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ABSTRACT
Comprehensively identifying the loci shaping trait variation has been challenging, in part because standard approaches often 
miss many types of genetic variants. Structural variants (SVs), especially transposable elements (TEs), are likely to affect pheno-
typic variation but we lack methods that can detect polymorphic SVs and TEs using short- read sequencing data. Here, we used a 
whole genome alignment between two maize genotypes to identify polymorphic SVs and then genotyped a large maize diversity 
panel for these variants using short- read sequencing data. After characterising SV variation in the panel, we identified SV poly-
morphisms that are associated with life history traits and genotype- by- environment (GxE) interactions. While most of the SVs 
associated with traits contained TEs, only two of the SVs had boundaries that clearly matched TE breakpoints indicative of a 
TE insertion, while the other polymorphisms were likely caused by deletions. One of the SVs that appeared to be caused by a TE 
insertion had the most associations with gene expression compared to other trait- associated SVs. All of the SVs associated with 
traits were in linkage disequilibrium with nearby single nucleotide polymorphisms (SNPs), suggesting that the approach used 
here did not identify unique associations that would have been missed in a SNP association study. Overall, we have (1) created 
a technique to genotype SV polymorphisms across a large diversity panel using support from genomic short- read sequencing 
alignments and (2) connected this presence/absence SV variation to diverse traits and GxE interactions.

1   |   Introduction

A central question of evolutionary biology is how different types 
of mutations—single nucleotide polymorphisms (SNPs), inser-
tion–deletion polymorphisms, copy number variants, trans-
locations and transposable element (TE) insertions—shape 
the phenotypic diversity observed in nature (Mitchell- Olds, 
Willis, and Goldstein 2007). Much recent effort has focused on 

characterising structural variants (SVs): Tens of thousands of 
SVs have been identified in plant genomes (Darracq et al. 2018; 
Yang et al. 2019; Schatz 2018; Alonge et al. 2020; Zhou et al. 2022; 
Qin et al. 2021; Hämälä et al. 2021) and specific SVs have been 
shown to affect important phenotypic traits in plants, including 
climate resilience in Arabidopsis thaliana, disease resistance 
and domestication traits in maize and rice, and frost tolerance 
in wheat (Beló et  al.  2010; Cao et  al.  2011; Sieber et  al.  2016; 
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Springer et al. 2009; Xu et al. 2012). In addition, maize SVs are 
predicted to be up to 18- fold enriched for alleles affecting pheno-
types when compared to SNPs (Chia et al. 2012). These findings 
suggest that characterising SV variation will be a crucial part of 
mapping genotypes to phenotypes.

A subset of SVs, TEs, are particularly interesting potential 
contributors to phenotypic variation (Lisch  2013; Catlin and 
Josephs 2022). TE content and polymorphism are shaped by a 
complex interplay of selection at the TE and organismal level 
(Charlesworth and Charlesworth 1983; Ågren and Wright 2011) 
and there are many examples of TE variation affecting pheno-
types (Hirsch and Springer  2017; Lisch  2013). For example, a 
TE insertion in the regulatory region of the teosinte branched1 
(ZmTB1) gene in maize enhances gene expression, causing the 
upright branching architecture in maize compared to its progen-
itor, teosinte (Studer et al. 2011). TE insertions also affect flesh 
colour in grapes and fruit colour and shape in tomato (Fray and 
Grierson 1993; Kobayashi, Goto- Yamamoto, and Hirochika 2004; 
Knaap et al. 2004; Shimazaki et al. 2011; Domnguez et al. 2020). 
These phenotypic effects may result from changes in gene ex-
pression: TE activation can disrupt or promote gene expression 
(Hirsch and Springer 2017; Fueyo et al. 2022), and the industrial 
melanism phenotype in British peppered moths, Biston betula-
ria, results from TE- induced overexpression of a gene responsi-
ble for pigment production (Hof et al. 2016). TEs often activate 
(i.e., express and/or mobilise) in response to stress in many 
eukaryotes, including maize (Makarevitch et  al.  2015; Liang 
et  al.  2021), Arabidopsis (Wang et  al.  2022; Sun et  al.  2020) 
and Drosophila melanogaster (de Oliveira et al. 2021; Milyaeva 
et  al.  2023), suggesting that they may contribute to trait vari-
ation in stressful environments. However, we lack systematic 
studies of how TEs in general affect phenotypic variation or how 
TEs may contribute to genotype- by- environment interactions 
outside of the context of stress.

