel along each pathway. In order to 

include only voxels in the appropriate cortical regions for each vector (e.g., to exclude anterior 

voxels from the 'Posterior Ventral' vector, and ventral voxels from the 'Dorsal' vector), we defined a 

bounding box around each vector, outside of which voxels were excluded from the analysis (see 

Figure 6). In all cases, the bounding box for each hemisphere terminated at X=0 (the midline). For 

the Posterior Ventral vector, the boundaries of the box were: X=0 to X = lateral extent of Talairach 

bounding box; Y = -55 to the posterior extent of Talairach bounding box; Z = 7 to Z = inferior extent 

of Talairach bounding box. For the Anterior Ventral vector, the bounding box dimensions were: X=0 

to X = lateral extent of Talairach bounding box; Y = -70 to the anterior extent of Talairach bounding 

box; Z = 7 to Z = inferior extent of Talairach bounding box. For the Dorsal vector, the bounding box 

dimensions were: X = 0 to X = lateral extent of Talairach bounding box; Y = -57 to the posterior 

extent of the Talairach bounding box; Z = -14 to the posterior extent of the Talairach bounding box. 

In addition, for the Posterior Ventral Vector, we excluded any voxels with a scalar projection value 

beyond the end of the vector, which terminated at the center of LOC (i.e., any voxels within the 

bounding box located at a more extreme point along the vector than the center of LOC).  

Having derived a metric specifying the location of each voxel in each of the three pathways, 

we plotted FCI values as a function of voxel location. FCI values were not spatially smoothed, but 

were averaged over the two sessions for each voxel, within each subject. Separate plots were made 

for each subject and hemisphere, for each of the three defined pathways (posterior Ventral, 

Anterior Ventral and Dorsal). For each plot, we assessed the correlation between voxel location and 

FCI, and found the best fitting straight line describing the relationship by a least-squares method. 

The best fitting straight lines for all subjects and hemispheres in all three pathways are shown in 

Figure 6. We assessed differences in the slope of the best-fitting straight lines for the three 
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pathways by performing a 2x3 repeated measures ANOVA with factors Hemisphere (Left, Right) 

and Pathway (Posterior Ventral, Anterior Ventral, Dorsal). 

Evaluating the Properties of the Feature Conjunction Index (FCI) with Synthetic Data 

Construction of Synthetic Data 

To evaluate the FCI metric we created synthetic BOLD datasets. We used two different templates – 

feature-coded and conjunction-coded – to generate the signal that defined distinct patterns for the 

16 stimuli in the set. In the feature-coded template, artificial voxels were switched 'on' or 'off' 

according to the presence or absence of a particular value of one of the four binary features, with all 

feature values represented by an equal number of voxels. In the conjunction-coded template, 

artificial voxels were switched 'on' or 'off' according to the presence or absence of a specific object 

stimulus from among the set of 16, with all objects represented by an equal number of voxels. All 

datasets possessed 256 voxels in total. We generated synthesized datasets in two ways: (1) by 

selecting a signal value from a range of magnitudes (between 0.01 and 0.5), applying this signal to 

'active' voxels according to the template, and superimposing this pattern of activation on top of a 

constant background of uniform random noise (range 0 to 1, standard deviation 0.289), resulting in 

two families of datasets possessing signal-to-noise ratios (SNR) ranging from 0.0012 to 3, and (2) 

by using a constant signal value of 1, applying this signal to 'active' voxels according to the 

template, and superimposing this pattern on top of a background of uniform random noise whose 

amplitude was systematically manipulated (the range of the noise varied from a minimum range of 

0-2, with standard deviation of 0.5774, to a maximum range of 0-30, with standard deviation 8.66), 

resulting in two families of datasets  (feature- and conjunction-coded) that possessed signal to 

noise ratios (SNR) ranging from 0.0133 to 3. For both data synthesizing methods, data were 

normalized on a ‘per run’ basis exactly as empirical BOLD data were normalized before analysis 
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(grouping ‘trials’ into sets of 32 containing two presentations per stimulus – a single scanner run – 

and normalizing across all trials in a run for each voxel). 

Assessment of FCI 

Our goals were (1) to assess the intuition that feature-coded activation patterns produce negative 

FCIs and conjunction-coded patterns produce positive FCIs, when classifier performance is above 

chance, and (2) to examine the extent to which qualitative or quantitative shifts in FCI are produced 

by varying levels of noise. Following identical procedures to those used for empirical BOLD data, 

taking 100 synthetic datasets from each template – feature-coded and conjunction-coded – we ran 

feature- and conjunction-level classifiers and computed FCI values from the classifier outputs. We 

then plotted FCI values and classifier accuracies against SNR, for both data templates. Critically, we 

aimed to evaluate the FCI metric against the results from datasets that produced classifier 

accuracies in line with the range of accuracies seen in our empirical data. This is important because 

FCI values necessarily tend to zero when both feature- and object-level classifiers either know 

nothing (below chance performance) or have perfect knowledge (approaching 100% accuracy). We 

emphasize that, in our empirical data, classifier accuracies never approached ceiling, and below-

chance classification accuracies always disqualified an ROI from inclusion in the assessment of FCI. 

Results 

FCI Reflects the Relative Contribution of Feature- versus Conjunction-Coding in a Cortical 

Region 

As seen in Figure 2, analyses of synthetic data constructed according to a feature-code and a 

conjunction-code yielded FCI values that confirmed the interpretation of FCI outlined in the 

Methods. Focusing on the datapoints within the gray boxes (for which mean classifier accuracies fell 

within the range observed in ROI-based analyses of the empirical data), when FCI values from each 

set of 100 simulations were compared to zero with a one-sample t-test (α = 0.05), it was confirmed 
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that all Feature-Coded datasets produced negative FCI values and all Conjunction-Coded datasets 

produced significantly positive FCI values. We emphasize two key features of these simulation 

results. First, positive FCI values were never produced by a feature-coded template, and negative 

FCIs were never produced by a conjunction-coded template. Second, for both templates, increasing 

noise tended to push the FCI toward zero, making it less negative for feature-coded data, and less 

positive for conjunction-coded data. However, in these simulations, FCI values derived from above-

chance, empirically-plausible classifier accuracies were always statistically distinguishable from 

zero (i.e., significantly negative or positive). Taken together, the simulations demonstrate that a 

region containing only object-sensitive voxels cannot produce a negative FCI and a region 

containing only feature-sensitive voxels cannot produce a positive FCI, precluding qualitatively 

misleading results. When the FCI takes near-zero values, in the presence of above-chance classifier 

accuracy, this likely represents a transition zone containing some mixture of feature and 

conjunction sensitive voxels, such that neither coding type is dominant. In the presence of high 

noise levels, zero FCIs are harder to interpret, because they may reflect noise rather than a balance 

of feature and conjunction coding. It is for this reason that, in the empirical analyses (both ROI-

based and spherelight), we screened out any ROIs for which classifier accuracy did not exceed 

chance. Despite this caveat regarding near-zero FCIs, it is nonetheless instructive that, even at high 

noise levels, numerically positive FCIs never emerged from a feature code and numerically negative 

FCIs were never produced by a conjunction code. The simulations thus reinforce the a priori 

intuition that the FCI indicates whether the voxel-level population code is relatively dominated by a 

feature-code (negative FCI) or a conjunction-code (positive FCI).  

An intuitive understanding of the pattern of FCI values derived from synthetic data can be 

gained by considering how individual voxel activations map onto category identities, for each 

underlying coding type and classifier type. All classifiers used a linear kernel. First, consider that for 

hypothetical activation patterns with zero noise, both feature- and conjunction-knowledge would 
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be perfect regardless of the underlying code (feature-based or conjunction-based), and FCI values 

would be zero. However, empirical BOLD data contain noise, which produces incomplete 

knowledge. In the case of noisy feature-coded data, reliable information is present for some but not 

all of the features (i.e., noise obscures the signal in some but not all of the feature-sensitive voxels). 

