
Findings of the Association for Computational Linguistics: NAACL 2024, pages 4226–4252
June 16-21, 2024 ©2024 Association for Computational Linguistics

ADAPT: As-Needed Decomposition and Planning with Language Models

Archiki Prasad→ Alexander Koller↑ Mareike Hartmann↑

Peter Clark↓ Ashish Sabharwal↓ Mohit Bansal→ Tushar Khot↓

→ UNC Chapel Hill ↓ Allen Institute for AI ↑ Saarland University

Abstract

Large Language Models (LLMs) are increas-
ingly being used for interactive decision-
making tasks requiring planning and adapt-
ing to the environment. Recent works em-
ploy LLMs-as-agents in broadly two ways:
iteratively determining the next action (itera-
tive executors) or generating plans and execut-
ing sub-tasks using LLMs (plan-and-execute).
However, these methods struggle with task
complexity, as the inability to execute any
sub-task may lead to task failure. To ad-
dress these shortcomings, we introduce As-
Needed Decomposition and Planning for com-
plex Tasks (ADAPT), an approach that explic-
itly plans and decomposes complex sub-tasks
as-needed, i.e., when the LLM is unable to ex-
ecute them. ADAPT recursively decomposes
sub-tasks to adapt to both task complexity and
LLM capability. Our results demonstrate that
ADAPT substantially outperforms established
strong baselines, achieving success rates up to
28.3% higher in ALFWorld, 27% in WebShop,
and 33% in TextCraft – a novel compositional
dataset that we introduce. Through extensive
analysis, we illustrate the importance of multi-
level decomposition and establish that ADAPT
dynamically adjusts to the capabilities of the
executor LLM as well as to task complexity.1

1 Introduction

Recent advances in Large Language Models
(LLMs) have expanded their application beyond
conventional NLP tasks to more complex tasks
involving mathematical, symbolic, and common-
sense reasoning (Wei et al., 2022; Huang and
Chang, 2023). Recent models have even been ap-
plied to decision-making tasks, such as performing
household chores, navigating a webpage, etc., that
require interactions with external environments or
tools (Yao et al., 2023b; Qin et al., 2023).

1Project: https://allenai.github.io/adaptllm

Prior works on using LLMs for decision-making,
such as ReAct (Yao et al., 2023b), iteratively gen-
erate the next action to be executed in the environ-
ment given the history of actions and observations
(see Fig. 1; top-left). However, as the tasks become
more complex, LLMs struggle due to their limited
composition ability (Dziri et al., 2023) and inability
to deal with the distractors (Shi et al., 2023) in a
long action-observation trajectory.

To mitigate this, modular approaches (Khot et al.,
2023; Yang et al., 2023; Sun et al., 2023) incorpo-
rate a separate planner module that utilizes an LLM
to create a high-level plan.2 The planner then dele-
gates simpler sub-tasks to an executor LLM module
thereby reducing the compositional complexity and
length of action trajectory required by the execu-
tor. We refer to this category broadly as plan-and-

execute approaches (see Fig. 1; top-right). While
the plans enable these methods to guide the execu-
tion and track progress (Wang et al., 2023b), their
non-adaptive nature poses a limitation when con-
fronting unachievable sub-tasks. These approaches
inherently lack the flexibility to adapt to task com-
plexity and manage execution failures, as shown
in Fig. 1(top-right), where just one sub-task that is
too complex results in overall task failure.

To address such failures, we propose As-Needed
Decomposition and Planning for complex Tasks
(ADAPT), a recursive algorithm that further de-
composes sub-tasks when necessary, to dynami-
cally accommodate to task complexity. We uti-
lize separate planner and executor LLM modules
within our framework but only decompose a task
using the planner, if the executor LLM detects a
failure. As shown in Fig. 1, the overall task of
putting a clean mug on a desk in an unfamiliar

2By “planning”, we refer to the colloquial concept of
designing a list of sub-tasks to accomplish a complex task
rather than its usage in classical AI-planning literature. E.g.,
a “plan” for preparing a lasagna could be to cook the pasta,
prepare the sauce, layer the ingredients, and then bake it.

4226

https://allenai.github.io/adaptllm

> Go to countertop 1.

You reached loc 1...

> Go to cabinet 12.

...

> Think: Mug not found.
Task failed!

You reached loc 20 ...

Iterative Executor (ReAct)

Plan:
Step 1: Find and
take the mug AND

Step 2: Clean the
mug AND

Step 3: Put the
clean mug on desk

Plan-and-Execute

 ADaPT (Recursive Decomposition, As-needed)

Task: Put a clean mug on desk.

Not Executed

Execute: Task

Plan:
Step 1: Find and take the mug AND
Step 2: Clean the mug AND
Step 3: Put the clean mug on desk

Execute: Step 1

Plan:
Step 1a: Find and take the mug from countertops OR
Step 1b: Find and take the mug from cabinets OR

Execute: Step 1a

Execute: Step 1b

Execute: Step 3

Execute: Step 2

...

On execution failure,
decompose further

Successful sub-task allows
execution to resume

Execute:
Step 1

Execute:
Step 2

Execute:
Step 3

OR

ADaPT(Task)

ADaPT(Step1)

Figure 1: Top-Left: Iterative executors such as Re-
Act (Yao et al., 2023b) interact directly with the envi-
ronment, performing planning implicitly. Top-Right:
Plan-and-Execute, e.g., Yang et al. (2023), creates a
fixed plan for the task, without accounting for complex-
ity in executing step 1. Bottom: ADAPT dynamically
decomposes based on success of the executor.

household is too complex for the model, leading to
failure of the iterative executor. While a plan-and-
execute-style approach initially breaks down the
task into three sub-tasks, it falls short in accounting
for the complexity in finding a mug. Moreover, it is
challenging to anticipate the difficulty of such a sub-
task in advance, as the executor could find a mug
in the first attempt or in an obscure location. There-
fore, ADAPT employs its recursive structure to
dynamically adapt to execution failures (assessed
by LLMs), by further decomposing the complex
sub-task of finding a mug via the planner.

Empirically, we demonstrate the effectiveness
of ADAPT on three datasets involving interactive
environments: ALFWorld (Shridhar et al., 2021),
WebShop (Yao et al., 2022), and a new compo-
sitional text game for crafting Minecraft recipes
called TextCraft (Sec. 4.1). Using GPT-3.5 as the
underlying LLM, ADAPT outperforms strong base-
lines (discussed in Sec. 4.2) such as ReAct (Yao
et al., 2023b), and Plan-and-Solve (Wang et al.,

2023b) by up to 28.3%, 27%, and 33% absolute
points on ALFWorld, WebShop, and TextCraft re-
spectively (Sec. 5). Compared to Reflexion (Shinn
et al., 2023), an adaptive approach that addresses
failures in the full task trajectory, ADAPT yields
higher success rates by 14.1%, 9%, and 20% on
ALFWorld, WebShop, and TextCraft respectively.
Through extensive analysis of ADAPT, we es-
tablish the importance of recursive decomposi-
tion (Sec. 6.1) and showcase dynamic adaptation
to the capabilities of the executor LLM includ-
ing open-source models such LLaMA-2 (Touvron
et al., 2023) and Lemur (Xu et al., 2023) in Sec. 6.2.
Lastly, we demonstrate that ADAPT incorporates
task complexity (Sec. 6.3), where the extent of re-
cursive decomposition aligns with the inherent task
complexity. To summarize, our contributions are:
1. We present ADAPT, a recursive algorithm that

dynamically decomposes complex sub-tasks on
an as-needed basis, i.e., intervening only if the

task is too complex for the executor.
2. On three diverse datasets, ALFWorld, WebShop,

and TextCraft, ADAPT improves success rate
of GPT-3.5 over previous approaches by up to
28.3%, 27%, and 33% points respectively.

3. Analysis of ADAPT underscores the signifi-
cance of recursive decomposition and the ability
to adapt dynamically to varying LLM execution
capabilities and task complexities.

2 Related Work

LLMs for Decision-Making. LLMs have been
successfully used as agents to perform a wide vari-
ety of decision-making tasks such as robotic nav-
igation (Ahn et al., 2022; Huang et al., 2023b;
Singh et al., 2023), complex multi-modal games
like Minecraft (Fan et al., 2022; Wang et al., 2023a),
text-based environments (Shridhar et al., 2021; Liu
et al., 2023). While most of these works focus
on learning from trajectories, ReAct (Yao et al.,
2023b) uses few-shot prompting to build an agent
that reasons about the current state (thoughts) and
generates the next action in the environment, given
prior actions and observations. Their iterative ap-
proach (shown in Fig. 1; top-left) can handle fail-
ures, but they have to keep track of the entire plan
implicitly while deciding every local action (c.f.
ADAPT in Fig. 9 of Appendix A). By incorporat-
ing planning and execution into separate modules
and enabling dynamic adaptation we are able to
achieve higher success rates (refer to Sec. 5).

2
4227

Several follow-up works improve upon the Re-
Act framework by incorporating feedback in future
trials (Madaan et al., 2023; Shinn et al., 2023), or
using LLMs to develop heuristics for search (Yao
et al., 2023a; Zhou et al., 2023). In contrast to
ADAPT, they do not employ task decomposition,
leading to unnecessary computation as they explore
multiple trajectories or trials for the whole task,
even though the LLM struggles with just one sub-
task. Such works are complementary to ADAPT
as they can be incorporated within the planner or
executor modules to strengthen LLM performance
(just like they are incorporated in ReAct).

Decomposition and Modularity. Our work fol-
lows extensive literature in NLP on decomposing
tasks into neural modules (Andreas et al., 2016;
Gupta et al., 2019; Jiang and Bansal, 2019) or
seq2seq models (Min et al., 2019; Talmor and Be-
rant, 2018; Khot et al., 2021; Perez et al., 2020;
Saha et al., 2023b). With the advent of few-shot
prompted black-box LLMs, this paradigm of pro-
grammatic decomposition into LLMs has become
more popular (Yao et al., 2023b; Khot et al., 2023;
Wang et al., 2023b, inter alia), referred to as LLM
Programs (Schlag et al., 2023; Dohan et al., 2022).
Additionally, past works in program synthesis (Mu-
rali et al., 2018; Nye et al., 2019; Zheng et al., 2023)
also employ task decomposition via generating a
“program sketch” prior to program generation.

ADAPT not only decomposes tasks via the plan-
ner module and delegates them to the executor
module but also automatically adapts to execu-
tor failures by further decomposing complex tasks
as-needed. This dynamic capability distinguishes
ADAPT from prior works with a non-adaptive
structure. ADAPT extends the recursive and hi-
erarchical decomposition in Khot et al. (2023), en-
abling inter-module communications, and robust
strategies for execution failures, excelling in real-
world textual environments like online shopping.

Hierarchical Problem Solving. In AI problem-
solving, there is a longstanding tradition of hi-
erarchical task decomposition employed in plan-
ning (Ghallab et al., 2004; Georgievski and Aiello,
2014; Höller et al., 2020), reinforcement learning
(Sutton et al., 1999; Barto and Mahadevan, 2003;
Nachum et al., 2018; Zhang et al., 2021), and navi-
gation (She et al., 2014; Sharma et al., 2022; Blukis
et al., 2022; Min et al., 2022; Song et al., 2023).
These approaches, such as Hierarchical Task Net-
works (Erol et al., 1994), leverage domain knowl-

edge, e.g., hand-specified library of plans, to break
complex problems into simpler tasks. Our work em-
braces this tradition but distinguishes itself by ex-
ploring how LLMs can autonomously decompose
tasks by leveraging their extensive world knowl-
edge, without predefined plan libraries. Lastly,
ADAPT performs dynamic hierarchical planning
by employing its recursive structure.

3 Methodology

We introduce As-Needed Decomposition and
Planning for complex Tasks (ADAPT), a mod-
ular approach for decision-making that integrates
an LLM as an executor and a planner (Secs. 3.1
and 3.2) within an LLM program called the con-
troller (Sec. 3.3). In Fig. 1, when ADAPT is given
a complex task, it first attempts to accomplish the
entire task by running the executor iteratively, and
resorting to the LLM planner for further decom-
position into sub-tasks if the executor fails. Sub-
sequently, ADAPT is recursively called for each
sub-task to ensure their successful completion, ulti-
mately leading to overall task success.

3.1 LLM as an Executor

Overview. In a given environment, the executor
is provided with a concise natural language task
specification, as shown in Fig. 2 (left). Following
Yao et al. (2023b), the executor iteratively interacts
with the environment via actions generated by the
LLM. This interaction continues until the task is
either completed or a preset maximum iteration
limit is reached. Consistent with Ahn et al. (2022),
we provide the LLM with in-context demonstra-
tions of low-level “atomic” skills specific to the
environment (listed in Table 5 of Appendix A),
such as knowing how to correctly heat objects in
ALFWorld. This approach offers two advantages:
(i) it allows us to employ the same executor with
environment-specific knowledge for all baselines
(Sec. 4.2); and (ii) it enables the planner (discussed
in Sec. 3.2) to work at a higher level of abstraction,
leveraging the LLM’s general world knowledge.

Execution Capabilities of an LLM. At a min-
imum, the LLM executor should reliably execute
atomic skills. While we provide demonstrations for
successful execution of atomic skills, LLMs can
adapt to failures by combining multiple skills to
perform complex tasks, as discussed in Sec. 6.2.
For instance, in Fig. 2 (left), we show the LLM suc-
cessfully cleaning a mug it’s carrying (an atomic

3
4228

[LLM] Think: Input assumption: I am carrying a
mug. Now I need to verify this.

