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ABSTRACT

Comprehensively identifying the loci shaping trait variation has been challenging, in part because standard approaches often
miss many types of genetic variants. Structural variants (SVs), especially transposable elements (TEs), are likely to affect pheno-
typic variation but we lack methods that can detect polymorphic SVs and TEs using short-read sequencing data. Here, we used a
whole genome alignment between two maize genotypes to identify polymorphic SVs and then genotyped a large maize diversity
panel for these variants using short-read sequencing data. After characterising SV variation in the panel, we identified SV poly-
morphisms that are associated with life history traits and genotype-by-environment (GXE) interactions. While most of the SVs
associated with traits contained TEs, only two of the SVs had boundaries that clearly matched TE breakpoints indicative of a
TE insertion, while the other polymorphisms were likely caused by deletions. One of the SVs that appeared to be caused by a TE
insertion had the most associations with gene expression compared to other trait-associated SVs. All of the SVs associated with
traits were in linkage disequilibrium with nearby single nucleotide polymorphisms (SNPs), suggesting that the approach used
here did not identify unique associations that would have been missed in a SNP association study. Overall, we have (1) created
a technique to genotype SV polymorphisms across a large diversity panel using support from genomic short-read sequencing
alignments and (2) connected this presence/absence SV variation to diverse traits and GXE interactions.

1 | Introduction

A central question of evolutionary biology is how different types
of mutations—single nucleotide polymorphisms (SNPs), inser-
tion-deletion polymorphisms, copy number variants, trans-
locations and transposable element (TE) insertions—shape
the phenotypic diversity observed in nature (Mitchell-Olds,
Willis, and Goldstein 2007). Much recent effort has focused on

characterising structural variants (SVs): Tens of thousands of
SVs have been identified in plant genomes (Darracq et al. 2018;
Yangetal. 2019; Schatz 2018; Alonge et al. 2020; Zhou et al. 2022;
Qin et al. 2021; Hamil4d et al. 2021) and specific SVs have been
shown to affect important phenotypic traits in plants, including
climate resilience in Arabidopsis thaliana, disease resistance
and domestication traits in maize and rice, and frost tolerance
in wheat (Beld et al. 2010; Cao et al. 2011; Sieber et al. 2016;
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Springer et al. 2009; Xu et al. 2012). In addition, maize SVs are
predicted to be up to 18-fold enriched for alleles affecting pheno-
types when compared to SNPs (Chia et al. 2012). These findings
suggest that characterising SV variation will be a crucial part of
mapping genotypes to phenotypes.

A subset of SVs, TEs, are particularly interesting potential
contributors to phenotypic variation (Lisch 2013; Catlin and
Josephs 2022). TE content and polymorphism are shaped by a
complex interplay of selection at the TE and organismal level
(Charlesworth and Charlesworth 1983; Agren and Wright 2011)
and there are many examples of TE variation affecting pheno-
types (Hirsch and Springer 2017; Lisch 2013). For example, a
TE insertion in the regulatory region of the teosinte branchedl
(ZmTBI) gene in maize enhances gene expression, causing the
upright branching architecture in maize compared to its progen-
itor, teosinte (Studer et al. 2011). TE insertions also affect flesh
colour in grapes and fruit colour and shape in tomato (Fray and
Grierson 1993; Kobayashi, Goto-Yamamoto, and Hirochika 2004;
Knaap et al. 2004; Shimazaki et al. 2011; Domnguez et al. 2020).
These phenotypic effects may result from changes in gene ex-
pression: TE activation can disrupt or promote gene expression
(Hirsch and Springer 2017; Fueyo et al. 2022), and the industrial
melanism phenotype in British peppered moths, Biston betula-
ria, results from TE-induced overexpression of a gene responsi-
ble for pigment production (Hof et al. 2016). TEs often activate
(i.e., express and/or mobilise) in response to stress in many
eukaryotes, including maize (Makarevitch et al. 2015; Liang
et al. 2021), Arabidopsis (Wang et al. 2022; Sun et al. 2020)
and Drosophila melanogaster (de Oliveira et al. 2021; Milyaeva
et al. 2023), suggesting that they may contribute to trait vari-
ation in stressful environments. However, we lack systematic
studies of how TEs in general affect phenotypic variation or how
TEs may contribute to genotype-by-environment interactions
outside of the context of stress.

