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Abstract
We present Ego-Exo4D, a diverse, large-scale multimodal multiview video dataset and benchmark challenge. Ego-Exo4D
centers around simultaneously-captured egocentric and exocentric video of skilled human activities (e.g., sports, music, dance,
bike repair). 740 participants from 13 cities worldwide performed these activities in 123 different natural scene contexts,
yielding long-form captures from 1 to 42 minutes each and 1,286 hours of video combined. The multimodal nature of the
dataset is unprecedented: the video is accompanied bymultichannel audio, eye gaze, 3D point clouds, camera poses, IMU, and
multiple paired language descriptions—including a novel “expert commentary” done by coaches and teachers and tailored to
the skilled-activity domain. To push the frontier of first-person video understanding of skilled human activity, we also present
a suite of benchmark tasks and their annotations, including fine-grained activity understanding, proficiency estimation, cross-
view translation, and 3D hand/body pose. All resources are open sourced to fuel new research in the community. https://ego-
exo4d-data.org/
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1 Introduction

A dancer leaps across a stage; Lionel Messi delivers a pre-
cise pass; your grandmother prepares her famous dumplings.
We observe and seek human skills in a myriad of settings,
from the practical (fixing a bike) to the aspirational (dancing
beautifully).Whatwould it mean forAI to understand human
skills? And what would it take to get there?

Advances in AI understanding of human skill could facil-
itate many applications. In augmented reality (AR), a person
wearing smart glasses could quickly pick up new skills with
a virtual AI coach that provides real-time guidance. In robot
learning, a robot watching people in its environment could
acquire new dexterous manipulation skills with less physical
experience. In social networks, new communities could form
based on how people share their expertise and complemen-
tary skills in video.

We contend that both the egocentric and exocentric view-
points are critical for capturing human skill. Firstly, the two
viewpoints are synergistic. The first-person (ego) perspec-
tive captures the details of close-by hand-object interactions
and the camera wearer’s attention, whereas the third-person
(exo) perspective captures the full body pose and surround-
ing environment context. See Figure 1. Not coincidentally,
instructional or “how-to” videos often alternate between a
third-person view of the demonstrator and a close-up view
of their near-field demonstration. For example, a chef may
describe their approach and the equipment from an exo view,
then cut to clips showing their hands manipulating the ingre-
dients and tools from an ego-like view.
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Secondly, not only are the ego and exo viewpoints syner-
gistic, but there is a need to translate fluently from one to the
other when acquiring skill. For example, imagine watching
an expert repair a bike tire, juggle a soccer ball, or fold an
origami swan—then mapping their steps to your own body.
Cognitive science tells us that even from a very young age
we can observe others’ behavior (exo) and map it onto our
own (ego) (Flavell et al., 1981; Newcombe, 1989), and this
actor-observer translation remains the foundation of visual
learning.

Realizing this potential, however, is not possible using
today’s datasets and learning paradigms. Existing datasets
comprised of both ego and exo views (i.e., ego-exo) are
few (Sigurdsson et al., 2018; Sener et al., 2022; Kwon et al.,
2021; la Torre et al., 2009; Rai et al., 2021), small in scale,
lack synchronization across cameras, and/or are too staged
or curated to be resilient to the diversity of the real world.
Thus the current literature for activity understanding primar-
ily attends to either the ego (Damen et al., 2021; Grauman et
al., 2022) or exo (Kay et al., 2017; Gu et al., 2018; Monfort
et al., 2019; Soomro et al., 2012) view, leaving the ability to
move fluidly between the first- and third-person perspectives
out of reach. Instructional video datasets (Miech et al., 2019;
Tang et al., 2020; Zhukov et al., 2019; Zhou et al., 2018) offer
a compelling window into skilled human activity, but (like
the above) are limited to single-viewpoint video, whether
purely exocentric or mixed with “ego-like” views at certain
time points.

We introduce Ego-Exo4D, a foundational dataset to sup-
port research on ego-exo video learning and multimodal per-
ception. The result of a two-year effort by a consortium of 15
research institutions, Ego-Exo4D is a first-of-its-kind large-
scale multimodal multiview dataset and benchmark suite. It
constitutes the largest public dataset of time-synchronized
first- and third- person video, captured by 740 diverse cam-
era wearers in 123 distinct scenes and 13 cities worldwide.
For every sequence, Ego-Exo4D provides both the camera
wearer’s egocentric video, as well as multiple (4-5) exocen-
tric videos from tripods placed around the camera wearer.
All views are time-synchronized and precisely localized in
a metric, gravity-aligned frame of reference. The total col-
lection has 1,286 hours of video and 5,035 instances, each
spanning 1 to 42 minutes of continuous capture.

Ego-Exo4D focuses on skilled single-person activities.
The 740 participants perform skilled physical and/or pro-
cedural activities—dance, soccer, basketball, bouldering,
music, cooking, bike repair, health care—in an unscripted
manner and in natural settings (e.g., gym, soccer field,
kitchens, bike shops, etc.), exhibiting a variety of skill lev-
els from novice to expert. All video is recorded with rigorous
privacy and ethics policies and formal consent of participants.

Ego-Exo4D is not only multiview, it is also multimodal.
Captured with the unique open-source Aria glasses (Engel et
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Fig. 1 Ego-Exo4D offers egocentric video alongside multiple time-
synchronized exocentric video streams for an array of skilled human
activities—1,286 hours of ego and exo video in total. The data is both

multiview and multimodal, and it is extensively annotated with lan-
guage, 3D body and hand pose, keysteps, procedural dependencies, and
proficiency ratings in support of our proposed benchmark tasks

al., 2023), all ego video is accompanied by 7-channel audio,
IMU, eye gaze, both RGB and two grayscale SLAM cam-
eras, and 3D environment point clouds. Additionally, Ego-
Exo4D provides multiple new video-language resources, all
time indexed: first-person narrations by the camera wear-
ers describing their own actions; third-person play-by-play
descriptions of every camera wearer action; and third-person
spoken expert commentary critiquing their performance. The
latter is particularly novel: performed by domain-specific
experienced coaches and teachers, it focuses on how an
activity is executed rather than merely what is being done,
surfacing subtleties in skilled execution not perceivable by
the untrained eye. All three language corpora are time-
stamped against the video. To our knowledge, there is no
prior video resource with such extensive and high quality
multimodal data.

Alongside this data, we introduce benchmarks for foun-
dational tasks for ego-exo video and we formalize them with
annotations and evaluation protocols to spur the community’s
efforts. We propose four families of tasks:

1. ego-exo relation, for relating the actions of a teacher (exo)
to a learner (ego) by estimating semantic correspondences
and translating viewpoints;

2. ego(-exo) recognition, for recognizing fine-grained
keysteps and task structure;

3. ego(-exo) proficiency estimation, for inferring how well a
person is executing a skill;

4. ego pose, for recovering skilled 3D body and hand move-
ments from ego-video.

We provide annotations for each task—the result of more
than 200,000 hours of annotator effort. To kickstart work in
these new challenges, we also develop baseline models and
report their results.We are hosting the first public benchmark
challenges in 2024.

Though we are motivated by skill learning, Ego-Exo4D
is poised for even broader influence, beyond the proposed
benchmarks. Whereas existing datasets lack activity model-
ing in real-world 3D contexts (e.g., restricted to mocap suits
and/or lab settings) and existing 3D datasets typically focus
on static scenes and objects.

Ego-Exo4D is a resource for general 3D vision—such
as environment reconstruction, camera relocalization, audio-
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Fig. 2 Overview of the paper and its sections, including the Ego-Exo4D dataset (Sec. 3.1, 3.2, 3.3), the natural language descriptions collected
alongside the dataset (Sec. 4), and the benchmark tasks (Sec. 5)

visual mapping, and many others. Similarly, our novel
video-language resources will offer many opportunities for
grounding of actions and objects, multimodal representation
learning, and language generation. Finally, though our tasks
prioritize perception from the “ego-only” perspective, the
exo component of our data ensures its utility for the more
traditional exo viewpoint too, e.g., for activity recognition
and body pose estimation.

In summary, Ego-Exo4D is the community’s first diverse,
large-scale multimodal multiview video resource. We have
open sourced all the data, annotations, camera rig proto-
col, and benchmarks. With this release, we aim to fuel new
research in ego-exo, multimodal activity, and beyond.

Figure 2 provides a roadmap for this paper. After review-
ing related work (Sec. 2), we describe the dataset—its
contents, camera setup, participants, and our approach to col-
lection (Sec. 3)—followed by an overview of its three forms
of natural language annotations (Sec. 4). Finally, we intro-
duce the benchmark tasks organized into the four families
described above, outlining the motivation, task definitions,
metrics, and baseline results for each (Sec. 5).

2 Related work

Nextwe reviewpriorwork in datasets, human skill, and cross-
view analysis. Section 5 will discuss additional related work
for each benchmark task.

Egocentric datasets There has been a surge of interest in
egocentric video understanding, facilitated by recent ego-
video datasets showing unscripted daily-life activity as in
Ego4D (Grauman et al., 2022), EPIC-Kitchens (Damen et
al., 2018, 2021; Tschernezki et al., 2023), UT Ego (Lee

et al., 2012), ADL (Pirsiavash & Ramanan, 2012), and
KrishnaCam (Singh et al., 2016), or procedural activities
as in EGTea (Li et al., 2018), AssistQ (Wong et al., 2022),
Meccano (Ragusa et al., 2021), CMU-MMAC (la Torre et
al., 2009), EgoProcel (Bansal et al., 2022), and HoloAs-
sist (Wang et al., 2023). Unlike any of the above, Ego-Exo4D
focuses on multimodal ego and exo capture, and it is focused
on the domain of skilled activities.

Many members of our Ego-Exo4D team worked together
to create Ego4D (Grauman et al., 2022). The two datasets
share some properties: both emphasize unscripted data, with
long continuous captures in authentic environments with
diverse participants, and both offer novel benchmark tasks
and video-language annotations. However, whereas Ego4D
focuses on daily-life activity from the egocentric view alone,
Ego-Exo4D focuses on skilled activity in specific domains,
captures both egocentric and exocentric viewpoints, and
is significantly more multimodal. Ego-Exo4D’s language
annotations are also broader in scope compared to Ego4D,
going beyond play-by-play action narrations to also include
first-person how-to descriptions and third-person expert
commentary about the skilled activities.

Multiview and ego-exo datasets Most existing multiview
datasets focus on static scenes (Chang et al., 2017; Xia et
al., 2018; Straub et al., 2019; Ramakrishnan et al., 2021;
Xiao et al., 2013) and objects (Reizenstein et al., 2021;
Wu et al., 2015), with limited (exo only) multiview human
activity (Weinland et al., 2006; Corona et al., 2021). CMU-
MMAC (la Torre et al., 2009) and CharadesEgo (Sigurdsson
et al., 2018) are early efforts to capture both ego and exo
video. CMU-MMAC (la Torre et al., 2009) features 43 par-
ticipants in mocap suits who cook 5 recipes in a lab kitchen.
In CharadesEgo (Sigurdsson et al., 2018), 71 Mechanical
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Table 1 Comparison between Ego-Exo4D and relevant datasets. Com-
pared to existing datasets capturing both egocentric and exocentric
views, Ego-Exo4D features more modalities, more subjects, and sig-
nificantly larger scene diversity, as well as rich annotations including
key-step segments, object masks, and three meticulously synchro-
nized natural language descriptions paired with the videos (narrations,
narrate-and-act, and expert commentary). To our knowledge, Ego-
Exo4D also offers the largest available manual ground truth egocentric
body pose annotations to date (in the above datasets or any others), and it
has∼14M total frames of 3D pose annotations and pseudo-annotations.
#Tasks denotes the number of tasks that subjects were asked to execute

in each dataset, Subj. denotes recorded subjects, #BP refers to num-
ber of 3D body poses, #HP refers to number of 3D hand poses, Nar.
denotes narrations, and EC refers to expert commentary annotations.
Modality abbreviations: Video, Audio, Depth, Gaze, Stereo, IMU, 3D
Environments, Thermal IR, GPS, Motion Capture, 6DOF, Barometer,
Magnetometer. ∗ denotes action taxonomies defined in terms of verbs
and nouns, statistics reported as (number of verbs; number of nouns).
† The number has been taken from the Moment Query benchmark. ‡
Number of tasks for Ego-Exo4D includes 21 procedural activities and
22 physical activities (listed in Table 2)

Turkers record 34 hours of scripted scenarios (e.g., “type
on laptop, then pick up a pillow”) from the ego and exo
perspectives sequentially, yielding unsynchronized videos
with non-exact activity matches. More recent ego-exo efforts
focus on specific activities in one or two environments.
Assembly101 (Sener et al., 2022) and H2O (Kwon et al.,
2021) provide time-synced ego and exo video at a lab table-
top where people assemble toy cars or manipulate handheld
objects, with 53 and 4 participants, and 513 and 5 hours
of footage, respectively. LEMMA (Jia et al., 2020) con-
tainsmulti-agent, multi-task activities with 15 common daily
tasks, performedby8 individuals in 14uniquekitchens/living
rooms. Homage (Rai et al., 2021) provides 30 hours of ego-
exo video from 27 participants in 2 homes doing household
activities like laundry. EgoExoLearn (Huang et al., 2024)
provides 120 hours of egocentric videos emulating the human
demonstration following process with exocentric demonstra-
tion videos.

Compared to any of the prior efforts, Ego-Exo4D offers
an order of magnitude more participants, diverse locations,
and hours of footage (740 participants, 123 unique scenes,
13 cities, 1,286 hours). Importantly, our focus on skilled tasks
takes the participants out of the lab or home and into settings

like soccer fields, dance studios, rock climbing walls, and
bike repair shops. Such activities also yield a wide variety
of full body poses and movements within the scene, beyond
using objects at a tabletop. This variety means Ego-Exo4D
augments existing 3D human body pose datasets (Zhang
et al., 2022; Li et al., 2023; Joo et al., 2017; Khirodkar
et al., 2023; Guzov et al., 2021). Finally, compared to any
prior ego-exo resource, Ego-Exo4D’s suite of modalities and
benchmark tasks are novel and will expand the research
directions the community can take for egocentric and/or
exocentric video understanding. Table 1 summarizes Ego-
Exo4D’s properties compared to those of existing datasets.

Human skill and video learning Analyzing skill and action
quality has received limited attention (Pirsiavash et al., 2014;
Bertasius et al., 2017; Parmar&Morris, 2019;Doughty et al.,
2018, 2019; Zhang et al., 2023). Research in instructional or
“how-to” videos is facilitated by (largely exo) datasets like
HowTo100M (Miech et al., 2019) and others (Tang et al.,
2020; Zhukov et al., 2019; Zhou et al., 2018; Ben-Shabat et
al., 2020). Challenges include grounding keysteps (Zhukov
et al., 2019; Elhamifar&Huynh, 2020;Xu et al., 2021;Miech
et al., 2020, 2019; Dvornik et al., 2022; Bansal et al., 2022;
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Lin et al., 2022), procedural planning (Chang et al., 2020;
Bi et al., 2021; Zhao et al., 2022; Wang et al., 2023; Zhong
et al., 2023; Shvetsova et al., 2022; Ko et al., 2022; Cao et
al., 2022), learning task structure (Narasimhan et al., 2023;
Zhou et al., 2018; Elhamifar & Huynh, 2020; Alayrac et al.,
2016; Ashutosh et al., 2023; Zhou et al., 2023), and lever-
aging noisy narrations (Lin et al., 2022; Miech et al., 2020,
2019). A portion of Ego-Exo4D is procedural activities, but
unlike the above, it offers simultaneous ego-exo capture. The
scale and diversity of our data—including its three forms of
language descriptions—widen the avenues for skilled activ-
ity understanding research.

Ego-exo cross-viewmodeling There is limited priorwork on
ego-exo cross-viewmodeling, arguably due to a lack of high-
quality synchronized real-world data. Prior work explores
matching people between videos (Ardeshir & Borji, 2016,
2018; Fan et al., 2017; Xu et al., 2018; Wen et al., 2021) and
learning view-invariant (Ardeshir & Borji, 2018; Sigurdsson
et al., 2018; Sermanet et al., 2018; Yu et al., 2019, 2020;
Xue & Grauman, 2023) or ego features (Li et al., 2021).
Beyond the specific case of ego-exo, cross-view methods
are explored for translation (Regmi & Borji, 2018, 2019;
Tang et al., 2019; Ren et al., 2021; Luo et al., 2024; Cheng
et al., 2024), novel view synthesis (Liu et al., 2021; Ren
& Wang, 2022; Rombach et al., 2021; Wiles et al., 2020;
Watson et al., 2022; Tseng et al., 2023; Chan et al., 2023),
and aerial to ground matching (Regmi & Shah, 2019; Lin et
al., 2015). Ego-Exo4D provides a testbed of unprecedented
size and variety for cross-view modeling. In addition, our
ego-exo relation tasks (cf. Section 5) surface new challenges
in novel-view synthesis with widely varying viewpoints.

Delta with the CVPR 2024 paper Compared to the Ego-
Exo4DCVPR 2024 paper (Grauman et al., 2024), this article
provides a more comprehensive exposition of the dataset
and benchmarks, in all respects—including overall writing,
detail on baseline models and results, new figures, new anal-
ysis of related work, and discussion of the strengths and
weaknesses of our contribution. In addition, this manuscript
reflects the newly released “v2” of the Ego-Exo4D dataset,
which is larger, more extensively annotated, and leads to
newly reported benchmark results not available in the CVPR
2024 paper.

3 Ego-Exo4D dataset

Next we introduce the dataset and its scope. Notably, the
video capture was a distributed but coordinated effort per-
formed by 12 research labs who worked together over nearly
two years to create Ego-Exo4D. Importantly, our data collec-
tion across the sites was a coordinated effort, with common

Fig. 3 Aria device used for egocentric recordings

guidelines, scenarios, and camera rigs. In thisway, the dataset
is cohesive at the same time it is diverse.

In the following, we first introduce the ego-exo camera
rig and time synchronization process (Sec. 3.1). Then we
overview the domains and activities that compose the dataset
(Sec. 3.2), followed by discussion of the participants’ diverse
backgrounds and expertise (Sec. 3.3).

3.1 Ego-exo camera rig

To collect ego-exo data at a global scale, we developed
a low-cost camera recording rig that was portable, auto-
synchronized, captured a rich suite of sensor data, and
attainable internationally.

Our solution consists of 1 Aria (see Figure 3), 4 GoPros1,
1 GoPro Remote, 4 Tripods, 4 SD Cards, 4 Tripod Mount
Adapters, 4 Velcro’d Battery Packs, 4 USB-A to USB-C
Cables, 1 Glasses Sports Strap, 1 Smartphone, and 1 Lap-
top or Tablet for questionnaires. The total cost excluding the
Aria/phone/laptop is under $3,000.

3.1.1 Aria device and sensors

Aria is an egocentric recording device in glasses form-factor
created by Meta. It is designed as a research tool for ego-
centric machine perception and contextualized AI research,
and available to researchers across the world through projec-
taria.com.

The Aria device emulates future AR- or smart-glasses
catering to machine perception and egocentric AI rather than
human consumption. It is designed to be wearable for long
periods of time without obstructing or impeding the wearer,
allowing for natural motion even when performing highly
dynamic activities—such as playing soccer or dancing. It
has a total weight of 75g (compared to over 150g for a single
GoPro camera), and fits just like a pair of glasses.

Further, the device integrates a rich sensor suite that is
tightly calibrated and time-synchronized, capturing a broad
range of modalities. See Figure 4. For Ego-Exo4D, the fol-
lowing sensor configuration is used:

1 This represents the common core of the collection rig used in all
capture settings. In certain captures, additional exo or ego GoPros are
also used.
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Fig. 4 Sensor streams recorded by the Project Aria device. Top: RGB
camera, left and rightmonochromeand eye cameras.Bottom: 10-second
extracts from microphones, accelerometer, gyroscope, magnetometer
and barometer respectively

• One rolling-shutter RGB camera recording at 30 fps
and 1408 × 1408 resolution covering a field of view of
110◦.