[LLM]> inventory

[LLM]> go to sinkbasin 1

[LLM]> clean mug 1 with sinkbasin 1

[LLM] Think: I cleaned the mug.Task completed!

ADaPT(Task, k)

Executor(Task)

Success?

Planner(Task)

Step 2

Step 1

Step 3

ADaPT(Step1,k+1)

ADaPT(Step2,k+1)

ADaPT(Step3,k+1)

Task: Put a clean mug on desk

True
False

Logic

True
False

Clean the mugExecutor()

OK.

You are carrying: a mug 1

You reached loc 13, you see ...

You clean mug 1

Think: To do this task, I first need to find a
mug, then clean, it and put it on the desk. I
need to perform these tasks sequentially.
Step 1: Find and take a mug AND
Think: Now I found a mug, I will clean it.
Step 2: Clean the mug with sinkbasin AND
Think: Now I cleaned the mug, I will put
the clean mug on the desk.
Step 3: Put clean mug on desk

 LLM

Planner()Put a clean
mug on desk

Controller

AND

Figure 2: Block diagram of the ADAPT pipeline with an example from ALFWorld. Left: Use of LLM as an
executor to interact iteratively with the environment along with an example execution trajectory. Middle: Overall
recursive algorithm (depth k → dmax) that embeds the executor and planner, refer to Algorithm 1 for details. Right:
Outline of using LLM as a planner to generate sub-tasks (steps) and logical operators combining them.

skill). An advanced executor could combine “find-
ing a mug” with the “cleaning” skill to accomplish
“find a clean mug” without an explicit planner.

Self-generated Success Heuristic. In order to
decompose based on the abilities of the executor,
we need to determine whether the executor is capa-
ble of finishing the given (sub-)task independently
or if further decomposition is required. To this
end, we employ the executor LLM to determine
the completion of the (sub-)task without relying

on the environment for obtaining gold rewards for
(sub-)tasks. We include a simple instruction in the
executor prompt to output “task completed” if it de-
termines it has succeeded, otherwise output “task

failed” in case it cannot proceed. Refer to example
in Fig. 2 (left). Our success heuristic aligns with bi-
nary classification models employed in Shinn et al.
(2023), providing a way to simulate intermediate
rewards, which complements end-of-task environ-
ment rewards (Rengarajan et al., 2022). We study
this LLM-generated heuristic in Appendix F and
show that it closely matches the gold reward.

3.2 LLM as a Planner

Overview. The objective of the planner is to
break down complex tasks into smaller sub-tasks.
To achieve this, we instruct the LLM to generate
a concise yet comprehensive plan consisting of a
few steps, typically 3-5, as shown in Fig. 2 (right).
We opt for shorter, more abstract plans because ex-
pecting a detailed, fine-grained plan upfront can be
impractical, especially in unexplored environments.
E.g., devising a 10-step plan to put a clean mug
on a desk without prior knowledge of the mug’s
location can lead to cascading errors due to incor-

rect assumptions. Therefore, we task the LLM to
generate short plans, with the flexibility to decom-

pose further in subsequent iterations, based on the
executor’s capabilities.

Composition Logic for Sub-tasks. Along with
the sub-tasks, we prompt the planner to generate
logical operators to combine various sub-tasks in
the plan to accomplish the task. We allow for two
logical operators: “AND” and “OR”. Sub-tasks
are linked using AND when they must be executed
sequentially for the task to succeed. However, in
cases requiring exploration, such as finding an item
in an unknown room, we employ the OR operator
to simulate conditional checks. Here, the task suc-
ceeds if any of the sub-tasks are successful. For
instance, in Fig. 1, the plan to “find a mug” would
be to “find a mug on the countertop” OR “find a

mug in the cabinet”. We execute the latter only
if the agent has not found the mug yet. While ex-
amples in Figs. 1 and 2 show homogeneous logic,
ADAPT can handle complex logical expressions
as described in Appendix B.

3.3 Controller – LLM Program

Overall Pipeline. Thus far, we describe two
LLM-based modules that can perform the roles
of low-level execution and high-level planning. We
incorporate these modules into ADAPT via the
controller which is a pre-determined and recursive
algorithm – making the overall pipeline of ADAPT
an LLM program (Schlag et al., 2023; Dohan et al.,
2022), shown in Algorithm 1. The overall flow of
the controller program is as follows: (i) given an
input task, the controller calls the executor to check
if it can succeed in performing the task directly; (ii)

4
4229

if the executor does not succeed, the controller dele-
gates decomposing the complex task to the planner
and recursively calls ADAPT for each sub-task un-
til we hit a termination criterion, i.e., if a maximum
depth dmax (↑1) is reached.

Fig. 2 (mid) shows the control flow of ADAPT.
A complex task such as “put a clean mug on the
desk” is first assigned to the executor. If the execu-
tor does not succeed, then ADAPT calls the planner
to decompose the task into sub-tasks along with a
logical operator (AND or OR) indicating how to
compose them. Each sub-task (referred to as ‘step’
in Fig. 2) is then assigned recursively to ADAPT
and is combined using the logical operator. In the
end, the success of sub-tasks after recursive decom-
position ensures overall task success (unrolled calls
to planner and executor are shown in Fig. 1).

4 Experimental Setup

We describe the datasets used in our experiments
and baselines used for comparison with ADAPT.

4.1 Datasets

We employ LLMs-as-agents to perform tasks in the
following three environments and use task success
rate as our evaluation metric in Secs. 5 and 6.

ALFWorld. ALFWorld (Shridhar et al., 2021)
is a text-based game version of the embodied AL-
FRED benchmark (Shridhar et al., 2020) imple-
mented in the TextWorld environment (Côté et al.,
2019). It encompasses 6 distinct task types, where
an agent is required to accomplish high-level tasks
through navigation and interaction via text-based
actions in a simulated household that gives textual
feedback to an agent (e.g., put a clean mug on desk

discussed earlier in Fig. 2). Following Shridhar
et al. (2021), we present results on 134 unseen eval-
uation games (test set) with a separate dev set of
10 games per task from the seen evaluation games
split. Along with atomic skills, we add example
gold trajectories, following Yao et al. (2023b), for
two tasks: heat and look in the executor prompt.3

WebShop. WebShop (Yao et al., 2022) is an on-
line shopping website environment featuring 1.18
million real-world products containing 500 user
queries in the test set. It serves as a complex

3Unlike Yao et al. (2023b), we use a standardized executor
prompt for all ALFWorld tasks, avoiding the agent to know the
task-type apriori. Table 6 in Appendix C further demonstrates
that ADAPT still improves over task-specific executors.

Crafting Commands:
craft 4 oak planks using 1 oak log
craft 1 honeycomb block using 4 honeycomb
craft 1 beehive using 6 planks, 3 honeycomb

Goal: craft beehive

[Action] get 1 oak log
[Env] Got 1 oak log

[Action] craft 4 oak planks using 1 oak log
[Env] Crafted 4 minecraft:dark_oak_planks

[Action] get 1 oak log
[Env] Got 1 oak log

[Action] craft 4 oak planks using 1 oak log
[Env] Crafted 4 minecraft:dark_oak_planks

[Action] craft 1 beehive using 6 oak planks, 3 honeycomb
[Env] Crafted 1 minecraft:beehive

...

1x1x

4x 4x 3x

1x

Figure 3: Example gold trajectory in TextCraft for a
task with recipe depth of 2.

decision-making environment with practical appli-
cations wherein an agent must navigate a website
through a variety of commands to purchase an item
matching a user specification (e.g., grey sectional

sofa priced less than $300 with fast delivery). Fol-
lowing Shinn et al. (2023), we report performance
on 100 user instructions and use a different subset
of 40 queries as the dev set.

TextCraft. We create a new text-only environ-
ment for crafting Minecraft4 items similar to Word-
Craft (Coenen et al., 2021). Unlike existing agent-
based environments, tasks in TextCraft exhibit a
natural compositional structure, resembling cook-
ing recipes with steps of varying complexity, where
some sub-tasks are more intricate, such as layering
a lasagna, while others are simpler, like baking it.

Tasks in TextCraft are inherently decomposable.
In Fig. 3, crafting a beehive necessitates crafting
its ingredients, like planks and honeycomb, which
may require further decomposition. The agent thus
needs to identify and adapt to varying task com-
plexity, e.g., crafting a plank is easier than crafting
a beehive. Moreover, some recipes allow using any
item from a particular category. For instance, craft-
ing a beehive uses planks (a category), requiring
the agent to use linguistic knowledge for proper
item selection (e.g., select oak planks, a specific
item in the category planks). We evaluate our ap-
proach on a test set of 200 tasks where the target
items have recipe trees of depth 2, 3, and 4 (exam-
ple tree of depth 2 is shown in Fig. 3). We use the

4https://www.minecraft.net

5
4230

https://www.minecraft.net

Method (dmax = 3) Pick Clean Heat Cool Look Pick2 All

ReAct 33.3 67.7 43.5 33.3 55.6 11.8 43.3
Plan-and-Execute 29.2 61.3 47.8 38.1 61.1 11.8 43.3
Try Again with ReAct 50.0 51.6 60.8 47.6 61.1 5.9 47.8
Reflexion 70.8 61.3 61.0 66.7 61.1 5.9 57.5
ADAPT (Ours) 87.5 80.6 60.8 76.2 61.1 52.9 71.6

Table 1: ADAPT yields the highest the overall success rates (%)
compared to baselines from prior work (discussed in Sec. 4.2) on
ALFWorld (test split). Best (highest) success rates are highlighted
in bold and second-highest rates are underlined.

Method WebShop TextCraft

ReAct 32.0 19.0
Plan-and-Execute 17.0 27.0
Try Again with ReAct 30.0 15.0
Reflexion 35.0† 32.0
LATS (Zhou et al., 2023) 38.0†

→

ADAPT (Ours) 44.0 52.0

Table 2: ADAPT yields the highest success
rate on WebShop and TextCraft (test split) with
dmax = 3 and 4 respectively. †Performance
reported by Zhou et al. (2023)

items with recipe tree depth of 3 (123 tasks), depth
of 4 (11 tasks) and depth of 2 (77 out of 297) in
our test set, and the rest of depth 2 tasks constitute
the dev set. Additional details about creating the
environment are present in Appendix E.

4.2 Baseline Approaches

We compare ADAPT with four classes of baseline
approaches described below.

Iterative Executor-Only (ReAct). In this setting,
we employ the executor to interact iteratively with
the environment, adopting the think-act-observe
prompting style from ReAct (Yao et al., 2023b). All
methods discussed below, including ADAPT, share
the same executor, ensuring a standardized impact
of the executor’s strength and design choices when
comparing relative performance in Sec. 5. When
dmax=1, ADAPT solely relies on this executor.

Plan-and-Execute. As shown in Fig. 1, in this
setting, we generate a plan first and then assign
each sub-task to the executor. This approach only
plans once and as a result has a non-adaptive struc-
ture (consistent with Wang et al. (2023b); Yang
et al. (2023); Sun et al. (2023)). To ensure each
plan step is executable without further decompo-
sition, we design new prompts with more detailed
plans. Note that ADAPT with dmax = 2 differs
from plan-and-execute as it is adaptive, i.e., de-
composes only when executor fails and generates
relatively shorter plans (refer to Appendix B).

Try Again with ReAct. By design, ADAPT
makes multiple calls to the executor module, al-
beit with different (sub-)tasks. Like Yang et al.
(2023), we design a simple controller that requests
the executor to retry the task in a total of dmax

separate trials and then uses the trial with the best
performance for each task instance.

Reflexion. Shinn et al. (2023) execute the en-
tire task first, and if unsuccessful, reflect and store
feedback in memory for subsequent dmax↓1 trials.
While adaptive, this approach repeats the entire
trial even if a single sub-task fails, redundantly
re-executing previously successful sub-tasks.

ADAPT and Shared Implementation Details.
Following (Yao et al., 2023b; Shinn et al., 2023;
Zhou et al., 2023), by default, we use the GPT-
3.5 (Ouyang et al., 2022) LLM for both planning
and execution in ADAPT and other baselines. We
use the completion-based models for ALFWorld
and TextCraft and the chat-based model for Web-
Shop.5 Further, we use ADAPT (and other base-
lines) with dmax=3 for ALFWorld, and WebShop
and increase to dmax=4 for TextCraft to accommo-
date recipes with a depth of 4 (Sec. 4.1). For addi-
tional details, refer to Appendix A. We increase the
maximum number of iterations for the ReAct base-
line by a factor of dmax and ensure all baselines
use a comparable number of LLM calls (Sec. 6.5).

5 Main Results

Using GPT-3.5 as the underlying LLM, in this sec-
tion, we show that ADAPT yields the highest suc-
cess rate compared to baselines from prior work on
ALFWorld, WebShop, and TextCraft datasets.

ALFWorld. In Table 1, we observe that ADAPT
achieves the highest overall success rate, while
using ReAct alone results in the lowest overall
performance. By leveraging adaptive decomposi-
tion, ADAPT improves over ReAct’s performance
by 28.3% points (absolute) as well as over Plan-
and-Execute and Try Again by 28.3% and 23.8%
points, respectively. Lastly, we find that ADAPT

5We use the completion model as chat variants of GPT-3.5
consistently underperform their completion counterparts (Liu
et al., 2023; Yang et al., 2023). We discuss the effectiveness
of ADAPT different LLMs in Sec. 6.2.