Characterising genomic variation for SVs and TEs has been 
challenging, especially in highly repetitive plant genomes 
where it is often difficult to uniquely align short- reads to a ref-
erence genome. Recent studies have shown that attempts to as-
semble SVs solely with short- read sequencing data can greatly 
underestimate the total number of SVs present in a popula-
tion (Huddleston et  al.  2017; Audano et  al.  2019; Cameron, 
Di Stefano, and Papenfuss  2019; Ebert et al.  2021). Some es-
timates for the accuracy of SV discovery with short- read se-
quencing are as low as 11% in humans because of the inability 
of short- reads to align within highly repetitive regions, span 
large insertions or concordantly align across SV boundaries 
(Lucas Lledó and Cáceres 2013). However, short- read sequenc-
ing from a population of grapevine cultivars has been used to 
genotype SVs by ascertaining SV polymorphisms between two 
reference genomes and calling these SVs within the population 
(Zhou et al. 2019).

The increasing availability of long- read sequencing has opened 
up an opportunity to identify SVs that would have been missed 
using short- read data. For example, long reads have been used 
to identify SVs associated with traits in a set of 100 tomato ac-
cessions (Alonge et al. 2020). In other systems without enough 
long- read sequenced genotypes to directly look for associations 
between SVs and phenotype, researchers have started with SVs 

detected in a smaller subset of individuals with reference assem-
blies and then genotyped in a larger mapping panel of individ-
uals with short-read sequencing data. Researchers have used 
pan-genome graph methods to identify SVs in a smaller number 
of reference sequences and then genotyped in a larger sample 
of short-read sequenced lines in Arabidopsis thaliana (Kang 
et al. 2023), soybean (Liu et al. 2020), rice (Qin et al. 2021) and 
tomato (Zhou et al. 2022). These studies have confirmed that SVs 
are important for trait heritability (Zhou et al. 2022). However, 
graph genome approaches are challenging for plants with large 
genomes and have not yet been widely adopted. For example, 
a haplotype graph has been generated for 27 maize inbred 
lines, but not for a wider diversity panel (Franco et  al.  2020). 
Additionally, work using short- read alignments and pan- genome 
approaches have identified SVs in maize and found that SVs con-
tributed to trait heritability (Gui et al. 2022). Approximately 60% 
of these SVs were related to TEs but no clear links between SV 
polymorphisms and TE insertions were made (Gui et al. 2022). 
Plants with large genomes are not only important for a number 
of practical reasons, but they also may evolve differently than 
plant species with small genomes because they have different 
genetic architectures underlying trait variation (Mei et al. 2018). 
Understanding how SVs and TEs contribute to trait variation 
in plants with large genomes is key for comprehensively under-
standing the importance of these variants in general.

To address the gap in understanding how SVs and TEs con-
tribute to trait variation in a species with a large genome, we 
identified SVs found from the alignment of two maize reference 
assemblies using short- reads that overlap the SV junctions. This 
type of approach has been used previously in a few other sys-
tems (Wang et al. 2020; Zhou et al. 2019). Here, we investigated 
the relationship between SV variation and phenotype in a di-
verse set of maize inbred lines in the Buckler– Goodman associ-
ation panel (Flint- Garcia et al. 2005). After identifying SVs that 
differ between two accessions, B73 and Oh43, we genotyped 277 
maize lines present in a larger mapping panel for the SV alleles. 
We detected SV polymorphisms that varied across the panel and 
linked these polymorphisms to phenotypic variation, GxE and 
gene expression.

2   |   Materials and Methods

2.1   |   Structural Variant Identification

An ascertainment set of SVs that differ between B73 and Oh43 
was identified by Munasinghe et al. (2023). The methods used 
by Munasinghe et al. (2023) were not able to identify inversions. 
These genotypes were chosen to call SV presence/absence be-
cause they are both in the Buckler–Goodman association panel 
but come from different germplasm pools (Gage et  al.  2019). 
Ascertainment set SVs were filtered to only contain those that 
had 300 bps of colinear sequence determined by AnchorWave 
(Song et al. 2022) in the immediate upstream and downstream 
regions flanking SV junctions. The apparent insertion and 300 bp 
flanking region on either side were extracted to create a FASTA 
file containing SV- present alleles. The corresponding site in the 
other genome where the SV was absent and 300 bp flanking se-
quences were also extracted and combined in the final FASTA 
file to serve as the SV- absent allele sequence. Ultimately, this 
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FASTA file was used as a set of pseudoreference alleles to call 
SV polymorphism in individuals with only short- read sequence 
data (Figure S1).