• Two global-shuttermonochrome cameras recording at
30 fps and 640×480 resolution. They provide peripheral
vision, and each cover a field of view of 150◦.

• Two monochrome eye-tracking cameras recording at
10 fps and 320 × 240 resolution.

• An array of seven microphones recording spatial audio
around the wearer.

• Two IMUs (800Hz and 1000Hz respectively), a barom-
eter (50 fps) and a magnetometer (10 fps).

All sensor streams come with metadata such as timestamps
and per-frame exposure times. All data is made available in
raw form as part of the Ego-Exo4D dataset. For convenience,
we also include pre-computed slices of data that suit specific
purposes, e.g., 2D gaze points, mp4s of each camera, and
smaller .vrs files with a subset of sensor streams.

3.1.2 Precomputed 3D spatial signals

Project Aria’s machine perception service (MPS) provides
software building blocks that simplify leveraging the differ-
ent modalities recorded. These functionalities are likely to be
available as real-time, on-device capabilities in future AR- or
smart-glasses. We use the following core functionalities and
include their raw output as part of the dataset. See Figure 5.
See (Engel et al., 2023) for more details.

• Calibration: All sensors are intrinsically and extrinsi-
cally calibrated. MPS also provides time-varying online-
calibration that corrects for tiny deformations due to
temperature changes or stress applied to the glasses
frame.

Fig. 5 Aria MPS output for several recordings. Top: point cloud and
estimated egocentric camera trajectory for a basketball session inChapel
Hill. This single continuous recording is 60 minutes long, has a total
trajectory length of 2188m, and contains 41 distinct takes.Bottom: three
screenshots of a cooking recording, visualizing the current camera pose
(red), eye gaze (purple), and last second of motion (blue) (Color figure
online)

• Aria 6DoF localization: Every recording is localized
precisely and robustly in a common, metric, gravity-
aligned coordinate frame, using a state-of-the-art VIO
and SLAM algorithm. This provides millimeter-accurate
6DoF poses for every captured frame, as well as high-
frequent (1kHz) motion in-between camera frames.

• Eye gaze: The gaze direction of the user is estimated
as a single outward-facing ray anchored in-between the
wearer’s eyes. We use an optional eye gaze calibration
procedure, where the mobile companion app directs the
wearer to gaze at a pattern on the phone screen while per-
forming specific head movements. This information was
then used to generate a more accurate eye gaze direction,
personalized to the particular wearer.

• Point clouds: A 3D point cloud of static scene elements
is triangulated from themovingAria device, using photo-
metric stereo over consecutive frames or left/right SLAM
camera. The output contains both the 3D point clouds as
well as the raw, causally computed, 2D observations of
every point in the camera images.

• GoPro 6DoF localization: For Ego-Exo4D, we addi-
tionally built functionality on top of the existing Aria
MPS functionality, specifically to localize the static
GoPro cameras. To achieve this, we use the map built
with Aria’s SLAM cameras, and perform 6 DoF local-
ization of GoPro frames on the map. To obtain the
GoPro calibration, we manually calibrated one device
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in the lab to obtain default parameters, and then use the
P4P (Kukelova et al., 2016) algorithm (with RANSAC
to reject matching outliers) to estimate the 6 DoF pose,
as well as re-estimate the focal length to compensate for
possible calibration variation between devices.

3.1.3 Recording procedure

Our recording procedure involves setting up the staticGoPros
on tripods in locations generally consistent within each sce-
nario, conducting a walk-around with the Aria to build a
basemap for 3D reconstruction and camera localization, dis-
playing QR codes at the start/end to assist time sync, and
showing a take separation QR between each take. The cam-
era rig was extended for certain sites with additional mounts
and GoPros, discussed below.

Specifically, to sync cameras, we employ a pre-rendered
sequence of QR Codes (i.e., QR code video) that encode
a wall-clock time. We show this QR code video using the
smartphone at 29fps to all cameras in sequence and exploit
the difference in frame rates to finely sync the cameras. An
additional stage of manual verification ensures each GoPro
camera was within 1 frame (+-16.66ms) of the Aria RGB
camera. To amortize the setup and tear down time required for
each recording, we record multiple ‘takes’ (i.e., one instance
of a certain task) back-to-back and use a ‘Take Separator’
QR code to separate takes in post-processing.

3.2 Domains and environments

Ego-Exo4D focuses on skilled human activity. This is in con-
trast to existing ego-only efforts like Ego4D (Grauman et al.,
2022), which has a broad span of daily-life activities. We
intentionally select the domains based on a few criteria: Will
it illustrate skill and a variety of expertise?Dowe have access
to real-world settings and participants for that scenario? Is
there visual variety to be expected across different instances?
Will the ego and exo views offer complementary informa-
tion? Will it present new challenges unaddressed by current
datasets? Overall, by scoping to certain domains, we aim to
build up sufficient density of data within a core set of skills
for training and evaluating models.

Physical and procedural activities Intersecting these crite-
ria, we arrived at two broad categories2 of skilled activity:
physical and procedural, together comprising eight total
domains. The physical domains are soccer, basketball, dance,
bouldering, and music. They emphasize body pose and
movements as well as interaction with objects (e.g., a ball,

2 Note that in general physical and procedural are not mutually exclu-
sive labels. An activity can both require physical skill and procedural
steps.

musical instrument). The procedural domains are cooking,
bike repair, and health care. They require performing a
sequence of steps to reach a goal state (e.g., a completed
recipe, a repaired bike) and generally entail intricate hand-
object manipulations with a variety of objects (e.g., bike
repair tools; cooking utensils, appliances, and ingredients).
All domains entail regular attention shifts (revealed by head
pose and gaze) by the participant. Figure 6 summarizes the
eight domains with example frames and data statistics for
each. In Section 5 we discuss how the domains relate to the
proposed benchmarks.

In total, we have 43 activities derived from the eight
domains. For example, cooking is comprised of 14 recipes;
soccer is comprised of 3 drills, and music is comprised of
3 instruments. See Table 2. Those 43 activities break down
further into 689 total unique keysteps. The length of a take
ranges from 8 seconds to 42 minutes, with procedural activ-
ities like cooking having the longest sustained captures.

In all Ego-Exo4D captures, there is a single focal partici-
pant who is performing the activity of interest. The activities
are chosen such that this does not interfere with authenticity
of performing the task (e.g., soccer and basketball captures
are about individual skills like penalty kicks or free throws;
cooking follows an individual chef making an entire dish).
While the single-actor focus allows thorough study of the
proposed procedural and physical activities, the dataset does
not allow the exploration of multi-person interactive behav-
iors. For multi-person egocentric data, we point to valuable
complementary efforts in the literature focused on social
interactions and natural conversation, like EgoCom (North-
cutt et al., 2023), the GeorgiaTech Disney dataset (Fathi et
al., 2012), Ego4D’s “social” and “AV” clips (consisting of
hundreds of hours of video) (Grauman et al., 2022), the Easy-
Com dataset of noisy environment conversations (Donley et
al., 2021), and the EgoLife capture of interpersonal daily life
activities (Yang et al., 2025).

Distribution of activities per site To achieve visual diver-
sity in the data, multiple labs across our team (typically
3-5) captured each Ego-Exo4D domain. Figure 9 shows the
breakdown of which scenarios were captured by each partner
institution as well as a map highlighting the locations of the
12 labs involved in data collection.3 The domain selection per
site is based on the lab’s own preferences and local opportu-
nities to capture data of these scenes at scale. Cooking is our
one cross-cutting domain, collected at each site. We identi-
fied cooking as a priority domain because it resonates around
the world as a human need and interest. In total, the cook-

3 An additional four institutions not shown on the map are part of the
Ego-Exo4D consortium (e.g., contributing to benchmarks) but did not
collect data. They are UT Austin (USA), KAUST (Saudi Arabia), Uni-
versity of Catania (Italy), and University of Bristol (UK).
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Fig. 6 Ego-Exo4D captures skilled activity from 43 tasks and 689
keysteps in 8 domains, in a wide variety of 123 scenes in 13 cities
in Japan, Colombia, Canada, India, Singapore, and 7 US states. Each

domain is captured at multiple sites—from 2 to 64 unique locations.
In total the dataset offers 1,286 hours of ego+exo video comprised of
5,035 takes from 740 camera wearers. An average take is 2.6 minutes

Table 2 The 43 specific activities collected for the three procedural and five physical domains

Procedural Physical

Cooking: Health: Music: Bouldering:

- Omelette - COVID test - Violin - V0 through V10

- Scrambled eggs - Cardiopulmonary - Piano

- Tomato and egg Resuscitation (CPR) - Guitar

- Sesame-ginger Asian salad

- Greek salad Bike repair: Basketball: Soccer:

- Dumplings - Remove/install a wheel - Mikan layup drill - Freestyle dribbling

- Noodles - Replace an inner tube - Righthand reverse layup - Freestyle juggling

- Pasta - Clean and lubricate the chain - Mid-range jump shot - Penalty kicks

- Sushi roll - Adjust rear derailleur

- Samosa (both limit screws Dance:

- Coffee latte & indexing) - Easy choreography

- Chai tea - Advanced choreography

- Milk

- Cookies

- Brownies

ing scenario of Ego-Exo4D contains more than 650 takes of
cooking performed by more than 170 chefs in 60 different
environments around the world, forming nearly 100 hours of
ego video alone.

Authentic environments for capture The data is collected
in authentic settings—such as real-world bike shops, soccer
pitches, or bouldering gyms—–as opposed to lab environ-
ments. Since every domain is covered by more than one lab,
the dataset exhibits visual variety from the different physi-
cal locations. For example, we have videos of chefs in New
York City, Vancouver, Philadelphia, Bogota, and others; soc-
cer players inTokyo,ChapelHill, Hyderabad, Singapore, and
Pittsburgh. Furthermore, even within the captures done by a

single lab, there are often multiple different sites used for
filming (e.g., a couple different bike shops in the same city).
Figure 7 and 8 shows example frames illustrating the variety
of the sites and tasks.

Domain-specific collection guidelines To ensure consis-
tency across the dataset, we developed data collection
guidelines for each domain. These guidelines describe the
recommended camera positioning, instructions for partici-
pating camerawearers, alongwith important context-specific
considerations. For example, given privacy concerns, our
health guidelines required data collection participants to dis-
card COVID tests before results were visible. The guidelines
provide general parameters from which to collect data; how-
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ever, they were not rigid steps. Indeed, to support diversity
and implementation at a global scale, there are site-specific
nuances, for example, differing standards for the implemen-
tation of CPR, cultural differences in the ingredients used
for different targeted dishes, and location-specific boulder-
ing routes.

The primary domain-specific design decision is the place-
ment of the exocentric cameras. The best visibility points for
a given domain depends on the general scene and objects
involved (open soccer field vs. cluttered kitchen with cab-
inets) as well as how the person interacts with the space.
For example, for soccer recordings, an exo camera placed
in the goal gives great visibility of the players’ shots, while
in dance or music, an overhead exocentric (or downward
pointing egocentric) camera captures important close-to-
body detail about the participants’ arms and hands. Generally
the exo cameras were placed to ensure viewpoint coverage
and achieve the complementary hand-object near-field inter-
actions as well as the participants’ full-body movements.

Appendix B describes the data collection details that
are specific to each consortium partner site, e.g., how they
recruited participants, which of the domains and activities
they captured, or any modalities they added on top of the
common rig.

3.3 Participants

Next we describe the participants who wore the egocentric
cameras in Ego-Exo4D.

Credentials and expertise We recruited 740 total partici-
pants from the local communities of 12 labs. All scenarios
feature real-world experts, where the camera-wearer partici-
pant has specific credentials, training, or expertise in the skill
being demonstrated. For example, among the Ego-Exo4D
camera wearers are professional and college athletes; jazz,
salsa, and Chinese folk dancers and instructors; competitive
boulderers; professional chefs who work in industrial-scale
kitchens; bike technicians who service dozens of bikes per
day. Many of them have (individually) over 10 years of expe-
rience.

Experts are prioritized given they are likely to conduct
activities without mistakes or distractions, providing a strong
ground truth for how to approach a given task. However, we
also include capture from people with varying skill levels, as
well—essential for our proposed skill proficiency estimation
task (Section 5.3). Notably, Ego-Exo4D represents human
intelligence in a new way by capturing domain-specific
expertise—both in the video as well as the accompanying
expert commentary (see Section 4)—portraying the evolu-
tion of a skill from beginners to experts.

Demographics The camera wearers range in age from 18 to
74 years old, with 37% self-identifying as female 60% male
and 3% as non-binary or preferring not to say. See Figure 10.
In total, the participants self report more than 24 different
ethnicities.4 Details are in Appendix C.

Recruiting To recruit participants, each partner institution
chose its own approach. This included using campus email
lists, flyers in coffee shops, word of mouth to family and
friends, online ads, posts on social media, university com-
munication channels, temp hiring agencies, and connecting
with schools, gyms, and teams, e.g., soccer schools, climbing
gyms, professional and university athletics organizations.

Characterizing skill levels To ensure consistent, high qual-
ity annotations for our benchmarks (discussed below), we
identified three crucial pieces of information about the par-
ticipants that would be difficult to capture with third-party
annotators: the participant’s skill level, the objects they are
using, and the actions they are completing. We captured the
participants’ perceived skill level and performance using pre-
task and post-task surveys, respectively, which are available
with the Ego-Exo4D dataset.

For the pre-task survey, we ask 10 questions like, “how
many years have you been doing this task?” and “have you
taught this activity to others before?” (details in Table 16 in
Appendix C). These questions are designed to bemore easily
quantifiable than simply asking participants to self-rate their
skill level.5

For the post-task survey, we ask the participant to reflect
on how well they did the task, with questions like, “what
mistakes or errors did you make?” and “did it take longer or
shorter than your initial expectation and why?”. Finally, to
capture the actions and objects with which they interact, we
ask participants to perform a round of first-person narrations
called “narrate-and-act” (detailed below in Section 4).

3.4 Compliance with ethical standards

Ego-Exo4D was collected following rigorous privacy and
ethics standards. This included undergoing formal inde-
pendent review processes at each institution to establish
the standards for collection, management, and informed
consent. Similarly, all Ego-Exo4D data collection adhered
to the Project Aria Research Community Guidelines for

4 Sharing this information was optional for all research subjects. Eth-
nicity is reported based on location specific categories as defined by the
relevant partner lab. No such information was gathered from research
subjects participating in our collections in California, New York, and
Pittsburgh, Pennsylvania.
5 We also obtain proficiency ratings for the participants via our expert
commentators (cf. Section 4.1).
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Fig. 7 Ego-Exo4D captures skilled activity from 8 domains, in a wide variety of 123 scenes in 13 different cities in Japan, Colombia, Canada,
India, Singapore, and 7 US states. Every odd column shows an ego view, and the adjacent even column shows one of its paired exo views

responsible research. Since the scenarios allow for closed
environments (e.g., no passerbys) nearly all video is avail-
able without de-identification. For information about each
individual partner’s protocols and restrictions, please see
Appendix B. Ego-Exo4D data is gated behind a license
system, which defines permitted uses, restrictions, and con-
sequences for non-compliance.

4 Natural language descriptions

Ego-Exo4D also offers three kinds of paired natural language
datasets, each time-indexed alongside the video: expert com-
mentary, narrate and act, and atomic action descriptions. See
Figure 11 and Figure 14 for examples of each language type
highlighting their distinctions in style and point of view.
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Fig. 8 Ego-Exo4D captures skilled activity from 8 domains, in a wide variety of 123 scenes in 13 different cities in Japan, Colombia, Canada,
India, Singapore, and 7 US states. Every odd column shows an ego view, and the adjacent even column shows one of its paired exo views

These language annotations are not steered towards any
single benchmark, but rather are a general resource that will
inspire new language-vision possibilities, such as grounding
actions and objects, self-supervised representation learning,
multimodal embeddings, video-conditioned language mod-
els, and skill assessment from video. We also anticipate the
temporally grounded descriptions to be valuable for pre-

training foundationmodels (Lin et al., 2022; Pramanick et al.,
2023) or automated video captioning (Pan et al., 2020; Iashin
& Rahtu, 2020; Zhao et al., 2023), both of which are rapidly
growing areas of research. Furthermore, the time-anchored
aspect of the three language annotations provides the oppor-
tunity to retrieve time points in specific Ego-Exo4D videos
that correspond to queried moments, actions, or phrases.
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Fig. 9 Geographic coverage of Ego-Exo4D and breakdown of which scenarios are captured in which cities. Note that even within a given city,
there may be multiple sites (e.g., multiple bike repair shops or kitchens in the same city)

Fig. 10 Camera wearer participants’ self-reported demographic information (age and gender)
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Fig. 11 Ego-Exo4D offers 3 paired video-language corpora. Word cloud is from expert commentary which critiques the performance

Finally, they are valuable to mine the dataset for the dis-
tribution of objects and activities present, e.g., for taxonomy
formation.

4.1 Expert commentary

The first language dataset is spoken expert commentary. The
goal is to reveal nuances of the skill that are not always visible
to non-experts.We recruited 52 experts (distinct from the par-
ticipants) to critique the recorded videos, call out strengths
and weaknesses, explain how the specific behavior of the
participant (e.g., hand/body pose, use of objects) affects the
performance, and provide spatial markings to support their
commentary. We provide both the transcribed speech and the
raw audio (interesting for its inflection and non-word utter-
ances), as well as the experts’ spatial drawings and numeric
ratings of each participant’s skill.

These commentaries are quite novel: they focus on how
the activity is executed rather than what it entails, captur-
ing subtle differences in skilled execution. We believe this
can unlock new fundamental problems (e.g., proficiency esti-
mation below) and disruptive future applications (e.g., AI
coaching).

In the following, we describe the qualifications and
background of our experts, followed by the commentary
instructions and scope.

Experts’ qualifications The 52 experts are not only well-
credentialed in their areas of expertise, but also have coaching
or teaching experience. When recruiting the experts, our
selection criteria focused on technical skills, communication,
and performance during a live video commentating exercise.

On average, 90% of the recruited experts possess more
than 10 years of professional experience and all have served
during this time in the capacity of a coach, instructor or men-

Fig. 12 The 52 experts who perform the expert commentary language
annotations are highly trained in the domain they are commentating,
and they often have professional coaching or teaching experience

tor. All experts further have either an advanced degree in their
domain of focus or an industry certification. Certification
authorities include the US Soccer Federation, the Ameri-
can Culinary Federation, USA Climbing, the American Red
Cross, Trek Bikes, and New York State’s Initial Certification
in Teaching Dance, among others. Multiple individuals were
recruited across each domain, with the goal of generating
language and expertise diversity. Due to employment con-
siderations, all experts are residents of the United States. See
Figure 12.

Expert commentary guidelines Experts are provided with
two time-synchronized videos of each Ego-Exo4D skills
demonstration—one showing the egocentric viewandanother
providing a single exocentric perspective specifically selected
by annotators as the view that provides the best visibility on
the scene (see Sec. 4.3). Experts are first asked to watch the
video in full without commenting to gain an understanding
of the skills demonstration and plan out important points to
note in their commentary.
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Fig. 13 Two examples of expert commentary and proficiency scores,
along with spatial drawings (red) done by the expert to augment their
spoken comments

Then, the experts watch the video and pause every time
they have a comment, typically 7 times per minute of video.
The experts are encouraged to focus on critiques and teaching
advice, as opposed to simply describing what the partici-
pant is doing. We record their spoken language descriptions
of what is most effective or ineffective about the camera
wearer’s actions, the quality of the execution, and mistakes
they see. All commentary is time-anchored and retrospec-
tive, focusing on insights and perspectives relating to actions
visible up until that point in the video. We choose to collect
commentary as verbal recordings in order tomaintain the nat-
uralness of the performance descriptions and do so quickly.
Each piece of spoken commentary is unbounded in length,
and averages 4 sentences. We transcribe the commentaries
automatically with OpenAI’s Whisper for automatic speech
recognition (Radford et al., 2023). Figure 14 shows example
commentaries; more are available in Table 17 inAppendixD.