Each feature classifier must map feature-sensitive voxels onto feature categories, but these 

mappings are independent for the different categories: different voxels carry the information for 

each category. Although some voxels' signal is obscured, reducing the feature classification 

accuracy for the feature categories coded by those voxels, the feature categories for which reliable 

information is present can still be classified because mappings from the reliable voxels to feature 

categories are unaffected by noise in the unreliable voxels. In contrast, the conjunction classifier 

must map feature-sensitive voxels onto object categories, which requires combining information 

from all features, therefore all voxel-to-category mappings are affected by the loss of information in 

some voxels. Consequently, object classification accuracy drops further than feature classification 

accuracy, and FCI is negative. In the case of noisy conjunction-coded data, the reverse scenario 

applies. Since the conjunction classifier learns independent mappings of conjunction-sensitive 

voxels to object categories (separate voxels in each case), noise on some but not all voxels reduces 

accuracy for some but not all categories. In contrast, the feature classifier must perform 

combinatorial mappings of conjunction-sensitive voxels onto feature categories, so the presence of 

noise on some voxels affects all voxel-to-feature category mappings. Hence, noise affects feature 

classifier accuracy more than conjunction classifier accuracy, producing positive FCI values. 

What does this imply for the nature of the neural code? Positive FCIs are taken as indicating 

conjunction-coded activation patterns. In our simulations, this amounted to voxels in which the 

signal varied with the presence or absence of an object, without regard to its component features. 

That is, the intersection of the features comprising the object created a wholly new pattern, distinct 
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from the pattern due to other objects sharing some of those features. A conjunction-code is thus a 

non-linear combination of features for which the whole is greater than the sum of the parts. 

A Transition from Feature- to Conjunction-Coding in Occipito-Temporal Cortex 

We investigated whether early visual cortex employs feature-coding or conjunction-coding, and 

whether one scheme transitions to the other with progression toward the temporal lobe, by 

examining FCI in a series of functionally or anatomically defined ROIs: V1, V2, V3 and lateral 

occipital cortex (LOC). Taking stimulus-evoked activation patterns from across each ROI, we trained 

the classifiers using hold-one-out cross-validation and computed FCI for each subject and session 

separately (Figure 3; Table 4). FCI differed significantly across ROIs (F(5,35) = 15.78, p < 0.001, 

η2=0.693), but not across sessions (F(1,7) = 0.004, p = 0.95, η2=0.001), with no interaction between 

Session and ROI (F(5,35)= 0.133, p = 0.984, η2=0.019). Ordering the ROIs as [V1, V2v, V2d, V3v, V3d, 

LOC] revealed a significant linear trend (F(1,7) = 37.34, p < 0.001; η2= 0.842), suggestive of a 

transition from feature-coding toward conjunction-coding along early stages of the visual pathway. 

Regions V1 through V3 exhibited negative FCIs indicative of feature-code dominance, while LOC 

revealed a numerically positive FCI that was significantly greater than in all other ROIs (revealed by 

non-overlapping 95% CIs, Table 4). In our analysis of synthetic data, neither purely feature-based 

nor purely conjunction-based data (at SNR levels that yielded classifier accuracy within the range 

observed in the empirical ROI-based analyses) produced zero FCIs. We therefore interpret the near-

zero, numerically positive FCI for LOC in terms of a hybrid code that contains both feature- and 

conjunction-coding, in contrast to the strong feature-coding detected in early visual cortex. In favor 

of this interpretation, we note two points. First, both feature and object classifier accuracy exceeded 

chance in LOC (see Tables 2 and 3). Given this above-chance classifier performance, and the 

simulation results reported above, it would not be possible to derive a numerically positive FCI if 

the true underlying code in LOC were as strongly feature-based as in regions V1 through V3 

(indicated by their very negative FCI values).  Second, region LOC showed a significantly positive 
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FMI for the mid-level conjunction of global shape (reported below), indicating that the quality of 

BOLD in LOC, in this dataset, is sufficient to produce non-zero indices when the information present 

in the activation patterns warrants such values. 

Feature- and Conjunction-Coding Throughout Visual Cortex 

In order to assess feature- and conjunction-coding in cortical representations of objects beyond 

region LOC, and in the dorsal visual pathway, we examined all of visual cortex using a searchlight 

approach (Kriegeskorte et al., 2006). At each spherical ROI, we performed classifier analyses (using 

hold-one-out cross-validation and screening out spheres in which classifier accuracy did not exceed 

chance) and computed the FCI, mapping the FCI value back to the centroid voxel of the sphere. In 

the group-averaged FCI map (Figure 4), occipital regions exhibit the most negative FCIs (green) 

indicative of feature-coding. With progression into regions anterior and superior to the occipital 

pole, the FCI first becomes less negative (blue) – suggesting a transition, or ‘hybrid’ region – and 

then becomes positive (orange/yellow) in occipito-temporal and posterior parietal regions, 

indicating the emergence of conjunction-coding in both ventral and dorsal pathways. Examination 

of FCI maps in individual subjects revealed the same pattern in every subject in both sessions: 

strongly negative FCIs in occipital regions with a transition to positive FCIs toward temporal and 

parietal regions (Figure 5).  

Quantifying the Transition from Feature- to Conjunction-Coding 

Next, we sought to quantify the relationship between cortical location and FCI in both ventral and 

dorsal pathways. To do so, we devised a metric to specify the location of the voxels in each pathway 

by defining three vectors in Talaraich co-ordinates: a 'Posterior Ventral' vector with its origin in the 

occipital pole extending to the center of LOC; an 'Anterior Ventral' vector with its origin in LOC 

extending to the anterior tip of the temporal pole; and a 'Dorsal' vector with its origin in inferior 

posterior occipital cortex extending to the most superior/anterior point of the dorsal pathway in 
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the scanned volume (in Brodmann Area 7). For each vector we defined a bounding box around the 

vector to constrain the anatomical region from which voxels were drawn (Figure 6) and projected 

the Talairach co-ordinates of voxels within the box onto the vector, yielding a scalar value for each 

voxel that specified its location along the vector. Finally, for each subject, for all three vectors in 

each hemisphere separately, we computed (i) the correlation between the location of a voxel and 

the FCI of the spherical ROI centered on that voxel, and (ii) the slope of the best fitting regression 

line relating voxel location to FCI (Figure 6). The correlation between location and FCI was positive 

and highly significant in all 8 subjects in both hemispheres for the Dorsal vector (p< 0.0001) and 

the Posterior Ventral vector (p<0.01), reflecting a robust transition from feature-coding at the 

occipital pole to representations more dominated by conjunction-coding in lateral occipital and 

superior parietal cortices, respectively. For the Anterior Ventral vector, the correlation was positive 

and significant (p<0.01) in both hemispheres for 5 out of 8 subjects; in 1 subject (yellow in Figure 

6) the left hemisphere was negatively correlated (a decrease in FCI with anterior progression; 

p<0.05) and the right was positively correlated (p<0.001); in the 2 remaining subjects (black and 

magenta in Figure 6), the left hemisphere was significantly negatively correlated (p<0.0001) and 

the right was not correlated (p>0.2). The slopes of the best fitting regression lines differed for the 

three vectors (F(2,14)=23.71, p<.001), but did not differ by hemisphere (F(1,7)=.026, p=.877), with 

no hemisphere by vector interaction (F(2,14)=2.889, p=.089). Slopes for the Anterior Ventral vector 

were smaller than for the Posterior Ventral (p < 0.001) and Dorsal (p < 0.0001) vectors, which did 

not differ from each other (p = 0.62). These results suggest that, for the present stimulus set, the 

greatest transition from feature- to conjunction-coding occurs in posterior regions, in both ventral 

and dorsal pathways. A possible reason for the shallower transition toward conjunction-coding in 

the anterior ventral pathway is that the object-level conjunctions comprising these simple, novel 

objects may be fully specified in relatively posterior sites, just beyond the occipito-temporal 

junction (Figures 4 and 7). Indeed, the stimuli with which Erez et al. (2015) revealed conjunction 
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coding in anterior temporal regions were 3-dimensional, colored objects that likely better engaged 

anterior visual regions.  

Cortical Sites of Extreme Feature- and Conjunction-Coding 

Finally, to search for cortical sites demonstrating statistically reliable extremes of feature- or 

conjunction-coding, we compared the group mean FCI at each voxel to zero (two-tailed t-test, False 

Discovery Rate (FDR) corrected; positive t-values indicate conjunction-coding and negative t-values 

feature-coding). This analysis assumes anatomical and functional correspondence of points in 

Talairach space across subjects; it is therefore conservative, particularly for conjunction-coding, the 

cortical sites of which are likely more widely and variably distributed across subjects. Nonetheless, 

we revealed a large occipital region of feature-coding along with multiple conjunction-coding sites 

throughout occipito-temporal, ventral temporal and parietal cortices, extending into the 

parahippocampal gyrus, medial temporal lobe and anterior temporal pole (Figure 7). We note the 

lower prevalence of above-threshold voxels contributing to each subject's FCI map in regions 

toward the anterior temporal lobes (see Figure 5), and we therefore interpret our findings in these 

regions with caution; in contrast, data in the occipital, posterior temporal and posterior parietal 

lobes were much less sparse and so findings in these regions can be interpreted with greater 

confidence. Most important is the overall pattern at the group-level: in line with a feature-to-

conjunction transition hypothesis, all conjunction-coding sites were located anterior or superior to 

the feature-coding sites, which were confined to the occipital lobe (excepting a single more anterior 

feature-coding voxel at [10 -51 5], in the inferior posterior cingulate).  