2.2   |   SV Presence/Absence Genotyping

To call presence or absence for each SV, we aligned ge-
nomic short- read data for 277 inbred maize genotypes from 
the Buckler–Goodman association panel to the generated 
FASTA files with SV present and absent alleles (Flint- Garcia 
et al. 2005; Bukowski et al. 2018). Illumina adapters and low 
quality sequences were removed using Trimmomatic v0.39 
(Bolger, Lohse, and Usadel  2014). PCR duplicate reads were 
also filtered out using the - r option within the markdup func-
tion in SAMtools v1.15.1 (Danecek et  al.  2021). Surviving 
paired- end reads were merged into a master FASTQ file for 

each genotype and aligned to pseudoreference alleles using 
HISAT2 (Sirén, Välimäki, and Mäkinen  2014). The aligned 
dataset was filtered to only contain concordant, uniquely map-
ping reads. We used read- depth for each upstream and down-
stream SV boundary to support the presence or absence of SVs 
(Figure 1). Read coverage at each SV boundary was calculated 
using the coverage function within bedtools v2.30.0 (Quinlan 
and Hall 2010).

First, we filtered out SVs where we were unable to use short- 
read data from B73 and Oh43 to correctly identify their respec-
tive SV genotypes. In these cases, short- read data mapped better 
to the alternative genotype's allele than their own allele. For an 
SV within our ascertainment set to be retained for downstream 
genotyping in the Buckler–Goodman association panel, we re-
quired that: (1) upstream and downstream SV junctions had the 
same or higher read coverage from the genotype with the SV 

FIGURE 1    |    Method to call SV presence/absence with short read genomic data—Using B73 and Oh43 as our ascertainment set, we first find poly-
morphic SVs between these two genotypes. To significantly improve read- mapping runtimes, we extract SVs and adjacent genomic sequences where 
SVs are present, while extracting only adjacent genomic regions at the polymorphic site where the SV is absent in the opposite genotype—termed 
pseudoreference SV alleles. Next, reads from a genotype of interest are mapped to these generated sequences. SVs can then be inferred as present or 
absent based on their alignment to either allele.
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than the other genotype and (2) no reads from the SV- present 
genotype spanned the insertion site for the genotype without the 
SV (Figure S2).

For the rest of the genotypes in the Buckler–Goodman associ-
ation panel, SV- presence was supported in the query genotype 
if there was at least one read spanning the upstream or down-
stream SV junction and there was no read coverage at the SV 
polymorphic site for the alternative SV- absent allele. An SV- 
absent allele is supported if at least one read spans across the 
SV polymorphic site but no reads map to either SV junction of 
the corresponding SV- present allele. SVs are ambiguous if reads 
from the query genotype map to both the SV- present allele junc-
tions and the SV- absent insertion site.

2.3   |   Calculating Linkage Disequilibrium Between 
SNPs and SVs

SNPs in variant call format (VCF) were collected from the third 
generation maize haplotype map (HapMap3) version 3.2.1 and 
coordinates were converted to the B73 NAM reference posi-
tions (version 5) using liftOverVCF in Picard tools (Pic  2019; 
Qiu et al. 2021). We removed SNPs with > 10% missing data, a 
minor allele frequency (MAF) < 10%, and those within SV re-
gions, resulting in 16,435,136 SNPs in the final filtered dataset. 
Additionally, we appended polymorphic SV calls for each gen-
otype in the HapMap3 dataset to the final VCF file. Because 
SV- present alleles were characterised for both B73 and Oh43, 
we used the start of the SV coordinate for SV- present alleles 
within B73 and the B73 insertion site for SVs present in Oh43 
as the coordinate for LD analysis. Following methods from Qiu 
et al. (2021), we calculated LD between SNPs and nearby poly-
morphic SVs, excluding SNPs inside of SVs, using PLINK v1.9 
(Chang et  al.  2015), www. cog-  genom ics. org/ plink/ 1. 9/  with 
the following parameters: - make- founders, - r2 gz dprime with- 
freqs, - ld- window- r2 0, - ld- window 1,000,000, - ld- window- kb 
1000 and - allow- extra- chr. We conducted a χ2 test for differences 
in allele frequency between populations using the chisq.test() 
function in R (R Core Team 2024).