Aside from the spoken commentary, the experts also
provide spatial drawings andproficiency scores.During com-
mentary, experts had the option to use a “telestrator” tool to
enhance their commentary with freehand sketches to spa-
tially localize information or otherwise help explain a point
(see Figure 13). They also provide an overall proficiency rat-
ing on each video, assessing howwell the taskwas performed
with a short written justification. They score the video on a
scale of 1 (least skilled) to 10 (most skilled). In many cases,

experts coordinated within their domain group to calibrate
this scoring.

Each video has expert commentary by 2-5 distinct experts,
offering a variety of perspectives for the same content. In
total, we have 117,812 pieces of time-stamped, video-aligned
commentary, the result of more than 6,000 hours of work
by the 52 experts. Overall, we believe the commentary is
a unique window into the skilled actions that (through lan-
guage) surfaces many subtleties about the actions not evident
to the untrained eye.

4.2 Narrate and act

The second language dataset consists of narrate-and-act
descriptions provided by the participants themselves. They
are in the style of a tutorial or how-to video, where the
participant explains what they are doing and why. They
are reminiscent of the narrations provided in Internet how-
to videos, but with less with less stylization and without
any professional post-production editing.6 See Figure 14 for
examples; more are in Table 17 in the Appendix.

Unlike the third-party expert commentary above, these are
first-person reflections on the activity given by the people
doing them. Generally the commentary is richer in construc-
tive feedback about the quality of the activity, whereas the
narrate-and-act narrations are interesting for their simultane-
ous nature and first-person analysis of what the participant
is doing. The behavior in this extra take is expected to differ
from that of the non-narrated tasks, in that it is likely that
the participant will complete the scenario more slowly than
normal to concentrate on explaining what they were doing.
These narrations are available for about 10% of all takes
in Ego-Exo4D, since we wanted participants to execute the
tasks without pausing for the bulk of the recordings. They
can potentially be used for multimodal learning as is cur-
rently explored in the literature with how-to video narrations
(Lin et al., 2022; Miech et al., 2020, 2019; Ashutosh et al.,
2023).

4.3 Atomic action descriptions

The third language dataset consists of atomic action descrip-
tions.Whereas the commentary andnarrate-and-act language
reveals spoken opinions and reasons for the actions (the “why
and how”), this streamof text is specifically about the “what”.
Inspired by Ego4D’s narrations (Grauman et al., 2022),
these are short statementswritten by third-party (non-domain
expert) annotators, timestamped for every atomic action per-
formed by the participant for all videos in the dataset, for a

6 For some activities whichweremore physically intense, such as danc-
ing or bouldering, we asked participants to instead narrate either just
before or just after the action to reduce the difficulty of doing this live.
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Fig. 14 Examples of the three different language annotation styles:
narrate and act, atomic action descriptions, and expert commentaries
from four of the scenarios (bike repair, health, dance, and basketball).
We also include word clouds which highlight the differences in vocab-
ularies per scenario. In narrate and act text, we see how the participant

briefly describes what they are doing and why, whereas the atomic
action descriptions provide strictly a statement about the visible actions.
The expert commentary offers an expert’s critique of what is shown,
commenting on strengths and weaknesses and explaining how the par-
ticipant’s actions affect their performance

total of 432K sentences. This data is valuable for mining for
taxonomies of objects and actions in the data, indexing the
videoswith keywords for exploring the dataset, and for future
research in video-language learning, as has been quite suc-
cessful for the Ego4D narrations (Lin et al., 2022; Ashutosh
et al., 2023; Pramanick et al., 2023).

Annotation description We present each take to the anno-
tators as a collaged video consisting of the egocentric view,
left and right grayscale SLAM, four or five fixed-position
exocentric cameras, and single-track composite audio; for
a subset of videos, a helmet-mounted GoPro view is also
available. Annotators are asked to provide a play-by-play
description of what happens, as seen across any of the views.
Potential contents include actions by the camerawearer, other
individuals interacting with the camera wearer, and relevant
environmental events.

Each narration is atomic and time-anchored: as much as
possible, each narration should be limited to one verb and
have a single associated timestamp, roughly within a second
of its occurrence in the video. For consistency across narra-
tions, and consistency with Ego4D’s narrations, the camera
wearer in each take is referred to as “C” (e.g., “C picks up a
wrench.”). Other individuals are referred to by other letters
(e.g., “Man X kicks the soccer ball back to C.”); these letter
labels are not necessarily consistent across takes, but refer to
the same individual within a take. Many videos are narrated
by two independent annotators, and we make both available.
Figure 14 shows examples, and more are in Table 17 of the

Appendix. See Table 18 in the Appendix for atomic action
descriptions summary statistics.

Visibility labels Because of the multi-view nature of the
Ego-Exo4D capture rig, certain actions or events may not be
visible across all camera feeds. While we hope Ego-Exo4D
leads to increased attention toward multi-view learning,
many existing systems fundamentally assume a single view
at a time; if a camera does not have a view of the narrated
action or event, this may lead to a confusing learning signal,
or pose an impossible ask for a model to infer.

Thus, we also ask that the annotators answer two addi-
tional question per narration: 1) an indicator of whether the
narration is visible from the egocentric camera, and 2) which
(if any) of the static exocentric cameras provide the best view.
If there are multiple equally good views, annotators are free
to pick any. In particular, we found this best exocentric view
helpful for other Ego-Exo4D annotation efforts: the narra-
tion visibility tags played a role in exocentric view selection
for both the correspondences benchmark (Section 5.1) and
expert commentary (above), and frame selection for hand and
body pose (Section 5.4).

Comparing the language annotations How do the statistics
from all three forms of language differ? Overall, expert com-
mentary tends to use a much larger vocabulary and more
lengthy statements, since commentators are giving more
elaborate statements of advice and explanation. The temporal
density of the atomic action descriptions is greater than the
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Table 3 Summary of annotation statistics for the different benchmark tasks of Ego-Exo4D

Benchmark Annotation Type Ego-Exo4D (v2)

Num Takes Annotations

Relations Manual 1335 5566 objects

742K ego masks

1.1M exo masks

Keystep recognition Manual 1088 17 activities, 664 keysteps

27.6K ego segments (87h)

143K ego+exo segments (454h)

Procedure understanding Manual 628 6 activities, 186 keysteps

8.6K segments (30h)

Proficiency estimation Semi-automatic 2987 2987 proficiency scores (demonstrator)

Manual 912 19K “good” segments

20K “tips” segments (demonstration)

Ego pose (Body) Automatic 2559 9.2M 3D / 46.87M 2D

Manual 1358 376K 3D / 2M 2D

Ego pose (Hand) Automatic 976 4.3M 3D / 21M 2D

Manual 458 68K 3D / 340K 2D

other two forms, since the annotators are pausing to describe
every single action of the camera wearer. Narrate-and-act
comments use a vocabulary size in between the other two,
reflecting the more free-form speech (compared to the writ-
ten atomic actions) is used. Across the different scenarios,
the trends are mostly similar, with the most noticeable dif-
ferences being the temporal density; it is particularly high for
both cooking and soccer. In the former, there are many pro-
cedural steps, whereas in the latter there are many instances
of the drill being executed.

See Figure 34 in the Appendix for the detailed statistics,
and Figure 33 in the Appendix for word clouds per scenario
and annotation type highlighting the differences in vocabu-
lary and word frequency.

5 Ego-Exo4D benchmark tasks

Our second major contribution is to define the core research
challenges in the domain of egocentric perception of skilled
activity, particularly when ego-exo data is available for
training (if not testing). To that end, we devise a suite of
foundational benchmark tasks organized into four task fam-
ilies: relation (Sec. 5.1), recognition (Sec. 5.2), proficiency
(Sec. 5.3), and ego-pose (Sec. 5.4).

For each task, we provide not only suitable multimodal
data, but also high quality annotations that allow training and
evaluatingmodels, as well as baselines that provide a starting
point from which the research community can build. Table 3
overviews the annotations provided with Ego-Exo4D, and
Table 1 summarizes key distinctions with existing datasets.

We ran the first formal teaser Ego-Exo4D challenge in
2024, and have launched the full suite of challenges and
leaderboards to culminate at CVPR 2025.

In the following sections, for each benchmark task we
provide 1) the motivation and applications of solving that
task, 2) the formal task definition, 3) key related work, 4) a
description of the annotations, 5) an overview of the metrics
we use to evaluate the task, 6) the design of the baseline
models, and 7) their results on the released dataset.7

Important: To ensure fair comparisons in any future work
using Ego-Exo4D, researchers need to account for 1) the
precise task input-output definitions and 2) the train/test/val
splits available with the annotations. Specifically, for each
task below, when formally defining the inputs and outputs,
we also explicitly specify which inputs are excluded from
use, if any. Most benchmark tasks use only RGB (typically
ego) video as input, as opposed to assuming 3D point clouds
and other modalities at inference time. In this way, our goal
is to offer broader possible modalities when training models,
while keeping them as flexible as possible for deployment.

5.1 Ego-exo relation

Our ego-exo relation tasks deal with relating the video con-
tent across the extreme ego-exo viewpoint changes. They
take the form of object-level matching (correspondence) and

7 Note that all results are from “v2” of Ego-Exo4D released in March
2024. The smaller v1 is now considered obsolete and should not be used
for future publications and comparisons.
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Fig. 15 The ego-exo relation family consists of the tasks of correspondence (left) and translation (right)

synthesis of one view from the other (translation). See Fig-
ure 15.

5.1.1 Ego-exo correspondence

Motivation Establishing object-level correspondences
between ego and exo viewpoints would allowAI assistants to
provide visual instructions by matching third-person obser-
vations of objects from instructional videos to those in the
user’s first-person view. Compared to the general correspon-
dence problem, our setting requires tackling a number of
challenges: extreme viewpoint differences, high degrees of
object occlusion, andmany small objects (e.g., cooking uten-
sils and bike repair tools).

Task definition Given a pair of synchronized ego-exo videos
and a sequence of query masks of an object of interest in
one of the videos, the task is to identify the corresponding
mask for the same object in each synchronized frame of the
other view, if visible. See Figure 15, left. The task can be
posed with query objects in either the ego or exo video, with
both directions presenting interesting challenges (e.g., high
degree of occlusion in ego views, and small object size in
exo views). This task is especially challenging in our dataset,
since we have to handle long videos with an average length
of 3 minutes, as well as very small objects with areas of only
a few pixels.

Importantly, the input to the model excludes semantic
labels or names for the objects, camera pose information
relating the two views, and IMU or active range sensor mea-
surements. We do not use such information as we want to
encourage the development ofmethods for open-world corre-
spondence, not relying on predefined sets of objects or inputs
that require non-consumer camera devices.

Related work Related tasks are image-level sparse corre-
spondencegivenquerypoints (insteadof objectmasks) (Jiang
et al., 2021) and image-level object co-segmentation (Vicente
et al., 2011) for jointly segmenting semantically similar

objects. Our task goes beyond static object correspondence,
since the interplay between human pose and object state
changes duringmanipulation necessitate using temporal con-
text and tracking as the query object can be highly occluded
or blurry (Tang et al., 2023).

Annotations We annotate pairs of temporally synchronized
egocentric and exocentric videos with segmentation masks
for selected object instances from six scenarios: Cooking,
Bike Repair, Health, Music, Basketball and Soccer. We
exclude Bouldering and Dance from this benchmark as they
have limited diversity of objects. We focus on objects used
by the camera-wearer at any point during the execution of
the activity and that are visible in both views for at least
some frames of the sequence. These masks allow us to define
object-level correspondence between the views. We used a
multi-stage annotation process for annotating paired ego-exo
videos. There are 1.8Mmasks annotated at 1fps covering5.6k
objects from 1335 takes. Overall, an average of 5.5 objects
are annotated with correspondences between the two views
in each take, with each object tracked for an average of 173
frames (excluding frames with occlusions). See Appendix
E.1 for details and statistics.

Metrics We adopt the following metrics in our evaluation:

1. Location Error (LE), which we define as the normal-
ized distance between the centroids of the predicted and
ground-truth masks.

2. Intersection Over Union (IoU) between the predicted and
ground-truth masks.

3. ContourAccuracy (CA) (Perazzi et al., 2016),whichmea-
sures mask shape similarity after translation is applied to
register the centroids of the predicted and ground-truth
masks.

4. Visibility Accuracy (VA) (Brodersen et al., 2010), which
evaluates the ability of the method to estimate the visibil-
ity of the object in the target view, as in practice it may
often be occluded or outside the field of view.Wemeasure
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this performance using balanced accuracy. Note that, in
contrast to the previous metrics that compare segmenta-
tion masks at frames where the object is visible in both
views, this metric is computed based on all frames with
query masks.

Baselines Findingobjectmask correspondences across pairs
of videos is an under-explored area in video understanding.
Therefore, we investigate two diverse baseline approaches
for our ego-exo correspondence task: (a) a spatial model that
tackles the correspondence problem independently at each
time point, and (b) a spatio-temporal model that takes into
account the history of predicted correspondences.

• Spatial baseline model. This model receives as inputs
an egocentric frame, the associated exocentric frame, and
a query object segmentation mask in one of the views.
It then outputs the mask in the other view (if the object
is visible in that view). It can be thought of as a gen-
eralization of query-point correspondence approaches
proposed for sparse image correspondence (Jiang et
al., 2021). We implement this baseline in the form
of a Transformer-based image correspondence model,
XSegTx (Cross View Segmentation Transformer), which
extends SegSwap (Shen et al., 2022), a method originally
proposed for image co-segmentation, i.e., for segmenting
common objects in a pair of images.

• Spatio-temporal baseline model. The spatio-temporal
model receives as input the pair of ego-exo video clips
as well as an object segmentation track in one of the
views, and outputs segmentation masks in the other view
for the frames that the object is visible in both views.
It can be thought of as performing generalized track-
ing across views. We build our baseline model on top
of XMem (Cheng & Schwing, 2022), a model originally
proposed for tracking a specific target object given its
segmentation mask in the first frame. In particular, our
baseline model, called XView-XMem, adapts XMem to
track the object across different views given ground-truth
segmentation masks for one of the views in each frame.

See Appendix E.1.1 for implementation details.

Results We benchmark our XSegTx and XView-XMem
baseline models on the test set in Table 4. We experiment
with two settings: providing the ground-truth object track in
the exo view (exo query mask) and predicting it in the ego
view, and vice versa.

First, we observe that exploiting temporal cues helps with
tackling the object correspondence task as shown by the
significant increase in performance achieved by the spatio-
temporal baselines (ST type) compared to the spatial ones

(for example, IoU improves from 13.88% to 22.14% in the
Ego→Exo setting).

Second, we can see a big difference in performance
between the Ego→Exo and Exo→Ego settings for all the
baselines. In particular, models perform worse when the
sequence of query masks is provided for the egocentric video
and the model needs to predict query masks in exocentric
video. This might be due to the heavy occlusion and very
small size of objects in the exocentric views,making segmen-
tation very challenging. While predicting a very tiny mask in
the exo view can be very difficult, models can reason about
the type and rough location of the object from a tiny mask in
the exo view and thus accurately detect and segment it in the
ego view, where it is much larger.

However, all our baselines achieve a performance inferior
to 23% IoU in the Ego→Exo setting and inferior to 24% IoU
in the Exo→Ego setting. This shows the challenging nature
of the task and the dataset. We note that our dataset includes
a great degree of object shape variation and high number of
very small objects which are very difficult to model.

We also show some qualitative results in Fig. 16. As we
can see, the spatial baseline (XSegTx) struggles to track
the same object throughout the video. For example, in the
bottom example, XSegTx alternates between predicting one
and two object masks whereas the spatiotemporal baseline
(XView-XMem) reliably tracks a single object throughout
the sequence, showing the importance of exploiting tempo-
ral cues in the data. See Appendix E.1.1 for more analysis
and visualizations of the results.

5.1.2 Ego-exo translation

Motivation The second of the two ego-exo relation tasks
is ego-exo translation. Our translation task entails synthe-
sizing a target ego clip from a given exo clip. This problem
may be viewed as a form of ego-exo correspondence with
missing information: given the masks of an object in the exo
clip, its corresponding masks and pixel values must be gen-
erated in the unobserved ego clip. We note that this problem
cannot be solved by image-based rendering or via geomet-
ric transformations, since the dramatic differences in ego-exo
viewpoints cause the two cameras to capture different regions
of the same objects.

We believe this problem will drive novel research for
combining recognition and object synthesis. For example,
in Figure 15 (right), the approach must perceive the hand as
the generation target and make effective use of the hand’s
object-specific shape and appearance priors in order to syn-
thesize the ego view of the fingertips—which are not visible
in the exo clip. Furthermore, this taskwill stimulate advances
in visual odometry, as the method must be able to infer the
ego camera pose from the third-person clip.
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Table 4 Baseline evaluation for the ego-exo correspondence benchmark on test set. Best results are reported in bold, whereas the second best
results are underlined

Query Mask Method Type Bal. Acc.↑ IoU↑ Location Score↓ Contour Acc.↑

Ego XSegTx (random weights) S 50.00 0.48 0.118 0.014

Ego XSegTx S 66.31 18.99 0.070 0.386

Ego XMem (w/o finetuning) ST 64.39 19.28 0.151 0.262

Ego XView-Xmem (w/ finetuning) ST 61.24 14.84 0.115 0.242

Ego XView-Xmem (+ XSegTx) ST 66.79 34.90 0.038 0.559

Exo XSegTx (random weights) S 50.00 1.08 0.203 0.024

Exo XSegTx S 82.01 27.14 0.104 0.358

Exo XMem (w/o finetuning) ST 60.35 16.56 0.160 0.204

Exo XView-Xmem (w/ finetuning) ST 61.72 21.37 0.139 0.269

Exo XView-Xmem (+ XSegTx) ST 59.71 25.00 0.117 0.327

Ego-exo translation also holds strong application poten-
tial, as it may unlock the ability to generate first-person
renderings of videos that were originally captured from a
third-person perspective. For example, it may enable AR
coaching, with objects and interactions lifted from a third-
person instructional videos and re-synthesized from the
camera-wearer perspective to better guide the user in the
execution of complex activities. Ego-exo translation may
also be used to generate abundant first-person training data
from existing large-scale collections of third-person videos
in order to train robot perception models.

Task definition The translation benchmark focuses on
generating information in the egocentric view given the exo-
centric view. We decompose ego-exo translation into two
separate tasks: ego track prediction and ego clip generation
(Figure 15, right). Ego track prediction estimates the segmen-
tation mask of an object in the unobserved ego frames given
the object masks in the observed exo clip. Ego clip genera-
tion entails generating the image values (i.e., RGB)within the
given ground-truth ego mask by making use of the exo clip
and the object masks in those frames. This decomposition
effectively splits the problem into two tasks: 1) predicting
the location and shape of the object in the ego clip, and 2)
synthesizing its appearance given the ground-truth position.
For both subtasks, the input exo clip consists of 5 frames
evenly sampled from a time span of 5 seconds.

We believe that the decoupling of these two tasks will
promote faster progress on the individual sub-problems and
facilitate understanding of the key challenges in each of them.
For each, we consider a variant where the pose of the ego
camera with respect to the exo camera is available to use at
inference time. This simplifies the problem but reduces the
applicability of themethod, since this information is typically
not available for arbitrary third-person videos. Finally, we
note that while the opposite direction of translation (i.e., ego-

to-exo) could be considered, here we focus on the task of ego
generation because of its higher value for robotics and AR
applications.