No Effect of Visual Search Training on Feature- or Conjunction-Coding as Measured by FCI 

We detected no effect of visual search training on the prevalence of feature versus conjunction 

coding, as measured by the FCI, in participants' cortical activation patterns. As reported above, 

there was no main effect of Session and no Session*ROI interaction on the critical FCI measure 
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(where Session is the factor partitioning data collected before versus after visual search training). 

Because the visual search task required object individuation, any observed change in neural 

representations was expected to increase conjunction coding. There are several possible 

explanations for the absence of an observed training effect on the neural representations. First, in 

our training procedure, daily sessions were terminated for each subject when the RT-set size slope 

appeared to be approaching an asymptotically low value (mean 11.1 days; range 7 - 15 days).  This 

relatively short training duration may have been insufficient to produce full unitization of the 

conjunctive stimuli, a notion in line with the fact that RT-set size slopes were still significantly 

positive in the final training session (Table 5). Second, the stimuli were perceptually simple and 

devoid of semantics, and the task did not involve naming; thus, our training may have failed to 

engage the learning mechanisms known to influence neural representations in visual cortex for 

richer, more meaningful objects (e.g., Folstein, Palmeri, & Gauthier, 2013; Gauthier, Tarr, Anderson, 

Skudlarski, & Gore, 1999). A third possibility is that cortical representations did change with 

training, but the data were too noisy to allow detection of these changes at the individual subject 

level, and the sites at which changes occurred varied in location across participants, obscuring 

findings at the group level. 

Coding of Mid-Level Conjunctions 

We examined the extent to which ROIs in the ventral and dorsal pathways coded for simple features 

versus mid-level conjunctions (FMI, Figure 8), and coded for mid-level conjunctions versus whole-

object conjunctions (MCI, Figure 9). We found the same trend as revealed by the FCI analysis: both 

FMI and MCI measures took negative values in posterior regions such as V1 (indicating that feature-

coding dominates over mid-level conjunction-coding, and mid-level conjunction-coding dominates 

over whole-object conjunction-coding), but increased toward positive values in more anterior 

regions such as V3d and LOC.  
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 Statistical assessment of FMI by ANOVA excluded LOC because of missing cells. Specifically, 

screening (to remove any session-subject-ROI datapoint for which no classifier exceeded chance as 

determined by a binomial – see Methods) resulted in the removal of several datapoints in LO only, 

such that Mid-Level Conjunctions 1 and 3 were determined on the basis of 6 and 7 subjects, 

respectively, and the mean over all conjunctions was determined on the basis of 6 subjects (i.e., 

only those individuals who contributed a datapoint for all 4 mid-level conjunctions). ANOVA 

performed on the remaining ROIs revealed that FMI differed significantly across ROIs (F(4,28) = 

21.07, p < 0.001, η2=0.751), and across sessions (F(1,7) = 11.96, p = 0.011, η2=0.631), with no 

interaction between Session and ROI (F(4,28)= 1.54, p = 0.219, η2=0.180). The small but significant 

difference across sessions was due to a decrease of 0.015 in FMI from the first to second scan 

sessions, i.e., a change after visual search training toward feature-coding and away from mid-level 

conjunction coding. Since visual search training focused on the unique identity of the whole object, 

it is not clear what should have been expected for any shift in neural coding of mid-level 

conjunctions. This shift toward more negative FMIs might result from increased attention to 

individual features over mid-level conjunctions after training, but the shift was small in magnitude. 

 Statistical assessment of MCI by ANOVA revealed that MCI differed significantly across ROIs 

(F(5,35) = 17.79, p < 0.001, η2=0.718), but not across sessions (F(1,7) = 0.026, p = 0.876, η2=0.004), 

with no interaction between Session and ROI (F(5,35)= 0.72, p = 0.613, η2=0.093). 

Together, the FMI and MCI results yield three notable insights. First, the FMI analysis 

demonstrates that when simple conjunctions (rather than whole-object conjunctions) are pitted 

against the basic features, the zero point of the transition from feature-coding to conjunction-

coding occurs earlier in both visual pathways, near area V2. Second, the combination of FMI and 

MCI results for area V3d suggest that it codes primarily for mid-level conjunctions in the present 

stimulus set: in V3d, the FMI (features versus mid-level conjunctions) was significantly positive 

(one-sample t-test compared to zero, p<0.001) whereas the MCI (mid-level versus whole-object 



ABBREVIATED TITLE: Feature and Conjunction Coding in Visual Cortex 
 

29 
 

conjunctions) was significantly negative (one-sample t-test, p = 0.0016), suggesting that mid-level 

conjunction-coding dominates over both feature-coding and whole-object conjunction-coding. 

Third, the FMI values for area LOC suggest that the extent to which this region codes for 

conjunctions relies heavily upon its coding of shape. As seen in Table 7, which shows FMI values for 

individual mid-level conjunctions, LOC yielded a significantly positive value only in the case of 

Conjunction 1 – the combination of Left and Right outlines corresponding to the global form of the 

stimulus (t-test, p=0.0019). (We note that, even though the contour features each possess their own 

‘global’ shape, a positive FMI value for Conjunction 1 nonetheless indicates that the brain region 

codes for the intersection of the two contour features. If the activation patterns comprised only a 

linear combination of the separate representations of each contour feature, the conjunction 

classifier would show no performance advantage over the feature classifiers.) In contrast, for 

Conjunction 2 (the combination of two spatial frequencies, or ‘texture’), LOC yielded a significantly 

negative FMI (t-test, p =0.0388) indicative of dominant feature-coding. 

Discussion  

Several recent fMRI studies have examined conjunction-coding in humans (Baeck, 

Wagemans, & Op de Beeck, 2013; Baumgartner et al., 2013; Erez et al., 2015; Macevoy & Epstein, 

2009; Pollmann, Zinke, Baumgartner, Geringswald, & Hanke, 2014; Seymour et al., 2009, 2010; van 

den Honert, McCarthy, & Johnson, 2017; Zhang, Liu, & Xu, 2015). Two of these studies revealed 

conjunction-coding for combinations of static, abstract features (e.g., color, form) into visual 

objects, in the ventral pathway (Erez et al., 2015; Seymour et al., 2010). However, neither study was 

able to definitively rule out an explanation of the observed conjunction-code in terms of feature-

coding combined with saturation of the BOLD signal; that is, because both studies presented the 

critical conjunctions by temporally interleaving subsets of features that comprise the conjunction, 

rather than by presenting the whole conjunction simultaneously, the presence of neurovascular 
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nonlinearities (i.e. saturation of BOLD) for some features more than others may have given the 

appearance of a conjunction-code even in feature-coding voxels. Two further studies in this set 

(Baumgartner et al., 2013; Pollmann et al., 2014) used a method more similar to ours, measuring 

whether classification accuracy for two feature dimensions together was super-additive compared 

to the classification of each dimension alone. However – perhaps related to the use of multiple-

object stimulus displays and a visual search task – these studies revealed conjunction-coding only 

in parietal regions. Moreover, no study of object processing that we know of has explicitly 

investigated the complement to conjunction-coding, namely, feature-coding – that is, the extent to 

which neural representations are more informative about individual features than conjunctions of 

those features (but see van den Honert et al., 2017, for a slightly different definition of feature-

based representations in a study of scene-level conjunctions). Without directly comparable 

measures of feature-coding and conjunction-coding, the evidence for a transition from one to the 

other cannot be assessed. Therefore, three important questions remain unresolved: Is there 

evidence for a conjunction-based object code in the human ventral visual stream, when an 

explanation in terms of BOLD signal saturation is ruled out? If yes, is conjunction-coding dominant 

even early in the ventral stream or does it emerge along the pathway? If it emerges, at what point 

does the transition from feature- to conjunction-coding occur? 