2.4   |   Association Mapping

Polymorphic SVs across all query genotypes were converted to 
BIMBAM mean genotype format (Servin and Stephens  2007). 
SV- present alleles that were characterised as ambiguous were 
denoted as NA. We performed a genome-wide association  study 
(GWAS) of SV presence/absence variants (PAVs) using pheno-
types from Peiffer et al. (2014) and a linear mixed model (LMM) 
in GEMMA v0.98.03 (Zhou and Stephens 2012). The traits tested 
are best linear unbiased predictions (BLUPs) of the following: 
growing degree days to silking, growing degree days to anthesis, 
anthesis- silking interval measured in growing degree days, days 
to silking, days to anthesis, anthesis- silking interval measured 
in days, plant height, ear height, difference of plant height and 
ear height, ratio of ear height and plant height, and ratio of plant 
height and days to anthesis. To account for missing genotypic 
data for each SV, we required at least 90% of the genotypes to 
have presence/absence calls for relatedness matrix calculations 
and subsequent associations. All plots with genomic locations 

are shown with B73 coordinates, and Oh43 SV- present alleles 
were converted to B73 coordinates for display. To account for 
multiple- testing, we calculated a false discovery rate (FDR)- 
adjusted significance threshold (Benjamini and Hochberg 1995) 
to maintain an overall α = 5% significance. Filtered SNPs from 
the HapMap3 dataset were also subjected to GWAS using the 
same methods as our polymorphic SV dataset.

In addition to the association analyses for main effects, we ex-
amined these data for genotype- by- environment interactions 
(GxE). For the 11 traits above, we used simple linear regression 
following the form of Finlay–Wilkinson (FW) regression (Finlay 
and Wilkinson 1963) to record the slope (i.e., reaction norm) and 
mean squared error (MSE) for each genotype using the linear 
model (lm) function in R;

where 𝛽0 and 𝛽1 are the intercept and slope estimates for the ith 
line, respectively, xj is the average performance of all lines in the 
jth environment and ϵij is a random error term. We removed any 
lines which were not represented in at least six environments on 
a per trait basis to reduce the error in our estimates. This filter-
ing resulted in a different number of individuals and markers 
used in each FW model (ranging from 245 to 274 individuals 
per trait). We then performed GWAS of SV PAVs using slope 
and MSE estimates for each trait as quantitative phenotypes in 
GEMMA as before.

2.5   |   Gene Expression

We used previously collected gene expression data for ~37,000 
maize genes (Kremling et al. 2018) to test for differential gene 
expression between SV genotypes at the loci identified in the 
association mapping analyses. We compared expression be-
tween SV genotypes for three tissue types: the tip of germinat-
ing shoots, the base of the third leaf and the tip of the third leaf. 
Library sizes were normalised using DESeq2 (Love, Anders, and 
Huber 2014) and we filtered the gene set to contain only genes 
with expression in 70% of individuals above 10 reads per the me-
dian library size (approx 0.5 counts per million) using the edgeR 
package in R (Robinson, McCarthy, and Smyth 2010), resulting 
in an average of 12,703 genes per SV identified in the GWAS. 
Finally, we used edgeR to test for differential expression by first 
building generalised linear models to model expression between 
genotypes and then testing for significance using the F- test. p- 
values were adjusted using FDR to maintain an overall signifi-
cance threshold of α = 5%.

3   |   Results

3.1   |   Polymorphic SVs in the Diversity Panel

We genotyped SV polymorphisms for 277 maize genotypes at 
SVs segregating between B73 and Oh43 by aligning short reads 
from the genotypes to each SV allele and counting reads span-
ning genomic- SV junctions and SV polymorphic sites. Out of 
98,422 polymorphic SVs between B73 and Oh43, we filtered out 
SVs where short reads from B73 and Oh43 did not clearly align 

yij = 𝛽0 + 𝛽1xj + ϵij,

 1365294x, 2025, 24, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17662 by C
andice H

irsch - U
niversity O

f M
innesota Lib , W

iley O
nline Library on [22/01/2026]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

http://www.cog-genomics.org/plink/1.9/


Molecular Ecology, 2025 5 of 11

to the correct allele. After this filtering step, we were able to de-
termine the genotype of 64,956 SVs in the Buckler–Goodman 
association panel (Figure  S2). The largest proportion of these 
SVs were those classified as ‘TE = SV’ (21,103, 32.5%), followed 
by ‘multi TE SVs’ (18,326, 28.2%), ‘incomplete TE SVs’ (10,928, 
16.8%), ‘no TE SVs’ (8842, 13.6%) and ‘TE within SVs’ (5757, 
8.9%) (Figures S3 and S4). The proportions of SVs for each cat-
egory are consistent with those prior to filtering. For more in-
formation about how SVs are classified into TE groupings, see 
Munasinghe et al. (2023).