Note that we restrict the input to include only the exo
view and the object masks in order to promote the design of
methods that can translate arbitrary third-person video into
an egocentric one. Thus, the input excludes depth maps, 3D
point clouds, IMU, or SLAM, which would simplify the task
at the expense of general applicability, since these signals
are typically not available for in-the-wild video. The only
exception is a variant of the task where the ego camera pose
for all frames of the clips is given as input. We consider this
formulation in order to estimate a sort of “upper bound” on
translation performance under the unrealistic assumption of
known ego-exo camera relation.

Related work Ego-exo translation relates to cross-view
image synthesis (Regmi & Borji, 2018; Tang et al., 2019; Lu
et al., 2020). Within this genre, the problem of exo-to-ego
generation was recently introduced for both images (Liu et
al., 2020) and video (Luo et al., 2024; Liu et al., 2021; Cheng
et al., 2024), and approached using GANs or diffusion con-
ditioned on the input view. Our work not only formalizes this
task with ample data, but its formulation also draws attention
to the need for a semantic basis to new view synthesis across
extreme view changes.

Annotations Translation uses the same annotations as the
correspondence task discussed above in Section 5.1.

Metrics We adopt a diverse set of metrics to assess the dif-
ferent aspects of the generated translation. As for the task of
correspondence, we use Visibility Accuracy (VA) to evalu-
ate the ability of the method to predict the visibility of the
target object in the ego view but this time given only exo
frames as input. We consider the visibility prediction cor-
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Fig. 16 Qualitative results for the different ego-exo correspondence baselines

rect if and only if either of these two conditions are met:
(1) the predicted mask is empty when the object is invisi-
ble in the ego view, or (2) the predicted mask is non-empty
when the object is visible in the ego view. Furthermore, we
adopt the following metrics defined for correspondence to
gauge the performance of Ego Track Prediction: 1) Location
Error (LA) 2) Intersection Over Union (IoU) and 3) Con-

tour Accuracy (CA) (Perazzi et al., 2016). The IoU and CA
are calculated after registering the centroids of the predicted
mask and the ground-truth ego mask, in order to gauge mask
prediction independent of location error. To evaluate Ego
Clip Generation we use two popular image quality metrics
(SSIM, PSNR (Hore & Ziou, 2010)) and three perceptual
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metrics (DISTS (Ding et al., 2020), LPIPS (Zhang et al.,
2018) and CLIP similarity (Radford et al., 2021)).

Baselines For track prediction, we implement the GAN-
basedmethod pix2pix (Isola et al., 2017) and theNeRF-based
method GNT (Varma et al., 2023). For clip generation, we
employ the GAN-based method pix2pix (Isola et al., 2017)
and the diffusion model DiT (Peebles & Xie, 2022). It is
worth noting that, as discussed below, we introduce specific
modifications to adapt these methods to our task require-
ments. All baselines utilize exo images and masks, with only
the GNT model making use of the extra input of ego camera
pose.
Ego Track Prediction involves generating segmentation
masks for the egocentric view based on the exocentric video
clip and the exocentric object masks. We consider the fol-
lowing two baselines for this task:

• pix2pix-mask. We modify the generator of pix2pix to
have inputs and outputs of 4 channels. Specifically, the
exo frame and the exo mask are concatenated as the
inputs while the 4-channel outputs are ego frame (3
channels) and ego mask (1 channel). The ego frame is
supervised with the losses used in pix2pix. We use the
bootstrapped cross-entropy loss (Reed et al., 2014) and
the dice loss (Sudre et al., 2017) for mask prediction.

• GNT-mask. We adopt the Generalizable NeRF Trans-
former (GNT) (Varma et al., 2023) as another baseline
leveraging the camera poses. In our adapted version, the
image encoder takes a 4-channel image (exo frame and
mask) as inputs to predict the ego frame and ego mask.
Formally, during the training of our GNT-mask, for each
point x and viewing direction unit vector d ∈ R3, the
ray transformer f in GNT predicts two key attributes:
RGB Color (c) and Object Existence Score (e), in which
e signifies the probability of an object being present at
point x . During rendering, the volumetric radiance field
encoded by the ray transformer can then be rendered into
a 2D image as well as a 2D object mask.

Ego Clip Generation requires producing pixel values repre-
senting the target object in the egocentric view. To achieve
this, we leverage 6 different input images for each frame: exo
frame, exo mask, exo object crop, cropped exo mask, ego
mask and cropped ego mask. The cropped exocentric and
egocentric masks are generated by considering a bounding
box to isolate the relevant portions of the exocentric and ego-
centric masks, respectively. The “exo object crop” refers to
the RGB image obtained by cropping out the relevant region
using the cropped exocentric mask.We resize these 6 images
to the same size (256 × 256). We evaluate two baselines for
this task:

• DiT-pix. We adopt the Transformer-based diffusion
model DiT (Peebles & Xie, 2022). We predict the ego
object crop by conditioning theDiT on the 6 input images
in two manners. Initially, these six images are concate-
nated along the channel dimension and subsequently
combined with the noisy ego object crop, forming the
input to DiT. Additionally, two ResNet-50 architectures
encode the six images into low-dimensional features,
which are then incorporated into each layer of DiT via
AdaLN (Perez et al., 2018).

• pix2pix-pix.We adopt pix2pix (Isola et al., 2017) for clip
generation as well by concatenating the 6 images along
the channel dimension as inputs to the pix2pix model.

All of the above-mentioned baselines perform image-to-
image generation. We implement also clip-to-clip variants of
these methods by taking multiple frames as inputs and pre-
dicting results for all frames jointly. For pix2pix, we achieve
this by replacing the original 2D-Conv with 3D-Conv, and
2D-BatchNormwith 3D-BatchNorm. For DiT, we use space-
time divided attention as in TimeSformer (Bertasius et al.,
2021).

Results We employ the validation set for the purpose of
selecting optimal checkpoints and hyper-parameters, which
are subsequently evaluated on the test set.

For the task of Ego Track Prediction, both pix2pix-mask
and GNT-mask perform poorly in estimating the object vis-
ibility, achieving Visibility accuracy around 50%, i.e., same
as random guess (50.0% for GNT-mask and 56.2% for
pix2pix-mask, on the v2 test set). However, the ResNet-
50 trained exclusively to attend to this binary classification
achieves a VA of 82.9% on the v2 test set. We assess mask
quality by considering distance (Location Error) and similar-
ity metrics (IoU and Contour Accuracy) between predicted
and ground-truth masks after registration. The 3D-aware
NeRF-based baseline, GNT-mask, outperforms the implicit
baseline, pix2pix-mask, overall. However, it does so by
exploiting the ego camera pose as additional input. It is note-
worthy that both baselines perform poorly on this task, likely
due to the inherent challenges in correctly predicting the loca-
tion and shape of the target object in the ego view, probably
due to the fact that it often has diminutive size in the exo
view.

In the case of Ego Clip Generation (Table 5b), the Dif-
fusion model DiT-pix demonstrates superior performance
across all metrics compared to the GAN-based pix2pix-pix.
Qualitative results (Figure 17a) illustrate that DiT-pix can
generate highly photorealistic images, aligning closely with
the ground-truth in most instances. However, there are occa-
sional cases (the last 2 rows) where the shape of the object
is accurately generated, but the texture deviates slightly.
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Table 5 Results on exo to ego
translation task

(a) Evaluation of translation baselines for the subtask of ego track prediction.

Method Ego Cam. Pose Location Error↓ Contour Acc.↑ IoU ↑

pix2pix-mask No 21.6 4.5 5.3

+multi-frame No 20.1 3.1 3.5

GNT-mask Yes 19.6 15.5 10.3

(b) Evaluation of translation baselines for the subtask of ego clip generation.

Method SSIM ↑ PSNR ↑ DISTS ↓ LPIPS ↓ CLIP ↑

pix2pix-pix 0.42 16.4 0.36 0.50 79.8

DiT-pix 0.59 16.1 0.31 0.46 81.9

Fig. 17 Qualitative results for exo-to-ego translation task
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Fig. 18 Ego-exo keystep recognition. This family of tasks consists of fine-grained recognition (left, Section 5.2.1), procedure understanding (center,
Section 5.2.3), and energy-efficient multimodal recognition (right, Section 5.2.2)

We further verify the importance of each input in Fig-
ure 17b. Without exo object crop as input, the model fails to
correctly infer the color and texture of the target object in
the ego view. This result is expected as the source objects
often represent a very small region of the entire exo frame.
Additionally, without the ego crop mask as input, the model
predicts the orientation of the object incorrectly. These obser-
vations highlight the importance of the cropped inputs.

We can observe in Table 5 that multi-frame (i.e., clip-to-
clip) prediction does not provide a quantitative advantage
over frame-to-frame prediction. Yet, we noticed that the
multi-frame variant often yields generations that are more
consistent across frames, even for frames where the exo view
is heavily occluded, as can be seen in Figure 17c. This is rea-
sonable as a clip-levelmodel canmore effectively learn about
the target object frommultiple frames and fill-in information
that is missing in individual exo frames.

Please see Appendix E.1.2 for a break down of ego-exo
translation results across different scenarios.

5.2 Ego-exo keystep recognition

This family of tasks centers around recognizing the keysteps
of a procedural activity and modeling their dependencies.
Specifically, there are three tasks: fine-grained keystep recog-
nition (Sec. 5.2.1), efficient multimodal keystep recognition
(Sec. 5.2.2), and procedure understanding (Sec. 5.2.3). We
refer to the family of tasks as “ego-(exo)” since exo may
be available at the time of training but not inference. See
Figure 18.

5.2.1 Fine-grained keystep recognition

Motivation Recognizing the step a camera wearer is per-
forming is non-trivial: keysteps in the same activity may
look similar and may involve differentiating subtle differ-
ences in hand-object interactions with heavy occlusions and
head motion. Models with access to multiple views during

training can leverage their complementarity to account for
the deficiencies of each one, by learning viewpoint invariant
representations or distilling multi-view signals into a single
model (e.g., human hands from ego; body pose from exo).

Task definition We consider trimmed video clip classifi-
cation as the keystep recognition task. At training time we
are given a labeled collectionD of ego-exo video clips:D =
{(V(1)

ego,V(1)
exo1−M , y(1)), . . . , (V

(N )
ego ,V(N )

exo1−M , y(N ))}where y(n)
denotes the keystep label of the n-th sample. The video clips
are manually trimmed from long procedural videos to con-
tain only the keysteps to recognize. At test time, given just
the ego view of a trimmed clip Vego, the model must predict
its keystep label y.

Classification of trimmed video clips is a problem for-
mulation commonly adopted in action recognition bench-
marks (Kay et al., 2017; Soomro et al., 2012; Goyal et al.,
2017). However, our task differs from action recognition
in three fundamental aspects. First, it targets fine-grained
keystep recognition rather than classification of coarse activ-
ities. We note that this adds significant complexity, since
different keysteps of an activity often involve manipulating
the same objects in the scene (e.g., folding the bedsheet and
smoothing out the bedsheet) and are consequently difficult
to tell apart. Second, different keysteps may be represented
over largely different time spans (e.g., the average time span
for “kneading dough” is 87.3 seconds, in stark contrast with
“getting salt”, which averages at 3.6 seconds), thus requiring
analysis at different levels of temporal granularity. The third
key difference is the potential to leverage contextual cues
available in exocentric videos during training to improve the
prediction accuracy on egocentric videos.

Note that at test time, the input to the model includes just
the ego-view videos (RGB only). Exo-view videos, activity
and scenario names, narrations, audio and associated meta-
data such as eye gaze, 3Dpoint clouds, camera pose, and IMU
information are excluded as inputs for inference. Intuitively,
these additional modalities could provide valuable contex-
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tual cues, such as environmental awareness from exo-view
videos, semantic meaning from narrations, or attentional
signals from eye gaze, which could help the model better
understand the visual content of the ego-view videos and
improve its keystep recognition performance. We encourage
exploring their potential utility in training to leverage these
benefits, but for the purpose of evaluation, we restrict the
input to RGB video only at test time to ensure our approach
remains vision-centric.

Related work Keystep recognition has been studied in first-
person (Sigurdsson et al., 2018; Song et al., 2023; Bansal et
al., 2022; Ragusa et al., 2021) or third-person (Mavroudi et
al., 2022; Tang et al., 2020; Zhukov et al., 2019; Zhou et al.,
2018; Ashutosh et al., 2023) videos; however, limited work
considers both views together. Prior work considers cross-
view learning with unpaired videos (Ardeshir & Borji, 2018;
Li et al., 2021; Xue & Grauman, 2023) and view-invariant
feature learning on paired videos (Sigurdsson et al., 2018).
In contrast, we explore keystep recognition in large-scale,
procedural activities with fully synchronized training videos.

Annotations We annotate videos featuring any of the three
procedural activities (i.e., cooking, bike repair, health) with
temporal segments of keysteps, i.e., actions that contribute
towards the completion of a procedural task. Each keystep
annotation contains the start and end timestamps, a cate-
gory label, a natural language description (e.g., “add dried
herbs”or “fit the tire onto the bike”), and a flag indicating
whether the keystep is essential or optional for task com-
pletion. To accurately model the hierarchical nature of the
activities, we also develop a hierarchical keystep taxonomy
concurrently with the annotation process, in an iterative,
data-driven manner. In total, we annotate 143,442 segments,
spanning 664 keysteps across 17 activities. Figure 20 shows
example keystep annotations, highlighting the challenges of
fine-grained keystep recognition where subtle differences
in hand-object interactions and contextual cues are crucial
for distinguishing between activities. Complete details on
the annotation interface and taxonomy development are in
Appendix E.2.

Metrics We report top-1 accuracy for evaluation. Since the
keysteps in our dataset exhibit a very long-tailed distribution,
we set a cutoff threshold at 20 samples per keystep, limiting
our analysis to 278 unique keysteps as shown in Figure 19.
Some of these keysteps are illustrated in Figure 20. Dataset
split details are in Appendix E.2.

Baselines To understand the best strategy for egocentric
keystep recognition with paired ego-exo training data, we
consider a diverse set of baselines approaches, including

methods for action classification, video representation learn-
ing, and ego-exo transfer.

• Action classification. As a prototypical example of this
classic genre, we select a TimeSformer (Bertasius et al.,
2021) model initialized with the checkpoint pretrained
on the large-scale third-person action dataset Kinetics-
600 (Kay et al., 2017) due to its strong performance in
various video understanding tasks.

• Video-language pretraining. We adopt the EgoVLPv2
framework (Pramanick et al., 2023) and pre-train the
model jointly on the Ego4D (Grauman et al., 2022)
(which contains only ego views) and the Ego-Exo4D
datasets (which encompasses both ego and exo views).
We balance the number of samples between these
two datasets by augmenting Ego-Exo4D with LaViLa-
style (Zhao et al., 2023) narration rephrasing.

• View-invariant learning.A two-stage training approach
is employed. In the first stage, we utilize all avail-
able (ego, exo) video pairs in the dataset for training a
view-invariant (VI) encoder. The training objective is a
clip-level contrastive loss (Oord et al., 2018), aiming at
identifying the synchronized (ego, exo) pairs as positive,
and the non-synchronized pairs as negative. In the sec-
ond stage, this pretrained model is further trained with
a classification loss, aligning with the clip-level classifi-
cation nature of the downstream task. Note that to align
with the clip-level classification task, our contrastive loss
operates at the clip-level, rather than at the frame-level as
was done in view-invariant loss proposed in (Sermanet
et al., 2017; Sigurdsson et al., 2018).

• Viewpoint distillation. This also adopts a two-stage
training approach. In the first stage, we train a multi-view
teacher that takes both ego and exo views as input. In the
second stage, a single-view ego student is trained, distill-
ing knowledge (Hinton et al., 2015) from the multi-view
teacher to encapsulate information from both views.

• Ego-exo transfer.Here we follow the methodology pro-
posed in Ego-Exo (Li et al., 2021) which uses egocentric
pseudo-labels to pre-train the network. We employ a
masked autoencoder (MAE) (Tong et al., 2022) back-
bone, initialized from a Kinetics checkpoint, and the
pseudo-labels provided from the Ego-Exo checkpoint to
fine-tune with two auxiliary heads (Object-Score and
Interaction-Map). We then further finetune the model
with a classification loss for fine-grained keystep recog-
nition.

For the first two baselines (which utilize pretrained check-
points from well-established benchmarks), two training set-
tings are further examined: one using only the ego view for
the classification loss and the other utilizing both ego and
exo view videos, with the training objective being the sum of
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Fig. 19 Keystep distribution in our dataset for each procedural scenario: cooking, bike repair, and health

Fig. 20 Example keysteps from cooking, bike repair, and health scenarios. Keystep labels are displayed above each frame sequence

ego view and exo view classification losses. Implementation
details are in Appendix E.2.

Results Table 6 reports theTop-1 accuracy for ego classifica-
tion on both validation and test sets. Among all the baselines,
the VI Encoder emerges as the top performer, achieving a
test accuracy of 41.53%. It is closely followed by Viewpoint

Distillation and EgoVLPv2 pretrained on EgoExo4D, which
attain test accuracies of 39.49% and 38.76% respectively.
These results open discussion on how to effectively utilize
exo videos during training to enhance ego keystep recogni-
tion during test time.

First,wenote that different approaches responddifferently
to the addition of exo-view videos during training. Specifi-
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Table 6 Top-1 accuracy of
keystep recognition on val and
test data. The pre-training
dataset is denoted in
parentheses. VI is short for
view-invariant

Method Train data Ego Accuracy (%)

Val Test

TimeSFormer (Bertasius et al., 2021) (K600) ego 35.13 35.93

TimeSFormer (Bertasius et al., 2021) (K600) ego,exo 32.68 31.04

EgoVLPv2 (Pramanick et al., 2023) (Ego4D) ego 36.51 37.55

EgoVLPv2 (Pramanick et al., 2023) (Ego4D) ego,exo 35.84 36.59

EgoVLPv2 (Pramanick et al., 2023) (EgoExo4D) ego 36.04 37.72

EgoVLPv2 (Pramanick et al., 2023) (EgoExo4D) ego,exo 39.10 38.76

VI Encoder (Oord et al., 2018) (EgoExo4D) ego,exo 40.34 41.53

Viewpoint Distillation (Hinton et al., 2015) ego,exo 38.19 39.49

Ego-Exo Transfer MAE (Li et al., 2021) ego,exo 37.17 36.58

cally, while the TimeSFormer (K600) exhibits a degradation
when the exo classification loss is integrated into the objec-
tive (i.e., test accuracy drops from 35.93% to 31.04%,
EgoVLPv2 pretrained on EgoExo4D benefits from the intro-
duction of exo-view videos (i.e., test accuracy improves from
37.72% to 38.76%. This enhancement is also evident in the
VI encoder and viewpoint distillation when compared to
TimeSFormer (K600) that only utilizes ego-view videos for
training.These observations suggest that certain baselines are
better equipped at leveraging exo information during training
to improve ego keystep recognition.

Finally, in Appendix Figure 42, we show a breakdown
of performance by viewpoint. In short, we find that ego
views are more informative for steps involving manipula-
tion of small objects, like ‘cut carrots’ and ‘unpack the new
tube’, while exo views show advantages for keysteps like
‘have a conversation asking different questions’. Overall, we
posit that the endeavor to enhance view-invariant learning
and to more effectively harness the complementary informa-
tion from exo views for ego keystep recognition remains an
open avenue. Our findings underscore the need for further
investigation and innovation in this domain.

5.2.2 Energy-efficient multimodal keystep recognition

Motivation Current activity detectionmodels assume access
to densely sampled clips from the full video and ample com-
putational resources to process them. These assumptions are
incompatible with real-world devices (e.g., mobile phones,
AR glasses) where the camera is not always on and the com-
pute budget is limited by battery life. This task focuses on
building energy-efficient video models to pave the way for
feasibility on real-world hardware.