 To answer these questions, we measured the relative dominance of feature- versus 

conjunction-coding throughout visual cortex by directly comparing evidence for the two coding 

schemes in each cortical region. Critically, evidence for both schemes was derived from a common 

neuroimaging dataset, acquired while participants viewed systematically constructed conjunctive 

visual stimuli. We revealed a transition from feature-dominated to conjunction-dominated coding, 

with progression from primary visual cortex into temporal cortex (Figures 3, 4, and 6). This 

provides the first direct evidence in humans for an object representation scheme in the ventral 

pathway that is characterized by a transition from feature- to conjunction-coding. Strikingly, the 
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same shift from feature- to conjunction-coding was evident in the dorsal pathway, where it was as 

steep and robust as in the posterior ventral pathway (Figures 3 and 6).  

The results are incompatible with a global feature-coding hypothesis, which predicts the 

feature-coding we observed in early regions but not the conjunction-coding that we saw in both 

parietal and anterior ventral sites (Figure 7). Similarly, the results are incompatible with a global 

conjunction-coding hypothesis, which predicts the conjunction-coding seen in downstream sites but 

cannot accommodate the findings in V1, where – regardless of whether feature-coding was 

compared to the coding of mid-level conjunctions (FMI) or whole conjunctions (FCI) – the index 

was always negative, reflecting more information about features than about the conjunctions of 

those features (Figure 8 and 9). Thus, the explicit measurement of feature-coding via negative FCI 

values was critical to distinguishing between the alternative theoretical accounts. 

We revealed significant conjunction-coding in a range of sites bilaterally, including 

posterior parietal cortex, fusiform and parahippocampal gyri, medial temporal lobes and anterior 

temporal poles (Figure 7). These findings concur with prior reports of conjunction-coding 

throughout ventral visual stream and perirhinal cortex (Erez et al., 2015) and in parietal lobe 

(Baumgartner et al., 2013; Pollmann et al., 2014). In addition, we provided a systematic 

investigation of feature-coding across human visual cortex, revealing significant selectivity for 

features over conjunctions in retinotopically-defined V1 (Figures 8 and 9) and across posterior 

occipital regions more generally (Figure 7). For the present stimulus set, the transition from feature 

to conjunction-coding ― the zero point of the FCI ― occurred in the ventral pathway near the 

occipito-temporal junction, and in the dorsal pathway at approximately the superior border 

between Brodmann areas 18 and 19 of the occipital lobe (Figure 4).  

 We also examined coding for intermediate-complexity stimulus components, by pitting 

features against mid-level conjunctions (in the FMI) and mid-level conjunctions against whole-
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object conjunctions (in the MCI). These measures suggested that the transition from feature- to 

conjunction-coding occurs earlier in the visual pathway for simpler conjunctions, that V3d may 

preferentially code for mid-level conjunctions, and that conjunction-coding in LOC may be driven by 

coding of shape, or global form, in line with prior reports (Drucker & Aguirre, 2009; Malach et al., 

1995; Ostwald et al., 2008). The mid-level conjunction findings also corroborated our 

interpretation of the main FCI measure, as discussed below. 

The transition from feature- to conjunction-coding: gradual or abrupt? 

 Because feature-coding dominates in V1 and conjunction-coding sites exist in fusiform 

gyrus and posterior parietal lobe (Figure 7), we can conclude that somewhere between early visual 

areas and later stages of both the ventral and dorsal pathways a transition from feature- to 

conjunction-coding occurs. Figures 4, 5 (whole-brain analyses) and 6 (correlation analysis) imply a 

gradual transition. However, it is not possible to conclude definitively from the FCI that the 

transition from feature- to conjunction-coding in the brain is gradual, rather than abrupt. A graded 

change in the FCI is somewhat guaranteed for the whole-brain, spherelight analyses by the spatially 

overlapping spherical ROIs, and for the correlations by the assumed linear relationship between 

FCI and voxel location. We note that this guarantee does not apply to the ROI results in Figure 3, 

which reflect the same gradual transition, because we did not perform any spatial averaging of the 

data in this analysis. However, even in this case, it is possible that a reduction in SNR from V1 

toward higher visual regions (V3, LOC) induced FCI values to increase toward zero, without an 

underlying gradual shift from feature-coded toward conjunction-coded representations (see 

simulations, Figure 2). Thus, it may be that the cortical code shifts abruptly from feature- to 

conjunction-based somewhere between V3 and IT, and the appearance of a gradual transition from 

V1 through LOC is caused by increasing noise. However, we think this unlikely given the FMI values 

that were derived from the same BOLD data (Figure 8). Specifically, the FMI increased from 

negative values in V1, through zero in V2, to positive values in V3d. That is, for simpler 
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conjunctions, a similarly gradual transition in coding occurs across the same brain regions, but the 

steady increase in FMI values does not stop at zero (as it would if driven by noise alone) but instead 

pushes through to positive, conjunction-coding values in V3d. Thus, for FMI, an explanation 

involving increasing noise with progression up the pathway cannot explain the pattern of results. 

Conjunction-coding in the dorsal pathway 

The emergence of conjunction-coding in the dorsal pathway was perhaps more unexpected 

than in the ventral pathway. However, this finding aligns well both with the documented role of 

parietal cortex in feature binding (Ashbridge, Walsh, & Cowey, 1997; Cohen & Rafal, 1991; 

Friedman-Hill, Robertson, & Treisman, 1995; Humphreys, Cinel, Wolfe, Olson, & Klempen, 2000; 

Muggleton, Cowey, & Walsh, 2008) and with recent claims that the role of dorsal stream in vision 

extends beyond spatial processing or attentional binding. That is, our observation of object-specific 

coding in parietal cortex – elicited while participants discriminated highly similar visual objects – 

suggests that the dorsal pathway constructs content-rich, hierarchical representations containing 

information that is critical for object identification, in parallel with the ventral stream (Jeong & Xu, 

2016; Konen & Kastner, 2008). Given that feedback from parietal cortex has been shown to shape 

visual representations in the ventral processing pathway (e.g., Hopfinger, Buonocore, & Mangun, 

2000; Parks et al., 2015; Rowe, Stephan, Friston, Frackowiak, & Passingham, 2005), it is possible 

that interactions between dorsal and ventral regions increased the similarity of representations 

across the two streams.  

V2: Coding of features and simple conjunctions 

 The negative FCI recorded for V2 suggests feature-coding (Figure 3), which might appear to 

contradict previous reports of conjunction-coding in this region for stimuli comprising 

combinations of simple features (Anzai et al., 2007; Seymour et al., 2010). However, negative FCI 

values in V2 do not rule out the existence of conjunction-based information altogether, they merely 
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imply that any conjunction-code is relatively swamped by a stronger feature-code. Moreover, the 

complementary FMI metric that assesses coding of simpler conjunctions – similar in complexity to 

the stimuli of Anzai et al. and Seymour et al. – revealed near-zero (numerically positive) scores in 

V2. These FMI values imply an intermediate code in V2 that includes a substantial subset of voxels 

sensitive to mid-level components. A strength of the present method, whether used to compare 

features with mid-level conjunctions (FMI) or with whole-object conjunctions (FCI), is that it 

reveals the relative dominance of feature-based versus conjunction-based information in each case, 

rather than simply detecting the presence or absence of only one type of information. 

Interpreting the FCI  

 An analysis of synthetic data supported our interpretations of the FCI metric (Figure 2). 

Across a range of SNR values for which classifier performance was within the range observed in 

empirical ROIs (and thus, also, above chance), negative FCIs were produced only by synthetic 

feature-coded data and positive FCIs emerged only from synthetic conjunction-coded data. These 

properties held true whether we synthesized data by holding noise constant and manipulating 

signal strength, or by holding signal constant and manipulating noise. Thus, the sign of the FCI 

reliably indicates the relative dominance of feature- versus conjunction-coding, and varying noise 

levels do not produce distortions in the FCI that lead to qualitatively erroneous conclusions. 

Accordingly, the method mitigates somewhat against the problem of varying noise levels that has 

complicated prior attempts to use fMRI to compare the neural code across diverse brain regions. 