For subsequent analyses, we filtered the SV dataset to only in-
clude variants with a MAF ≥ 10% and presence/absence calls for 
at least 90% of genotypes, resulting in the retention of 3,087 SV 
alleles (4.75% of dataset) (Figure S5). Filtering on missing data 
and MAF removed many SVs because many individuals in the 
dataset have low realised sequencing coverage when mapped to 
the B73 reference assembly. There is a median coverage of 2.68, 
ranging from 0.031 in the A554 genotype to 19.47 in B57. Read 
depth per individual was negatively correlated with percent 
missing SV data per individual (p = 2.4 × 10−5) (Figures S6 and 
S7), suggesting that missing data for SVs results from not having 
enough reads covering the junction sites. This pattern suggests 
that this method needs a minimum average read depth of 5 to 
successfully genotype SVs at most sites, although this number 
will likely vary by species.

We investigated the frequency spectrum of SV polymorphisms 
in the Buckler–Goodman association panel by calculating the 
frequency of the allele with a putative insertion (or lacking a pu-
tative deletion). As these SVs were initially identified as being 
polymorphic between two individuals, it was not surprising 
to see that many of the SVs were at moderate frequency in the 
population (Figures 2 and S3). For most SVs, the SV- present al-
lele was more common than the SV- absent allele. This pattern 
is consistent with the polymorphism being caused by a deletion 
and the longer ‘insertion’ allele being the ancestral type, and 
so present at higher allele frequencies in the population. The 
frequency spectrum was relatively consistent across SV types 
(Munasinghe et al. 2023).

3.2   |   SV Genotypes Are Associated With 
Phenotypic Traits

In the GWAS, SV presence/absence was significantly associ-
ated (FDR < 0.05) with four out of the 11 traits tested: grow-
ing degree days to anthesis, days to silking, days to anthesis 
and ear height (Figures  3 and S8). All four SVs associated 
with traits contained TE sequences but none had boundaries 
that matched TE boundaries (‘TE = SV’), suggesting that the 
polymorphisms were the result of deletions, not TE insertions 
(Figure 4).

The SV associated with growing degree days to anthe-
sis is within B73 on chromosome seven, 54 bp upstream of 
the B73 gene Zm00001eb330210 (syntenic with Oh43 gene 
Zm00039ab336990) (Figures 3 and 4A). There are no currently 
known functions for these genes in maize, nor their ortho-
logues in other species including sorghum, foxtail millet, rice 
or Brachypodium distachyon. There is evidence of increased 

expression in these genes in maize in whole seed, endosperm, 
and embryo for most 2- day increments post pollination (Walley 
et al. 2016). This SV contained a mutator TE within it, but the SV 
boundaries did not match the TE boundaries.

One SV polymorphism was associated with both days to silk-
ing and days to anthesis. This SV is present on chromosome 
three in Oh43 and is a large, ~52 kb multi TE SV composed 
primarily of Ty3 elements (Figures  3 and 4B). This region is 
nearly 215 kb away from the nearest gene. An additional SV 
associated with days to silking is located on chromosome 10 
and contains ~43.5 kb of multiple Ty3 TEs (Figures 3 and 4C). 
This SV, present in B73 and absent in Oh43, is 2091 bp up-
stream of the gene Zm00001eb411130 (syntenic with the Oh43 
gene Zm00039ab420040). Zm00001eb411130, which is also 
called ZmMM1, is a MADS- box gene and is orthologues with 
the OsMADS13 gene in rice and the STK gene in Arabidopsis 
thaliana. OsMADS13's expression in rice is restricted to the 
ovule and controls both ovule identity and meristem deter-
minancy during ovule development (Lopez- Dee et  al.  1999; 
Dreni et  al.  2007; Li et  al.  2011). Similar to OsMADS13, STK 
in Arabidopsis thaliana, which encodes for a MADS- box tran-
scription factor, is expressed in the early floral development in 
the ovule. Additionally, STK determines ovule identity and also 
regulates a network of genes that controls seed development and 
fruit growth (Mizzotti et al. 2014; Di Marzo et al. 2020). Both 
OsMADS13 and STK are members of the D- class genes in the 
ABCDE model for floral development.