Characterising genomic variation for SVs and TEs has been
challenging, especially in highly repetitive plant genomes
where it is often difficult to uniquely align short-reads to a ref-
erence genome. Recent studies have shown that attempts to as-
semble SVs solely with short-read sequencing data can greatly
underestimate the total number of SVs present in a popula-
tion (Huddleston et al. 2017; Audano et al. 2019; Cameron,
Di Stefano, and Papenfuss 2019; Ebert et al. 2021). Some es-
timates for the accuracy of SV discovery with short-read se-
quencing are as low as 11% in humans because of the inability
of short-reads to align within highly repetitive regions, span
large insertions or concordantly align across SV boundaries
(Lucas Lledo6 and Caceres 2013). However, short-read sequenc-
ing from a population of grapevine cultivars has been used to
genotype SVs by ascertaining SV polymorphisms between two
reference genomes and calling these SVs within the population
(Zhou et al. 2019).

The increasing availability of long-read sequencing has opened
up an opportunity to identify SVs that would have been missed
using short-read data. For example, long reads have been used
to identify SVs associated with traits in a set of 100 tomato ac-
cessions (Alonge et al. 2020). In other systems without enough
long-read sequenced genotypes to directly look for associations
between SVs and phenotype, researchers have started with SVs

detected in a smaller subset of individuals with reference assem-
blies and then genotyped in a larger mapping panel of individ-
uals with short-read sequencing data. Researchers have used
pan-genome graph methods to identify SVs in a smaller number
of reference sequences and then genotyped in a larger sample
of short-read sequenced lines in Arabidopsis thaliana (Kang
et al. 2023), soybean (Liu et al. 2020), rice (Qin et al. 2021) and
tomato (Zhou et al. 2022). These studies have confirmed that SVs
are important for trait heritability (Zhou et al. 2022). However,
graph genome approaches are challenging for plants with large
genomes and have not yet been widely adopted. For example,
a haplotype graph has been generated for 27 maize inbred
lines, but not for a wider diversity panel (Franco et al. 2020).
Additionally, work using short-read alignments and pan-genome
approaches have identified SVs in maize and found that SVs con-
tributed to trait heritability (Gui et al. 2022). Approximately 60%
of these SVs were related to TEs but no clear links between SV
polymorphisms and TE insertions were made (Gui et al. 2022).
Plants with large genomes are not only important for a number
of practical reasons, but they also may evolve differently than
plant species with small genomes because they have different
genetic architectures underlying trait variation (Mei et al. 2018).
Understanding how SVs and TEs contribute to trait variation
in plants with large genomes is key for comprehensively under-
standing the importance of these variants in general.

To address the gap in understanding how SVs and TEs con-
tribute to trait variation in a species with a large genome, we
identified SVs found from the alignment of two maize reference
assemblies using short-reads that overlap the SV junctions. This
type of approach has been used previously in a few other sys-
tems (Wang et al. 2020; Zhou et al. 2019). Here, we investigated
the relationship between SV variation and phenotype in a di-
verse set of maize inbred lines in the Buckler-Goodman associ-
ation panel (Flint-Garcia et al. 2005). After identifying SVs that
differ between two accessions, B73 and Oh43, we genotyped 277
maize lines present in a larger mapping panel for the SV alleles.
We detected SV polymorphisms that varied across the panel and
linked these polymorphisms to phenotypic variation, GXE and
gene expression.

2 | Materials and Methods
2.1 | Structural Variant Identification

An ascertainment set of SVs that differ between B73 and Oh43
was identified by Munasinghe et al. (2023). The methods used
by Munasinghe et al. (2023) were not able to identify inversions.
These genotypes were chosen to call SV presence/absence be-
cause they are both in the Buckler-Goodman association panel
but come from different germplasm pools (Gage et al. 2019).
Ascertainment set SVs were filtered to only contain those that
had 300bps of colinear sequence determined by AnchorWave
(Song et al. 2022) in the immediate upstream and downstream
regions flanking SV junctions. The apparent insertion and 300 bp
flanking region on either side were extracted to create a FASTA
file containing SV-present alleles. The corresponding site in the
other genome where the SV was absent and 300bp flanking se-
quences were also extracted and combined in the final FASTA
file to serve as the SV-absent allele sequence. Ultimately, this
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FASTA file was used as a set of pseudoreference alleles to call
SV polymorphism in individuals with only short-read sequence
data (Figure S1).