For example, if a standard MVPA method detects greater classification accuracy for simple visual 

features in early visual cortex than in later visual regions, this could be because the neural 

representations in early visual regions exhibit stronger feature-coding, or because early visual 

cortex, situated peripherally, produces a BOLD signal with greater SNR. In the present method, 

because the feature- and conjunction-coding measures are placed in a ratio, and both measures are 

affected by the noise in each cortical region, the relative dominance of feature- versus conjunction-
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coding in a region maps consistently to negative versus positive FCI values in the face of varying 

noise.  

In sum, the simulations demonstrate that the FCI can be used to determine which regions 

exhibit feature- versus conjunction-coding and approximately localize the region in cortex where 

the code transitions from one to the other, for a given stimulus set. 

Potential influence of sensitivity to mid-level conjunctions on the FCI 

Because the binary features used in our dataset included two shape outlines and two spatial 

frequencies, the intersection of any two of these features created incidental, novel shapes and 

textures that correspond to ‘mid-level conjunctions’ like those we decoded for entering into the FMI 

and MCI (for example, in Figure 1D: the global outline shared by stimuli 1, 3, 9 and 11, or the central 

texture shared by stimuli 1, 2, 5 and 6). Consider a brain region containing voxels sensitive to these 

mid-level conjunctions, rather than to the binary features or the whole-object (4-featured) 

conjunctions on which classifiers are trained to generate the FCI: would this spuriously bias FCI 

toward either positive or negative values? For the whole-object conjunction classifier, when voxels 

possess reliable information about just one of these mid-level conjunctions, the 16-way problem is 

reduced to a 4-way problem, facilitating above-chance classification and inflating the FCI toward 

more positive values. But, the feature classifiers would also benefit from mid-level conjunction-

coding voxels: reliable information about one mid-level conjunction fully specifies 2 out of the 4 

binary features when classifying any of the four stimuli that possess that mid-level conjunction, and 

provides a heuristic for classifying the other twelve stimuli that do not possess that mid-level 

conjunction (namely: "predict the feature values not included in the mid-level conjunction") that is 

neutral for eight of those stimuli and helpful for the other four. On average across all stimuli, feature 

classification performance would be boosted by mid-level conjunction-coding voxels, reducing the 

FCI toward more negative values. The net effect, across both classifier types and all stimuli, is that 
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mid-level conjunction-sensitive voxels in an ROI should boost feature- and conjunction-classifier 

performance equally, pushing any non-zero FCI, either negative or positive, toward zero.  

Multiple possible routes to a hybrid code 

We suggested earlier that zero FCI (in the presence of above-chance classifier accuracy) 

might be produced by hybrid-coded activation patterns – a mixture of feature-sensitive and whole-

object-sensitive voxels. But, given the presence of mid-level conjunctions in the stimuli, it is equally 

possible that zero FCI is produced by voxels sensitive to those mid-level conjunctions. However, 

this alternative interpretation of a zero FCI is in keeping with the spirit of the measure: whether a 

cortical region exhibits zero FCI because of a heterogeneous mix of feature- and conjunction-coding 

voxels or because of mid-level conjunction coding, that coding scheme should be considered 

intermediate, lying between strongly feature-coded and strongly whole-object-coded 

representations. In line with the idea that sensitivity to mid-level conjunctions tends to yield FCIs 

close to zero, whole brain analyses revealed that the zero-point in FCI lies near to area LOC – known 

to represent global shape (Drucker & Aguirre, 2009; Malach et al., 1995; Ostwald et al., 2008) – and 

area V4 – known to exhibit texture-selective responses (Arcizet, Jouffrais, & Girard, 2008; Dumoulin 

& Hess, 2007; Hanazawa & Komatsu, 2001). Global shape and texture constitute mid-level 

conjunctions in the present stimulus set. 

A further possibility is that a hybrid code, comprising a mixture of feature- and conjunction-

sensitive responses, is generated by not by combining spatially adjacent voxels of each type within 

an ROI, but rather by combining temporally adjacent responses of each type within the same 

neurons. Connor and colleagues (Brincat & Connor, 2006; Yau et al., 2013) recorded activation in 

monkey visual cortex and reported a dynamic neural code that evolved over time. Immediately 

after stimulus onset, neurons in posterior IT (pIT) and V4 were tuned to simple features but ~50-

60ms later the same neurons responded non-linearly to multi-part configurations of those features 
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(simple orientations were combined into multi-orientation curves in V4, and simple curved contour 

fragments into multi-part configurations in pIT). Because the BOLD signal has insufficient temporal 

resolution to distinguish between response types that evolve on the order of milliseconds, we 

cannot determine whether the hybrid code we observed was generated by a transition from 

feature- to conjunction-coding over time, but it is interesting that the areas producing zero FCI 

values in our data (occipito-temporal regions) lie near the regions identified in these 

electrophysiological studies (pIT and V4). 

Changes in receptive field size with the emergence of conjunction-coding 

 The emergence of conjunction coding in the ventral and dorsal pathways is accompanied by 

a systematic change in another property – receptive field (RF) size. This is relevant to measuring 

feature and conjunction coding with our stimulus set, because the total stimulus area containing 

conjunction information is smaller than the area containing information about features. If larger 

RFs (which capture the whole stimulus) capture conjunction and feature information to a similar 

extent, whereas smaller RFs (which capture small stimulus subsections) capture relatively more 

feature information on average, does this bias small-RF brain regions toward feature-coding? Even 

with a small RF it is possible to capture conjunction information in this stimulus set, since each 

stimulus contains numerous points of intersection of the two outlines and fill patterns that uniquely 

define the stimulus. Moreover, even neurons with RFs in peripheral regions might code conjunction 

information, through collateral interactions or feedback from higher regions such that the feature 

information across a combination of neurons is pooled to construct the conjunction. So, in regions 

with small RFs, there is not a total absence of neurons that capture conjunction information, just a 

greater number of neurons able to capture feature information. Thus, the question of whether the 

greater spatial extent of feature than conjunction information in the stimuli biases regions with 

small RFs toward feature-coding rests upon whether the conjunction classifier in such a region is 

impeded by receiving inputs from a large number of voxels that code non-diagnostic information 
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(features) along with inputs of diagnostic information (conjunctions). Empirically, it is not always 

the case that including less informative voxels in an ROI causes classifier performance to drop, 

relative to when a smaller subset of more informative voxels are used (e.g., Filimon, Rieth, Sereno, 

& Cottrell, 2015).  

In addition, although increasing RF size could be described as a potential confound that 

shifts the balance of coding toward conjunctions in higher cortical areas, this ‘confound’ may in fact 

be part of the (adaptively-evolved) brain mechanism by which conjunction coding emerges in 

higher regions. In other words, part of the function of large receptive field sizes may be to enable 

conjunction-coding. Real-world objects at real-world viewing distances are most often captured by 

the visual system at sizes that afford apprehension of the whole object by an IT neuron, and 

apprehension of only small subsections of the object by a neuron in V1, and this is likely not an 

accident of natural selection. Thus, although an experimenter might seek to rule out any influence 

of RF size by presenting very small stimuli that are captured entirely by the RFs of V1 neurons, this 

scenario would not mimic natural viewing conditions. Moreover, the use of very small stimuli 

would introduce other systematic biases: small, centrally presented stimuli would be captured in 

V1 by only a small set neurons with foveally located RFs, but by almost all neurons in IT, so that the 

recorded activation data would exclude any contribution from peripheral RFs in early brain regions 

but not in later regions; and small stimuli might be rendered at such low resolution that the fine 

details of the conjunction are not perceived and stimuli are instead encoded as feature-like 

approximations in all brain regions. 

Generalization to coding for other visual features and their conjunctions 

We examined conjunctions of spatial frequency and contour. Spatial frequency is represented in V1 

(Foster et al., 1985) whereas shape contour is represented in higher regions such as V4, pIT and 

LOC (Brincat & Connor, 2004, 2006; Drucker & Aguirre, 2009; Yau et al., 2013). However, 
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classification of our binary contour features was good in V1 and V2 (Table 2) implying that, given 

the small receptive field sizes, these regions represented the contour features in terms of small, 

local oriented segments. To what extent do these findings generalize to conjunctions of other 

features such as orientation, color and motion? Orientation, like spatial frequency, is an elemental 

building block of vision, well-represented in V1 (Hubel & Wiesel, 1968). We suggest that shape is a 

visual attribute somewhat analogous to color and motion: for all three attributes, some information 

supporting classification is available in V1, but more holistic or categorical information emerges in 

higher regions – V4 for color (Brouwer & Heeger, 2013) and V3 or V5/MT for motion (Gegenfurtner 

et al., 1997; Movshon, Adelson, Gizzi, & Newsome, 1985). Thus, the feature conjunctions we 

examined may be typical of the part-to-whole integration operations putatively performed across 

the visual hierarchy. In line with this, empirical results for other conjunction types are relatively 

consistent with the present findings: conjunction-coding for 2-featured conjunctions (of complexity 

similar to our FMI) was reported in V2, V3 and parietal sites (Anzai et al., 2007; Baumgartner et al., 

2013; Gegenfurtner et al., 1997; Pollmann et al., 2014). These prior studies did not examine feature-

coding (as we define it), nor the evidence for a transition from feature- to conjunction-coding. 