Task definition Whereas the keystep recognition task (pre-
sented in Sec. 5.2.1) entails classifying keystep video clips
in batch without regard for energy costs, in this task, the goal
is to perform online classification of keysteps in a streaming

egocentric multi-modal video, within an energy budget. We
consider an ego videoVego of arbitrary length T comprising a
stream of K different sensory modalities (e.g., RGB images,
audio, IMU, etc.). At each time step t , where 1 ≤ t ≤ T , the
video consists of samples for each available modality, such
that V t

ego = {St1, . . . , StK }, where Stj denotes the sample at
time t for the j th modality.

Given Vego and an energy budget B, our task is to learn
a model F that maximizes the overall keystep recognition
performance across the full videowhile also ensuring that the
combined energy for sensing and running model inference
does not exceed B. F consists of a sensor triggering policy
FP and a keystep prediction model FK. At every step t , the
policy FP decides which sensor(s) to activate and sample
from, in order to produce the model’s current observation
Ot , such that Ot + {St1, . . . , StK }. Given Ot , the keystep
predictorFK outputs its estimate of the ground truth keystep
for the current step.

The energy budget accounts for the cost of operations in
each model forward pass, the cost of moving intermediate
activations in and out of memory and the cost of the continu-
ous operation of sensors, each having different cost profiles
(e.g., IMU and audio sensors are relatively cheaper to operate
than camera sensors). Note that the sensor triggering policy
may be static (e.g., sample video at 4 frames per second
(fps), keep audio/IMU off; sample 1 fps video, keep IMU
always on) or dynamic (e.g., depending on the audio, decide
whether to trigger video capture). We keep our task defini-
tion general, allowing the challenge to admit a wide variety
of recent approaches ranging from pure video-based efficient
backbone architectures (Feichtenhofer, 2020) tomulti-modal
triggering approaches and, naturally, a combination of them.

Note that at test time, the input to the model can only
include current and past observations as our task is strictly
an online recognition task. However, we encourage exploring
modalities beyond those considered in our experiments, e.g.,
IMU or camera poses inferred from video, audio, and IMU.
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Relatedwork Priorworkon efficientmodels considers light-
weight architectures (Feichtenhofer, 2020; Vasu et al., 2023;
Howard et al., 2017; Zhang et al., 2018; Tan et al., 2019;
Mehta & Rastegari, 2021), efficient input processing (Gao et
al., 2020; Korbar et al., 2019; Ghodrati et al., 2021; Meng et
al., 2020; Tan et al., 2023), or inference optimizations (Ian-
dola et al., 2016; Esser et al., 2019; Polino et al., 2018; Zhu&
Gupta, 2017;Wuet al., 2018). In all cases, theyoptimize com-
putation (FLOPs), parameter count, or prediction throughput
(FPS), which in isolation are insufficient to characterize run-
ning on real-world devices. To address this, we propose the
first benchmark for energy-efficient video recognition that is
tied to real-world, on-device constraints, and measures total
power consumed.

Annotations This task uses the same egocentric videos and
annotations as keystep recognition. However, in addition to
the raw RGB video, it uses the audio stream (and potentially
other sensors) as another sensor modality.

Measuring energy consumption Accurately measuring
energy consumption of models is crucial for their use in
AR/VR devices (Abrash, 2021; Chen et al., 2019). The
energy used comes from a complex interplay of sources
including sensors, compute, communication, data process-
ing, memory transfer (SRAM and DRAM), and leakage –
many of which are typically ignored when building efficient
computer visionmodels, despite their large energy consump-
tion (e.g., memory transfer accounts for over 50% of the total
power (Yang et al., 2022)).

We consider three key factors when modeling energy
consumption following prior work (Sze et al., 2020). (1)
Compute energy: the cost of each model forward pass as
a function of the number of operations (MACs). (2) Memory
transfer energy: the cost associated with memory read-write
operations for storing intermediate activations and model
outputs. (3) Sensor triggering energy: the cost associatedwith
turning on / off and continuous operation of sensors (camera,
audio, IMU). For a model that processes an observation Ot ,
the total energy consumed can then be formulated as:

E(Ot ) = α ∗ C(Ot )+ β ∗ M(Ot )

+
∑

j=1...K

γ j ∗ 1(S j ∈ Ot ) (1)

where C(Ot ) corresponds to the total number of multiply-
addoperations computedduring the forwardpass (inMAC/s),
M(Ot ) corresponds to the total memory transferred to/from
DRAM (in MB/s), and S j ∈ Ot corresponds to whether
the j-th sensor is active. Finally, α,β, γ j are weight-
ing factors that measure the contribution of each energy
source. We select these weighting parameters to reflect
real-world AR/VR hardware capabilities. Namely, α = 4.6

pJ/MAC (Sze et al., 2020; Desislavov et al., 2023); β = 80
pJ/byte (Horowitz, 2014); γrgb = 15 mW and γaudio = 0.5
mW (Liu et al., 2020).

We adapt off-the-shelf profiler software built for PyTorch
to compute the quantities in Eqn. 1 – the energy consumption
expressed as power (mW). Details about the profiler are in
Appendix E.3.

Metrics Following prior work (De Geest et al., 2016), we
evaluate online keystep detection performance using per-
frame calibrated mean average precision (mcAP), which
accounts for the imbalance in the keystep labels in our
dataset.Wemeasure energy consumption inmWas described
above. There is a natural trade-off between efficiency and
better performance. Thus, we evaluate models in two tiers
by setting a budget for the power consumption in each
tier, namely 20 mW for the high-efficiency tier and 2.8W
for the high-performance tier, selected based on existing
efficient architectures. More details about the tiers are in
Appendix E.3.

Baselines We provide a family of (less/more expensive)
keystep prediction models for solving the task. Each model
has a unimodal or audio-visual feature encoder followed by
a keystep classification head. Experimental setup and imple-
mentation details are in Appendix E.3.

• X3D-XS (Feichtenhofer, 2020). This is a vision-only
model comprising the X3D-XS feature encoder, which
progressively expands the feature size and representa-
tional capacity of its layers, and later contracts them for
achieving better performance-efficiency trade-off.

• LaViLa (Zhao et al., 2023). This is another vision-only
model where the visual feature encoder is trained through
CLIP-style video-language pre-training.

• Light-ASDNet (Liao et al., 2023). This is an audio-only
model that represents audio as spectrograms and effi-
ciently encodes them by splitting 2D convolutions into
1D convolutions along the spectrogram temporal dimen-
sion (Liao et al., 2023).

• Audio-Visual Late Fusion (AV-LF). This is an audio-
visual model that does late fusion of visual features
(encoded with X3D-XS or LaViLa) and audio features
from Light-ASDNet by using linear layers.

To improve the energy efficiency of the aforementioned
keysteppredictors,we employ the followingbaseline policies
for determining when to sample or skip each modality:

• Fixed stride. This is a policy that samples the input
(video or audio) every s prediction steps. We evaluate
different s values, where s ranges from 2-150 steps.
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Fig. 21 Keystep prediction performance (mcAP) vs. total power con-
sumption with different prediction backbones and sampling policies
for both high-efficiency (left) and high-performance (right) tiers. For

the models using a fixed stride, we show their stride value in text if their
total energy consumption is close to the budget

• AV-LF + greedy. This is a policy that greedily uses up
the budget by sampling both audio and vision as early
as possible, and uses the AV-LF backbone for keystep
prediction.

• AV-LF+ random.This is a policy that randomly samples
or skips the audio and/or visual inputs until it runs out of
budget, and uses the AV-LF backbone for prediction.

• Audio-Visual (AV) Cascade. This is a policy that ini-
tially uses the Light-ASDNet model to predict the
keystep, and switches over to the LaViLa model if the
audio-based prediction confidence is below a confidence
threshold of 0.5.

Results In Fig. 21a, we plot the recognition mcAP of all
models against their total power consumption for the high-
efficiency tier. We can see that combining vision and audio
is better than using only vision or audio. Thus suggests that
the two modalities carry complementary cues that are use-
ful for the task. However, all vision-only models outperform
their audio-only counterparts, which indicates that vision is
the most critical modality for the task. The raw backbones
generally perform better than the models using a sampling
policy, but at the cost of requiring higher energy, making
them impractical to use in online settings. Among the mod-
els that use a fixed stride, a lower stride generally improves
the performance while hurting energy efficiency. Using the
greedy or random policy with AV-LF leads to a sharp decline
in performance compared to using a fixed stride, showing that
sampling very early or randomly in the episode is suboptimal
for our online recognition task. AV-cascade also performs
worse than most audio-visual models while also requiring
more energy, possibly because the audio backbone often

outputs wrong but over-confident predictions that prevent
switching over to the more reliable vision backbone when
required.

For easy reference, in Table 7a we report the recognition
performance and total power consumption of our best uni-
modal and audio-visual models within budget for the high-
efficiency tier.

In Fig. 21b, we plot the recognition mcAP of all mod-
els against their total power consumption for the high-
performance tier. Different from the high-efficiency tier, the
audio-visual backbone generally performs worse than the
vision-only backbone, possibly because the LaViLa features
are strong enough by themselves, and fusing themwith audio
features through the simple mechanism of linear late fusion
reduces their expressivity. Otherwise, the overall behavior of
different sampling policies is similar across the two tiers. We
report the recognition performance and total power consump-
tion of the best uni-modal and audio-visualmodels within the
high-performance budget in Table 7b.

Finally, in Appendix Figure 43, we present a breakdown
of performance by keystep labels and the behavior of audio-
and vision-only models across them. In short, we find audio-
only models have an affinity for sounding actions like stir fry
egg mixture and cut butter.

5.2.3 Procedure understanding

Motivation The procedure understanding task consists in
inferring the underlying structure of a procedure from the
observation of natural videos of subjects performing the pro-
cedure.
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Table 7 Keystep prediction
results

Method Modality mcAP (%) ↑ Power (mW) ↓

(a) High-efficiency tier (budget = 20 mW).

Light-ASDNet (Liao et al., 2023) + s = 5 A 65.18 19.67

X3D-XS (Feichtenhofer, 2020) + s = 10 V 76.85 19.14

AV-LF w/ X3D-XS + s = 15 AV 77.89 19.70

(b) High-performance tier (budget = 2.8W).

Lavila (Zhao et al., 2023) + s = 5 V 93.24 2245.66

AV-LF w/ Lavila + s = 5 AV 92.18 2274.40

The real-world motivation for our procedure understand-
ing task has basis in augmented reality (AR), robotics, and
more in general in assistive systems. Indeed, automatically
understanding the structure of a procedure from video, e.g.,
inferring keystep orderings and preconditions, will allow to
assist or guide users carrying out the procedure throughARor
to allow robots to learn from human demonstrations. Beyond
recognizing the current keystep, an assistive system could
verify that some mandatory keysteps are missing, suggest
possible future ones, and detect procedural mistakes. Sim-
ilarly, robots could learn the structure of a procedure from
human demonstrations. Mining the structure of procedures
has been shown useful for planning (Chang et al., 2020; Bi
et al., 2021) and improving keystep recognition (Ashutosh et
al., 2023; Zhou et al., 2023) keystep discovery (Bansal et al.,
2022), and for procedural mistake detection (Seminara et al.,
2024).

Task definition Figure 18 (center) illustrates the proposed
task. Given a video segment si and its segment history
S:i−1 = {s1, . . . , si−1}, models have to 1) determine pre-
vious keysteps (i.e., keysteps which should be performed
before si ); infer if si is 2) optional (i.e., it can be omitted
without compromising the correct execution of the proce-
dure) or 3) a procedural mistake (a keystep which should
not have been performed in that moment due to missing pre-
conditions); 4) predictmissing keysteps (i.e., key-stepswhich
should have been performed before si ); and 5) forecast next
keysteps (i.e., key-steps for which dependencies are satisfied
and hence which could be executed next).

The task is weakly supervised, with two versions based
on the level of supervision: 1) instance-level: video seg-
ments and their keystep labels are available during training
and inference, similar to an action recognition task; 2)
procedure-level: unlabeled video segments and a taxonomy
of procedure-specific keystep names are given for train-
ing and inference. Note that, being weakly supervised, in
both cases, explicit information on the structure of the
procedure—such as the occurrence of mistakes or lists of
pre-conditions—are not available for training. Also note that,
when the procedure-level supervision is considered, the input

to the model excludes keystep labels both at training and test
time. At both the procedure and instance levels of super-
vision, models are required to process the video in a causal
fashion, meaning that predictions made at time t only depend
on observations made at time t ′ < t .

Related work Prior work focusing on procedural under-
standing learns an explicit graph (Jang et al., 2023; Xu et
al., 2020; Soran et al., 2015) as ground truth or uses a task
graph for representation learning (Ashutosh et al., 2023;
Narasimhan et al., 2023; Zhou et al., 2023) and short-term
step understanding (Dvornik et al., 2022; Ashutosh et al.,
2023; Zhou et al., 2023). Other work (Sener et al., 2022;
Ding et al., 2023) studies mistake detection in a supervised
setting. We are the first to propose procedural understanding
to evaluate the long-term structure of the task in a weakly-
supervised setting.

Annotations For this task, we considered the following pro-
cedures: i.e., Covid-19 Rapid Antigen Test, Fix a Flat Tire -
Replace aBike Tube, Remove aWheel, Install aWheel, Clean
and Lubricate the Chain and First Aid - CPR. These sce-
narios represent structured activities with clear procedural
constraint, yet allow a certain degree of variability in cor-
rect task executions. For each of the considered procedures,
we manually labeled task-graphs as structures encoding the
keystep orderings leading to a correct execution of the pro-
cedure (detailed below). A task graph is meant as a way to
encode all orders of keysteps which lead to a correct execu-
tion of the task.

Task-graphs. We define a task-graph as a directed graph
in which nodes represent keysteps and directed edges repre-
sent dependencies. For instance, in the example task-graph
reported inFigure 22, the “AddMilk→Get aBowl” structure
denotes that keystep “Get a Bowl” has to be executed before
keystep “Add Milk”. If a keystep has more than one depen-
dency, all of them need to be satisfied. For instance, both
“Put Skillet on Hob” and “Turn on Hob” need to be executed
before “Heat Oil”. Besides directed edges, task-graphs also
contain “OR” and “XOR” structures, which combine depen-
dencies logically, aswell as “optional” and “repeatable” node
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Fig. 22 Example task-graph of a “Cooking Omelet” procedure

attributes. For instance “MixEggs” can be performed if either
“Add Water” or “Add Milk” (or both) are executed, whereas
“Pour Mixture in the Skillet” requires either “Melt Butter”
or “Heat Oil” to be executed, but not both. Repeatable nodes
(e.g., “Crack Egg”) can be repeated as long as their outgo-
ing nodes (pre-conditions) are satisfied and incoming nodes
(future nodes) are not executed. For instance, one could keep
cracking eggs as long as the bowl is in place, but not after
mixing the eggs. An optional node (e.g., “Reduce Heat”) can
be omitted, but, if included, it needs its preconditions to be
correctly satisfied.

Task-graph construction. We first familiarized ourselves
with the procedural tasks by watching videos with annotated
keysteps. We then initialized task graphs with procedural
dependencies obtained from keystep annotations through the
following procedure: a) a directed graph is first generated
from the observed keystep transition frequencies; b) edges
of the transition graph are filtered based on transition proba-
bilities using a threshold parameter which is manually tuned
for each scenario; c) edge directions are inverted to convert
frequent transitions into dependencies. These initial graphs
were then refined and manually corrected.

Segment-level annotations.A task graph is a global repre-
sentation of a procedure including information on depen-
dencies and partial orderings of keysteps. Since our task
is defined at the keystep level, we need to “project” the
constraints expressed by the task graph onto keystep video
segments, which we do with the following procedure.

Let S = {s1, . . . , sn} be a labeled sequence of keysteps in
a given video. We denote with yi the annotated keystep label
of segment si and with Y:i = {y1, . . . , yi } the sequence of
labels up to the i-th keystep. Using these keystep annotations,
each segment si is automatically matched to a task-graph and
augmented with the following attributes: 1) a list of previous
keysteps—these are the in-neighbors of the matched node,

2) optional labels—directly derived from the optional node
attribute, 3) a procedural mistake label—this is set to “true”
if the in-neighbors of the matched node do not correspond to
segments in the history Y:i , 4) the list of missing keysteps—
the in-neighbors of the matched node not listed in Y:i , and 5)
the list of next steps—nodes for which in-neighbors appear
in Y:i . Non-repeatable nodes are listed only if they do not
appear in Y:i .

Given the weakly supervised nature of the task, we only
release keystep level annotations on the validation set, while
annotations on the training set are not shared nor used for the
development of the baselines, and test labels are private, with
evaluations on the test set possible by submitting predictions
to a server. Also note that we do not release the labeled task
graphs to avoid leaking test and training labels.

Metrics Weconsider the task of determining lists of keysteps
as a detection task with an imbalance between positives (the
keysteps to be detected, e.g., preconditions) and negatives
(the keysteps which are not to be detected, e.g., keysteps
which are not preconditions) and evaluate all methods using
the calibrated Average Precision (cAP) (De Geest et al.,
2016). Note that, according to this measure, a random base-
line would on average achieve a performance of 50%.

Baselines We consider graph-based and end-to-end base-
lines. Graph-based baselines (see Figure 23(a)) include two
main components: a segment-keystep assignment module
(A1) which provides a pseudo-labeling of video segments
based on a pre-trained video-language model, and a proce-
dural reasoning module (B) which makes predictions based
on a transition graph built either from ground truth (for
instance-level supervision) or pseudo-labels (for procedure-
level supervision). Additionally, we provide a baselinewhere
the keystep assignment step is replaced with label predic-
tions from the Keystep Recognition task (A2). Note that in
the training set, segments with a confidence score below 20%
have been discarded.

End-to-end baselines (see Figure 23(b)) are trained to pre-
dict the same results as graph-based baselines directly from
video, with the aim to obtain a compact algorithmwhich does
not explicitly make use of a graph. The end-to-end architec-
ture consists of three MLPs designed to predict previous,
optional, and future keysteps. Each MLP has six heads, one
for each considered scenario.

Additional baseline implementation details are provided
in Appendix E.4.

Results Table 8 reports the results obtained by our baselines
and compares them against those produced by a “uniform”
baseline, predictingprevious/optional/mistakes/missing/next
keysteps with equal probabilities. Results show that the
graph-based baseline relying on ground truth annotations sig-
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Fig. 23 Overview of the two procedure understanding approaches considered in our evaluation: (a) graph-based baselines for procedure under-
standing rely on a Keystep Assignment or a Keystep Recognition and a Procedural Reasoning component; (b) the architecture of our end-to-end
baseline

nificantly outperforms the uniform baseline for most of the
tasks, excluding future keystep predictions. This suggests
that even simple keystep co-occurrences are informative to
some degree of the overall structure of the procedure.

The limited performance gains on future keystep predic-
tion highlight the complexity of the task and the need for
further research. The end-to-endmodel trainedwith instance-
level supervision achieves lower or similar performance,
trading accuracy for test-time efficiency, due to the absence
of an explicit graph. Procedure-level baselines achieve lower
results because they do not rely on ground truth labels. The
keystep prediction approach achieves better results compared
to the keystep assignment mechanism for all tasks, except for
optional keysteps. Despite our efforts, performance is below
the uniform baseline, indicating that there is room for future
investigations.

5.3 Ego-exo proficiency estimation

Motivation Going beyond recognizing what a person is
doing, this task aims to infer the user’s skill level. Such an
ability could lead to novel coaching tools that let people learn
new skills more effectively, or new ways to evaluate human
performance in domains like sports or music.