2.2 | SV Presence/Absence Genotyping

To call presence or absence for each SV, we aligned ge-
nomic short-read data for 277 inbred maize genotypes from
the Buckler-Goodman association panel to the generated
FASTA files with SV present and absent alleles (Flint-Garcia
et al. 2005; Bukowski et al. 2018). Illumina adapters and low
quality sequences were removed using Trimmomatic v0.39
(Bolger, Lohse, and Usadel 2014). PCR duplicate reads were
also filtered out using the -r option within the markdup func-
tion in SAMtools v1.15.1 (Danecek et al. 2021). Surviving
paired-end reads were merged into a master FASTQ file for

each genotype and aligned to pseudoreference alleles using
HISAT2 (Sirén, Vilim#ki, and Mékinen 2014). The aligned
dataset was filtered to only contain concordant, uniquely map-
ping reads. We used read-depth for each upstream and down-
stream SV boundary to support the presence or absence of SVs
(Figure 1). Read coverage at each SV boundary was calculated
using the coverage function within bedtools v2.30.0 (Quinlan
and Hall 2010).

First, we filtered out SVs where we were unable to use short-
read data from B73 and Oh43 to correctly identify their respec-
tive SV genotypes. In these cases, short-read data mapped better
to the alternative genotype's allele than their own allele. For an
SV within our ascertainment set to be retained for downstream
genotyping in the Buckler-Goodman association panel, we re-
quired that: (1) upstream and downstream SV junctions had the
same or higher read coverage from the genotype with the SV

B73 genome [ [

Oh43 genome

Extract SV alleles from
both genotypes

B73 SV-present

%

eles (000

) O )

Oh43 SV-absent

alleles

Reads aligning over both
genomic-SV junction support SV
presence

Align reads from each
genotype to each allele

W22 reads
%—:ﬂ C
Mo17 reads :I—D
—t

CHC :H [ —
a1 O O
I ) N o s s
/

Reads aligning over SV insertion
site support SV absence

Infer presence/absence
for each allele

N/

W22 inferred [ [

genome

] [ ] )

Mo17 inferred [ — ‘

[ ] )

genome

FIGURE1 | Method to call SV presence/absence with short read genomic data—Using B73 and Oh43 as our ascertainment set, we first find poly-
morphic SVs between these two genotypes. To significantly improve read-mapping runtimes, we extract SVs and adjacent genomic sequences where

SVs are present, while extracting only adjacent genomic regions at the polymorphic site where the SV is absent in the opposite genotype—termed

pseudoreference SV alleles. Next, reads from a genotype of interest are mapped to these generated sequences. SVs can then be inferred as present or

absent based on their alignment to either allele.
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than the other genotype and (2) no reads from the SV-present
genotype spanned the insertion site for the genotype without the
SV (Figure S2).

For the rest of the genotypes in the Buckler-Goodman associ-
ation panel, SV-presence was supported in the query genotype
if there was at least one read spanning the upstream or down-
stream SV junction and there was no read coverage at the SV
polymorphic site for the alternative SV-absent allele. An SV-
absent allele is supported if at least one read spans across the
SV polymorphic site but no reads map to either SV junction of
the corresponding SV-present allele. SVs are ambiguous if reads
from the query genotype map to both the SV-present allele junc-
tions and the SV-absent insertion site.

2.3 | Calculating Linkage Disequilibrium Between
SNPs and SVs

SNPs in variant call format (VCF) were collected from the third
generation maize haplotype map (HapMap3) version 3.2.1 and
coordinates were converted to the B73 NAM reference posi-
tions (version 5) using liftOverVCF in Picard tools (Pic 2019;
Qiu et al. 2021). We removed SNPs with >10% missing data, a
minor allele frequency (MAF) <10%, and those within SV re-
gions, resulting in 16,435,136 SNPs in the final filtered dataset.
Additionally, we appended polymorphic SV calls for each gen-
otype in the HapMap3 dataset to the final VCF file. Because
SV-present alleles were characterised for both B73 and Oh43,
we used the start of the SV coordinate for SV-present alleles
within B73 and the B73 insertion site for SVs present in Oh43
as the coordinate for LD analysis. Following methods from Qiu
et al. (2021), we calculated LD between SNPs and nearby poly-
morphic SVs, excluding SNPs inside of SVs, using PLINK v1.9
(Chang et al. 2015), www.cog-genomics.org/plink/1.9/ with
the following parameters: -make-founders, -r2 gz dprime with-
freqs, -ld-window-r2 0, -ld-window 1,000,000, -1d-window-kb
1000 and -allow-extra-chr. We conducted a y? test for differences
in allele frequency between populations using the chisq.test()
function in R (R Core Team 2024).