However, we tentatively suggest that the posterior-to-anterior transition we observed is likely to 

apply for conjunctions of many flavors, because electrophysiology studies point to this conclusion 

(Kobatake & Tanaka, 1994; Rust & Dicarlo, 2010, 2012). An important caveat is that we do not 

claim that specific, quantitative aspects of our results can be generalized, such as the cortical 

locations of the transition point and of conjunction-coding sites. Quantitative details are likely 

specific to each stimulus set, and the present study merely provides a tool for their investigation. 

Conclusions 

 Our novel method permits the systematic investigation of feature- and conjunction-coding, 

and may be applicable not just to vision but to other modalities such as audition or motor action 

(Lee, Turkeltaub, Granger, & Raizada, 2012; Wurm & Lingnau, 2015). Within vision, the method will 
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enable future investigation of a range of features not included in our stimulus set (including color, 

orientation and motion), in order to examine how conjunction-coding emerges for different feature 

types and combinations. The present finding of a transition from feature- to conjunction- coding 

along both ventral and dorsal visual pathways has implications for theories of the functional 

architecture of visual object processing. 
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Tables 

 Scan Session 1 Scan Session 2 
Mean Proportion Correct (±.SEM) 0.903 ±.0185 0.947 ±.00894 
Mean Arcsine(Proportion Correct) (±.SEM) 1.27 ±.0350 1.35 ±.0214 

Table 1. Behavioral Performance in the Scanner. Mean accuracy on the 1-back repetition 
detection task performed in the scanner, with standard error of the mean (±SEM) across subjects. A 
t-test comparing the arcsine-transformed proportion correct scores indicated that performance 
was reliably better in Scan Session 2 (p = 0.0138). 

 

A. Ventral Stream V1 V2v V3v LOC 

Feat 1 (SF1) 0.791 ± 0.0261 0.722 ± 0.0254 0.686 ± 0.0178 0.516 ± 0.0051 

Feat 2 (Outline1) 0.864 ± 0.0163 0.675 ± 0.0188 0.609 ± 0.0186 0.550 ± 0.0101 

Feat 3 (SF2) 0.773 ± 0.0235 0.679 ± 0.0204 0.658 ± 0.0178 0.526 ± 0.0092 

Feat 4 (Outline2) 0.853 ± 0.0160 0.678 ± 0.0223 0.657 ± 0.0176 0.557 ± 0.0062 

Overall Mean Acc. 0.820 ± 0.0186 0.688 ±0.0186 0.653 ±0.0121 0.537 ±0.00266 

95% CI around 
overall mean 

[ 0.815, 0.825] [0.682,0.695] [0.646, 0.659] [0.530, 0.544] 

B. Dorsal Stream  V2d V3d  

Feat 1 (SF1) - 0.689 ± 0.0237 0.652 ± 0.0195 - 

Feat 2 (Outline1) - 0.777 ± 0.0239 0.618 ± 0.0203 - 

Feat 3 (SF2) - 0.685 ± 0.0211 0.653 ± 0.0206 - 

Feat 4 (Outline2) - 0.736 ± 0.0240 0.692 ± 0.0280 - 

Overall Mean Acc. - 0.722 ±0.02 0.653 ±0.0146 - 

95% CI around 
overall mean 

- [0.716, 0.728] [0.647, 0.66] - 

Table 2. Feature-level Classifier Accuracy for Each Feature Type and Mean across All Feature 
Types. In both Ventral (A) and Dorsal (B) streams, rows 1-4 show the mean across subjects of the 
feature-level classifier accuracy for each feature type ± standard error of the mean (±SEM) across 
subjects. Chance = 0.5. SF = spatial frequency. Row 5 shows Overall Mean Accuracy across all four 
feature-level classifiers, ±SEM across subjects. Row 6 shows 95% CIs around the Overall Mean 
Accuracy determined by within-subjects bootstrap resampling with replacement over 10,000 
iterations. All data were averaged over two sessions for each subject. Overall Mean Accuracy scores 
for each session in each subject were transformed into a log likelihood ratio (log odds; chance = 0) 
and submitted to a two-way repeated measures ANOVA, with factors Scan Session (1, 2) and ROI 
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(V1, V2v, V3v, V2d, V3d, LOC), revealing a main effect of ROI (F[5,35]=83.14, p<0.001, η2 = .922), no 
significant effect of Scan Session (F[1,7]=0.860, p=.39, η2 = .109), and a non-significant interaction 
(F[5,35]=2.367, p=0.06, η2 = .253). Accuracy was lowest in region LOC, but a one-sample t-test 
revealed that the log odds of LOC accuracy (collapsed over sessions) exceeded chance performance 
(M=0.1486, SD = 0.0303, t[7]=13.89, p<0.001).  
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A. Ventral 
Stream 

V1 V2v V3v LOC 

Mean Accuracy 0.292 ± 0.0272 0.200 ± 0.0163 0.154 ± 0.0101 
0.0926 ± 
0.00701 

95% CI [0.280, 0.304] [0.189, 0.210] [0.144, 0.164] [0.0848, 0.101] 

D. Dorsal 
Stream 

 V2d V3d  

Mean Accuracy - 0.204 ± 0.0208 0.155 ± 0.0131 - 

95% CI - [0.193, 0.215] [0.145, 0.164] - 

Table 3. Object-level Classifier Accuracy. Mean accuracy of object-level classifier by ROI (average 
over two sessions for each subject), with standard error of the mean across subjects (±SEM) and 
95% Confidence Intervals (CIs) around the mean, determined by within-subjects bootstrap 
resampling with replacement over 10,000 iterations. Chance = 0.0625. Accuracy scores for each 
session in each subject were transformed into a log likelihood ratio (log odds; chance = -2.71) and 
submitted to a two-way repeated measures ANOVA, with factors Scan Session (1, 2) and ROI (V1, 
V2v, V3v, V2d, V3d, LOC), revealing a main effect of ROI (F[5,35]=61.96, p<0.001, η2 = .90), no 
significant effect of Scan Session (F[1,7]=0.312, p=.59, η2 = .043), and no significant interaction 
(F[5,35]=1.61, p=0.183, η2 = .187). Accuracy was lowest in region LOC, but a one-sample t-test 
revealed that the log odds of LOC accuracy (collapsed over sessions) exceeded chance performance 
(M=-2.30, SD = 0.2321, t[7]=4.95, p<0.001). 
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A. Ventral Stream V1 V2v V3v LOC 
Subject 1 -0.564 -0.081 -0.308 0.080 
Subject 2 -0.467 -0.271 -0.137 0.188 
Subject 3 -0.425 -0.251 -0.110 0.366 
Subject 4 -0.476 -0.161 -0.284 0.391 
Subject 5 -0.453 -0.301 -0.319 0.102 
Subject 6 -0.464 -0.151 -0.148 -0.145 
Subject 7 -0.584 -0.304 -0.209 -0.091 
Subject 8 -0.494 0.089 -0.133 -0.181 
Mean FCI -0.491 -0.179 -0.206 0.089 
SEM 0.020 0.048 0.030 0.078 
95% CI [-0.545, -0.442] [-0.252, -0.110] [-0.292, -0.125] [-0.0558, 0.192] 
B. Dorsal Stream  V2d V3d  
Subject 1 - -0.207 -0.088 - 
Subject 2 - -0.207 -0.085 - 
Subject 3 - -0.298 -0.284 - 
Subject 4 - -0.440 -0.313 - 
Subject 5 - -0.497 -0.222 - 
Subject 6 - -0.396 -0.276 - 
Subject 7 - -0.345 0.055 - 
Subject 8 - -0.418 -0.431 - 
Mean FCI - -0.351 -0.206 - 
SEM - 0.038 0.055 - 
95% CI - [-0.422,-0.284] [-0.293, -0.122] - 

Table 4. Feature-Conjunction Index in Visual Cortical ROIs. Individual subjects’ FCI by ROI 
(average over two sessions for each subject), with mean, standard error of the mean (±SEM) across 
subjects, and 95% CIs determined by within-subjects bootstrap sampling with replacement over 
10,000 iterations (see Methods). Mean values are also shown graphically in Figure 3. 
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Accuracy on Final 

Session 

RT-Set Size Slope 
First Session 

(ms/item) 

RT-Set Size Slope 
Final Session 

(ms/item) 
Mean (±.SEM) .893 ±.020 297 ± 37 200 ±20 
SEM ±.020 ±37  

Table 5. Behavioral Performance During Training on the Conjunctive Visual Search Task. 
Accuracy on the final session (and in all earlier sessions, not reported) far exceeded the chance 
performance level of 50%. RT-set size slopes decreased significantly from the first to the final 
session (p<.05) but were still significantly greater than 0 in the final session (p<0.0001). Shiffrin 
and Lightfoot (1997) trained subjects for many more sessions of conjunctive visual search (~50 
days as compared to 11.1 days in the present study) and observed RT-set size slopes as low as 
50ms/item on the final session. 