The SV associated with ear height contains a partial sequence 
of a mutator DNA transposon and is on Oh43 chromosome four 
within an intron of gene Zm00039ab208360 (syntenic with B73 
gene Zm00001eb203840) (Figures  3 and 4D). This gene, also 
called traf42, is a tumour receptor- associated factor (TRAF) and 
codes for a BTB/POZ domain- containing protein POB1. Although 
TRAF domain containing proteins are ubiquitous across eukary-
otes, there are far more genes encoding TRAF domains in plants 
compared to animals (Oelmüller et al. 2005; Cosson et al. 2010). 
In maize, traf42 mediates protein–protein interactions (Dong 
et  al.  2017) and mutations in the maize gene ZmMAB1, which 

FIGURE 2    |    Site- frequency Spectrum of SVs—SVs were filtered to 
only contain those with a minor allele frequency ≥ 10% and ≤ 10% miss-
ing data (n = 3087). The SFS is unfolded and displays the frequency of 
the allele with the putative insertion (or that is lacking a deletion).

0.0

0.1

0.2

0.3

0.4

0.1
 − 

0.1
9

0.2
 − 

0.2
9

0.3
 − 

0.3
9

0.4
 − 

0.4
9

0.5
 − 

0.5
9

0.6
 − 

0.6
9

0.7
 − 

0.7
9

0.8
 − 

0.9

Allele Frequency

Pr
op

or
tio

n 
of

 S
Vs

 

SV Category
All SVs Combined
Incomplete TE SV
Multi TE SV
No TE SV
TE = SV
TE Within SV

 1365294x, 2025, 24, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17662 by C
andice H

irsch - U
niversity O

f M
innesota Lib , W

iley O
nline Library on [22/01/2026]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



6 of 11 Molecular Ecology, 2025

contains a TRAF domain and is exclusively expressed in the 
germline cause chromosome segregation defects during meiosis 
(Juranić et al. 2012). Additionally, POB1 is involved in drought tol-
erance in the Antarctic moss, Sanionia uncinata (Park et al. 2018).

3.3   |   SV Genotypes Are Associated With GxE

We detected five significant associations (FDR < 0.05) between 
SV presence/absence and one of two measures of plasticity (FW 
regression slope and MSE) for four of the eleven traits tested: 
the ratio of plant height and days to anthesis (MSE), growing 
degree days to silking (MSE), days to silking (slope) and days to 
anthesis (slope) (Figures 3 and S9). Four of the five SVs identified 

contained TE sequence and two SVs appeared to be directly 
caused by TE insertions.

On chromosome four, we detected an association between an SV 
and the MSE of the ratio of plant height to days to anthesis across 
growing locations. This SV appeared to be caused by a partial 
deletion of a Ty3- like LTR retrotransposon and was not proximal 
to any gene models in either the Oh43 or B73 alignments.

On chromosome five, we detected an association between an SV 
and the MSE of growing degree days to silking across growing 
locations. This SV appeared to be caused by a partial deletion of 
a hAT TIR transposon but was not proximal to any gene model 
in either the Oh43 or B73 alignments.

On chromosome 10, we detected three associations between 
SVs and plasticity: the slope of days to silking, the slope of 
days to anthesis, and the MSE of growing degree days to silk-
ing. The SV associated with days to silking appeared to be 
the direct result of an insertion of a PIF Harbinger TIR trans-
poson, the SV associated with the MSE of growing degree days 
to silking appeared to be an insertion of a PIF Harbinger TIR 
transposon, but the SV associated with the slope of days to 
anthesis did not contain TE sequence. The SV associated with 
the slope of days to silking was 713 bp from the uncharacter-
ized Oh43 gene Zm00039ab424300 (a syntelog of B73 gene 
Zm00001eb415280), while the SVs associated with the slope of 
days to anthesis and the MSE of growing degree days to silk-
ing were not proximal to any B73 or Oh43 gene model.

3.4   |   SV Genotypes Are Associated With 
Differential Gene Expression

We tested for associations between the genotypes of the nine SVs 
identified by GWAS and gene expression data from three tissues 
and detected associations for 29 genes (Figure 5). Differentially 
expressed genes were not immediately proximal to the SVs they 