2.4 | Association Mapping

Polymorphic SVs across all query genotypes were converted to
BIMBAM mean genotype format (Servin and Stephens 2007).
SV-present alleles that were characterised as ambiguous were
denoted as NA. We performed a genome-wide association study
(GWAS) of SV presence/absence variants (PAVs) using pheno-
types from Peiffer et al. (2014) and a linear mixed model (LMM)
in GEMMA v0.98.03 (Zhou and Stephens 2012). The traits tested
are best linear unbiased predictions (BLUPs) of the following:
growing degree days to silking, growing degree days to anthesis,
anthesis-silking interval measured in growing degree days, days
to silking, days to anthesis, anthesis-silking interval measured
in days, plant height, ear height, difference of plant height and
ear height, ratio of ear height and plant height, and ratio of plant
height and days to anthesis. To account for missing genotypic
data for each SV, we required at least 90% of the genotypes to
have presence/absence calls for relatedness matrix calculations
and subsequent associations. All plots with genomic locations

are shown with B73 coordinates, and Oh43 SV-present alleles
were converted to B73 coordinates for display. To account for
multiple-testing, we calculated a false discovery rate (FDR)-
adjusted significance threshold (Benjamini and Hochberg 1995)
to maintain an overall a=5% significance. Filtered SNPs from
the HapMap3 dataset were also subjected to GWAS using the
same methods as our polymorphic SV dataset.

In addition to the association analyses for main effects, we ex-
amined these data for genotype-by-environment interactions
(GXE). For the 11 traits above, we used simple linear regression
following the form of Finlay-Wilkinson (FW) regression (Finlay
and Wilkinson 1963) to record the slope (i.e., reaction norm) and
mean squared error (MSE) for each genotype using the linear
model (Im) function in R;

Yij =B+ B1X; + ¢,

where f, and g, are the intercept and slope estimates for the it
line, respectively, x; is the average performance of all lines in the
j™ environment and €;is a random error term. We removed any
lines which were not represented in at least six environments on
a per trait basis to reduce the error in our estimates. This filter-
ing resulted in a different number of individuals and markers
used in each FW model (ranging from 245 to 274 individuals
per trait). We then performed GWAS of SV PAVs using slope
and MSE estimates for each trait as quantitative phenotypes in
GEMMA as before.

2.5 | Gene Expression

We used previously collected gene expression data for ~37,000
maize genes (Kremling et al. 2018) to test for differential gene
expression between SV genotypes at the loci identified in the
association mapping analyses. We compared expression be-
tween SV genotypes for three tissue types: the tip of germinat-
ing shoots, the base of the third leaf and the tip of the third leaf.
Library sizes were normalised using DESeq2 (Love, Anders, and
Huber 2014) and we filtered the gene set to contain only genes
with expression in 70% of individuals above 10 reads per the me-
dian library size (approx 0.5 counts per million) using the edgeR
package in R (Robinson, McCarthy, and Smyth 2010), resulting
in an average of 12,703 genes per SV identified in the GWAS.
Finally, we used edgeR to test for differential expression by first
building generalised linear models to model expression between
genotypes and then testing for significance using the F-test. p-
values were adjusted using FDR to maintain an overall signifi-
cance threshold of a=5%.

3 | Results
3.1 | Polymorphic SVs in the Diversity Panel

We genotyped SV polymorphisms for 277 maize genotypes at
SVs segregating between B73 and Oh43 by aligning short reads
from the genotypes to each SV allele and counting reads span-
ning genomic-SV junctions and SV polymorphic sites. Out of
98,422 polymorphic SVs between B73 and Oh43, we filtered out
SVs where short reads from B73 and Oh43 did not clearly align
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to the correct allele. After this filtering step, we were able to de-
termine the genotype of 64,956 SVs in the Buckler-Goodman
association panel (Figure S2). The largest proportion of these
SVs were those classified as ‘TE = SV’ (21,103, 32.5%), followed
by ‘multi TE SVs’ (18,326, 28.2%), ‘incomplete TE SVs’ (10,928,
16.8%), ‘no TE SVs’ (8842, 13.6%) and ‘TE within SVs’ (5757,
8.9%) (Figures S3 and S4). The proportions of SVs for each cat-
egory are consistent with those prior to filtering. For more in-
formation about how SVs are classified into TE groupings, see
Munasinghe et al. (2023).