6
4231

Figure 4: Success rate of ADAPT increases with the
maximum depth dmax for all datasets (dev splits).

yields 14.1% points higher overall success rate
than Reflexion, despite the latter having access
to dedicated memory and natural language feed-
back. Specifically, we find baselines yield poor
results on ‘pick2’ tasks (<12% success rate) as
they require the agent to compose two ‘pick’-style
tasks involving a longer action history. However,
ADAPT yields significant improvements (by over
a factor of 4↔) for this type of tasks.

WebShop. Table 2 shows a similar trend with
ADAPT surpassing all baselines and achieving
the highest success rate. ADAPT outperforms Re-
Act, Plan-and-Execute, and Try-Again baselines
by up to 27% points. We corroborate the findings
of Shinn et al. (2023) and observe that natural lan-
guage feedback offers limited gains in performance,
as compared to ADAPT (which surpasses Reflex-
ion by 9% points). Additionally, we compare with
a recent search-based baseline LATS (Zhou et al.,
2023) and find that ADAPT outperforms the suc-
cess rate of LATS by 6% points.

TextCraft. Our results on TextCraft are summa-
rized in Table 2. First, we observe that ADAPT
achieves an improvement of 33% compared to the
ReAct executor. In contrast to Plan-and-Execute,
i.e., starting with a fixed plan, having the dynamic
ability to adapt to complex sub-tasks (in this case,
crafting complex ingredients) in ADAPT improves
performance by 25% points. Lastly, ADAPT out-
performs Reflexion by 20% points, highlighting
the importance of adaptive and as-needed planning.
We hypothesize that ADAPT consistently outper-
forms Reflexion across datasets as the latter relies
on generating feedback based on errors in the entire
trajectory. In contrast, due its design, ADAPT of-
ten handle failures of small sub-tasks and redirects
more resources in the form of calling the planner

Figure 5: ADAPT improves success rates across varying
settings capturing different executor capabilities (i.e.,
executor-only performance) on ALFWorld (dev).

and decomposition to the challenging sub-tasks.

6 Analysis and Discussion

We analyze ADAPT in detail by addressing the
following research questions on dev data splits.

6.1 How does performance of ADAPT scale
with the depth of decomposition?

Setup. To assess the impact of adaptive decom-
position, we study ADAPT under three settings
with increasing maximum depth dmax ↗ {1, 2, 3}
for ALFWorld, WebShop, and TextCraft. Note
that dmax = 1 setting corresponds to the iterative
executor-only baseline (ReAct).

Results. Fig. 4 shows that across all datasets, per-
formance of ADAPT scales with increasing the
maximum depth dmax. Consistently, we find a sig-
nificant improvement in success rates as we move
from dmax=1 to dmax=2, i.e., adding the planner
to decompose a complex task when executor fails
proves to be effective. Finally, the performance
increase from dmax=2 to dmax=3 validates our
hypothesis that some sub-tasks are difficult for the
LLM to directly execute successfully, and decom-
posing these further boosts overall performance.

6.2 Does ADAPT cater to different execution
capabilities of LLMs?

Same LLM, different execution capabilities.
We run ADAPT on three different executor
prompts on ALFWorld: (i) task-specific gold tra-
jectories, (ii) atomic skills and common gold-
trajectories for 2 tasks used in Sec. 5 (hybrid), and
(iii) only atomic skills. Using gold trajectories
aligns closely with the task at inference-time and
thus, should exhibit high performance. In contrast,

7
4232

Figure 6: ADAPT improves (test) performance of GPT-3.5, GPT-4, LLaMA, and Lemur LLMs across datasets.

executor using only atomic skills relies on the in-
herent composition abilities of the LLM, yielding
weaker performance. Here we examine if ADAPT
can improve success rates for all three settings.

Results. In Fig. 5, we observe that ADAPT con-
sistently improves over the executor-only baseline
for all diverse executor settings. As expected, the
executor prompted with task-specific trajectories
performs the best (left), while the executor with
only atomic skills performs the worst (right). No-
tably, ADAPT substantially improves performance
of the relatively weak executor, improving success
rate from 3.3% to 41.7%.

ADAPT with different LLMs. We study the
ability of ADAPT to improve performance across
different LLMs (as planners and executors): (i)
GPT-3.5, (ii) GPT-4 (OpenAI, 2023), (iii) LLaMA-
2 70B (Touvron et al., 2023), and (iv) Lemur
70B (Xu et al., 2023) on test splits of all datasets.

Results. Fig. 6 shows that ADAPT consistently
improves downstream performance for all models
across all three datasets. Consistent with Liu et al.
(2023), we find that the gated GPT models outper-
form the open-source models based on absolute
success rates. Nevertheless, ADAPT is effective
across LLMs and improves performance of GPT-
4, the strongest LLM, by up to 37%, as well as
LLaMA, the least performant LLM, by up to 15%
on the TextCraft dataset.

6.3 Does ADAPT handle task complexity?

Setup. By the compositional design of TextCraft,
complexity of each task in the dataset can be de-
fined with respect to the depth of the crafting recipe,
i.e., recipes with higher depth would be more com-
plex to craft. We evaluate efficacy of ADAPT
and the ReAct baseline on the test set of TextCraft

Method Recipe Depth kmax Success Rate

ReAct 2 1.0 26.9
ADAPT (dmax = 4) 2 1.9 78.2

ReAct 3 1.0 1.8
ADAPT (dmax = 4) 3 2.8 38.7

Table 3: ADAPT improves TextCraft (test) performance
even as recipe depth increases. The maximum decom-
position depth used by ADAPT to succeed at the task
(kmax) also scales with the recipe depth.

with increasing recipe depth.6 Furthermore, while
we provide ADAPT with a maximum budget of
dmax = 4, we study how the maximum decompo-
sition depth utilized by ADAPT to succeed (kmax)
varies with task complexity.

Results. In Table 3 we observe that ADAPT im-
proves success rates for games with recipe depth of
2 from 26.9% to 78.2%, and of depth 3 from 1.8%
to 38.7% as compared to the ReAct baseline. As
expected, the executor alone is unable to handle
complex recipes with depth ↑ 3, but with the help
of ADAPT the performance improves significantly.
Additionally, given the same budget dmax=4, as
the recipe depth (complexity) increases from 2 to
3, ADAPT’s level of decomposition (kmax) also
increases from 1.9 to 2.8. This showcases that
ADAPT leverages as-needed decomposition in or-
der to handle task complexity.

6.4 Can we use different planner and executor
LLMs within ADAPT?

Setup. The planner and executor modules of
ADAPT do not need to necessarily use the same
underlying model. Following, Lin et al. (2023) we
explore if a relatively smaller LLM can be used to
perform local actions in the executor and a more

6As we have only 11 tasks with recipe depth of 4, we
exclude them from this analysis.

8
4233

Executor LM Planner LM Success Rate

GPT-3.5 → 38.4
GPT-3.5 GPT-3.5 58.3

LLaMA-2-70B → 20.4
LLaMA-2-70B GPT-3.5 43.3

Table 4: ADAPT improves performance on ALFWorld
(dev) when using different planner and executor LLMs.

advanced LLM be used to devise plans. To this
end, we explore different combinations of planner
and executor LLM, with the latter using both gated
and open-source models on ALFWorld.

Results. Table 4 shows that ADAPT can suc-
cessfully be used to generate plans from one LLM
that are useful to a different, possibly smaller, ex-
ecutor LLM, improving success rates by up to
19.9% compared to the executor-only (ReAct) set-
ting. Interestingly, using an open-source model,
such as LLaMA-2-70B-chat (Touvron et al., 2023)
can be used as an executor with a more advanced
LLMs such as GPT-3.5 to improve success rates
by 22.9% points. Since the planner LLM is used
sparingly, open-source executors can dramatically
decrease the monetary or computational costs of us-
ing ADAPT. We defer combining knowledge from
stronger and weaker LMs within ADAPT to future
work, as examined in the context of mathematical
reasoning (Fu et al., 2023; Saha et al., 2023a).

6.5 How does ADAPT compare to baselines in
terms of LLM calls?

Setup. Performance of decision-making agents
can be enhanced by increasing the number of calls
allowed to an LLM, e.g., number of retrials in Re-
flexion. To verify that the gains in ADAPT are
not simply due to higher number of LLM calls, we
compare the average of number of LLM calls made
by ADAPT to the baselines.

Results. Fig. 7 shows that a ADAPT employs a
comparable number of LLM calls w.r.t. Try-Again
and Reflexion baselines in order to yield perfor-
mance improvements discussed in Sec. 5 (Tables 1
and 2). Note that while all methods including Re-
Act and Plan-and-Execute baselines are offered a
comparable computational budget, the actual num-
ber of LLM calls used by the latter is often lower
due to their inability to handle intermediate exe-
cution failures. This strengthens the argument for
effectiveness of ADAPT as the improvements do

Figure 7: Average number of LLM calls for each ap-
proach including ADAPT and baselines discussed in
Sec. 4.2 with GPT-3.5 LLM across datasets.

not simply stem from using substantially higher
number of calls to the LLM.

7 Conclusion

We introduce ADAPT, a recursive algorithm de-
signed to harness the planning capabilities of
LLMs, dynamically decomposing complex tasks
when the LLM acting as an executor encoun-
ters challenges. Our evaluation across three di-
verse decision-making tasks, ALFWorld, WebShop,
and TextCraft, reveals impressive performance of
ADAPT, surpassing existing baselines by substan-
tial margins of up to 28.3%, 27%, and 33% points,
respectively. This not only underscores the effec-
tiveness of ADAPT but also highlights the signif-
icance of as-needed decomposition in enhancing
task performance. Moreover, our findings demon-
strate that ADAPT not only adapts to the capabili-
ties of the underlying executor LLM but also takes
into account the complexity of individual task in-
stances, showcasing its versatility and effectiveness.

Acknowledgements

Part of this work was done during internship at
AI2 and was partially supported at UNC by NSF-
CAREER Award 1846185, NSF-AI Engage Insti-
tute DRL-2112635, DARPA Machine Common-
sense (MCS) Grant N66001-19-2-4031,. We sin-
cerely thank Bodhisattwa Prasad Majumder, Chris
Callison-Burch, Shashank Gupta, Peter Jansen, Bill
Yuchen Lin and the Aristo team for their valuable
feedback. We also thank Swarnadeep Saha, Elias
Stengel-Eskin, and Peter Hase for their feedback.

9
4234

Limitations

ADAPT relies on the success heuristic generated
by the executor LLM to determine if the model
is capable of performing a complex task. For
decision-making tasks studied in this work, we
find that LLMs can reliably determine task success
based on past action trajectories and textual feed-
back from the environment (see Appendix F). How-
ever, Huang et al. (2023a); Stechly et al. (2023)
discuss the limits of LLM’s ability to self-evaluate
and self-refine. In such situations, future works
may additionally employ external verifiers (Light-
man et al., 2023; Shridhar et al., 2023), theory-of-
mind strategies among multiple LMs (Saha et al.,
2023a), and other calibration and self-evaluation
techniques (Kadavath et al., 2022). These improved
self-evaluation techniques could be useful to extend
our framework to non-decision making tasks such
as question answering.

References
Michael Ahn, Anthony Brohan, Noah Brown, Yevgen

Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-
man, et al. 2022. Do as i can, not as i say: Ground-
ing language in robotic affordances. arXiv preprint

arXiv:2204.01691.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Neural module networks. In Pro-

ceedings of the IEEE conference on computer vision

and pattern recognition, pages 39–48.

Andrew G Barto and Sridhar Mahadevan. 2003. Re-
cent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13(1-2):41–77.

Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg,
and Yoav Artzi. 2022. A persistent spatial semantic
representation for high-level natural language instruc-
tion execution. In Conference on Robot Learning,
pages 706–717. PMLR.

Andy Coenen, Luke Davis, Daphne Ippolito, Emily
Reif, and Ann Yuan. 2021. Wordcraft: a human-ai
collaborative editor for story writing. arXiv preprint

arXiv:2107.07430.

Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben
Kybartas, Tavian Barnes, Emery Fine, James Moore,
Matthew Hausknecht, Layla El Asri, Mahmoud
Adada, et al. 2019. Textworld: A learning environ-
ment for text-based games. In Computer Games:

7th Workshop, CGW 2018, Held in Conjunction with

the 27th International Conference on Artificial In-

telligence, IJCAI 2018, Stockholm, Sweden, July

13, 2018, Revised Selected Papers 7, pages 41–75.
Springer.

David Dohan, Winnie Xu, Aitor Lewkowycz, Ja-
cob Austin, David Bieber, Raphael Gontijo Lopes,
Yuhuai Wu, Henryk Michalewski, Rif A Saurous,
Jascha Sohl-Dickstein, et al. 2022. Language model
cascades. arXiv preprint arXiv:2207.10342.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine
Li, Liwei Jian, Bill Yuchen Lin, Peter West, Chandra
Bhagavatula, Ronan Le Bras, Jena D Hwang, et al.
2023. Faith and fate: Limits of transformers on com-
positionality. arXiv preprint arXiv:2305.18654.

Kutluhan Erol, James Hendler, and Dana S Nau. 1994.
Htn planning: Complexity and expressivity. In AAAI,
volume 94, pages 1123–1128.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Man-
dlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar.
2022. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in

Neural Information Processing Systems, 35:18343–
18362.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and
Tushar Khot. 2023. Specializing smaller language
models towards multi-step reasoning. arXiv preprint

arXiv:2301.12726.