Task definition We consider two variants: (1) demonstra-
tor and (2) demonstration proficiency estimation. Both tasks
consider one egocentric and (optionally)M exocentric videos
of a demonstrator performing a task, which are synchronized
in time, as their inputs:V =

(
Vego,V1

exo, · · · ,VM
exo

)
. See Fig-

ure 24 for an illustration. We provide more details for each
variant below.
Demonstrator proficiency estimation: The goal is to esti-
mate the demonstrator’s skill level from one or more task
demonstrations. It is formulated as a video classification task
with the following classes: (novice, early expert, intermedi-
ate expert, late expert).

Demonstration proficiency estimation: Given a single task
demonstration, the goal is to identify parts of the video
where the task execution was good (i.e., ‘good executions’)
or needs further improvement (i.e., ‘needs improvement’).
It is formulated as a temporal localization task, where we
localize instances of ‘good executions’ and ‘needs improve-
ment’ throughout the task demonstration. Formally, we can
express the demonstration proficiency estimation function h
as Ĝ, Î = h(V), where Ĝ =

{
t g1 , t

g
2 , · · · , t

g
|G|

}
are the times-

tamps where the participant shows good task execution, and
Î = {t i1, t i2, · · · , t i|I |} are the timestamps where the partic-
ipant needs to improve their skill level. Note that parts of
the video that do not reveal the participant’s skill are left
unlabeled.
Both tasks inherently benefit from multi-view data. Egocen-
tric video captures fine-grained information about the hand
pose and object interactions, which can be critical in tasks
that such as cooking (e.g., chopping vegetables) and music
(e.g., placement of fingers on the guitar). On the other hand,
the exocentric videos provide broader information about the
demonstrator’s body pose, which can be highly indicative of
proficiency in tasks that require extensive physical motion
such as basketball, soccer, and dancing.

Note that the input to the model excludes textual descrip-
tions/narrations of the activity, audio, gaze sensor readings,
and any subject information, which would simplify the task
significantly at the expense of usability since these signals
are typically not available for in-the-wild video. Our formu-
lation encourages the development of proficiency estimation
methods from visual cues.

Related work Prior work uses egocentric (Bertasius et al.,
2017; Doughty et al., 2019) or exocentric (Parmar & Mor-
ris, 2017; Parmar & Tran Morris, 2019; Ismail Fawaz et al.,
2018) views for proficiency estimation in sports (Bertasius
et al., 2017; Parmar & Tran Morris, 2019; Pirsiavash et al.,
2014), health (Liu et al., 2021; Ismail Fawaz et al., 2018;
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Fig. 24 Demonstrator and demonstration proficiency estimation

Zhang & Li, 2013; Zia et al., 2017), and others (Doughty et
al., 2019; Yu et al., 2021). We propose the first multi-view
egocentric and exocentric proficiency estimation benchmark.
Unlike prior work, our benchmark spans diverse, day-to-day
physical and procedural scenarios and includes temporally
localized annotations of (in)correct executions.

Annotations We now describe the annotation procedure for
the two proficiency estimation tasks.
Demonstrator proficiency estimation. We assign four profi-
ciency labels (novice, early expert, intermediate expert, late
expert) to each person performing activity demonstrations
(one label per person). Most levels correspond to experts
since Ego-Exo4D videos are dominantly targeted towards
expert participants who can perform the task successfully
(see Appendix B). Four proficiency classes makes the task
challenging but still approachable.8 We derive annotations
for this task from participant surveys and expert commen-
tary. Please see Appendix E.5 for more details, including a
visualization of the proficiency score distribution for each
scenario (Figure 44).

We split our dataset into train/val/test splits based on the
common split shared across benchmarks. The dataset statis-
tics are shown in Table 9. Note that we exclude the bike
repair and health scenarios from the demonstrator proficiency
task. The distribution of participants for bike repair is heav-
ily skewed towards late experts. The predominant activity in
the health collection is COVID testing, where skill levels are
hard to determine due to the simplicity of the task.
Demonstration proficiency estimation. We leverage tempo-
rally localized annotations that include the timestamps of
steps demonstrated in the video as well as the proficiency
category for each demonstrated step instance (i.e., good exe-
cution or needs improvement). For this task, we consider all
8 scenarios, as shown in Table 9. We derive annotations for
this task from expert commentary, where task experts care-
fully analyze videos and provide timestamped commentary

8 Subtle variations between five or more levels of proficiency can be
insufficiently observable from vision alone, and even difficult for expert
annotators to reach consensus.
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Table 9 Distribution over video takes in proficiency estimation bench-
mark

Demonstrator Demonstration

Train Val Test Train Val Test

Basketball 575 143 167 146 47 19

Bike repair - - - 41 9 15

Cooking 200 53 86 80 24 39

Dance 380 127 148 80 35 27

Health - - - 42 12 16

Music 138 36 71 94 32 35

Rock Climbing 561 159 230 65 15 22

Soccer 129 43 66 8 3 6

Total 1983 561 768 556 177 179

on the participant’s performance (see Section 4.1). In partic-
ular, given a single timestamped comment from an expert,
we annotate whether the comment describes a good execu-
tion and/or provides tips for improving the participant’s skill
level. See Table 23 in Appendix E.5 for example annotations.
These annotations are then associated with the timestamp
provided with each comment to obtain a list of timestamps
for good executions {t g1 , t

g
2 , · · · } and tips for improvement

{t i1, t i2, · · · } in each video. Overall, the demonstration profi-
ciency estimation task consists of 556 train / 177 val / 179
test videos (see Table 9 for a breakdown per scenario).

Metrics For demonstrator proficiency estimation, we mea-
sure performance using top-1 classification accuracy. For
demonstration proficiency estimation, we measure the tem-
poral localization performance using a modified mean
average precision (mAP). Unlike prior temporal action local-
ization methods which use temporal IoU between segments,
we use the L1-distance between the predicted and ground-
truth timestamps tomeasuremAP. Therefore, we definemAP
based on L1-distance (in seconds) thresholds.

Baselines Next, we define the baselines for each task.
Demonstrator proficiency estimation: We adopt TimeS-
former (Bertasius et al., 2021) for our experiments. We train
one model on the egocentric view (“ego model”), and a sep-
arate model on all 4 exocentric views (“exocentric model”).
The models are trained to classify individual clips using the
cross-entropy loss. At inference time, we perform late fusion
to incorporate information from both egocentric and exo-
centric video streams. We average the softmax predictions
across both egocentric and exocentric models to obtain the
final video label prediction.Wealso average results over three
spatial crops during inference following prior work (Berta-
sius et al., 2021).
Demonstration proficiency estimation: We adopt Action-
Former (Zhang et al., 2022), a video action localizationmodel

for our experiments. Unlike traditional action localization,
we infer only a single timestamp since our annotations con-
tain only a single point in time for each good execution or
tip for improvement. We accordingly adapt ActionFormer
for timestamp regression and define L1-distance based mAP
metrics. We train our models with Omnivore features (Gird-
har et al., 2022) extracted from overlapping time intervals in
the video. For the experiments involving multiple views (i.e.,
multiple exo views or ego + exo views), we simply concate-
nate the features for all views at each time step.
Please see Appendix E.5 for additional implementation
details about the baselines.

Results Our Ego-Exo4D dataset has 5 views (1 egocentric
view, and M = 4 exocentric views). We run the proficiency
tasks in two settings: one where the exo view is available
at test time, and one where it is not. For the latter, bench-
marking baseline models with only the egocentric view is
important when the target is augmented reality applications
like wearable headsets and mobile robotics. For the former,
results with benchmarking with both egocentric and exocen-
tric views are helpful to capture the multi-view aspect of the
problem.
Demonstrator proficiency estimation. We present results for
demonstrator proficiency estimation in Table 10. We include
two naïve baselines to account for biases in the dataset. The
random baseline uniformly samples one skill level at ran-
dom. The majority-class baseline predicts the majority class
within each scenario. TimeSFormer trained from random
initialization outperforms the naïve baselines by a signifi-
cant margin, demonstrating the ability of learned methods to
quantify skill levels from videos. Ego videos are sufficient to
achievegoodperformance inmost cases,while the exovideos
are beneficial in tasks such as bouldering, highlighting the
complementary nature of the ego and exo viewpoints. Ini-
tializing TimeSFormer using pre-trained weights improves
over random initialization, particularly on ego videos. Fur-
thermore, fusing the predictions from the ego view and exo
views does not improve performance, likely due to the sim-
plicity of late fusion. In the last row of Table 10, we further
report results when providing multiple demonstrations from
a participant for evaluating TimeSFormer. This matches or
outperforms evaluating TimeSFormer on a single demonstra-
tion, highlighting the potential for obtaining more accurate
skill estimates by studying multiple demonstrations. We fur-
ther study scenario-specific performance of the baselines in
Appendix E.5. We find that egocentric views are beneficial
for scenarios such as cooking that require close-up views of
hands and objects, whereas exocentric views are more useful
for scenarios such as bouldering that require body-pose infor-
mation. Overall, our benchmark presents new challenges for
video-based skill understanding and our results highlight the
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Table 10 Demonstrator
proficiency estimation. We
report top-1 accuracies for
various baselines on the
demonstrator proficiency
estimation task. Our learned
models use the TimeSFormer
architecture (Bertasius et al.,
2021)

Method Pretraining Accuracy

Ego Exos Ego + Exos

Val Test Val Test Val Test

Random - 26.4 26.4 26.4 26.4 26.4 26.4

Majority-class - 32.3 42.4 32.3 42.4 32.3 42.4

TimeSFormer - 40.6 33.9 39.0 47.5 39.9 45.7

TimeSFormer K400 47.2 44.1 37.8 47.0 40.3 46.1

TimeSFormer HowTo100M 45.1 36.7 39.8 46.6 43.7 47.0

TimeSFormer EgoVLP 44.7 43.8 40.5 44.5 39.4 43.5

TimeSFormer EgoVLPv2 46.7 50.4 37.0 47.0 37.1 48.7

Inference with multiple takes per demonstrator

TimeSFormer EgoVLPv2 48.3 51.0 36.0 47.3 43.1 49.1

difficulty of the task, suggesting good scope for improvement
in future work.
Demonstration proficiency estimation.We present results for
the demonstration proficiency estimation task inTable 11.We
include three naïvebaselines alongwithActionFormer (Zhang
et al., 2022). The “Random tips/good exec.” baseline ran-
domly predicts a tip or a good execution label every 5.97
seconds, i.e., the average temporal span between adjacent
annotations in our dataset. The “Uniform tips” baseline pre-
dicts a tip for improvement label every 5.97 seconds. The
“uniform good exec.” baseline predicts a good execution
label every 5.97 seconds. We evaluate ActionFormer models
trained on ego only, exo only and ego + exo views. All naïve
baselines perform poorly on this task. The learned Action-
Former baseline outperforms the naïve baselines by a good
margin. However, the absolute mAP scores are fairly low,
suggesting that the task is very challenging and has a signif-
icant scope for improvement in methods.

5.4 Ego pose

Motivation Having presented benchmark tasks about ego-
exo relation, recognition, and proficiency assessment, we
now define the final family of tasks centered on body and
hand pose. This family of tasks ismotivated by recovering the
skilled body movements of participants, even in the extreme
setting of monocular ego-video input in dynamic environ-
ments, as shown in Figure 25. Estimating the physical state of
a person’s body—the 3D positions of the arms, legs, hands—
from the ego view is essential for wearable AI systems that
can support human activity. Challenges include subtle and
flexible movements, frequent occlusion, and body/hand parts
out of view.

For each scenario, we invite experts as the participants to
enhance the complexity and variety of the motions captured.
As an example, expert musicians typically demonstrate more
advanced and varied finger techniques (300+) compared to

beginners or intermediate players (< 100) during the record-
ings. Such complexity enables the model to (1) extract more
representative latent features, and (2) learn subtle patterns
and relationships that might be missed in a more homoge-
neous dataset, for both estimation and prediction tasks.

Task definition The ego pose benchmark is divided into two
separate tasks: body pose estimation and hand pose estima-
tion.

In our body pose estimation task, the goal is to estimate the
3D human pose sequence P = {P1, ...,PT } using either an
egocentric RGB video input sequence Vego = {V1, ...,VT },
an IMU sensor sequence Himu = {H1, ...,HT }, or both,
where 1 ≤ t ≤ T is the given time window remapped to
make the starting timestamp to be 1, and Pt ∈ R17×3 corre-
spond to the 17 joints following the MS COCO convention
in 3D. T can have different values depending on the length of
the particular annotated clip. Note that at test time, we only
estimate the error across the visible annotated joints at frame
t .

The ego hand pose task entails predicting the three-
dimensional coordinates of the camerawearer’s hands.Given
an egocentric frame, the goal is to estimate the 3D joint
location for the hands that are (at least) partially visible in
the ego view. The output is parameterized as 21 3D joints
per hand following the MS COCO dataset convention (Lin
et al., 2014). Frames from the ego view are extracted and
undistorted for both training and evaluation. The 2D hand
bounding boxes are generated by projecting the 3D hand
joints onto the 2D image planes and subsequently enclosing
these projections.

Since the Ego Pose benchmark is aimed at promoting the
development of methods that perform body pose estimation
solely from first-person raw video or IMU data, the input
excludes egocentric modalities that would unfairly simplify
the task (e.g., audio captured from a wearable camera, eye
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extracted from it.

Related work Limited prior work explores 3D body pose
from a wearable camera. Some methods assume no body
visibility (Jiang & Grauman, 2017; Yuan & Kitani, 2018,
2019; Luo et al., 2021; Li et al., 2023), while others assume
partial observability by modifying cameras to capture the
body (Rhodin et al., 2016; Tome et al., 2019; Xu et al., 2019;
Ahuja et al., 2019; Hwang et al., 2020). Our dataset can be
used for both paradigms.

Existing hand pose datasets use constrained environ-
ments (Simon et al., 2017; Moon et al., 2020) with simple
hand motion (Hampali et al., 2020; Kwon et al., 2021;
Ohkawa et al., 2023), whereas we include diverse real-world
scenarios with skilled hand motions, e.g., with expert musi-
cians and bike mechanics.

Annotations The 3D human body pose annotation pro-
cess consists of two main stages: (1) automatic ground
truth generation, and (2)manualmulti-view keypoint annota-
tion/correction. Through this process we derive 3D keypoint
annotations for approximately 14M frames.

In the automatic ground truth generation phase, we use
off-the-shelf models (MMPoseContributors, 2020) to predict
the 2D bounding boxes from each of the exocentric views.
Since there could bemultiple people in the scene andwe only
want to consider the one wearing the egocentric camera, we
project the 3D headset location from theMPS output to select
which box corresponds to the camera wearer. Then, we run
an off-the-shelf 2D human keypoint detector (MMPoseC-
ontributors, 2020) for each bounding box to obtain the 2D
keypoints. Finally, we run 3D triangulationwith RANSAC to
minimize the reprojection errors to obtain the 3D keypoints
for the camera wearer. In the manual annotation phase, we
import the undistorted frames and the reprojected 2D key-
points into our multi-view annotation interface.

The 3D human hand pose annotation process also con-
sists of two stages, i.e., the automatic ground truth generation
and themanualmulti-viewkeypoint annotation.Compared to
the body pose, the main difference in automatic ground truth
generation is thatwe also detect hand keypoints from the ego-
centric frame, andwe use the result from thewhole body pose
estimation to infer the hand locations when there are multi-
ple people in the scene. Similarly, for manual annotation,
besides the exocentric frames, we also show the annotators
the egocentric frames to allow them to annotate/correct hand
keypoints. For each annotated joint in manual annotations,
we provide the number of views used for triangulation as
the indicator of the confidence for the provided ground truth
data.Meanwhile, the correction the annotatorsmake for hand
joints on ego images can serve as the indicator to understand
the difficulty for hand reconstruction from the given egoview.
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Fig. 25 Hand and body
keypoints for ego-pose
estimation

Ego-Exo4D offers the largest available manually anno-
tated body pose (376K 3D/2M 2D) and hand pose (68K
3D/340K 2D) annotations. Along with this, we also provide
9.2M/47M (body) and 4.3M/21M (hand) automatically gen-
erated groundtruth 3D and 2D poses, totaling about 13.M
frames In total, we have approximately 14M frames of 3D
ground truth (GT) and pseudo-GT combined across body and
hands. To our knowledge, this represents the largest collec-
tion of body pose annotations in the literature, whether for
ego or exo video.

How good is the auto GT? Between manual and auto-
matic annotations, the body and hand MPJPEs are 3.33
cm and 1.87 cm, respectively, much smaller than the best
baseline methods. It is important to note that Ego-Exo4D
tackles real-world scenarioswith five or fewer cameras rather
than controlled environments. This introduces challenges
like increased occlusions from body and objects along with
limited view and resolution of hands from distant cam-
eras. Despite this, our auto generation pipeline surpasses
baselines, showcasing robustness and efficacy. Experiments
below further show performance boosts across baselines
when using automatic ground truth, demonstrating its effec-
tiveness. Note that automatic GT and manual GT are not
mutually exclusive, and people can choose whether/how
automatic GT is used for training.

Metrics To evaluate the performance of body pose estima-
tion approaches we calculate the Mean Per Joint Position
Error (MPJPE) in centimeters (cm), and the Mean Per Joint
Velocity Error (MPJVE) in meters per second (m/s).

The ego hand pose baselines are evaluated according to
both the MPJPE and the PA-MPJPE metrics. The MPJPE
measures absolute Mean Per Joint Position Error, while the
PA-MPJPE calculates the average 3D joint errors after per-
forming Procrustes Alignment on hand poses. Both metrics
are reported in millimeter (mm) unit.

Baselines We evaluate three state-of-the-art baseline meth-
ods for the body pose estimation task. Moreover, to gauge
the performance of deep-learning-based methods, we create
a static pose baseline, which consists of fixing the 3D human
body pose prediction to be the average pose in the training
set and translating it according to the IMU sensor. Thus, the
fixed prediction matches the camera location at each frame.

• Kinpoly. Kinpoly (Luo et al., 2021) proposes to use a
simulated humanoid to track head pose and create full-
body motion based on action types. Based on the input
head-pose and action type, Kinpoly synthesizes realis-
tic human pose and human-object interactions inside a
physics simulator. Different from kinematic-based meth-
ods that directly output joint angles or positions for pose
estimation, Kinpoly outputs joint torques as the final
product and controls a simulated humanoid for pose esti-
mation.

• EgoEgo. EgoEgo (Li et al., 2023) uses a two-step
approach for egocentric body pose estimation, by esti-
mating the head pose from the egocentric video first,
and then using a diffusion model to generate the full
body motion sequence based on the head pose sequence.
For head pose estimation, it obtains the initial head pose
trajectory using DROID-SLAM (Teed & Deng, 2021),
and then uses learning-based methods to correct the head
pose, including a GravityNet to estimate the additional
rotation and aHeadNet with optical flow features as input
to estimate the scaling factor to the trajectory. The full
body pose is generated with amodified version of DDPM
(Ho et al., 2020) that is conditioned on head pose and
trained on AMASS (Mahmood et al., 2019). We show
the evaluation of the conditional diffusion part here.

• Location-based. This baseline is inspired by state-of-
the-art methods that use transformer-based models for
body pose estimation from sparse inputs (Castillo et al.,
2023; Jiang et al., 2022). We adapt these methods to uti-
lize 3D positions as opposed to the traditional parametric
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body model. During the training phase, the model was
subjected to 40, 000 iterations, using theAdam optimizer
with a learning rate of 1e−4. The window size for tempo-
ral analysis was set at 40 frames, and we minimized the
Mean Squared Error (MSE) loss between predicted poses
and ground truths. As for the input, our model receives a
sequence of head poses captured by the device.

We implemented and/or trained four baseline models for
the ego hand pose estimation. To estimate the 3D hand
joint from monocular 2D ego view images, 2D heatmaps
can be explicitly estimated and lifted to 3D space, or 3D
joints can be directly estimated from extracted 2D features.
The feature extractor backbone could be CNN-based or
transformer-based. Theproposedbaselinemethods cover dif-
ferent choices ofmodel designs.All the baselinemodelswork
on single frame images without temporal information. The
baseline models are trained on manual or manual+automatic
annotations, and are only evaluated on manual annotations.