For subsequent analyses, we filtered the SV dataset to only in-
clude variants with a MAF > 10% and presence/absence calls for
at least 90% of genotypes, resulting in the retention of 3,087 SV
alleles (4.75% of dataset) (Figure S5). Filtering on missing data
and MAF removed many SVs because many individuals in the
dataset have low realised sequencing coverage when mapped to
the B73 reference assembly. There is a median coverage of 2.68,
ranging from 0.031 in the A554 genotype to 19.47 in B57. Read
depth per individual was negatively correlated with percent
missing SV data per individual (p=2.4x1075) (Figures S6 and
S7), suggesting that missing data for SVs results from not having
enough reads covering the junction sites. This pattern suggests
that this method needs a minimum average read depth of 5 to
successfully genotype SVs at most sites, although this number
will likely vary by species.

We investigated the frequency spectrum of SV polymorphisms
in the Buckler-Goodman association panel by calculating the
frequency of the allele with a putative insertion (or lacking a pu-
tative deletion). As these SVs were initially identified as being
polymorphic between two individuals, it was not surprising
to see that many of the SVs were at moderate frequency in the
population (Figures 2 and S3). For most SVs, the SV-present al-
lele was more common than the SV-absent allele. This pattern
is consistent with the polymorphism being caused by a deletion
and the longer ‘insertion’ allele being the ancestral type, and
so present at higher allele frequencies in the population. The
frequency spectrum was relatively consistent across SV types
(Munasinghe et al. 2023).

3.2 | SV Genotypes Are Associated With
Phenotypic Traits

In the GWAS, SV presence/absence was significantly associ-
ated (FDR <0.05) with four out of the 11 traits tested: grow-
ing degree days to anthesis, days to silking, days to anthesis
and ear height (Figures 3 and S8). All four SVs associated
with traits contained TE sequences but none had boundaries
that matched TE boundaries (‘TE = SV’), suggesting that the
polymorphisms were the result of deletions, not TE insertions
(Figure 4).

The SV associated with growing degree days to anthe-
sis is within B73 on chromosome seven, 54bp upstream of
the B73 gene Zm00001eb330210 (syntenic with Oh43 gene
Zm00039ab336990) (Figures 3 and 4A). There are no currently
known functions for these genes in maize, nor their ortho-
logues in other species including sorghum, foxtail millet, rice
or Brachypodium distachyon. There is evidence of increased
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FIGURE 2 | Site-frequency Spectrum of SVs—SVs were filtered to
only contain those with a minor allele frequency >10% and <10% miss-
ing data (n=3087). The SFS is unfolded and displays the frequency of
the allele with the putative insertion (or that is lacking a deletion).

expression in these genes in maize in whole seed, endosperm,
and embryo for most 2-day increments post pollination (Walley
et al. 2016). This SV contained a mutator TE within it, but the SV
boundaries did not match the TE boundaries.

One SV polymorphism was associated with both days to silk-
ing and days to anthesis. This SV is present on chromosome
three in Oh43 and is a large, ~52kb multi TE SV composed
primarily of Ty3 elements (Figures 3 and 4B). This region is
nearly 215kb away from the nearest gene. An additional SV
associated with days to silking is located on chromosome 10
and contains ~43.5kb of multiple Ty3 TEs (Figures 3 and 4C).
This SV, present in B73 and absent in Oh43, is 2091bp up-
stream of the gene Zm00001eb411130 (syntenic with the Oh43
gene Zm00039ab420040). Zm00001eb411130, which is also
called ZmMM1, is a MADS-box gene and is orthologues with
the OsMADSI13 gene in rice and the STK gene in Arabidopsis
thaliana. OsMADS13's expression in rice is restricted to the
ovule and controls both ovule identity and meristem deter-
minancy during ovule development (Lopez-Dee et al. 1999;
Dreni et al. 2007; Li et al. 2011). Similar to OsMADS13, STK
in Arabidopsis thaliana, which encodes for a MADS-box tran-
scription factor, is expressed in the early floral development in
the ovule. Additionally, STK determines ovule identity and also
regulates a network of genes that controls seed development and
fruit growth (Mizzotti et al. 2014; Di Marzo et al. 2020). Both
OsMADSI13 and STK are members of the D-class genes in the
ABCDE model for floral development.