 

A. Ventral Stream V1 V2v V3v LOC 

Mid-level Conj. 1  
(Global Shape) 

0.689 ± 0.029 0.473 ±0.021 0.400 ±0.012 0.327 ± 0.010 

Mid-level Conj. 2 
(Texture) 

0.610 ± 0.036 0. 517 ± 0.026 0.471 ±0.023 0.281 ± 0.007 

Mid-level Conj. 3  
(Right Component) 

0.666 ± 0.032 0.493 ± 0.021 0.413 ± 0.017 0.296 ± 0.007 

Mid-level Conj. 4  
(Left Component) 

0.645 ± 0.033 0.463 ± 0.025 0.433 ± 0.015 0.293 ± 0.006 

Overall Mean Acc. 0.653 ± 0.031 0.487 ± 0.022 0.429 ±0.015 0.299 ±0.005 

B. Dorsal Stream  V2d V3d  

Mid-level Conj. 1  
(Global Shape) 

- 0.573 ±0.025 0.494 ± 0.017 - 

Mid-level Conj. 2  
(Texture) 

- 0.491 ± 0.031 0.453 ± 0.023 - 

Mid-level Conj. 3  
(Right Component) 

- 0.562 ± 0.028  0.469 ± 0.027 - 

Mid-level Conj. 4  
(Left Component) 

- 0.504 ± 0.028 0.475 ± 0.029 - 

Overall Mean Acc. - 0.533 ± 0.026 0.473 ± 0.021 - 

Table 6. Mid-Level Conjunction Classifier Accuracies. Accuracy of the mid-level conjunction 
classifier, by ROI, with mean and standard error of the mean (±SEM) across subjects. Data were 
averaged over two sessions for each subject. Chance = 0.25. Overall Mean Accuracy scores for each 
session in each subject were transformed into a log likelihood ratio (log odds; chance = -0.477) and 
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submitted to a two-way repeated measures ANOVA, with factors Scan Session (1, 2) and ROI (V1, 
V2v, V3v, V2d, V3d, LOC), revealing a main effect of ROI (F[5,35]=76.65, p<0.001, η2 = .92), no 
significant effect of Scan Session (F[1,7]=0.939, p=.37, η2 = .12), and no significant interaction 
(F[2.272,35]=3.12, p=0.067, η2 = .31; Greenhouse-Geisser correction for violation of sphericity). 
Accuracy was lowest in region LOC, but a one-sample t-test revealed that the log odds of LOC 
accuracy (collapsed over sessions) exceeded chance (M=-0.370, SD = 0.010, t[7]=10.68, p<0.001). 
FMI and MCI values derived using these classifier accuracies (in combination with feature- and 
whole object-classifier accuracies, respectively) are shown in Figures 8 and 9, respectively. Note 
that before deriving FMI and MCI using classifier accuracies, we removed any session-subject-ROI 
instances for which no classifier exceeded chance, as determined by a binomial test, see Methods. 

 

A. Ventral Stream V1 V2v V3v LOC 

Mid-level Conj. 1  
(Global Shape) 

0.0005 ± 0.026 -0.0419 ± 0.039 -0.044 ± 0.035 0.181 ± 0.038 

Mid-level Conj. 2  
(Texture) 

-0.089 ± 0.024 0.117 ± 0.028 0.086 ± 0.035 -0.095 ± 0.036 

Mid-level Conj. 3 
(Right Component) 

0.076 ± 0.017 0.0029 ± 0.028 -0.108 ± 0.024 0.116 ± 0.063 

Mid-level Conj. 4  
(Left Component) 

-0.148 ± 0.026 -0.0016 ± 0.024 0.061 ± 0.024 -0.044 ± 0.053 

Overall Mean FMI -0.040 ± 0.005 0.019 ± 0.011 -0.001 ± 0.008 0.041 ± 0.023 

B. Dorsal Stream  V2d V3d  

Mid-level Conj. 1  
(Global Shape) 

- 
0.056 ±0.031 0.195 ± 0.060 

- 

Mid-level Conj. 2 
(Texture) 

- 
-0.037 ±0.027 -0.003 ± 0.048 

- 

Mid-level Conj. 3 
(Right  Component) 

- 
0.157 ±0.023 0.090 ± 0.035 

- 

Mid-level Conj. 4 
(Left Component) 

- 
-0.134 ±0.021 0.110 ± 0.049 

- 

Overall Mean FMI - 0.011 ±0.012 0.098 ± 0.016 - 

Table 7. Feature Mid-Level Conjunction Index (FMI) for the Four Plausible Mid-level 
Conjunctions, Separately. FMI for each mid-level conjunction separately, by ROI, with mean and 
standard error of the mean (±SEM) across subjects. Mean values over all 4 mid-level conjunctions 
for each ROI are also shown in Figure 8. Data were averaged over two sessions for each subject.  
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Figure Legends 

Figure 1. Stimulus Construction, Task Protocol and Multivariate Pattern Classifiers 

A. Stimulus Construction. The four binary features from which the 16 object-level stimuli are 

composed (full stimulus set shown in panel D). Each feature has two possible values: A and B.  

B. Task Protocol. In each scan session, participants completed 10 experimental runs, each lasting 

264 seconds (44 trials of 6 sec duration). A run contained 34-36 stimulus trials (two presentations 

each of the 16 stimuli in the set, ordered pseudo-randomly, in addition to 2-4 stimuli chosen 

pseudo-randomly from the set and inserted to create immediate repeats) and 8-10 nulls trials. On 

stimulus presentation trials, the fixation point was red, stimulus duration was 3sec and the inter-

stimulus interval varied between 2.5 and 3.5sec; participants performed a 1-back repetition 

detection task. On null trials, the fixation point changed to green; participants indicated by button 

press when they detected a slight dimming of the fixation point, which occurred once or twice per 

null trial. Participants also completed several sessions of visual search training between the two 

scans, but we detected no effect of training on our measure of feature- and conjunction-coding (FCI) 

in cortex.  

C. Feature Classification. Four separate feature classifiers were trained, one for each binary feature 

defined in the stimulus set. The four feature classification problems are shown in the four panels 

(Right Spatial Frequency, Right Outline, Left Spatial Frequency, Left Outline) in which the 

designation of stimuli to feature categories is indicated with red and green boxes. Classifiers used a 

support vector machine trained with hold-one-out cross-validation.  

D. Object Classification. A single object-level classifier was trained to classify the stimuli into 16 

categories, each corresponding to a unique stimulus. 

E. Calculation of the Feature Conjunction Index (FCI). The product of the four feature-level 

accuracies was used to predict – independently for each trial – the accuracy of a hypothetical 
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object-level classifier whose performance depends only on feature-level information. On each trial, 

the four feature-classifier responses (defined as 0 or 1 for incorrect or correct) were multiplied to 

produce a value of 0 or 1 (incorrect or correct) for the hypothetical object-level classifier. Next, the 

empirically observed object-level classifier accuracy (derived from the sixteen-way conjunction 

classifier) and the hypothetical object-level accuracy (predicted from the four feature classifiers) 

were averaged over trials and placed in a log ratio (Equation 1). When the empirically observed 

object classifier accuracy exceeds the hypothetical object accuracy predicted from feature classifier 

accuracies, FCI is positive; when the feature classifier accuracies predict better object-level 

knowledge accuracy than is obtained by the object classifier, FCI is negative (see Figure 2). 