Ilche Georgievski and Marco Aiello. 2014. An overview
of hierarchical task network planning. arXiv preprint

arXiv:1403.7426.

Malik Ghallab, Dana Nau, and Paolo Traverso. 2004.
Automated Planning: theory and practice. Elsevier.

Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh, and
Matt Gardner. 2019. Neural module networks for
reasoning over text. In International Conference on

Learning Representations.

Daniel Höller, Gregor Behnke, Pascal Bercher, Susanne
Biundo, Humbert Fiorino, Damien Pellier, and Ron
Alford. 2020. Hddl: An extension to pddl for ex-
pressing hierarchical planning problems. In Proceed-

ings of the AAAI conference on artificial intelligence,
pages 9883–9891.

Jie Huang and Kevin Chen-Chuan Chang. 2023. To-
wards reasoning in large language models: A survey.
In Findings of the Association for Computational

Linguistics: ACL 2023, pages 1049–1065, Toronto,
Canada. Association for Computational Linguistics.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023a. Large language
models cannot self-correct reasoning yet. arXiv

preprint arXiv:2310.01798.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tomp-
son, Igor Mordatch, Yevgen Chebotar, et al. 2023b.
Inner monologue: Embodied reasoning through plan-
ning with language models. In Conference on Robot

Learning, pages 1769–1782. PMLR.

10
4235

https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2023.findings-acl.67

Yichen Jiang and Mohit Bansal. 2019. Self-assembling
modular networks for interpretable multi-hop rea-
soning. In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natu-

ral Language Processing (EMNLP-IJCNLP), pages
4474–4484, Hong Kong, China. Association for Com-
putational Linguistics.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, et al. 2022. Language models
(mostly) know what they know. arXiv preprint

arXiv:2207.05221.

Tushar Khot, Daniel Khashabi, Kyle Richardson, Peter
Clark, and Ashish Sabharwal. 2021. Text modular
networks: Learning to decompose tasks in the lan-
guage of existing models. In Proceedings of the 2021

Conference of the North American Chapter of the

Association for Computational Linguistics: Human

Language Technologies, pages 1264–1279, Online.
Association for Computational Linguistics.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2023. Decomposed prompting: A modular
approach for solving complex tasks. In The Eleventh

International Conference on Learning Representa-

tions.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint

arXiv:2305.20050.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Prithvi-
raj Ammanabrolu, Faeze Brahman, Shiyu Huang,
Chandra Bhagavatula, Yejin Choi, and Xiang Ren.
2023. Swiftsage: A generative agent with fast and
slow thinking for complex interactive tasks. arXiv

preprint arXiv:2305.17390.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, et al. 2023. Agentbench: Evaluat-
ing llms as agents. arXiv preprint arXiv:2308.03688.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651.

Sewon Min, Victor Zhong, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2019. Multi-hop reading compre-
hension through question decomposition and rescor-
ing. In Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics, pages
6097–6109, Florence, Italy. Association for Compu-
tational Linguistics.

So Yeon Min, Devendra Singh Chaplot, Pradeep Kumar
Ravikumar, Yonatan Bisk, and Ruslan Salakhutdinov.

2022. Film: Following instructions in language with
modular methods. In International Conference on

Learning Representations.

Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri,
and Chris Jermaine. 2018. Neural sketch learning
for conditional program generation. In International

Conference on Learning Representations.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and
Sergey Levine. 2018. Data-efficient hierarchical rein-
forcement learning. Advances in neural information

processing systems, 31.

Maxwell Nye, Luke Hewitt, Joshua Tenenbaum, and
Armando Solar-Lezama. 2019. Learning to infer
program sketches. In International Conference on

Machine Learning, pages 4861–4870. PMLR.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural

Information Processing Systems, 35:27730–27744.

Ethan Perez, Patrick Lewis, Wen-tau Yih, Kyunghyun
Cho, and Douwe Kiela. 2020. Unsupervised question
decomposition for question answering. In Proceed-

ings of the 2020 Conference on Empirical Methods

in Natural Language Processing (EMNLP), pages
8864–8880, Online. Association for Computational
Linguistics.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Desik Rengarajan, Gargi Vaidya, Akshay Sarvesh,
Dileep Kalathil, and Srinivas Shakkottai. 2022. Rein-
forcement learning with sparse rewards using guid-
ance from offline demonstration. In International

Conference on Learning Representations.

Swarnadeep Saha, Peter Hase, and Mohit Bansal. 2023a.
Can language models teach weaker agents? teacher
explanations improve students via theory of mind.
arXiv preprint arXiv:2306.09299.

Swarnadeep Saha, Shiyue Zhang, Peter Hase, and Mo-
hit Bansal. 2023b. Summarization programs: Inter-
pretable abstractive summarization with neural mod-
ular trees. In The Eleventh International Conference

on Learning Representations.

Imanol Schlag, Sainbayar Sukhbaatar, Asli Celikyilmaz,
Wen-tau Yih, Jason Weston, Jürgen Schmidhuber,
and Xian Li. 2023. Large language model programs.
arXiv preprint arXiv:2305.05364.

11
4236

https://doi.org/10.18653/v1/D19-1455
https://doi.org/10.18653/v1/D19-1455
https://doi.org/10.18653/v1/D19-1455
https://doi.org/10.18653/v1/2021.naacl-main.99
https://doi.org/10.18653/v1/2021.naacl-main.99
https://doi.org/10.18653/v1/2021.naacl-main.99
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy
https://doi.org/10.18653/v1/P19-1613
https://doi.org/10.18653/v1/P19-1613
https://doi.org/10.18653/v1/P19-1613
https://openreview.net/forum?id=HkfXMz-Ab
https://openreview.net/forum?id=HkfXMz-Ab
http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2020.emnlp-main.713
https://doi.org/10.18653/v1/2020.emnlp-main.713
https://openreview.net/forum?id=YJ1WzgMVsMt
https://openreview.net/forum?id=YJ1WzgMVsMt
https://openreview.net/forum?id=YJ1WzgMVsMt
https://openreview.net/forum?id=ooxDOe7ZtBe
https://openreview.net/forum?id=ooxDOe7ZtBe
https://openreview.net/forum?id=ooxDOe7ZtBe

Pratyusha Sharma, Antonio Torralba, and Jacob An-
dreas. 2022. Skill induction and planning with latent
language. In Proceedings of the 60th Annual Meet-

ing of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 1713–1726, Dublin,
Ireland. Association for Computational Linguistics.

Lanbo She, Shaohua Yang, Yu Cheng, Yunyi Jia, Joyce
Chai, and Ning Xi. 2014. Back to the blocks world:
Learning new actions through situated human-robot
dialogue. In Proceedings of the 15th annual meet-

ing of the special interest group on discourse and

dialogue (SIGDIAL), pages 89–97.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed Huai hsin Chi, Nathanael
Scharli, and Denny Zhou. 2023. Large language
models can be easily distracted by irrelevant context.
In International Conference on Machine Learning.

Noah Shinn, Federico Cassano, Beck Labash, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu
Yao. 2023. Reflexion: Language agents with
verbal reinforcement learning. arXiv preprint

arXiv:2303.11366, 14.

Kumar Shridhar, Koustuv Sinha, Andrew Cohen, Tianlu
Wang, Ping Yu, Ram Pasunuru, Mrinmaya Sachan,
Jason Weston, and Asli Celikyilmaz. 2023. The art of
llm refinement: Ask, refine, and trust. arXiv preprint

arXiv:2311.07961.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. 2020. Alfred: A bench-
mark for interpreting grounded instructions for ev-
eryday tasks. In Proceedings of the IEEE/CVF con-

ference on computer vision and pattern recognition,
pages 10740–10749.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2021. ALFWorld: Aligning Text and
Embodied Environments for Interactive Learning.
In Proceedings of the International Conference on

Learning Representations (ICLR).

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,
Jesse Thomason, and Animesh Garg. 2023. Prog-
prompt: Generating situated robot task plans using
large language models. In 2023 IEEE International

Conference on Robotics and Automation (ICRA),
pages 11523–11530. IEEE.

Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M Sadler, Wei-Lun Chao, and Yu Su. 2023.
Llm-planner: Few-shot grounded planning for em-
bodied agents with large language models. In Pro-

ceedings of the IEEE/CVF International Conference

on Computer Vision, pages 2998–3009.

Kaya Stechly, Matthew Marquez, and Subbarao Kamb-
hampati. 2023. Gpt-4 doesn’t know it’s wrong: An
analysis of iterative prompting for reasoning prob-
lems. arXiv preprint arXiv:2310.12397.

Simeng Sun, Y. Liu, Shuo Wang, Chenguang Zhu, and
Mohit Iyyer. 2023. Pearl: Prompting large language
models to plan and execute actions over long docu-
ments. ArXiv, abs/2305.14564.

Richard S Sutton, Doina Precup, and Satinder Singh.
1999. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning.
Artificial intelligence, 112(1-2):181–211.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies,

Volume 1 (Long Papers), pages 641–651, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint

arXiv:2307.09288.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An-
ima Anandkumar. 2023a. Voyager: An open-ended
embodied agent with large language models. arXiv

preprint arXiv:2305.16291.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023b. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. In Proceedings of the 61st Annual Meet-

ing of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 2609–2634, Toronto,
Canada. Association for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural

Information Processing Systems, 35:24824–24837.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint

arXiv:1910.03771.

Yiheng Xu, Hongjin Su, Chen Xing, Boyu Mi, Qian
Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao Liu,
Tianbao Xie, Zhoujun Cheng, Siheng Zhao, Ling-
peng Kong, Bailin Wang, Caiming Xiong, and Tao
Yu. 2023. Lemur: Harmonizing natural language and
code for language agents.

John Yang, Akshara Prabhakar, Karthik Narasimhan,
and Shunyu Yao. 2023. Intercode: Standardizing
and benchmarking interactive coding with execution
feedback. arXiv preprint arXiv:2306.14898.

12
4237

https://doi.org/10.18653/v1/2022.acl-long.120
https://doi.org/10.18653/v1/2022.acl-long.120
https://api.semanticscholar.org/CorpusID:256459776
https://api.semanticscholar.org/CorpusID:256459776
https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2010.03768
https://api.semanticscholar.org/CorpusID:258866190
https://api.semanticscholar.org/CorpusID:258866190
https://api.semanticscholar.org/CorpusID:258866190
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
http://arxiv.org/abs/2310.06830
http://arxiv.org/abs/2310.06830

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.
Advances in Neural Information Processing Systems,
35:20744–20757.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023a. Tree of thoughts: Deliberate
problem solving with large language models. arXiv

preprint arXiv:2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao.
2023b. React: Synergizing reasoning and acting
in language models. In The Eleventh International

Conference on Learning Representations.

Jesse Zhang, Haonan Yu, and Wei Xu. 2021. Hierarchi-
cal reinforcement learning by discovering intrinsic
options. In International Conference on Learning

Representations.

Wenqing Zheng, SP Sharan, Ajay Kumar Jaiswal, Kevin
Wang, Yihan Xi, Dejia Xu, and Zhangyang Wang.
2023. Outline, then details: Syntactically guided
coarse-to-fine code generation. In International Con-

ference on Machine Learning, pages 42403–42419.
PMLR.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,
Haohan Wang, and Yu-Xiong Wang. 2023. Lan-
guage agent tree search unifies reasoning acting
and planning in language models. arXiv preprint

arXiv:2310.04406.

A ADAPT Implementation Details

Executor. We use a common ReAct executor for
each dataset. To this end, we provide the LLM
in the executor with in-context example trajecto-
ries for each atomic skill (refer to Table 5 for an
exhaustive list). Atomic skills are inherently task
dependent, and thus, vary with the underlying envi-
ronment. For ALFWorld, in which the agent needs
to navigate and perform tasks in the household, the
atomic skills include: taking an object, putting it
down at a location, cleaning, heating, etc. On the
other hand, the goal in WebShop is to buy a product
based on user queries, thus, atomic skills include:
searching a specified query, shortlisting products
based on search page, matching if a product sat-
isfies a criteria, and buying a product. Lastly, the
atomic skills in TextCraft are fetching objects from
the environment, and crafting them given the recipe
and the ingredients. Following Yao et al. (2023b),
we add gold trajectories for two tasks: heat and
look in the executor prompt for ALFWorld, and
one full gold trajectory for TextCraft.

Atomic Skill Description

A
LF

W
or

ld

put Assuming that the robot is carrying
an object, put it on a given receptacle.

take Take a specified object from a speci-
fied receptacle.

clean/heat/cool Assuming that the robot is carrying
an object, clean/heat/cool the object.

examine Assuming the robot is at a desk with a
desk lamp, use it to look at an object.

W
eb

Sh
op

search Put a given query in the search box,
results in a page with list of products.

shortlist Based on the search page and query,
get list of any matching products.

match Given a product ID and query, navi-
gate to the product page and verify it
matches the query.

buy Given a product ID and query, buy
product by selecting relevant options.

Te
xt

C
ra

ft

craft Assuming the agent has all the ingre-
dients in the inventory, craft a target
object by picking an appropriate com-
mand from the list of crafting recipes.

fetch Look for a given object in the inven-
tory or get it directly from the game.

inventory Look-up the game inventory.

Table 5: Overview of atomic skills used in Sec. 3.1.