Notably, most baseline methods generate hand mesh as
final results in their original paper. We modified them to be
trained and supervised only on 2D/3D hand joints (not on
hand mesh) to fit the benchmark.

• THOR-net. THOR-net (Aboukhadra et al., 2023) uses
Keypoint-RCNN as the feature extractor to obtain 2D
information and derive 2D hand keypoints heatmaps
explicitly. The method then lifts 2D estimates to the
3D space using GraFormer (Zhao et al., 2022), which
is a model consisting of Graph Convolutional layers
and Attention layers. We use only the 2D-to-3D pose
GraFormer branch in THOR-net to adapt the method to
our task. The training takes around 4 hours for the man-
ual dataset on a GeForce RTX 4090 Graphics Card, and
around 10 hours for the dataset combining manual and
automatic annotations.

• HandOccNet. HandOccNet (Park et al., 2022) uses
a ResNet50(He et al., 2016)-based FPN (Lin et al.,
2017) to extract 2D features. The method then uses two
Transformer-based modules: Feature Injecting Trans-
former (FIT) to inject hand information into occluded
region, and Self-Enhancing Transformer (SET) to fur-
ther refine the 2D features. The method proposes a
regressor based architecture to produce 2D keypoints,
MANO (Romero et al., 2017) pose, and MANO shape
parameters to predict joints and vertices. To accom-
modate our baseline, only 2D keypoints and 3D joints
location losses are used in the training phase. The train-
ing takes around 2 hours for the manual dataset on 8
NVIDIA V100 Graphics Cards.

• POTTER. POTTER (Zheng et al., 2023) proposes Pool-
ingAttention Transformer (PAT) to extract 2D visual fea-
tures, which significantly reduces the memory and com-

Table 12 Results for the 3D human body pose benchmark. We report
theMean Per Joint Position Error in cm and theMean Per Joint Velocity
Error in m/s for all the baseline approaches

Method Validation Test

MPJPE MPJVE MPJPE MPJVE

Static pose 254.29 - 215.87 -

EgoEgo 24.53 0.78 26.38 0.66

Kinpoly 21.66 0.86 24.36 0.65

Location-based 20.73 0.74 18.51 0.64

putational cost without sacrificing performances. The
method then applies a mesh regression head HybrIK (Li
et al., 2021) to generate 3D joint and mesh results. The
training takes around 43 minutes for manual dataset, and
around 4 hours for manual+auto dataset on a GeForce
RTX 4090 Graphics Card.

• METRO. METRO (Lin et al., 2021) extracts a CNN-
based global image features. The method then uses a
transformer encoder to jointly model vertex-vertex and
vertex-joint interactions, and outputs 3D joint coor-
dinates and mesh vertices simultaneously. Since the
training of METRO strongly depends on hand mesh
supervision, which is not present in the annotations, we
borrowed the checkpoint trained on FreiHand (Kolo-
touros et al., 2019) dataset and run the inference only,
without training it on our benchmark.

Results Table 12 shows the evaluation results of all the base-
line approaches for the body pose estimation task. First, note
that the static pose baseline obtains a significantly higher
MPJPE than all the other approaches. This finding sug-
gests that the poses across different scenarios in the dataset
are extremely diverse. Thus, attempting to have the same
static pose for all test cases is unfeasible. In contrast, the
proposedbaseline implementations achieve notable enhance-
ments in performance. Table 13 shows the performance of
each method per scenario. While these developments are
promising, we believe that further refinement is possible,
especially in lower body pose estimation and to ensure tem-
poral consistency in predictions.

We report theMPJPE and PA-MPJPEof the baselinemod-
els for the body pose estimation task in Table 14, and their
corresponding parameter numbers and multiply-accumulate
operations (MACs) in Table 15a.We further analyze the error
distribution across different hand joints. Figure 26 shows that
the thumb finger and finger tips tend to have larger errors,
most likely because they are occluded or invisiblemore often.

For each annotated joint, the manual annotations keep
record of the number of views where the joint is visible.
The visible 2D observation is then used for triangulation in
3D ground truth generation. This can be taken as an indica-

123



8394 International Journal of Computer Vision (2025) 133:8356–8435

Table 13 Body pose estimation Test results per scenario. We report the
Mean Per Joint Position Error in cm

Scenario EgoEgo Kinpoly Location-based

Basketball 21.36 24.98 19.89

Soccer 23.08 19.09 16.62

Bike repair 30.18 25.19 20.61

Cooking 23.71 20.80 12.65

Health 32.57 29.23 11.63

Dance 20.93 18.03 21.15

Music 33.81 30.30 15.00

Table 14 MPJPE and PA-MPJPE in mm for ego hand pose baseline
models. * denotes methods not trained on the benchmark

Manual Manual+Auto

MPJPE PA-MPJPE MPJPE PA-MPJPE

METRO* - 20.61 - 20.61

THOR-net 51.24 17.99 47.64 17.61

HandOccNet - 17.22 - 13.56

POTTER 30.57 11.14 28.94 11.07

tor of the uncertainty of the ground truth, and the difficulty
level for the estimation of the joint (usually, a joint visible by
fewer views indicates that it is more entangled with objects
or other part of the hand). Table 15b shows that the PA-
MPJPE decreases as the visible number of views increases.
To guarantee the ground truth accuracy, all experiments are
performed only on joints at least visible in 3 cameras.

6 Data availability statement

This section recaps the available data and how to access it.
Ego-Exo4D is a large-scalemulti-modalmulti-view video

dataset (including 3D) and benchmark challenge. The dataset
consists of time-synchronizedvideos of participants recorded
with at least one first-person (egocentric Aria glasses) and
multiple third-person (exocentric GoPro cameras) perspec-

tive cameras. Recordings occurred around the world from
12 different research institutions. Each recording (capture)
contains multiple takes of one or more participants (camera
wearer) performing a physical (Soccer, Basketball, Dance,
Bouldering, andMusic) or procedural (Cooking,BikeRepair,
Health) task. Due to the usage of the Aria glasses, we have a
wide range of associated 3D data.

Recording devices

• One Aria glass

– RGB camera
– 2 x monochrome cameras
– 7 x microphones
– 2 x IMU

• 4-5 GoPros

– RGB camera
– Stereo microphone

Data

• Sensor-based Data (Video, Audio, IMU)

– Video, audio and IMU data
∗ Video: 4k@60FPS (MP4) for GoPro devices
and 1404x1404@30FPS (VRS) for Aria devices
∗ Audio: 7 channel audio for Aria (VRS);
128kbpsAACcompression, 48kHz, stereo audio
for GoPro cameras
∗ IMU: 2 x 1kHZ for Aria (left and right side)
[VRS file format]

– Take-separated and time-synchronized data
∗ MP4 video and audio data: all camera feeds
are compressed with H264 (slow, 24, yuv420p)
∗Downscaled variants of the above are available
(448px short-side)
∗ Trimmed Aria VRS and trajectory data

– Pre-rendered collage videos integrating all views/
cameras (for visualization purposes)

Table 15 Analysis for the hand pose benchmark

(a) Number of parameters and MACS for the different ego hand pose baselines.

THOR-net (Aboukhadra et al., 2023) HandOccNet (Park et al., 2022) POTTER (Zheng et al., 2023)

Params (M) 59.5 37.22 14.5

MACs (G) 123.6 15.5 5.2

(b) PA-MPJPE for joints that are visible in different number of views (including ego and exo views). Results generated from
POTTER (Zheng et al., 2023) evaluation.

# visible views 3 4 5 6

PA-MPJPE (mm) 14.01 12.15 11.03 10.02
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Fig. 26 Average PA-MPJPE for
each joint. Results generated
from POTTER (Zheng et al.,
2023) evaluation

• Outputs fromAria’sMachine Perception Services (MPS)

∗ Calibrated camera parameters (intrinsics) for all
cameras (in VRS file)
∗ 3D camera poses (trajectories / extrinsic parame-
ters) for all cameras
∗ Sparse 3D point clouds of static environment
∗ 3D eye gaze vectors

• Pre-extracted video features for all takes and associated
cameras

Annotations

• Keysteps: Procedural activities time-segmented into
regions classified within hierarchical taxonomy, with
the intention to breakdown the high-level goal(s) into
keysteps

• Object segmentation mask tracks (across egocentric and
at least one exocentric view)

• Human body and hand joints (human annotated and auto-
matically generated)

– 2D keypoints
∗ 17 body keypoints
∗ 2 x 21 hand keypoints

– 3D joint positions
∗ 17 triangulated body joints
∗ 2 x 21 triangulated hand joints

Language-video aligned data

• Expert commentary (the “what” from a layman’s third-
person perspective)

– Professional coaches and domain experts evaluate
task performance at key moments in the videos

• Atomic action descriptions (the “how” from an expert’s
third-person perspective)

– Text descriptions at densely sampled timepoints
across the video, and also includes information about

the most informative view and whether the action is
visible from the egocentric camera.

• Narrate and act (the “why and how” from the participant’s
perspective)

– Participant describes why and how as they perform
their task

Meta-data

• Task labels

– Each take consists of a camera wearer performing a
predefined task; the task label is available.

• Participant surveys

– Before (pre) and after (post) survey data answered
by the participant to the help asses the proficiency of
the camera wearer with normalized proficiency cate-
gories per domain

Utilities

• Data downloader
• Data visualization website
• Example usage notebooks
• Code utilities

All resources are available here with a signed license:
https://ego-exo4d-data.org/

7 Conclusions

Ego-Exo4D provides a robust data collection pipeline, a
dataset of unprecedented scale and realism, and a bench-
mark suite for ego-exo skilled activity understanding and
video learning. We propose a replicable pipeline to col-
lect synchronized multi-exo cameras along with egocentric
data in diverse settings indoors and outdoors. The setup was
replicated across country boundaries to collect a homoge-
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neous dataset. This offers, for the first time, collection of
ego-exo data outside mocap suits or lab settings, capturing
the participants where they naturally carry out their skilled
activities—e.g. chefs in their kitchens, dancers in their stu-
dios, and football players on the pitch.

Eight compelling domains were selected with diverse
skilled activities. We divide these domains into physical
skills—those that particularly require strengthening, flexing
or training the human body to carry out a skill, e.g. danc-
ing; and procedural skills—those that one masters through
the usage of tools to manipulate the surrounding environ-
ment, e.g. cooking. Both types of skilled activities (physical
and procedural) have never been explored jointly. By bring-
ing the two types of skilled activities to a common dataset
and benchmark, Ego-Exo4D will address the ever-lasting
promise of assistive technologies, beyond a single domain
or application.

The dataset comes with a suite of benchmarks, models,
evaluation scripts, web-based visualizer, and baselines, to
assist the research community in exploring and building on
the challenges posed by Ego-Exo4D.

One of the challenges of Ego-Exo4D, and consequently
its limitations, is the difficulty in optimizing the positions
of exo cameras in the various settings. Often, the action is
occluded by the person in the majority of the exo camera due
to the standard and static positioning of these cameras. This
impacted the annotations at times, and we opt to manually
select suitable exo cameras during annotations. Additionally,
the data is long-taileddue to thenatural durations of activities.
For example we have 9x more hours of cooking than soccer,
as preparing a meal takes much longer than a soccer drill.
The tasks also differ in their skill challenge; for example,
learning to shoot the basketball into a hoop requires a lotmore
training and expertise than learning to carry out aCOVID test.
This diversity, while part of daily activities, could introduce
challenges to current model training.

For the keystep recognition and proficiency estimation
benchmarks, we study a task formulation where both the
ego and the exo views are provided as input, as well as task
variants using only one view. These setups enable interest-
ing analyses of complementarities and redundancies between
the two views. Perhaps surprisingly, our empirical studies
show that for proficiency estimation, the strongest results are
often achieved using only one of the two views as input.
In keystep recognition, we saw a similar degradation when
using both views for baselines that naively fuse information
across them; however, models with explicit view-invariant
trainingmechanisms benefited from both views and achieved
the strongest results. Interestingly, in both tasks, we found
that the most informative view varies with scenarios. For
example, in demonstrator proficiency estimation, using only
the ego view yields the best performance for scenarios that
require thorough analysis of hand-object interactions (e.g.,

basketball, cooking) while the exo view is the most infor-
mative for activities that benefit from full-body information
(e.g., bouldering). These findings underscore the limitations
of simple view-fusion models and call for timely advances
in this area.

In addition to the three foundations of this dataset:
pipeline, dataset, and accompanying benchmarks, two addi-
tional research gems should be highlighted for interesting
future directions.

First, the videos are accompanied by three levels of lin-
guistic descriptions: (i) fine-grained narrations of ongoing
actions, (ii) descriptions of the activity by the participants
themselves reflecting on their expertise andwhy they perform
in a certain manner—we refer to this as ‘act and narrate’, as
well as (iii) commentary from expert tutors. These are people
trained to teach or evaluate the skill of others. The commen-
tary is temporally synced with the action and enriched by
spatial highlights to pay attention to particular ways in per-
forming skills, both showcasing excellence as well as points
for improvement—we refer to this as ‘expert commentary’.
Ego-Exo4D thus offers the first resource of its kind to com-
pare how actors and observers reflect, similarly or distinctly,
on their skills.

Second, Ego-Exo4D offers for the first time the chance to
study detailed hand-pose including hand-object interactions
and full body pose in one dataset. A few recent works have
showcased the potential of combining both in synthetic (Ten-
dulkar et al., 2023) or controlled (Taheri et al., 2020) settings.
Ego-Exo4D can be used as a base to take these directions fur-
ther into real-world recordings.

Ego-Exo4D is a massive step towards a holistic under-
standing of the individual camera wearer—particularly their
personal goals to advance their skill levels for their job
or hobby. Models that understand one’s skill will offer
the ultimate assistive companion, as noted by the survey
paper (Plizzari et al., 2024). Such a companion can offer
actionable personalised feedback (Ashutosh et al., 2024),
then continuously monitor and quantify that feedback’s
impact on the camera wearer’s skill over time, towards life-
long skill mastering. Beyond skill understanding in video,
Ego-Exo4Dserves as a resource to deepen research in general
3D vision (environment reconstruction, camera relocaliza-
tion, and others), video-language learning (grounding actions
and objects, multimodal representation learning, language
generation), and traditional exocentric activity understand-
ing.
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Fig. 27 With a QR code timer
playing back at exactly 29fps,
cameras with evenly spaced
center-exposures can be
precisely time-localized to the
QR timer with these multi-QR
patterns

A Camera setup and recording details

A.1 Time sync

To sync cameras, we employ a pre-rendered sequence of QR
Codes (i.e.,QRcodevideo) that encode awall-clock time.We
show this QR code video using the smartphone at 29fps to all
cameras in sequence and exploit the difference in frame rates
to finely sync the cameras. In theory, the QR code decoded
on a frame that captures a QR change is likely the one that
was visible during that frame’s center of exposure. With a
single QR, the camera’s center of exposure time could be
anywherewithin the 34.48ms that theQR is shown.However,
with two consecutive frames with the same QRs, we can
localize that time down to ±0.574ms. The same approach
yields ±0.558ms for the 59fps GoPros given 3 consecutive
frames (see Figure 27), providing sub-frame synchronization
accuracy.

Wemanually verified that eachGoPro camerawaswithin 1
frame (+-16.66ms) of the Aria RGB camera by visually com-
paring them at single-frame moments (e.g., contact frames)
using a synced video collage at the start and end of each
capture. We checked points near the start and end of each
capture under the logic that sync is a linear mapping and
camera clock speed is mostly constant, so if the error is +-
1 frame at the start and +- 1 frame at the end, it will be +- 1
frame throughout.

An ‘audio sync’ fingerprint was played at the start and
end of each capture to synchronize audio streams but has not
been used.

Challenges andworkarounds In practice,∼70%of recorded
captures yielded frame-accurate sync through our auto-
mated pipeline. Inaccurate sync causes included observed
issues (e.g., phone changing orientationmid-playback, video
playback interruptions) and suspected ones (e.g., videos
not playing back at precisely 29fps, center exposure times
not being evenly spaced). To recover these captures, we
employed amanual sync procedurewherein peoplemanually
selected frame timestamps that should be aligned based on
precisely time-localizable events, e.g., a lighter first sparking,
a soccer ball making contact with a cleat, or a hand begin-
ning a fast slide down the neck of a guitar. This unblocked

the remaining ∼30% of captures at the cost of less accurate
sync.

Alternatives We explored and disqualified other sync
options—notably using Timecode with TentacleSync or
Ultrasync. Both of these solutions use LTC to encode a 1fps
timestamp into the audio channel of a connected device.
Using them with GoPros would cost us the stereo-audio
modality, which we opted to keep to support audio-based
research areas. We additionally lacked an ergonomic input
solution for Aria to use while recording, so that mandated
non-intrusive sync solutions.

A.2 Take separation

To amortize the setup and tear down time required for each
recording, we record multiple ‘takes’ (i.e., one instance of
a certain task) back-to-back and use a ‘Take Separator’ QR
code (different from the time sync QR code video) that is
identified in post-processing to auto-separate each take. This
enables us to scale up recording—particularly for the phys-
ical scenarios where a single take can be less than a minute
long. Data collectors track metadata for each take, identify-
ing them by index and marking data such as participant ID
(anonymous unique identifier), task (e.g., making tea, mak-
ing cucumber salad, performing CPR), and whether the take
should be dropped (i.e., if it is just setup time between activity
enactments).

A.3 Recording procedure

Our rig setup procedure entails setting up the stationary exo
cameras in the recording environment and displaying QR
codes to perform time sync and then take separations. Fig-
ure 28 overviews our recording procedure.

1. Position tripods, power on GoPros, and set camera angles
to ensure maximum human coverage.

2. Begin Aria recording via smartphone.
3. Conduct a walk-around with the Aria glasses to build a

basemap for 3D reconstruction and camera localization.
Match the viewpoint of eachGoPro camera by positioning
the Aria directly in front of its lens.
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Fig. 28 Overview of the recording procedure

4. Start QR Timesync Video off-screen. Show QR video to
Aria RGB camera.

5. Use GoPro Remote to begin GoPro recording. Show QR
video to each GoPro camera. Play Audio Sync fingerprint
from the center of the space.

6. Pass Aria glasses to (new) participant. Perform Eye Gaze
Calibration via theAria app. Show ‘Take SeparatorQR’ to
one GoPro and begin the take. Show ‘Take Separator QR’
to oneGoPro after the take is complete and repeat this step
for each participant/take. Do not repeat gaze calibration
if the participant has not changed.

7. Play Audio fingerprint from the center of the space.
Restart the QR Timesync Video off-screen. Show it to
the Aria RGB camera, then each GoPro. Stop recording
on all cameras.

The core camera rigwas extended to handle onsite require-
ments and regional challenges. The team at Universidad de
los Andes introduced a top-down (ceiling mounted) GoPro
for dance, which was adopted by the team at the University
of Pennsylvania with an overhead pole mount. The teams
at University of Pennsylvania, IIIT-Hyderabad, and Indiana
University added an additional egocentric, head-mounted
GoPro.

A.4 Aria post-processing

First, the Aria Machine Perception Services (MPS) pipeline
is invoked for each full Aria recording—these typically are
about 20minutes to 1 hour long and can include several takes,
the hand-over in-between takes, as well as some other set-
up steps. This is followed by localizing all GoPro videos of
that scene as described above, and finally followed by time-
synchronization across Aria and the GoPro cameras, as well
as take-separation, as described below.

There are total of 783 Aria recordings processed by
MPS—containing the total 5,035 takes in the dataset.
95.9% of these recordings have successful Aria localization
throughout the whole recording, with only 3.5% containing
a partial tracking failure (leading to short gaps in the 6DoF
trajectory). Three (0.6%) recordings failed completely. The
most common failure reason is physical shock on the glasses,

for example when the glasses are accidentally dropped on the
ground or the table.