FIGURE 3    |    Genomic positions and p- values for eight traits and nine 
markers with significant SV presence/absence associations—Bars at 
bottom represent the genomic positions for the 3087 SV markers used in 
the association panel, with chromosomes in alternating colours. Points 
are sized according to the − log10(p) (GDD: growing degree days; MSE: 
mean squared error; PH:DTA: ratio of plant height to days to anthesis). 
Note that the same SV was associated with Days to Silking and Days to 
Anthesis so there are 10 points total.
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FIGURE 4    |    Trait- associated structural variant polymorphisms between B73 and Oh43—Green arrows point to polymorphic SV regions that 
are associated with traits. Alignable regions are shown as green bars between genotypes. TEs are displayed inline and, therefore, do not dis-
play overlapping or nested TEs. (A) A mutator TE within an SV is present in B73 and absent in Oh43. This SV is 54 bp upstream of the B73 gene 
Zm00001eb330210, syntenic with Oh43 gene Zm00039ab336990. (B) A large SV containing multiple Ty3 TEs is present in Oh43 and absent in B73. 
This intergenic SV is approximately 215 kb from the nearest gene. (C) A multi TE SV composed entirely of Ty3 TEs is present in B73 and 2091 bp 
upstream of the gene Zm00001eb411130 (syntenic with Oh43 gene Zm00039ab420040). (D) A polymorphic incomplete TE SV is located within the 
Oh43 gene Zm00039ab208360 is present in Oh43 and absent in B73.
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were associated with (the closest differentially expressed gene 
was 911 kb from the associated SV) and most were on different 
chromosomes. Of the 29 significantly associated genes, three 
genes present in the B73v3 reference alignment were not pres-
ent in the B73v5 alignment and were removed from further con-
sideration. Of the 26 remaining genes, 11 were associated with 
a single SV on chromosome 10 for the MSE of growing degree 
days to silking, which was coded as ‘TE = SV’. The remaining 
six SVs were associated with between one and four differentially 
expressed genes and of those six SVs, three contained complete 
TE sequences, two contained incomplete TEs, and one did not 
contain any TE sequence. Of the three tissues tested, 16 genes 
were significantly differentially expressed solely in shoot tissue, 
seven in the tip of L3, two in the base of L3 and one was differ-
entially expressed in both the shoot tissue and the base of L3.

3.5   |   Most SVs Are in Linkage Disequilibrium 
With SNPs

All SV alleles used in the GWAS are within 1 Mb (mean distance 
of 649 bps) from the nearest SNP present in the HapMap3 dataset 
(Figure S10) and all SVs have an r2 > 0.1 with at least one nearby 
SNP. Only six SVs had an r2 < 0.5 with any nearby SNP. For the SV 
alleles that are significantly associated with traits, all have a SNP in 
perfect LD. Some of this LD may result from population structure: 
eight of the nine TEs associated with traits had significant allele 
frequency differences between populations (Figures S11 and S12).

Despite high LD between SVs and nearby SNPs, many of the as-
sociations detected between SVs and traits would not have been 
captured with a GWAS using all SNPs. Of the four SVs associ-
ated with main effects, only one was found in the same peak 
regions in the SNP GWAS (Figures S13 and S14). This lack of 
overlap between the SV GWAS associations and the SNP GWAS 
associations is a result of different significance cutoffs in the two 
different analyses. The HapMap3 SNP dataset used in the GWAS 
has 16,435,136 SNPs while there were only 3087 SVs in the SV 
association mapping analysis, so a SNP needed to have a p- value 
below 7.94 × 10−6 (averaged across traits) to overcome the FDR 
cut- off in the SNP GWAS while its linked SV only needed a p- 
value below 1.86 × 10−4 (averaged across traits) to be detected as 
significant in the SV GWAS.

4   |   Discussion

In this study we leveraged two reference genomes along with a 
broader set of short- read genomic data to capture SV diversity 
in a maize diversity panel. The maize genome's highly repeti-
tive nature makes it challenging to rely on short- read align-
ments alone to characterise SV polymorphism de novo (Hufford 
et al. 2021). By ascertaining SV presences and absences between 
two genotypes with long read data, we were able to call SVs 
across hundreds of maize genotypes using short- read data and 
identify SVs associated with trait variation.

We found nine SV polymorphisms associated with either av-
erage trait value or trait plasticity in a variety of maize pheno-
types (Figure 3). Previous studies have identified SVs associated 
with phenotypic variation that would not be discovered in 

analyses that use SNPs alone (Yang et al. 2019; Guo et al. 2020; 
Hartmann 2022; Zhang et al. 2024). Here, while the SV GWAS 
identified hits that were not present in the SNP GWAS, all SV as-
sociations detected were in perfect linkage disequilibrium with 
SNPs. We did not detect associations that were not captured by 
the SNP dataset but instead these SVs reached statistical signif-
icance because there were many fewer SVs than SNPs. Previous 
work investigating TE polymorphism in a different maize ge-
netic diversity panel did find that 20% of TEs were not in LD 
with SNPs but these SNPs tended to be at a low MAF in the 
population (Qiu et al. 2021). By focusing on common SV poly-
morphisms we likely have missed many SVs that are low fre-
quency and not in LD with surrounding SNPs—however these 
low frequency SVs would be unlikely to be associated with trait 
variation in a GWAS.