Planner. We provide the LLM with a brief de-
scription of atomic skills and in-context demonstra-
tions of few task decompositions for each dataset.
• ALFWorld: The planner includes 6 demon-

strations of task decompositions for one house-
hold configuration. Specifically, “find” is not an
atomic skill for the executor, and therefore, needs
to be handled by the planner (refer to Fig. 2).

• WebShop: The planner breaks down a given task
in terms of the atomic skills described in Table 5
via 2 in-context demonstrations.

• TextCraft: The planner determines the neces-
sary ingredients for each item and creates a plan
to obtain them and then craft the item, illustrated
via 2 examples with different crafting commands.

Controller. The controller performs two crucial
roles in the overall functioning of ADAPT. First, it
serves as the communication bridge between plan-
ner and executor, propagating salient information
across the two depending on the task. Second, since
ADAPT is a recursive algorithm, the controller de-
termines the termination criterion using the logical
expression from the planner and success heuristic
from the executor or if a maximum depth dmax

(↑1) is reached. The controller propagates task-
dependent salient information described below:
• ALFWorld: In the controller, we propagate the

last successful action from a previous execution

13
4238

https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X

Method Pick Clean Heat Cool Look Pick2 All

ReAct 66.7 41.9 47.8 80.9 83.3 23.5 56.7
Plan-and-Execute 87.5 58.1 73.9 52.4 83.3 17.6 63.4
Try Again with ReAct 75.0 38.7 60.9 76.2 66.7 23.5 56.7
Reflexion 83.3 61.3 73.9 85.7 61.1 29.4 67.2
ADAPT (Ours) 91.7 67.7 78.3 81.0 100 64.7 79.8

Table 6: Comparison of success rates (%) achieved by ADAPT
and other baselines from prior work on ALFWorld (test split)
with executor used by Yao et al. (2023b)

Method Score Success Rate

Iterative Executor-Only 42.1 29.0
Static Decomposition 27.7 17.0
Retry Execution 45.4 30.0
Naive 58.3 24.0
Reflexion* 64.2 35.0
LATS (Zhou et al., 2023)* 75.9 38.0
ADAPT (Ours) 60.0 44.0

Table 7: Performance comparison of differ-
ent methods on WebShop.

Algorithm 1 Algorithm for ADAPT
1: function ADAPT(Task T , Current depth k)
2: // ADAPT(·) Generates success heuristic value

completed for the task T . Initialized with k = 1.

3: // Base case: terminate on reaching maximum depth

4: if k > dmax then return False
5: // Execute the task/sub-task to assess if the LLM can

directly perform it using LLM-generated success.

6: completed ↑ executorLLM(T)
7: // Plan only when the executor fails.

8: if completed is False then
9: // Using the LLM, decompose the task into a set

of sub-tasks, P , and a Boolean function, logic(·),
that combines output of the sub-tasks.

10: P, logic ↑ plannerLLM(T)
11: // Get the outputs for individual sub tasks

12: O = {ADAPT(Tsub, k+1)|Tsub ↓ P}

13: // Combine the outputs of the sub tasks

14: completed ↑ logic(O)
15: return completed

run to subsequent calls of the executor. Note that
information is only propagated from successful
sub-tasks. For sub-tasks connected via “OR”,
each receives the same information from the con-
troller. Unlike Shinn et al. (2023), executor does
not get text feedback from prior failures.

• WebShop: We propagate the current page vis-
ible to the agent along with past unsuccessful
executor tasks to the planner (without any ratio-
nales). Once we find a matching product, we also
propagate the product ID in future executor calls.

• TextCraft: We propagate the current inventory
of the agent to the executor. This is akin to ex-
ecutors starting with the inventory command
as the first step to keep stock of which items are
missing and need to be fetched or crafted.

For partial rolled-out trajectories with ADAPT re-
fer to Figs. 9 to 11. Communication between plan-
ner and executor is highlighted in gray box(es) .

LLM-related Hyperparameters. Following pre-
vious works (Shinn et al., 2023; Liu et al., 2023)
we use text-davinci-003 from the OpenAI
API for ALFWorld. For WebShop, we use the
gpt-3.5-turbo models, and for TextCraft we use

the gpt-3.5-turbo-instruct models. All execu-
tors have a maximum budget of iterations to inter-
act with the environment and execute the task. We
set this budget to 20, 15, and 20 respectively for
ALFWorld, WebShop, and TextCraft respectively.
For try again with ReAct, we sample additional tra-
jectories with a temperature of 0.7. As discussed in
Sec. 4.2, we run the iterative executor-only baseline
for 60, 45, 60 iterations for ALFWorld, WebShop,
and TextCraft respectively. In Sec. 6.2, we use pub-
licly available checkpoints for LLaMA 70B7 and
Lemur 70B8 available on Huggingface (Wolf et al.,
2019). For both planner and executor modules, we
use a fixed prompt consisting of few in-context
examples (as described above) for each dataset.
We show all executor and planner prompts to the
LLM in Appendix G. Due to cost constraints, we
report success rates for a single run of each LLM
in Secs. 5 and 6.

B Handling Complex Logic in Plans

While the examples in Figs. 1 and 2 show homoge-
neous logic across sub-tasks in the plan, our con-
troller can handle complex logical expressions in-
cluding both “AND” and “OR” operators. Specif-
ically, we provide instructions to the planner to
output this logical expressing at the end of the plan
with a fixed prefix: Execution Order. We then
build a deterministic parser that can parse complex
logical expressions that the controller can process.
We do so by splitting the logical expression into a
series of homogeneous expression each passed to
ADAPT. Whenever the task given to ADAPT com-
prises of multiple sub-tasks connected via (one)
logical operator, we automatically decompose this
task as per the logical expression. For example,
in Fig. 8, a detailed plans used by the plan-and-
execute baseline (discussed in Sec. 4.2) comprised

7https://huggingface.co/meta-llama/
Llama-2-70b-hf

8https://huggingface.co/OpenLemur/
lemur-70b-chat-v1

14
4239

https://huggingface.co/meta-llama/Llama-2-70b-hf
https://huggingface.co/meta-llama/Llama-2-70b-hf
https://huggingface.co/OpenLemur/lemur-70b-chat-v1
https://huggingface.co/OpenLemur/lemur-70b-chat-v1

Plan: Put a clean mug on desk
Think: To do this task,
Step 1: Find and take the mug AND
Think: Now that I have found it,
Step 2: Clean the mug using sinkbasin AND
Think: Now that I have cleaned
Step 3: Put clean mug on desk

Plan: Find and take the mug
Think: To do this task,
Step 1: Find and take mug from countertop OR
Think: If I do not find the mug,
Step 2: Find and take mug from cabinet OR
Think: If I do not find the mug,
Step 3: Find and take mug from drawer

Plan: Put a clean mug on desk
Think: To do this task,
Step 1: Find and take mug from
countertop OR
Think: If I do not find the mug,
Step 2: Find and take mug from cabinet OR
Think: If I do not find the mug,
Step 3: Find and take mug from drawer AND
Think: Now that I have found it,
Step 4: Clean the mug using sinkbasin AND
Think: Now that I have cleaned
Step 5: Put clean mug on desk

Logic: ((Step 1 OR Step 2 OR Step 3) AND
Step 4 AND Step 5)

Adaptive Multi-level Plans in ADaPT

Detailed Plans in Plan-and-Execute

Figure 8: Illustration of how multiple levels of plans
from ADAPT, can be collapsed into one detailed plan
in non-adaptive settings as used in the plan-and-execute
baseline (Sec. 4.2). Our controller can handle complex
(non-homogeneous) logical expressions.

of logical expressions using both AND, and OR
operators. Therefore, the parser will break auto-
matically break this into multiple levels, i.e., Step
6 = Step 1 OR Step 2 OR Step 3, followed by Step
6 AND Step 4 AND Step 5. While such complex
logical expressions are mostly associated with the
plan-and-execute baseline, they can be easily used
within the ADAPT framework. Furthermore, this
allows the plan-and-execute baseline to simulate
a multi-level planning structure via detailed plans
without being adaptive to the executor.

C Task-specific Executors in ALFWorld

In Table 1, we use a standardized executor with
in-context demonstrations of atomic skills and two
gold trajectories. While this allows for a common
executor across different sub-tasks, task-specific
executors yield higher performance on the specific
sub-tasks. We now show ADAPT can also be used
on top of task-specific executors used by Yao et al.
(2023b). The results are shown in Table 6. First,

Method #Products Success Rate

ReAct 3 27.5
ADAPT (dmax = 3) 3 47.5

ReAct 10 20.0
ADAPT (dmax = 3) 10 42.5

Table 8: ADAPT improves WebShop (dev) performance
irrespective of how many products (3 or 10) are chosen
from the search page.

we observe that ADAPT yields the overall success
rate by up to 23.1% points and also surpasses base-
lines on all but 1 task types. Interestingly, we find
strong performance of the plan-and-execute base-
line when using a stronger executor (as compared
to Table 1) possibly as such an executor can handle
complex sub-tasks better. Consistent with Table 1,
ADAPT outperforms Reflexion by 12.6% points
despite lack of dedicated memory and natural lan-
guage feedback.

D Additional WebShop Experiments

Evaluation Metrics. We focus on success rate
and not the (soft) score as the primary metric for
this task because it is possible to get a non-zero
score by naively buying a product. To this effect,
we construct a naive executor that inputs the user
query in the search bar and buys the first available
product. Table 7 shows that while this baseline
yields the lowest success rate, it surprisingly yields
a high success rate of 58.3. In contrast, our ex-
ecutors often do not buy products especially when
the previous sub-goals fail which can adversely im-
pact scores even though the success rate remains
unaffected. Therefore, we argue for optimizing the
success rate instead of the score as opposed to prior
works (Zhou et al., 2023).

ADAPT accommodating task complexity. By
default, Yao et al. (2023b) use a search page with
only the top-3 search results displayed. Intuitively,
increasing the number of products on the search
page requires the model to choose from a wider
array of products and track all their information to
determine the best fit to the user query, making the
overall task harder. Therefore, we apply ADAPT
on Webshop in two settings with 3, and 10 products
per search page.

Results. From Table 8, we observe that ADAPT
effectively improves success rate by 20.0% and
22.5% for 3 and 10 products respectively over the

15
4240

Room: You are in the middle of a room. Looking quickly around you, you
see a cabinet 21, a cabinet 20, a cabinet 19, a cabinet 18, a cabinet 17,
a cabinet 16, a cabinet 15, a cabinet 14, a cabinet 13, a cabinet 12, a
cabinet 11, a cabinet 10, a cabinet 9, a cabinet 8, a cabinet 7, a cabinet
6, a cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a
coffeemachine 1, a countertop 2, a countertop 1, a diningtable 1, a
drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a fridge 1, a
garbagecan 1, a microwave 1, a sinkbasin 1, a stoveburner 4, a
stoveburner 3, a stoveburner 2, a stoveburner 1, desk 1, and a toaster 1.
Your task is to: Put a clean mug on desk.

Execute: Put a clean mug on desk
> Go to countertop 1

You reached loc 1, ...
> Go to countertop 2

You reached loc 2, ...

> Think: Mug not found, task failed!

Plan: Put a clean mug on desk
Think: To do this task,
Step 1: Find and take the mug AND
Think: Now that I have found it,
Step 2: Clean the mug using sinkbasin AND
Think: Now that I have cleaned
Step 3: Put clean mug on desk

Execute: Find and take the mug

> Think: Task failed!

Plan: Find and take the mug
Think: To do this task,
Step 1: Find and take mug from countertop OR
Think: If I do not find the mug,
Step 2: Find and take mug from cabinet OR
Think: If I do not find the mug,
Step 3: Find and take mug from drawer

Execute: Find and take mug from countertop

> Think: Task failed!

Execute: Find and take mug from cabinet

> Think: Task completed!

Execute: Clean the mug using sinkbasin

> Think: Task completed!

Execute: Find and take the mug from countertop

> Think: Task completed!

Previously executed:
> take mug 1 from cabinet 7

You picked up mug 1

...

...

Room: You are in the middle of a room. Looking quickly around you, you
see a cabinet 21, a cabinet 20, a cabinet 19, a cabinet 18, a cabinet 17,
a cabinet 16, a cabinet 15, a cabinet 14, a cabinet 13, a cabinet 12, a
cabinet 11, a cabinet 10, a cabinet 9, a cabinet 8, a cabinet 7, a cabinet
6, a cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a
coffeemachine 1, a countertop 2, a countertop 1, a diningtable 1, a
drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a fridge 1, a
garbagecan 1, a microwave 1, a sinkbasin 1, a stoveburner 4, a
stoveburner 3, a stoveburner 2, a stoveburner 1, desk 1, and a toaster 1.
Your task is to: Put a clean mug on desk.

Execute: Put a clean mug on desk
> Think: To solve the task, I need to find and take a mug, then clean it
with sinkbasin, then put on the desk.

OK.
> Think: First I need to find a mug. A mug is more likely to appear in
fridge (1), countertop (1-2), dining table (1), cabinet (1-21), drawer
(1-5). I can check one by one, starting with fridge 1.

OK.
> open fridge 1

Nothing happens.
> go to fridge 1

You arrive at loc 15, fridge 1 is closed.
> open fridge 1
 You open the fridge 1. The fridge 1 is open. In it, you see a bowl 1, a

cup 1, a egg 1, a lettuce 1, a plate 1, and a tomato 1.
> Think: There is no mug in fridge 1, I need to go to countertop 1 next.