Figure 2. Classifier Accuracy and FCI for Synthetic Data 

Top and Bottom panels show simulation results for synthetic data generated with Feature-Coded 

and Conjunction-Coded activation pattern templates, respectively. Results shown are from Method 

1 of generating synthetic data; Method 2 results are not shown but were very similar, and produced 

the same conclusions from statistical tests. Error bars show standard error of the mean (SEM) for 

FCI. Gray box for each dataset shows the range of SNR values that produced mean classifier 

accuracies falling within the range observed in ROI-based analyses of the empirical data (see Tables 

2 and 3). We focus upon FCI values within the gray box as being representative of plausible 

outcomes from empirical BOLD data for each underlying template. The lower bound of each gray 

box is set to exclude from the box all SNR values at which neither the Feature nor the 16-way 

Conjunction Classifier Accuracy exceeded the lowest accuracy observed in the empirical ROIs 

(0.537 for Feature Classification; 0.0926 for Conjunction Classification; see Tables 2 and 3). The 

upper bound of each gray box is set to exclude all SNR values at which either the Feature or the 

Conjunction Classifier Accuracy exceeded the maximum accuracy observed in classifiers trained on 

empirical ROI-based data (0.864 for Feature Classification; 0.292 for Conjunction Classification; see 
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Tables 2 and 3). The extremely high FCI values produced by synthetic conjunction-coded data were 

never observed in the empirical data; this may be due in part to the fact that the high SNR required 

to produce high positive FCI values in the synthetic data does not exist in cortical regions that 

exhibit conjunction coding (i.e., regions exhibiting positive FCI values yield lower accuracy, 

presumably because of lower SNR).  

Figure 3. Feature Conjunction Indices (FCI) Derived from ROI-based Analyses 

Mean FCI (averaged over two sessions in each subject) for ROIs in early ventral visual stream (top 

panel: V1, V2v, V3v, LOC) and early dorsal stream (bottom panel: V1, V2d V3d). V1 is duplicated in 

top and bottom plots for ease of comparison. FCI is the natural logarithm of the ratio of object 

classifier accuracy to the product of the four feature classifier accuracies (see Figure 1 and 

Methods). Positive FCI reflects conjunction-coding; negative FCI reflects feature-coding. Gray bars 

show group mean; plotted points show individual subjects, where each unique marker corresponds 

to the same individual subject across ROIs. See Table 4 for bootstrapped 95% Confidence Intervals 

(CIs) around the means. n = 8 subjects, 2 scan sessions each.  

Figure 4: FCI Derived from Whole-brain Searchlight Analyses 

Group mean FCI produced by a searchlight MVPA analysis assessing conjunction- versus feature-

coding throughout visual cortex. A sphere of radius 5 functional voxels was swept through the 

imaged volume, constrained by a subject-specific grey-matter mask encompassing occipital, 

temporal and posterior parietal cortex. Taking each voxel in turn as the centroid of a spherical ROI, 

the feature and object classifiers were trained and their accuracies combined to produce a FCI 

which was entered into the map at the location of the centroid voxel. Orange indicates positive FCI 

(conjunction-coding), blue indicates negative FCI (feature-coding). Centroid voxels for which 

classifier performance did not exceed chance, as determined by a binomial test, were removed from 

individual subject maps (see Methods). FCI maps were constructed for each subject and scan 
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session individually (see Figure 5), then spatially smoothed using a Gaussian kernel (FWHM=2 

functional voxels). Smoothed maps were averaged across two sessions for each subject, and across 

subjects. Scale is truncated at ±0.25 for optimal visualization of the data; some voxels possess FCI 

values > +0.25 or < -0.25. 

Figure 5. Individual Subject FCI Maps. 

Raw FCI values plotted separately for the two scans (1, 2) in three individual subjects (G, H and N). 

The two leftmost columns correspond to the first scan, and the two rightmost columns correspond 

to the second scan; each row depicts an individual subject. Color of a voxel indicates FCI for the 

spherical ROI surrounding it. Absence of color indicates the voxel was screened out because either 

(1) it was not included in the anatomical (grey matter) mask, (2) the sphere surrounding the voxel 

contained too few voxels, or (3) accuracy for none of the classifiers exceeded threshold. There are 

many more absent voxels here than in the group mean FCI map (Figure 4) because the spatial 

smoothing and averaging used in creating the group mean map eliminated many absent voxels. 

Scale is truncated at ±0.5 for optimal visualization; some voxels possess FCI values > +0.5 or < -0.5. 

The scale differs from that of Figure 4 because data within individual maps span a greater range. 

Figure 6. Quantification of the transition from feature- to conjunction-coding in the ventral 

and dorsal streams.  

Insets show, in pink, the approximate extent and position of the three defined vectors Posterior 

Ventral, Anterior Ventral and Dorsal; in blue, the projection of a voxel location onto the vector to 

derive a scalar value for the voxel position; in green, the bounding box defining the brain region 

included as part of each pathway (a subject-specific anatomical mask including only grey matter in 

occipital, temporal and parietal lobes was also applied). Plots show the best fitting regression lines 

relating the location of a voxel in each of the three pathways to the FCI for the spherical ROI 

surrounding the voxel. Each line shows one subject in one hemisphere; colors indicate different 
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subjects; solid and dashed lines show Left and Right hemispheres, respectively. The far endpoint of 

the vector is more distant from occipital cortex (i.e., the vector is longer) for the Dorsal than the 

Posterior Ventral pathway: this may account for the higher FCI value at the vector endpoint in the 

Dorsal than the Posterior Ventral pathway, given that regression line slopes in the Dorsal and 

Posterior Ventral pathways were similar (x and y-axes use the same scale for all 3 plots). 

Figure 7. Cortical sites of feature- and conjunction-coding observed at the group level.  

Statistical map shows the results of a t-test at each voxel comparing the group mean FCI value 

associated with the spherical ROI surrounding that voxel to zero. The map was thresholded at 

p=0.05, two-tailed (FDR-corrected for multiple comparisons). Blue voxels possess FCI values 

significantly less than zero (feature-coding); orange voxels possess FCI values significantly greater 

than zero (conjunction-coding). All but one voxels with statistically reliable negative FCI values 

were located in occipital cortex, whereas all voxels with statistically reliable positive FCI values 

were located anterior or superior to the occipital feature-coding regions. Voxels exhibiting 

significant conjunction coding appeared in multiple sites bilaterally, including posterior parietal 

lobe, fusiform gyrus, parahippocampal gyrus (including left perirhinal cortex), hippocampus and 

the anterior temporal pole. Axial slices are radiologically flipped (left hemisphere appears on the 

right). In sagittal slices, positive X co-ordinates indicate right hemisphere. 

Figure 8. Feature vs. Mid-level-Conjunction Indices (FMI) Derived from ROI-based Analyses 

Mean FMI (averaged over two sessions in each subject) for ROIs in early ventral visual stream (top 

panel: V1, V2v, V3v, LOC) and early dorsal stream (bottom panel: V1, V2d V3d). V1 is duplicated in 

top and bottom plots for ease of comparison. FMI is the natural logarithm of the ratio of the mid-

level conjunction classifier accuracy to the product of the two feature classifier accuracies for the 

features defining that mid-level conjunction (see Methods). Positive FMI reflects a preference for 

coding mid-level conjunctions over features; negative FMI reflects the reverse preference. Gray bars 
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show group mean; plotted points show individual subjects, where each unique marker corresponds 

to the same individual subject across ROIs. 

Figure 9. Mid-Level-Conjunction vs. Whole-Object-Conjunction Indices (MCI) Derived from 

ROI-based Analyses 

Mean MCI (averaged over two sessions in each subject) for ROIs in early ventral visual stream (top 

panel: V1, V2v, V3v, LOC) and early dorsal stream (bottom panel: V1, V2d V3d). V1 is duplicated in 

top and bottom plots for ease of comparison. MCI is the natural logarithm of the ratio of the whole-

object classifier accuracy to the product of the accuracies of each pair of mid-level conjunction 

classifiers that define the whole object (see Methods). Positive MCI reflects a preference for coding 

whole objects over mid-level conjunctions; negative MCI reflects the reverse preference. Gray bars 

show group mean; plotted points show individual subjects, where each unique marker corresponds 

to the same individual subject across ROIs.   
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