The SV associated with ear height contains a partial sequence
of a mutator DNA transposon and is on Oh43 chromosome four
within an intron of gene Zm00039ab208360 (syntenic with B73
gene Zm00001eb203840) (Figures 3 and 4D). This gene, also
called traf42, is a tumour receptor-associated factor (TRAF) and
codes for a BTB/POZ domain-containing protein POBI. Although
TRAF domain containing proteins are ubiquitous across eukary-
otes, there are far more genes encoding TRAF domains in plants
compared to animals (Oelmiiller et al. 2005; Cosson et al. 2010).
In maize, traf42 mediates protein-protein interactions (Dong
et al. 2017) and mutations in the maize gene ZmMABI, which
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contains a TRAF domain and is exclusively expressed in the
germline cause chromosome segregation defects during meiosis
(Juranic et al. 2012). Additionally, POBI is involved in drought tol-
erance in the Antarctic moss, Sanionia uncinata (Park et al. 2018).

3.3 | SV Genotypes Are Associated With GXE

We detected five significant associations (FDR <0.05) between
SV presence/absence and one of two measures of plasticity (FW
regression slope and MSE) for four of the eleven traits tested:
the ratio of plant height and days to anthesis (MSE), growing
degree days to silking (MSE), days to silking (slope) and days to
anthesis (slope) (Figures 3 and S9). Four of the five SVs identified
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1 2 3 4 5 67 8910
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FIGURE3 | Genomic positions and p-values for eight traits and nine
markers with significant SV presence/absence associations—Bars at
bottom represent the genomic positions for the 3087 SV markers used in
the association panel, with chromosomes in alternating colours. Points
are sized according to the — log;,(p) (GDD: growing degree days; MSE:
mean squared error; PH:DTA: ratio of plant height to days to anthesis).
Note that the same SV was associated with Days to Silking and Days to
Anthesis so there are 10 points total.
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contained TE sequence and two SVs appeared to be directly
caused by TE insertions.

On chromosome four, we detected an association between an SV
and the MSE of the ratio of plant height to days to anthesis across
growing locations. This SV appeared to be caused by a partial
deletion of a Ty3-like LTR retrotransposon and was not proximal
to any gene models in either the Oh43 or B73 alignments.

On chromosome five, we detected an association between an SV
and the MSE of growing degree days to silking across growing
locations. This SV appeared to be caused by a partial deletion of
a hAT TIR transposon but was not proximal to any gene model
in either the Oh43 or B73 alignments.

On chromosome 10, we detected three associations between
SVs and plasticity: the slope of days to silking, the slope of
days to anthesis, and the MSE of growing degree days to silk-
ing. The SV associated with days to silking appeared to be
the direct result of an insertion of a PIF Harbinger TIR trans-
poson, the SV associated with the MSE of growing degree days
to silking appeared to be an insertion of a PIF Harbinger TIR
transposon, but the SV associated with the slope of days to
anthesis did not contain TE sequence. The SV associated with
the slope of days to silking was 713bp from the uncharacter-
ized Oh43 gene Zm00039ab424300 (a syntelog of B73 gene
Zm00001eb415280), while the SVs associated with the slope of
days to anthesis and the MSE of growing degree days to silk-
ing were not proximal to any B73 or Oh43 gene model.

3.4 | SV Genotypes Are Associated With
Differential Gene Expression

We tested for associations between the genotypes of the nine SVs
identified by GWAS and gene expression data from three tissues
and detected associations for 29 genes (Figure 5). Differentially
expressed genes were not immediately proximal to the SVs they

Days to Silking and
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Oh43 N, 0Oh43 i CACTA
f hAT
T T T T T T T T EE LINE
0b 2kb 4kb 6kb ob 30kb 60 kb 90kb mm Mutator
Cc Days to Silking D Ear Height Pif/Harbinger
BN Tci1/Mariner
mm Ty1/Copia
¥ -
B73 4l B73 e mn } =——— B Unknown LTR
0Oh43 = 0h43 ﬁ\_m‘fiq
1 1 1 1 1 1
0b 20kb 40kb ob 10kb 20kb