OK.
> go to countertop 1

You reached loc 1, on it you see a cd 2, a cellphone 3, a
cellphone 1, a keychain 3, a pen 2, a pencil 3 and a pencil 2.

> go to countertop 2
 You reached loc 2, on it you see a egg 3, a knife 2, a knife 1, a potato

1, a potato 2, a bread 1, a dishsponge 3, and a saltshaker 1.
> Think: There is no mug in countertop 2, I need to go to cabinet 1.

OK.
> go to cabinet 1

You arrive at loc 4, cabinet 1 is closed.
> open cabinet 1
 You open cabinet 1. Cabinet 1 is open. In it, you see bowl 3,

fork 2, soapbottle 1, and a cloth 1.
> go to cabinet 2

You arrive at loc 5, cabinet 2 is closed.
> open cabinet 2

You open cabinet 2. Cabinet 2 is open. In it, you see nothing.
> open cabinet 4

Nothing happens.
> go to cabinet 4

You arrive at loc 7, cabinet 4 is closed.
> open cabinet 4

 You open cabinet 4. Cabinet 4 is open. In it, you see a spatula 1, a
cloth 2, a peppershaker 1, cup 3, a apple 2, and a toiletpaper 1.

> take mug 3 from cabinet 4
Nothing happens.

> take cup 3 from cabinet 4
You pick up cup 3 from cabinet 4

> Think: Now I found cup (3). Next I need to clean it. For this

 ADaPT (Adaptive Decomposition, Dynamic Depth)Iterative Executor (ReAct)

...
...

...
...

Figure 9: Comparison of iterative executors such as ReAct with ADAPT. On left, ReAct uses interleaved “thought”
statements to set milestones and track their progress. However, due to a large action history, it struggles to follow
the plan exactly and hallucinates the wrong object (highlighted in red). ADAPT, on the right, decomposes complex
tasks into smaller sub-tasks whenever the executor fails, leading to shorter action trajectories for easy execution.

ReAct baseline. The difference in ReAct perfor-
mance for both settings corroborates our hypothesis
that increasing number of products on the search
page increases task complexity, all else equal. No-
tably, we show that ADAPT yields higher improve-
ment for more complex task settings.

E TextCraft

TextCraft: Environment Details. In TextCraft,
the objective is to obtain target Minecraft items
by crafting them from available items in the envi-
ronment. We define an environment with three ac-

tions: craft <item> using <ingredients>, get
<item>, and inventory. We utilize Minecraft’s
crafting recipes to specify craftable items and their
ingredients, assuming that all other items are ob-
tainable from the environment. Similar to Alf-
World, our agent can directly execute these op-
erations in the embodied game. The game begins
with a list of crafting commands provided to the
agent that detail recipes that can be used to craft
the final target, its ingredients along with some dis-
tractors (details in Appendix E). A reward of 1 is
generated when the target item gets added to the

16
4241

Webpage: [Search]
Task: I am looking to buy a product. i need a leak proof travel bottle that
is reusable and comes in 6 pack, and price lower than 30.00 dollars

Execute: Task
> search[leak proof reusable bottle]

Page:
[B0956WL7LT] ...

[B098XRX6M2] ...

> Think: Task failed!

Plan: Task
Think: To do this task,
Step 1: Search "leak proof travel bottle reusable 6 pack" AND
Think: Now that I have found it,
Step 2: Match product on search page AND
Think: Now that I have matched
Step 3: Buy matching product

Execute: Search "leak proof travel bottle reusable 6 pack"

> Think: Task completed!

Plan: Match product on search page
Think: To do this task,
Step 1: Detail Match [B09...7LT] on product page OR
Think: If that does not match,
Step 2: Detail Match [B08...GBG] on product page OR
Think: If that does not match,
Step 3: Search "leak proof bottle reusable 6 pack $30"

Execute: Detail Match [B09...7LT] on product page

> Think: Task failed!

Execute: Detail Match [B08...GBG] on product page

> Think: Task completed!

Execute: Buy matching product

> Think: Task completed!

Matching Product:
[B08BGBPGBG]

...

...

 ADaPT (Adaptive Decomposition, Dynamic Depth)

...
...

...

Execute: Match product on search page

> Think: Task failed!

...

Search Results:
[B0956WL7LT] Portable Travel Bottles Set ...
[B08BGBPGBG] JND Plastic Squeeze Bottle ...

Prev: Failed Match product on search page

...

Figure 10: Partial rolled out trajectories for WebShop
with ADAPT. In the gray box we communicate to the
planner the current (search) page that is visible to the
agent, and once a matching product is found, we propa-
gate it to future executor runs. Note “match on search
page” corresponds to shortlist skill in Table 5, and “de-
tail match on product page” corresponds to match skill.

agent’s inventory. An illustrative gold trajectory
from TextCraft is shown in Fig. 3.

We create the TextCraft environment using
Minecraft v1.16.5 recipes. We only consider the
recipes craftable using a crafting table. We consider
both shapeless (only count matters) and shaped
(position of ingredients matters) recipes and con-
vert them into crafting commands (e.g. craft 4
sticks using 2 planks). Items that do not have
any recipe are considering obtainable via the get
command, e.g. get 4 diamond.

Since the entire set of crafting commands would
not fit in the context of modern LLMs, we create

Crafting Commands:
craft andesite slab using 3 andesite
craft 2 andesite using 1 diorite, 1 cobblestone
craft 6 diorite wall using 6 diorite
craft 2 diorite using 2 quartz, 2 cobblestone

Task: craft andesite slab

Execute: craft andesite slab
> get 3 andesite

Could not execute: get 3 andesite
> get 1 diorite

Could not execute: get 1 diorite

> Think: Task failed!

Plan: craft andesite slab
Think: To do this task,
Step 1: Fetch 3 andesite AND
Think: Now that I have found it,
Step 2: Craft andesite slab using 3 andesite

Execute: Fetch 3 andesite

> Think: Task failed!

Plan: Fetch 3 andesite
Think: To do this task,
Step 1: Fetch 1 diorite AND
Think: Fetch the next ingredient,
Step 2: Fetch 1 cobblestone AND
Think: Now that I have found,
Step 3: Craft 2 andesite using 1 diorite, 1 cobblestone AND
Think: Since I need 3 andesite,
Step 4: Craft 2 andesite using 1 diorite, 1 cobblestone

Execute: Fetch 1 diorite

> Think: Task completed!

Execute: Fetch 1 cobblestone

> Think: Task completed!

Execute: Craft andesite slab using 3 andesite

> Think: Task completed!

...

...

 ADaPT (Adaptive Decomposition, Dynamic Depth)

...
...

...

...

Inventory: [diorite] (2)

Inventory: [diorite] (2), [cobblestone] (1)

Execute: Craft 2 andesite using 1 diorite, 1
cobblestone

> Think: Task completed!

...

Inventory: [diorite] (1), [cobblestone] (1), [andesite] (2)

Execute: Craft 2 andesite using 1 diorite, 1
cobblestone

> Think: Task completed!

Inventory: [andesite] (4)

Figure 11: Partial rolled out trajectories for TextCraft
using ADAPT. In the gray box, we propagate the in-
ventory of the agent to subsequent executor calls. Note
that while “diorite” is not directly present in the envi-
ronment, i.e., it needs to be crafted. The executor LLM
is able to inherently compose skills to fetch it without
further decomposition.

a set of relevant crafting commands for every task.
Apart from the set of gold crafting commands (i.e,
crafting commands for all the items in the recipe
tree), we also add up to 10 distractor commands.
To create this distractor set, we sub-sample up to
10 recipes for every ingredient in the recipes of our
gold recipe tree. We finally sub-sample up to 10
distractors from this entire set to ensure a reason-

17
4242

Figure 12: Comparison of LLM-generated success
heuristic with gold environment rewards to compute
success rates for all datasets.

able context size. Note that we do not provide the
list of valid get commands as that can be inferred
from the craft commands.

F Evaluation of Success Heuristic

In Sec. 3.1, we describe the executor module used
in ADAPT. For tasks assigned to the executor,
we prompt the LLM to generate a binary success
heuristic. We use this heuristic repeatedly to evalu-
ate if the (sub-)task needs to be decomposed further.
We now study the ability of LLMs to generate this
success heuristic on all our datasets. To this end,
we run ADAPT and in the end compare the success
rate when using the LLM’s self-assessed task suc-
cess with the gold reward from the environment in
Fig. 12. On ALFWorld and TextCraft, we find the
LLM slightly over-estimates its overall task suc-
cess. This is to be expected as the underlying tasks
involve minimal subjectivity (e.g., the agent either
has an item on its inventory or not). However, on
WebShop, where a product can match the user crite-
ria to different degrees (partially or fully), we find
that the LLM’s assessment is significantly inflated
compared to the environment reward (>30 points).
This imperfect feedback affects downstream per-
formance of ADAPT, as the algorithm terminates
even though further decomposition is needed. We
leave it to future work to address the shortcomings
of self-evaluation with LLMs (Huang et al., 2023a;
Stechly et al., 2023).

G Prompts

We provide all the prompts used in our planner and
executor modules for ALFWorld, WebShop, and
TextCraft datasets in the following pages.

18
4243

ALFWorld Hybrid Executor Prompt
Here is a demo of actions you can perform.

You are in the middle of a room. Looking quickly around you, you see a desk 1, microwave 1, a cabinet 3, a cabinet 9, a
drawer 2, a coffeemachine 1, a stoveburner 4, a drawer 5, a cabinet 11, a drawer 3, a stoveburner 1, a drawer 1, a
toaster 1, a fridge 1, a stoveburner 2, a cabinet 6, a cabinet 10, a countertop 1, a cabinet 13, a cabinet 7, a
garbagecan 1, a cabinet 2, a cabinet 8, a cabinet 12, a drawer 4, a cabinet 1, a sinkbasin 1, a cabinet 5, a
stoveburner 3, and a cabinet 4.

Your task is to: Put a tomato in cabinet 1.
> think: Input assumption: I am carrying a tomato. Now I need to verify this.
OK.
> inventory
You are carrying: a tomato 1.
> examine tomato 1
There's nothing special about tomato 1.
> think: Based on previous context assumption is true, now I can proceed.
> go to cabinet 1
The cabinet 1 is closed.
> open cabinet 1
You open the cabinet 1. The cabinet 1 is open. In it, you see a candle 1, and a spraybottle 2.
> put tomato 1 in/on cabinet 1
You put the tomato 1 in/on the cabinet 1.
> think: End state: Now I put tomato (1) in cabinet (1). Task completed!

Your task is to: Take a mug from cabinet 5
> think: Input assumption: None
OK.
> go to cabinet 5
The cabinet 5 is closed.
> open cabinet 5
You open the cabinet 5. The cabinet 5 is open. In it, you see a mug 3.
> take mug 3 from cabinet 5
You pick up the mug 3 from the cabinet 5.
> think: End state: Now I take a mug (3) from cabinet (5). Task completed!

Your task is to: Heat an egg.
> think: Input assumption: I am carrying an egg. Now I need to verify this.
OK.
> inventory
You are carrying: a egg 2.
> examine egg 2
There's nothing special about egg 2.
> think: Based on previous context assumption is true, now I can proceed.
OK.
> go to microwave 1
The microwave 1 is closed.
> heat egg 2 with microwave 1
You heat the egg 2 using the microwave 1.
> think: End state: Now I heat a egg (2). Task completed!

Your task is to: Cool a mug.
> think: Input assumption: I am carrying a mug. Now I need to verify this.
OK.
> inventory
You are carrying: a mug 3.
> examine mug 3
There's nothing special about mug 3.
> think: Based on previous context assumption is true, now I can proceed.
OK.
> go to fridge 1
The fridge 1 is closed.
> cool mug 3 with fridge 1
You cool the mug 3 using the fridge 1.
> think: End state: Now I cool a mug (3). Task completed!

Your task is to: Clean a lettuce.
> think: Input assumption: I am carrying a lettuce. Now I need to verify this.
OK.
> inventory
You are carrying: a lettuce 1.
> examine lettuce 1
There's nothing special about lettuce 1.
> think: Based on previous context assumption is true, now I can proceed.
OK.
> go to sinkbasin 1
On the sinkbasin 1, you see a apple 2, a ladle 2, a spoon 1, and a tomato 3.
> clean lettuce 1 with sinkbasin 1
You clean the lettuce 1 using the sinkbasin 1.
> think: End state: Now I clean a lettuce (1). Task completed!

19
4244

ALFWorld Hybrid Executor Prompt (cont.)
Your task is to: Use a desklamp to look at tomato 1.
> think: Input assumption: I am at the location that contains desklamp (1). Now I need to verify this.
OK.
> inventory
You are carrying: a tomato 1.
> look
You are facing desk 1. Next to it, you see nothing.
> examine desk 1
On desk 1, you see a spoon 1, a desklamp 1, and a pencil 2.
> think: Based on previous context assumption is true, now I can proceed.
OK.
> use desklamp 1
You turn on the desklamp 1.
> think: Now I use desklamp (1). Task completed!

Here are two example tasks.