Population structure within the Buckler–Goodman panel could 
also potentially contribute to high LD between TEs associated 
with traits and nearby SNPs. Although LD tends to decay rap-
idly in maize, high LD has been observed around multiple QTLs 
(Flint- Garcia, Thornsberry, and Buckler 2003). For example, 
previous work in the Buckler–Goodman panel has found long 
stretches of linkage disequilibrium around a flowering- time as-
sociated allele (Hung et al. 2012). For many of the TEs identified 
as associated with traits, there were significant differences in 
allele frequencies between maize subpopulations. This pattern 
is consistent with observations that population structure can 
contribute a significant amount to phenotypic variation—over 
30% for life history traits like days to pollen and days to silking 
(Flint- Garcia et al. 2005).

Of the SVs included in this study, 91% contained TEs or are 
themselves of TE origin and the largest category of SVs were 

FIGURE 5    |    Genomic positions and p- values for genes with expres-
sion significantly associated with the genotypes of seven structural vari-
ant (SV) markers identified in our genome-wide association analyses—
Bars at bottom represent the genomic positions for the 3087 SV markers 
used in the association panel, with chromosomes in alternating colours. 
Black points show the position of the SV marker identified in each trait. 
Coloured points are sized according to the false discovery rate adjust-
ed − log10(p) with tissue collected from germinating shoot (GShoot) in 
green, the base of leaf three (L3Base) in orange, and the tip of leaf three 
(L3Tip) in blue. The SV marker on chromosome three was the most 
proximal to the identified SV marker, but was still 911 kb away (GDD: 
growing degree days; MSE: mean squared error).

Slope − Days to Anthesis

Slope − Days to Silking

MSE − GDD Silking

Ear Height

Days to Anthesis

Days to Silking

GDD Anthesis

1 2 3 4 5 6 7 8 910
Chromosome

Tr
ai

t

Tissue

GShoot
L3Base
L3Tip

−log10(p)

5
10
15

 1365294x, 2025, 24, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17662 by C
andice H

irsch - U
niversity O

f M
innesota Lib , W

iley O
nline Library on [22/01/2026]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



8 of 11 Molecular Ecology, 2025

clear examples of TE insertions (21,103 or 23.5%). All but one 
of the SVs associated with trait variation and with GxE con-
tained TE sequence, yet only the SVs on chromosome 10 for the 
slope of days to silking and the MSE of growing degree days 
to silking FW models appeared to be the direct result of TE 
insertions. The remaining seven associations result from dele-
tions that contain TEs. This result is consistent with previous 
findings that deletions have been the dominant contributors to 
SV polymorphism in maize (Munasinghe et al. 2023). We did 
observe that the SV associated with the MSE of growing degree 
days to silking on chromosome 10 that appeared to result from 
a TE insertion was the SV with the most associations with gene 
expression. This pattern is consistent with hypotheses that 
TE insertions are particularly likely to affect gene expression 
(Klein and Anderson  2022), although further work is clearly 
needed to evaluate how broad this pattern is across a larger 
sample of SVs.

We found five significant associations between SVs and plasticity, 
quantified using MSE and slopes from the Finlay–Wilkinson re-
gression models. The finding that different SVs were associated 
with traits than with trait plasticity is consistent with most pre-
vious work. For example, the genetic architecture of trait means 
and trait plasticity have been shown to differ in maize (Kusmec 
et al. 2017; Tibbs- Cortes et al. 2024) and Arabidopsis thaliana 
(Fournier- Level et al. 2022) but not sorghum (Wei et al. 2024). 
We also did not see a clear pattern that SVs are more likely to 
affect trait variation across environments than trait means, but 
this may result from having a small number of associations 
across both categories.

Overall, we have demonstrated an approach for using two refer-
ence genomes to identify SVs and then genotype for these vari-
ants in a larger panel of individuals with short- read sequencing 
data. This approach identifies SVs associated with phenotypic 
variation and with GxE interactions. However, this approach 
does bias us towards common alleles that were polymorphic 
within the two reference assemblies. This bias is acceptable for 
a GWAS, where we will also be biased towards detecting associ-
ations with variants at intermediate allele frequency, but would 
be less appropriate for any analysis that would need to identify 
SVs with low allele frequencies. As long- read data becomes 
more affordable and more reference genomes become available 
for more species, these types of approaches will improve our 
ability to detect SVs and investigate their potential functional 
importance.
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