FIGURE 4 | Trait-associated structural variant polymorphisms between B73 and Oh43—Green arrows point to polymorphic SV regions that
are associated with traits. Alignable regions are shown as green bars between genotypes. TEs are displayed inline and, therefore, do not dis-
play overlapping or nested TEs. (A) A mutator TE within an SV is present in B73 and absent in Oh43. This SV is 54bp upstream of the B73 gene
Zm00001eb330210, syntenic with Oh43 gene Zm00039ab336990. (B) A large SV containing multiple Ty3 TEs is present in Oh43 and absent in B73.
This intergenic SV is approximately 215kb from the nearest gene. (C) A multi TE SV composed entirely of Ty3 TEs is present in B73 and 2091 bp
upstream of the gene Zm00001eb411130 (syntenic with Oh43 gene Zm00039ab420040). (D) A polymorphic incomplete TE SV is located within the
Oh43 gene Zm00039ab208360 is present in Oh43 and absent in B73.
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were associated with (the closest differentially expressed gene
was 911 kb from the associated SV) and most were on different
chromosomes. Of the 29 significantly associated genes, three
genes present in the B73v3 reference alignment were not pres-
ent in the B73v5 alignment and were removed from further con-
sideration. Of the 26 remaining genes, 11 were associated with
a single SV on chromosome 10 for the MSE of growing degree
days to silking, which was coded as ‘TE = SV’. The remaining
six SVs were associated with between one and four differentially
expressed genes and of those six SVs, three contained complete
TE sequences, two contained incomplete TEs, and one did not
contain any TE sequence. Of the three tissues tested, 16 genes
were significantly differentially expressed solely in shoot tissue,
seven in the tip of L3, two in the base of L3 and one was differ-
entially expressed in both the shoot tissue and the base of L3.

3.5 | Most SVs Are in Linkage Disequilibrium
With SNPs

All SV alleles used in the GWAS are within 1 Mb (mean distance
of 649bps) from the nearest SNP present in the HapMap3 dataset
(Figure S10) and all SVs have an r*>0.1 with at least one nearby
SNP. Only six SVs had an 72 <0.5 with any nearby SNP. For the SV
alleles that are significantly associated with traits, all have a SNP in
perfect LD. Some of this LD may result from population structure:
eight of the nine TEs associated with traits had significant allele
frequency differences between populations (Figures S11 and S12).

Despite high LD between SVs and nearby SNPs, many of the as-
sociations detected between SVs and traits would not have been
captured with a GWAS using all SNPs. Of the four SVs associ-
ated with main effects, only one was found in the same peak
regions in the SNP GWAS (Figures S13 and S14). This lack of
overlap between the SV GWAS associations and the SNP GWAS
associations is a result of different significance cutoffs in the two
different analyses. The HapMap3 SNP dataset used in the GWAS
has 16,435,136 SNPs while there were only 3087 SVs in the SV
association mapping analysis, so a SNP needed to have a p-value
below 7.94 x10~¢ (averaged across traits) to overcome the FDR
cut-off in the SNP GWAS while its linked SV only needed a p-
value below 1.86 x 10~* (averaged across traits) to be detected as
significant in the SV GWAS.

4 | Discussion

In this study we leveraged two reference genomes along with a
broader set of short-read genomic data to capture SV diversity
in a maize diversity panel. The maize genome's highly repeti-
tive nature makes it challenging to rely on short-read align-
ments alone to characterise SV polymorphism de novo (Hufford
et al. 2021). By ascertaining SV presences and absences between
two genotypes with long read data, we were able to call SVs
across hundreds of maize genotypes using short-read data and
identify SVs associated with trait variation.