You are in the middle of a room. Looking quickly around you, you see a cabinet 13, a cabinet 12, a cabinet 11, a cabinet 10,
a cabinet 9, a cabinet 8, a cabinet 7, a cabinet 6, a cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1,
a coffeemachine 1, a countertop 1, a diningtable 1, a drawer 1, a fridge 1, a garbagecan 1, a microwave 1, a shelf 3,
a shelf 2, a shelf 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a

toaster 1.
Your task is to: put a hot apple in fridge.
> think: To solve the task, I need to find and take an apple, then heat it with microwave, then put it in fridge.
OK.
> think: First I need to find an apple. An apple is more likely to appear in fridge (1), diningtable (1), coffeetable (1),

drawer (1), cabinet (1-13), garbagecan (1). I can check one by one, starting with fridge 1.
OK.
> go to fridge 1
The fridge 1 is closed.
> open fridge 1
You open the fridge 1. The fridge 1 is open. In it, you see a cup 1, and a egg 1.
> go to diningtable 1
On the diningtable 1, you see a apple 1, a bread 1, a fork 3, a fork 2, a fork 1, a mug 2, a peppershaker 3, a plate 2, a

pot 1, a soapbottle 3, a spatula 1, a spoon 3, a spoon 2, a spoon 1, a winebottle 3, and a winebottle 2.
> think: Now I find an apple (1). Next, I need to take it.
OK.
> take apple 1 from diningtable 1
You pick up the apple 1 from the diningtable 1.
> think: Now I take an apple (1). Next, I need to go to a microwave (1) and heat it.
OK.
> go to microwave 1
The microwave 1 is closed.
> heat apple 1 with microwave 1
You heat the apple 1 using the microwave 1.
> think: Now I heat an apple (1). Next, I need to put it in/on fridge 1.
OK.
> go to fridge 1
The fridge 1 is open. In it, you see a cup 1, and a egg 1.
> put apple 1 in/on fridge 1
You put the apple 1 in/on the fridge 1.

> think: Task completed!

You are in the middle of a room. Looking quickly around you, you see a bed 1, a desk 1, a drawer 3, a drawer 2, a drawer 1,
a garbagecan 1, a safe 1, a shelf 5, a shelf 4, a shelf 3, a shelf 2, a shelf 1, a sidetable 2, and a sidetable 1.

Your task is to: look at bowl under the desklamp.
> think: To solve the task, I need to find and take a bowl, then find and use a desklamp.
OK.
> think: First I need to find a bowl. A bowl is more likely to appear in drawer shelf (1-5), drawer (1-3). I can check one

by one, starting with drawer 1.
OK.
> go to shelf 1
On the shelf 1, you see nothing.
> go to shelf 2
On the shelf 2, you see a bowl 1.
> think: Now I find a bowl (1). Next, I need to take it.
OK.
> take bowl 1 from shelf 2
You pick up the bowl 1 from the shelf 2.
> think: Now I take a bowl (1). Next, I need to find a desklamp. A desklamp is more likely to appear in desk (1), sidetable

(1-2), and drawer (1-3). I can check one by one, starting with desk 1.
OK.
> go to desk 1
On the desk 1, you see a alarmclock 2, a book 1, a cellphone 1, a keychain 1, a laptop 2, a laptop 1, and a pen 3.
> go to sidetable 1
On the sidetable 1, you see a cd 1, a pen 1, and a pencil 1.
> go to sidetable 2
On the sidetable 2, you see a alarmclock 1, a desklamp 1, and a pen 2.
> think: Now I find a desklamp (1). Next, I need to use it.
OK.
> use desklamp 1
You turn on the desklamp 1.
> think: Task completed!

20
4245

ALFWorld Planner Prompt
Here are some examples.
You are in the middle of a room. Looking quickly around you, you see a desk 1, microwave 1, a cabinet 3, a cabinet 9, a

drawer 2, a coffeemachine 1, a stoveburner 4, a drawer 5, a cabinet 11, a drawer 3, a stoveburner 1, a drawer 1, a
toaster 1, a fridge 1, a stoveburner 2, a cabinet 6, a cabinet 10, a countertop 1, a cabinet 13, a cabinet 7, a
garbagecan 1, a cabinet 2, a cabinet 8, a cabinet 12, a drawer 4, a cabinet 1, a sinkbasin 1, a cabinet 5, a
stoveburner 3, and a cabinet 4.

Goal: Put a mug in/on desk.
Come up with an abstract plan to perform this task in a couple of steps.
Think: To perform this task, I need to find and take mug and then put it on desk. First, I will focus on finding mug.
Step 1: Find and take mug
Think: Now that I am carrying mug, I will focus on putting it in/on desk.
Step 2: Put mug in/on desk
Execution Order: (Step 1 AND Step 2)

Goal: Clean mug and put it in/on desk.
Come up with an abstract plan to perform this task in a couple of steps.
Think: To perform this task, I need to find and take mug, clean it, and then put it on desk. First, I will focus on

finding mug.
Step 1: Find and take mug
Think: Now that I am carrying mug, I will focus on cleaning it.
Step 2: Clean mug with sinkbasin
Think: Now that I have cleaned mug, I will focus on putting it in/on desk.
Step 3: Put cleaned mug in/on desk
Execution Order: (Step 1 AND Step 2 AND Step 3)

Goal: Cool mug and put it in/on desk.
Come up with an abstract plan to perform this task in a couple of steps.
Think: To perform this task, I need to find and take mug, cool it, and then put it on desk. First, I will focus on

finding mug.
Step 1: Find and take mug
Think: Now that I am carrying mug, I will focus on cooling it.
Step 2: Cool mug with fridge
Think: Now that I have cooled mug, I will focus on putting it in/on desk.
Step 3: Put cooled mug in/on desk
Execution Order: (Step 1 AND Step 2 AND Step 3)

Goal: Heat mug and put it in/on desk.
Come up with an abstract plan to perform this task in a couple of steps.
Think: To perform this task, I need to find and take mug, heat it, and then put it on desk. First, I will focus on

finding mug.
Step 1: Find and take mug
Think: Now that I am carrying mug, I will focus on heating it.
Step 2: Heat mug with microwave
Think: Now that I have heated mug, I will focus on putting it in/on desk.
Step 3: Put heated mug in/on desk
Execution Order: (Step 1 AND Step 2 AND Step 3)

Goal: Look at mug under desklamp.
Come up with an abstract plan to perform this task in a couple of steps.
Think: To perform this task, I need to find and take mug, and then go to the desklamp and use it. First, I will focus on

finding mug.
Step 1: Find and take mug
Think: Now that I have found and taken mug, I will focus on using the desklamp.
Step 2: Use the desklamp
Execution Order: (Step 1 AND Step 2)

Goal: Find and take mug
Come up with an abstract plan to perform this task in a couple of steps.
Think: To perform this task I need to find mug in the room. mug is likely to be in desk, cabinet, countertop, or drawer.

Now I will focus on finding mug in each of these locations one by one.
Step 1: Find and take mug from desk
Think: If mug not found so far, I will next look in the cabinet.
Step 2: Find and take mug from cabinet
Think: If mug not found so far, I will next look in the countertop.
Step 3: Find and take mug from countertop
Think: If mug not found so far, I will next look in the drawer.
Step 4: Find and take mug from drawer
Execution Order: (Step 1 OR Step 2 OR Step 3 OR Step 4)

Here is the goal.
<room>
Goal: <task>.
Come up with an abstract plan to perform this task in a couple of steps. Constraints: The robot can hold/take/put only one

object at a time to a location.
Ensure each step can be understood independently and mentions the name of object.
When stating the execution order, ensure that 'AND'/'OR' statements are properly nested using brackets '()'.

21
4246

WebShop Executor Prompt: Buy
Instruction: Buy product [B078GWRC1J] that matches criteria: 3 ounce bottle of bright citrus deodorant for sensitive skin,

and price lower than 50.00 dollars

Action: think['I should be on the search page where I can see a list of products, I should verify that.']
Observation: OK.

Action: load
Observation:
[Back to Search]
Page 1 (Total results: 50)
[Next >]
[B078GWRC1J]
Bright Citrus Deodorant by Earth Mama | Safe for Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic Calendula 3-

Ounce
$10.99
[B08KBVJ4XN]
Barrel and Oak - Aluminum-Free Deodorant, Deodorant for Men, Essential Oil-Based Scent, 24-Hour Odor Protection, Cedar &

Patchouli Blend, Gentle on Sensitive Skin (Mountain Sage, 2.7 oz, 2-Pack)
$35.95
[B078GTKVXY]
Ginger Fresh Deodorant by Earth Mama | Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic

Calendula 3-Ounce
$10.99

Action: think['I can spot product [B078GWRC1J] and it is a clickable link since its enclosed in square brackets. I should
click on it.]

Observation: OK.

Action: click[B078GWRC1J]
Observation:
[Back to Search]
[< Prev]
scent [assorted scents][bright citrus][calming lavender][ginger fresh][simply non-scents]
size [travel set (4-pack)][3 ounce (pack of 1)][3-ounce (2-pack)]
Bright Citrus Deodorant by Earth Mama | Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic

Calendula 3-Ounce
Price: $10.99
Rating: N.A.
[Description]
[Features]
[Reviews]
[Buy Now]

Action: think[I'm already on the product page. I see multiple possible options enclosed in '[]' for scent and size for this
product. To match the input criteria, I should click on options '[bright citrus]' for scent and '[3 ounce (pack of 1)

]' for size one by one and then buy in the end.]
Observation: OK.

Action: click[bright citrus]
Observation: You have clicked bright citrus.

Action: click[3 ounce (pack of 1)]
Observation: You have clicked 3 ounce (pack of 1).

Action: think[My task is to buy the product, for it should to click 'buy now']
Observation: OK.

Action: click[Buy Now]
Observation: You have clicked buy now.

Action: think[I finished buying the product. Task completed!]

Here is another task in which you need to buy a product. When you finish buying the product with the most relevant choices,
use 'think[Task completed']. If you cannot find the matching options or proceed, think['Task failed']. Note that you
can only click on text enclosed in '[]' on the webpage. Everything else is only a description, not valid with the "

click" action.

Instruction: Buy product [{}] that matches the criteria: {}

22
4247

WebShop Executor Prompt: Match (cont.)
You are given a webpage of an item on an online shopping website and a criteria. Your task is to answer if the product on

the page exactly matches the criteria. Not the criteria could have multiple requirements that should be checked one
by one and all must satisfy for an exact match.

Here are a few examples:

Criteria: 3 ounce bottle of citrus deodorant for sensitive skin that is priced lower than $30 and natural.
Item Page:
[Back to Search]
[< Prev]
scent [assorted scents][bright citrus][calming lavender][ginger fresh][simply non-scents]
size [travel set (4-pack)][3 ounce (pack of 1)][3-ounce (2-pack)]
Bright Citrus Deodorant by Earth Mama | Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic

Calendula 3-Ounce
Price: $10.99
Rating: N.A.
[Description]
Features:
NEW from Earth Mama (formerly Earth Mama Angel Baby), formulated especially for pregnancy, breastfeeding and sensitive

skin
Contains organic grapefruit, tangerine and calendula
NO propylene glycol, artificial fragrance, parabens or aluminum
Dermatologist tested and clinically tested for irritation
Better than natural organic! NSF/ANSI 305 Certified by Oregon Tilth
[Reviews]
[Attributes]
[Buy Now]

Answer: The product is available in 3 ounce size, is citrus and suitable for sensitive skin. It is also organic or natural.
Its price is $10.99 which is less than $30.

Thus, the answer is True (exact match).

Criteria: 3 ounce bottle of citrus deodorant for sensitive skin that is priced lower than $30 and natural.
Item Page:
[Back to Search]
[< Prev]
size [3 ounce][3 ounce (pack of 1)]
unit count [2.0][3.0]
Barrel and Oak - Aluminum-Free Deodorant, Deodorant for Men, Essential Oil-Based Scent, 24-Hour Odor Protection, Cedar &

Patchouli Blend, Gentle on Sensitive Skin (Mountain Sage, 2.7 oz, 2-Pack)
Price: $15.95
Rating: N.A.
[Description]
Features:
About this item WHY ALUMINUM-FREE DEODORANT? Aluminum-free deodorants use more natural ingredients unlike antiperspirants,

which use chemicals to block sweat. Safely fight odor for 24 hours with Barrel & Oak's deodorantsour gentle formula
is easy on sensitive skin. START SMELLING LIKE THE MAN YOU WANT TO BE: Our mountain sage aluminum-free men's
deodorant is naturally fragranced with an outdoorsy scent of crisp conifer, sage, & citrus. Think sweet notes of
citrus with earthy tones of cedar & patchouli. PREMIUM INGREDIENTS FOR NATURAL FRAGRANCES: Our deodorants for men are
composed of natural, essential oil-based scents. These natural fragrance deodorants are more subtle than their

synthetic counterparts, but they're better for you & the planet. DESIGNED FOR THE MODERN MAN: Barrel & Oak has a full
spectrum of grooming & body care products that are designed with function, fragrance, & effective ingredients for

the health-conscious & practical modern man. Give your body what it deserves. EARTH-FRIENDLY, YOU-FRIENDLY, WALLET-
FRIENDLY: Our premium products for men are scented with natural fragrances & essential oils, free of parabens,
phthalates, & SLS, packaged in recyclable materials, cruelty-free, & vegan or vegetarian.

[Reviews]
[Attributes]
[Buy Now]

Answer: The product is not citrus in nature. It does not match the criteria. It's price is $15.95 which is less than $30.
Thus, the answer is False (not an exact match).

Now here is the criteria and item page for the another task. Try you best to determine exact match, otherwise, respond with
"False", i.e., no exact match. Generate an explanation before the answer to justify your decision.

Criteria: {}
Item Page:
{}
Answer:

23
4248

WebShop Executor Prompt: Shortlist (cont.)
You are given a search page on an online shopping site with a list of products along with name and price. Based on this

information, your task is return a list of product IDs (enclosed in []) of all products that exactly match all
requirements in the criteria. If the information provided is not enough to make a determination, return an empty list.

Here are a few examples.

Search Page:
[Back to Search]
Page 1 (Total results: 50)
[Next >]
[B078GWRC1J]
Bright Citrus Deodorant by Earth Mama | Safe for Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic Calendula 3-

Ounce
$10.99
[B08KBVJ4XN]
Barrel and Oak - Aluminum-Free Deodorant, Deodorant for Men, Essential Oil-Based Scent, 24-Hour Odor Protection, Cedar &

Patchouli Blend, Gentle on Sensitive Skin (Mountain Sage, 2.7 oz, 2-Pack)
$35.95
[B078GTKVXY]
Ginger Fresh Deodorant by Earth Mama | Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic

Calendula 3-Ounce
$10.99
[B08SMG4WB9]
Each & Every 2-Pack Natural Aluminum-Free Deodorant for Sensitive Skin with Essential Oils, Plant-Based Packaging (Citrus &

Vetiver, 2.5 Ounce (Pack of 2))
$25.0
[B08KVCCSD6]
Each & Every 3-Pack, Natural Aluminum-Free Deodorant for Sensitive Skin Made with Essential Oils, 2.5 Oz. (Lavender & Lemon,

Citrus & Vetiver, and Coconut & Lime)
$35.0

Criteria: less than 5 ounce citrus deodorant sensitive skin, price less than $30.
Answer: My requirements are 5 ounce, citrus deodrant, suitable for sensitive skin, and price less than $30. Looks like this

information is available on the search page, so I can proceed.
Products B078GWRC1J, B08SMG4WB9 look suitable as they are less than 5 ounce, citrus and have price 10.99 and $25 less than

$30. Thus, shortlisted IDs are shortlisted=['B078GWRC1J', 'B08SMG4WB9']

Criteria: less than 5 ounce citrus deodorant sensitive skin, cruelty free.
Answer: My requirements are 5 ounce, citrus deodrant, suitable for sensitive skin, and cruelty-free. Since there is no

information about cruelty free on the search page, I cannot proceed. Task failed!

Here is another task with a different search page and criteria. List all the product ids (enclosed in []) from the search
page that match ALL the requirements in the criteria. Name this list shortlisted. If you cannot make the
determination about even 1 sub-criteria, do not make a guess, output "task failed!". Generate an explanation before
the answer to justify your decision.

Search Page:
{}

Criteria: {}
Answer:

24
4249

WebShop Planner Prompt
Write an abstract plan to successfully complete the goal. In each step of the plan mention which module (including

arguments) that need to be called. Learn from and incorporate information from previous runs, e.g. do not repeat
previously successful or unsuccesful commands. Here are some examples:Information from previous run: -

Goal: Buy 3 ounce bottle of citrus deodorant for sensitive skin, that is natural and priced less than 50.00 dollars.
Think: Based on the criteria and the search bar, I should query 3 ounce citrus deodorant sensitive skin. I have the

following constraints: natural and price lower than $30 which I can use to narrow down search results.
Step 1: Search[3 ounce citrus deodorant sensitive skin]
Think: Now I will need to narrow down the search results for price lower than $30 and natural
Step 2: SimpleMatch[3 ounce citrus deodorant sensitive skin with price lower than $50 and natural]
Think: Since it returns a list of up to 3 products, I will pick the first suitable product. For now, Ill denote its id as

prod_id for placeholder.
Step 3: Buy[prod_id, "3 ounce bottle of citrus deodorant for sensitive skin, that is natural and priced less than 30.00

dollars"]
#Think: My plan requrires all these steps to succeed sequentially, so I will use the "AND" operator.
Execution Order: (Step 1 AND Step 2 AND Step 3)

Information from previous run:
- Unable to get matching product using: SimpleMatch[3 ounce citrus deodorant sensitive skin with price lower than $30 and

natural]
- Search results page:
[Back to Search]
Page 1 (Total results: 50)
[Next >]
[B078GWRC1J]
Bright Citrus Deodorant by Earth Mama | Safe for Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic Calendula 3-

Ounce
$10.99
[B08KBVJ4XN]
Barrel and Oak - Aluminum-Free Deodorant, Deodorant for Men, Essential Oil-Based Scent, 24-Hour Odor Protection, Cedar &

Patchouli Blend, Gentle on Sensitive Skin (Mountain Sage, 2.7 oz, 2-Pack)
$35.95
[B078GTKVXY]
Ginger Fresh Deodorant by Earth Mama | Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic

Calendula 3-Ounce
$10.99
[B08SMG4WB9]
Each & Every 2-Pack Natural Aluminum-Free Deodorant for Sensitive Skin with Essential Oils, Plant-Based Packaging (Citrus &

Vetiver, 2.5 Ounce (Pack of 2))
$25.0
[B08KVCCSD6]
Each & Every 3-Pack, Natural Aluminum-Free Deodorant for Sensitive Skin Made with Essential Oils, 2.5 Oz. (Lavender & Lemon,

Citrus & Vetiver, and Coconut & Lime)
$35.0
[B087WKSR2G]

Goal: Narrow down search results for 3 ounce bottle of citrus deodorant for sensitive skin that is priced lower than $30
and natural. You cannot search again.

#Think: Based on the search results and previous information, SimpleMatch failed because my criteria was too complex. Price
constraint is easy to verify, I will narrow down based on that first then examine in detail for natural constraint

#Think: Based on price, I narrow down my search to B078GWRC1J, B08SMG4WB9 as they look suitable. These are on my shortlist
to examine the natural constraint in detail one by one.

Step 1: DetailMatch[B078GWRC1J, 3 ounce bottle of for sensitive skin, that is natural and priced less than 30.00 dollars]
Step 2: DetailMatch[B08SMG4WB9, 3 ounce bottle of citrus deodorantcitrus deodorant for sensitive skin, that is natural and

priced less than 30.00 dollars]
#Think: If none of the products exactly match my criteria, I will search again with a new query that includes the natural

criteria too. This ensures my plan is compelete.
Step 3: Search[3 ounce citrus deodrant natural and sensitive skin]
#Think: Since these steps are linked by an if condition, I only need one of them to succeed. I will connect them using the

"OR" operator.
Execution Order: (Step 1 OR Step 2 OR Step 3)

Here is a new goal. Write an abstract plan to successfully complete the goal. In each step of the plan mention which module
(including arguments) that need to be called. Learn from and incorporate information from previous runs, e.g. do not
repeat previously successful or unsuccesful commands. In the end, output the intended execution order.

Information from previous run: {}
Goal: {}

25
4250

TextCraft Executor Prompt
You are given few useful crafting recipes to craft items in Minecraft. Crafting commands are of the format "craft [target object]

using [input ingredients]". You can either "fetch" an object (ingredients) from the inventory or the environment or "craft"
(target) using any of the crafting commands. You can use ONLY these crafting commands provided, do not use your own crafting
commands. However, if the crafting command uses a generic ingredient like "planks", you can use special types of the same

ingredient e.g. "dark oak planks" in the command instead. For any other natural language or thoughts, use prefix 'think: '.

Here is a demo of how to fetch and craft objects.
Crafting commands:
craft 3 dark oak sign using 6 dark oak planks, 1 stick
craft 4 dark oak planks using 1 dark oak log
craft 1 stick using 1 planks
craft 4 stick using 2 bamboo
craft 4 oak planks using 1 oak log
craft 1 dark oak fence using 2 stick, 4 dark oak planks
craft 1 warped stairs using 6 warped planks
craft 3 oak sign using 6 oak planks, 1 stick
Goal: craft dark oak sign
> think: I should check if I can fetch dark oak sign directly from the environment or the inventory.
OK.
> inventory:
Inventory: [stick] (1) [dark oak planks] (8)
> get dark oak sign
Could not find dark oak sign
> think: I cannot get dark oak sign directly, I need to craft it. From the crafting commands, I can use: craft dark oak sign using

6 dark oak planks, 1 stick. Ingredients needed: 6 dark oak planks, 1 stick. Input assumption: I have all the neccessary
ingredients in my inventory. Let me verify this first.

OK.
> inventory
Inventory: [stick] (1) [dark oak planks] (8)
> think: I found my ingredients: 6 dark oak planks, 1 stick in my inventory. My assumption is true, I can proceed. I will use the

crafting command: craft dark oak sign using 6 dark oak planks
OK.
> craft 1 dark oak sign using 6 dark oak planks, 1 stick
Crafted 1 minecraft:dark_oak_sign
> inventory
Inventory: [dark oak sign] (1)
> think: I now have dark oak sign in my inventory. Task Completed!
OK.

Goal: fetch 2 dark oak logs.
> think: I should check my inventory first, to see if I already have dark oak sign. Otherwise, I will directly try to get it from

the environment.
OK.
> inventory
Inventory: [stick] (1)
> get 2 dark oak logs.
Got 2 dark oak logs
> inventory
Inventory: [dark oak log] (2) [stick] (1)
> think: I have 2 dark oak logs in my inventory. Task Completed!
OK.

TextCraft Executor Prompt (cont.)
Here is an example of a complex goal.
Goal: craft 2 oak planks
> think: I should check if I can fetch dark oak sign directly from the environment or the inventory.
OK.
> inventory:
Inventory: [stick] (1)
> get 2 oak planks
Could not find 2 oak planks
> think: I cannot get oak planks directly, I need to craft it. From the crafting commands, I can use: craft 4 oak planks using 1

oak log. Ingredients needed: 1 dark oak log. Input assumption: I have the ingredients needed in my inventory. Let me verify
this first.

OK.
> inventory
Inventory: [stick] (1)
> think: My assumption is false. I need to get the ingredients: 1 oak log first.
OK.
> get 1 oak log
Got 1 oak log
> craft 4 oak planks using 1 oak log
Crafted 4 minecraft:oak_planks
> inventory
Inventory: [stick] (1) [oak_planks] (4)
> think: I now have 2 oak planks in my inventory. Task Completed!
OK.
Now here is a different goal. You can use these crafting commands to accomplish the goal. When you the desired item in your

inventory, think: Task Completed! If you have tried your best but cannot proceed, think: task failed!

26
4251

TextCraft Planner Prompt
Your task is to come up with a short plan to help me accomplish my goal in a couple of steps using at most ONE of the

provided crafting commands. You can take the help of crafting commands below to create new objects.
Craft command can be understood as follows: craft [target] using [ingredients], where target is item/object generated by

the craft command as output and ingredient are the inputs. You are given an agent that can "craft" or "fetch" objects.

Here is are some examples.

Crafting commands:
craft 3 dark oak sign using 6 dark oak planks, 1 stick
craft 4 dark oak planks using 1 dark oak log
craft 1 stick using 1 planks
craft 4 stick using 2 bamboo
craft 4 oak planks using 1 oak log
craft 1 dark oak fence using 2 stick, 4 dark oak planks
craft 1 warped stairs using 6 warped planks
craft 3 oak sign using 6 oak planks, 1 stick

Goal: craft dark oak sign.

Think: My target is a dark oak sign. From the list of crafting commands, only 1 command generates my target: craft 3 dark
oak sign using 6 oak planks, 1 stick. I will use this command to devise a plan. My ingredients are: 6 dark oak

planks, 1 stick. I should first get all the ingredients and then use the crafting command.
Step 1: fetch 6 dark oak planks
Step 2: fetch 1 stick
Think: Now that I have collected the input ingredients, I can craft the dark oak sign using given command.
Step 3: craft dark oak sign using 6 dark oak planks, 1 stick
Think: To succeed, I need to perform all these steps, one after the other. So I need to use the "AND" operator.
Execution Order: (Step 1 AND Step 2 AND Step 3)

Goal: fetch 6 dark oak planks.

Think: My target is 6 dark oak planks. From the list of crafting commands, only 1 command generates my target: craft 4
dark oak planks using 1 dark oak log. My ingredients are: 1 dark oak log. To successfully accomplish the goal, I
should first get all the ingredients and then use the crafting command.

Step 1: fetch 1 dark oak log
Think: Now that I have collected the input ingredients, I can craft dark oak planks using given command. I know that I

cannot use a partial recipe.
Step 2: craft 4 dark oak planks using 1 dark oak log
Think: This gives me 4 dark oak planks which is less than my desired 6 dark oak planks. I know that I cannot use a

partial recipe. So my goal is not satisfied, I need to craft more dark oak planks by repeating Step 2 one more time.
Step 3: craft 4 dark oak planks using 1 dark oak log
Think: To succeed, I need to perform all these steps, one after the other. So I need to use the "AND" operator.
Execution Order: (Step 1 AND Step 2 AND Step 3)

Here is a different goal with different craft commands. Your task is to come up with a short plan to help me accomplish my
goal in a couple of steps using at most ONE of the provided crafting commands. You can take the help of crafting
commands below to create new objects. Keep in mind that:

- It is okay to generate more target objects than your goal.
- Be very careful with the count of objects, SAME object counts mentioned in the input crafting command.
- You cannot use a partial crafting command recipe, i.e. if the recipe generates 2 objects you CANNOT alter it to produce

just 1.
- Also, you can use ONLY 1 crafting command in your plan.

27
4252