We found nine SV polymorphisms associated with either av-
erage trait value or trait plasticity in a variety of maize pheno-
types (Figure 3). Previous studies have identified SVs associated
with phenotypic variation that would not be discovered in

GDD Anthesis - L
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Days to Silking °
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L3Tip
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® 15
Slope - Days to Anthesis (]

12345678910
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FIGURE 5 | Genomic positions and p-values for genes with expres-
sion significantly associated with the genotypes of seven structural vari-
ant (SV) markers identified in our genome-wide association analyses—
Bars at bottom represent the genomic positions for the 3087 SV markers
used in the association panel, with chromosomes in alternating colours.
Black points show the position of the SV marker identified in each trait.
Coloured points are sized according to the false discovery rate adjust-
ed — log,,(p) with tissue collected from germinating shoot (GShoot) in
green, the base of leaf three (L3Base) in orange, and the tip of leaf three
(L3Tip) in blue. The SV marker on chromosome three was the most
proximal to the identified SV marker, but was still 911 kb away (GDD:
growing degree days; MSE: mean squared error).

analyses that use SNPs alone (Yang et al. 2019; Guo et al. 2020;
Hartmann 2022; Zhang et al. 2024). Here, while the SV GWAS
identified hits that were not present in the SNP GWAS, all SV as-
sociations detected were in perfect linkage disequilibrium with
SNPs. We did not detect associations that were not captured by
the SNP dataset but instead these SVs reached statistical signif-
icance because there were many fewer SVs than SNPs. Previous
work investigating TE polymorphism in a different maize ge-
netic diversity panel did find that 20% of TEs were not in LD
with SNPs but these SNPs tended to be at a low MAF in the
population (Qiu et al. 2021). By focusing on common SV poly-
morphisms we likely have missed many SVs that are low fre-
quency and not in LD with surrounding SNPs—however these
low frequency SVs would be unlikely to be associated with trait
variation in a GWAS.

Population structure within the Buckler-Goodman panel could
also potentially contribute to high LD between TEs associated
with traits and nearby SNPs. Although LD tends to decay rap-
idly in maize, high LD has been observed around multiple QTLs
(Flint-Garcia, Thornsberry, and Buckler 2003). For example,
previous work in the Buckler-Goodman panel has found long
stretches of linkage disequilibrium around a flowering-time as-
sociated allele (Hung et al. 2012). For many of the TEs identified
as associated with traits, there were significant differences in
allele frequencies between maize subpopulations. This pattern
is consistent with observations that population structure can
contribute a significant amount to phenotypic variation—over
30% for life history traits like days to pollen and days to silking
(Flint-Garcia et al. 2005).

Of the SVs included in this study, 91% contained TEs or are
themselves of TE origin and the largest category of SVs were
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clear examples of TE insertions (21,103 or 23.5%). All but one
of the SVs associated with trait variation and with GxE con-
tained TE sequence, yet only the SVs on chromosome 10 for the
slope of days to silking and the MSE of growing degree days
to silking FW models appeared to be the direct result of TE
insertions. The remaining seven associations result from dele-
tions that contain TEs. This result is consistent with previous
findings that deletions have been the dominant contributors to
SV polymorphism in maize (Munasinghe et al. 2023). We did
observe that the SV associated with the MSE of growing degree
days to silking on chromosome 10 that appeared to result from
a TE insertion was the SV with the most associations with gene
expression. This pattern is consistent with hypotheses that
TE insertions are particularly likely to affect gene expression
(Klein and Anderson 2022), although further work is clearly
needed to evaluate how broad this pattern is across a larger
sample of SVs.

We found five significant associations between SVs and plasticity,
quantified using MSE and slopes from the Finlay-Wilkinson re-
gression models. The finding that different SVs were associated
with traits than with trait plasticity is consistent with most pre-
vious work. For example, the genetic architecture of trait means
and trait plasticity have been shown to differ in maize (Kusmec
et al. 2017; Tibbs-Cortes et al. 2024) and Arabidopsis thaliana
(Fournier-Level et al. 2022) but not sorghum (Wei et al. 2024).
We also did not see a clear pattern that SVs are more likely to
affect trait variation across environments than trait means, but
this may result from having a small number of associations
across both categories.

Overall, we have demonstrated an approach for using two refer-
ence genomes to identify SVs and then genotype for these vari-
ants in a larger panel of individuals with short-read sequencing
data. This approach identifies SVs associated with phenotypic
variation and with GxE interactions. However, this approach
does bias us towards common alleles that were polymorphic
within the two reference assemblies. This bias is acceptable for
a GWAS, where we will also be biased towards detecting associ-
ations with variants at intermediate allele frequency, but would
be less appropriate for any analysis that would need to identify
SVs with low allele frequencies. As long-read data becomes
more affordable and more reference genomes become available
for more species, these types of approaches will improve our
ability to detect SVs and investigate their potential functional
importance.
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