Furthermoreweattempted to localize a total of 3,724GoPro
recordings, 91.4% of which are successfully localized. Sim-
ilar to the Aria recordings, GoPro’s are localized on a
recording level rather than on a take level. This helps in par-
ticular with very short takes as are common during physical
activities—as there otherwise would not be sufficient visual
overlap across Aria and GoPro perspectives. The most dom-
inant reason for GoPro localization failure occurs when the
GoPro is pointed to an texture-less area (e.g. a white table)
which lacks the necessary visual features to perform localiza-
tion. As the GoPro’s are static, this cannot be compensated
for by devicemotion as is the case for themovingAria device.

Technical documentation and open-source tooling for
Aria recordings and MPS output is available on Github9 and
the associated documentation page10. It includes both python
and C++ tools to convert, load, and visualize data; as well as
sample code for common machine perception and 3D com-
puter vision tasks.

B Data collection

Twelve research labs came together for nearly two years
to create Ego-Exo4D. Importantly, our collection across the
sites was a coordinated effort, with common guidelines, sce-
narios, and camera rigs. In this way, the dataset is cohesive
at the same time it is diverse. In this section we describe the
data collection details that are specific to each partner site,
e.g., how they recruited participants, which of the 8 scenar-
ios they captured, or any modalities they added on top of the
common rig.

Figure 9 shows the breakdown of which scenarios were
captured by each partner institution as well as a map
highlighting the locations of the 12 labs involved in data col-
lection. Note that an additional four institutions not shown
on the map are part of the consortium (e.g., contribut-
ing to benchmarks) but did not collect data. They are UT

9 https://github.com/facebookresearch/projectaria_tools
10 https://facebookresearch.github.io/projectaria_tools/docs/intro
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Fig. 29 Views from two different cameras for each scenario collected
in Atlanta, GA, USA

Austin (USA), KAUST (Saudi Arabia), University of Cata-
nia (Italy), and University of Bristol (UK).

B.1 Carnegie Mellon University

Carnegie Mellon University focused on three skill-based
activity scenarios: (1) soccer, (2) bike-repairs, (3) cooking.
The exocentric cameras for our collections, four in total, were
arranged approximately in a square configuration at a consis-
tent height to capture the full range of the activity. Notably,
for the soccer activities, an additional exocentric viewpoint
was positioned inside the goal post to offer a more compre-
hensive perspective on the participants.

Soccer In the soccer scenario, we collaborated with pro-
fessional players from the Pittsburgh Riverhounds team,
representing the experts, and students from Carnegie Mellon
University (CMU) as the beginners. We captured the soccer
scenario across 4 different locations. The drills featured a
variety of movements such as dribbling, goal kicks, and jug-
gling, with each participant performing for a minimum of 3
minutes. This scenario resulted in roughly 4 hours of ego-
centric footage and 18 hours from exocentric perspectives,
encompassing 32 participants in total.

Bike repair In the bike-repair segment, our experts were
seasoned mechanics with over a decade of experience from
Allegheny county. To ensure authenticity, we visited each
mechanic in their respective shops to allowusage of their own
tools and setup. Four tasks were captured for each bicycle,

and we ensured bicycle diversity by selecting different sizes,
shapes, colors, and makes. The tasks include tire removal,
tube change/ inflation, tire reassembly, and clean/lube chain.
This yielded 3 hours of egocentric recordings and 12 hours
of exocentric footage, encompassing 22 different bicycles.

Cooking For the cooking section, we documented a pro-
fessional chef in his traditional kitchen environment.Our dish
of choice was scrambled eggs, and to inject variety, the chef
prepared it using different techniques. This segment summed
up to an hour of egocentric recordings and 4 hours from exo-
centric viewpoints.

All recordings were conducted in Pittsburgh, PA, USA,
strictly adhering to CMU’s Institutional ReviewBoard (IRB)
guidelines. Every participant was briefed about the recording
process, and prior to their involvement, a signed consent form
was obtained.

B.2 FAIR, Meta

We collected 119 total takes of skills demonstrations in New
York and three different locations in California. We focused
on cooking and bike repair, bringing in a skilled workforce
of chefs and bike technicians that serve major kitchens and
repair shops in the area. We used the unified camera rig of 1
Aria and 4 GoPros without any additional sensors.

Bike Repair Our skilled mechanics performed four dif-
ferent bike repairs for a total of 102 takes. We focused
specifically on wheel repairs (removing and installing the
wheel & flat repairs). While we strive for diversity in terms
of the model of bikes, a majority of those in the dataset are
drawn from standard fleet bike models, which contain identi-
cal parts and components. The location featured in the dataset
is a well-equipped, industrial scale bike shop.

Cooking Our chefs recorded five different recipes as part
of 17 unique takes, including salads, egg dishes, and Asian
garlic noodles. Locations featured in the dataset are three
different professional kitchens used to prepare and serve hun-
dreds of people each day.

Internal documentation and processes ensured all partici-
pants provided informed consent to appear in the dataset and
participation was strictly voluntary.

In total, we were able to mobilize five chefs and four
bike mechanics. Participating chefs and bike technicians are
highly skilled, with all research subjects reporting that they
do the activity shown in the dataset daily orweekly. Similarly,
eight research subjects have more than 10 years professional
experience.

B.3 Georgia Tech

Collection at Georgia Tech focused on the Health, Cook-
ing, and Bike Repair scenarios. Across these 3 scenarios,
279 takes were captured with 34 unique participants. For all
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scenarios, the unified camera rig was positioned such that 2
exocentric cameras would ensure capture of the participant’s
hands, and the other 2 exocentric cameras would capture the
participant’s full body and the full environment.

Participants were recruited from different sources includ-
ing flyers, campus organizations, email lists, and word of
mouth. Five of these participants completed data collections
for 2 scenarios (4 participated in Health and Cooking, and 1
participated in Cooking and Bike Repair). Potential partici-
pants were provided with the study description and consent
form prior to scheduling a recording session. At the begin-
ning of each session, study personnel walked through the
consent form with the participant, and answered any ques-
tions. The participant then reviewed and signed the consent
form to confirm participation in the study.

The recording environment differed by scenario and
included participants’ homes, campus meeting rooms, and
an on-campus bike shop. Fig 29 shows a sample environ-
ment and camera setup for each of the Health, Cooking, and
Bike Repair scenarios. Further details of the data collection
specific to each scenario is provided below.

Health Participants for the Health Scenario took COVID
rapid test kits while seated at a table. Recordings were cap-
tured in 2 different on-campus meeting rooms. Participants
were recruited through campus email lists and flyers in local
coffee shops. Each recording session lasted approximately
40-60 minutes and consisted of a participant completing 5-7
test kits, using 2-4 different types of test kits. 7 different types
of COVID test kits were used across the full collection. In
total, 96 takes were recorded from 16 unique participants.

Cooking Participants for the Cooking Scenario prepared
dishes from three recipes: Asian Salad, Tomato & Eggs,
and Garlic Noodles in their home kitchens. Participants were
recruited viamailing lists of local apartment complexes, con-
tacting participants from prior research studies, and word
of mouth. Each recording session lasted 2-3 hours, captur-
ing 3-6 takes of a recipe being cooked from start to finish.
Participants cooked 2-3 of the recipes during their session,
depending on dietary restrictions and preferences. Partici-
pants were provided with ingredients and a paper copy of
the recipe, and used equipment from their own kitchen to
prepare the food. In total, 71 takes from 15 unique partici-
pants were captured. The takes were about evenly distributed
among the three recipes. Recordings were completed in 10
unique kitchen environments.

Bike Repair Participants for the Bike Repair Scenario per-
formed repairs including taking off a wheel, putting on a
wheel, replacing a tube, and cleaning a dirty chain. We
recruited skilled participants from a campus bike repair
organization. There were 8 unique participants, who each

Fig. 30 InHyderabad, India, cookingwas captured in different kitchens
with socio-economic diversity. We observe that the same kitchen tools
appeared in different shapes

completed 1-3 recording sessions. Each session lasted 40-60
minutes and captured 5-7 takes of individual bike repairs.
In total, 112 takes were recorded. showing the distribution
across repair tasks. One session of 6 takes was recorded in a
participant’s home, while the rest were recorded in the cam-
pus organization’s bike shop space, which is shown in Fig
29c. Due to the organization’s access to a large quantity of
used bicycles, there is large diversity in the make and model
of bicycles across takes.

The study protocol was reviewed and approved by our
Institutional Review Board (IRB).

B.4 IIIT-Hyderabad

InHyderabad,we contributed to three scenarios - (a) cooking,
(b) soccer, and (c) music. We formulated a data collection
strategy tailored to the specific scenario, as outlined below.

Our primary objective was to comprehensively capture
body and hand movements, along with their interactions
with objects, during the execution of the activities. In gen-
eral, we adhered to the standard camera setup instructions.
Nonetheless,we incorporated an extra exo-camera for captur-
ing soccer activities in order to enhance the overall coverage
of the event. Additionally, for music activities, we introduced
a head-mounted Go-Pro camera.

This decision stemmed from the observation that expert
musicians frequently do not directly look toward their
instruments while playing. Consequently, the head-mounted
camera guarantees continuous visibility of both the hands and
the musical instruments, providing an ego-view perspective.

The collection in India was done during the peak summer,
and this led us to a challenging situation where the cameras
frequently shut down due to overheating. To address this,
we mostly avoided capturing multiple takes in one capture
and placed the cameras into an ice chest box in between the
captures to cool them down.

Cooking For cooking, we reached out to people located
in Hyderabad with varying socio-economic backgrounds
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and explained the data collection plan, and goals. We also
requested them to engage their family members as well as
friends in this data capturing process. Finally, we recorded
the videos with the 41 informed participants capturing in a
diverse set of 19 kitchens, geographically well-apart in and
around Hyderabad, resulting in a rich dictionary of kitchen
utensils (see Figure 30), narrations in four different lan-
guages. Additionally, we made an effort to ensure a balanced
representation of genders in our overall data collection pro-
cess.

Soccer For soccer, we reached out to three different soc-
cer training schools in Hyderabad with the overall recording
plan and process. They helped us in recruiting local soccer
teamswhoplay professional tournaments andpractice almost
everyday. We also recruited few players from our university
soccer teams. In total, we recorded 49 participants, ‘perform-
ing dribbling, juggling, and penalty-kick activities.

Music For the music scenario, we contacted one music
school and recruited 4 musicians from them having at least
3 years of experience of playing either the piano, guitar, or
both instruments. To add diversity, the musicians were asked
to play western as well as Indian pieces.

Our collection protocolwas reviewed and approved by our
university’s Institutional Review Board (IRB). The primary
conditions set forth by the IRB encompass the following
aspects: (a) participants with 18+ age are deemed suitable
for inclusion in the project, (b) participants have provided
explicit consent for their facial and vocal presence to be fea-
tured in the released videos, (c) participants have willingly
agreed to take part without receiving any immediate finan-
cial incentives from the videos, and (d) participants have the
autonomy to engage in the activities in an environment of
their choice. The participantswere given the detailed descrip-
tions of the project beforehand and requested to sign the
consent form. Each participant received compensation as part
of the process.

We selected participants from a wide range of age groups,
spanning from 18 to 61 years old, to introduce an addi-
tional layer of diversity.Moreover, the participantswere from
diverse professional backgrounds (e.g., coach, software engi-
neer, data annotators, project managers etc.). Before sharing,
we carefully examined each video to ensure there was no
sensitive content.

B.5 Indiana University

We focused on cooking, bicyclemaintenance, andmusic sce-
narios. All activities were collected using the unified camera
rig, including additional sensors in specific scenarios. For
cooking, the 4 GoPros were placed 90 degrees apart from
each other, with 2 placed close to the participants to capture
hands and objects and 2 placed further to capture the over-
all scene. In music, 4 GoPros were placed in front of the

player, approximately 45 degrees apart from each other. In
addition, we attached an additional GoPro HERO10 camera
to the participant’s head (using a helmet), tilted down roughly
80 degrees to capture hand movements. In bike repair envi-
ronments, the 4 GoPros were placed 90 degrees apart from
each other, of which 1 GoPro was placed close to the bike,
1 GoPro was placed close to the workbench and tools, and
2 GoPros were placed further away from the participants to
capture the overall scene.

Cooking For cooking, we had a total of 18 participants
collect 72 takes and 20.5 hours of video. For 15 of the partici-
pants,we used a commercial test kitchen at our university.We
purchased all of the ingredients and kitchen equipment ahead
of time and had them ready when each participant arrived.
We asked them to make four dishes (chai tea, sesame-ginger
salad, tomato and eggs, and noodles) and provided printed
recipes for these dishes. The remaining three participants
chose to record in home kitchens, and the four dishes they
made varied based on their preferences (one participantmade
omelet, cucumber salad, noodles, and chai tea, another made
scrambled eggs, sesame-ginger salad, sushi rolls, and brown-
ies, and the third made scrambled eggs, cucumber salad,
noodles, andmilk tea). Due to concerns about food safety, we
discarded (composted) the cooked dishes instead of allowing
the participants to eat them.

Music For music, we had a total of 17 participants collect
60 takes and 6.5 hours of video. Participants were recruited
based on their self-assessed proficiency in one of three instru-
ments: piano, violin, or guitar. We recorded in 4 different
locations including two studios, an office, and an auditorium
that had a piano. Participants were instructed to play scales
and arpeggios (2 mins), sheet music provided by us (3 mins),
freeplaying (10mins), and then recall and talk about anymis-
takes that were made during the playing and what could be
improved (2 mins).

Bike repair For bike repair, a total of 13 participants
recorded 108 takes and about 8 hours of video. We initially
planned to hire professional bike technicians, but it was very
difficult to recruit them in our relatively small city. Instead,
we recruited more generally, looking for participants with
(self-assessed) proficiency to do four basic bike maintenance
tasks: removing a wheel, changing an inner tube, reinstalling
a wheel, and cleaning and lubricating the chain. Most of the
takes were recorded in a small house that is used for storage
by our university’s landscaping staff, and provided a realis-
tic garage-like environment. We provided participants with
a bike rack and supplies including bike tubes, pumps, tools,
chain cleaner and lubricant, and gloves. To achieve diversity
in different bikes and bike types, we asked participants to
bring their own bike when possible, and we also provided
4 bikes (one of which belonged to one of the authors and
the other three which we bought at a salvage shop). Most
participants performed takes on about 3 bikes. One partici-
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pant chose to record in an apartment, and one recorded in a
hallway in a university building instead of the garage due to
scheduling conflicts.

Our protocol was reviewed and approved by our uni-
versity’s Institutional Review Board. For each potential
participant in each scenario, we first scheduled an online
introduction meeting to tell them about the study and answer
their questions and concerns. If they were interested, we
agreed on the activity they would perform and when and
where to meet for recording. We also sent them the informed
consent form to give them sufficient time to review. On the
recording day, we first asked them to sign the consent form,
and then started recording their activities. All activities were
recorded in an enclosed space to make sure that no one else
accidentally entered the field of view of the cameras.We also
ensured that the space did not have privacy-sensitive content,
andwe instructed participants not to use their phones or other
devices that might show private content.

Within a few days, we securely sent the videos to the
participant so that they could review the video and ensure
that they were comfortable sharing it with others. They also
completed a brief online demographic study, and then were
sent an incentive payment in the form of an electronic Ama-
zon.com gift card. We made clear to participants that if they
were not comfortable sharing their video,wewould destroy it
and theywould still receive their incentive payment, although
none of the participants chose this option. We gave the par-
ticipants US$20 in gift cards for each hour of their time spent
recording (with aminimumof $20, and partial hours rounded
up to the nearest $5). We gave an additional $20 gift card to
reimburse travel costs for those who came to our facilities to
record (e.g. in our kitchen, bike repair shop, or on-campus
studio or auditorium). For cooking and bike repair, we gave
an additional $20 gift card to participants who provided their
own ingredients or bikemaintenance supplies, to defray these
expenses.

We recruited participants in the Bloomington, Indiana,
USA area through online email advertisement, word of
mouth, physical flyers, and posting on social media. We
recruited participants who were 18 years of age or older, had
self-assessed expertise in the activities as described above
and could perform the tasks without wearing prescription
glasses (which could interfere with the Aria’s gaze tracking).

B.6 National University Singapore

In Singapore we focus on the following scenarios: soccer,
health-related activities including COVID-19 ART testing
and Cardiopulmonary Resuscitation (CPR), and cooking. In
total, our collected data encompasses around 26 hours of
egocentric videos and 117 hours of exocentric videos. These
videos spread across 327 takes. In general, we adhered to
the standard camera placement guidelines; however, for each

scenario, we fine-tuned the position of the exo cameras based
on practical considerations. For instance, in a small kitchen
for cooking, we positioned the camera on the table to broaden
its field of view.

Soccer For soccer, we conduct recordings at a univer-
sity sports field. Our participants were primarily sourced
through referrals provided by skilled participants recruited
through online calls for participants. Additionally, during
outdoor recording sessions, we occasionally invited sur-
rounding bystanders to participate.

Health For health activities, we recorded in vacant class-
rooms, meeting rooms, and outdoor fields. CPR sessions are
captured either in a yoga classroom or in a quiet, empty out-
door field. For recruitment, we circulated online calls for
participants and then, for skilled activities like CPR, we
collaborated with experts to organize training courses. Par-
ticipants would participate in these courses and were trained
to be proficient and then conducted recording afterwards.

Cooking As for cooking, which requires a kitchen, we
used the kitchen in our lab mates’ apartments and arrange
other participants to go there.

Our data capture has been approved by our university’s
Institutional Review Board (IRB). The main requirements
include that participants: (1) agreed to take part in the study,
(2) agreed to donate their speech, image, video, IMU, and
3D scan data for the purposes of this research, (3) agreed
that their face, tattoos, and voice may appear in the data, (4)
have the right to withdraw their recorded data at any time.

In Singapore, high temperatures often pose the chal-
lenge of camera overheating, particularly forGoPro cameras,
which can lead to protective shutdowns and interrupt data col-
lection. To mitigate this, we place small ice cubes wrapped
in wet wipes on the GoPro cameras to help cool it down dur-
ing recording. Furthermore, we attempted to schedule our
participants’ recordings in the evening or during an overcast
day.

Our data pool comprises contributions from about 93
meticulously selected participants, ensuring a proficient
completion of the recordings. Particularly in soccer, most
participants have extensive experience and were members of
their school or college soccer teams.

B.7 Simon Fraser University

We captured three types of scenarios in a variety of environ-
ments: cooking, basketball, and COVID-19 testing. In total,
88 participants carried out activities in the three scenarios we
collected in a total of 61 data capture sessions, resulting in
519 activity takes.

We used the unified camera rig and followed the general
collection guidelines with a number of small adjustments
to facilitate scenario-specific capture. In kitchen and health
scenarioswhere the participant interactswith small objects in

123



International Journal of Computer Vision (2025) 133:8356–8435 8403

tabletop height settings, the placement of exocentric cameras
was optimized in a “two near, two far” setup to provide for
visibility of the small objects and hands while also capturing
the overall human pose during the activity.

Cooking The cooking scenario was captured in a decen-
tralized fashion by going to the participants’ own residences
and asking them to cook in their kitchen. This allowed for
diversity in the environment as well as in the participant dur-
ing data capture. Our data capture sessions resulted in 112
cooking takes.

Basketball Collection for the basketball scenario was
done in a “round robin” fashion to reduce player-to-player
overhead. We targeted a spectrum of experience levels, for
example going from university basketball team players who
compete at the national level to more amateur basketball
players who only have played basketball occasionally. We
collected 355 takes of basketball activities.

Health Following the standard data collection guidelines
for health activities, we gathered 52 takes of health activities.

We followed the institutional research board (IRB) pro-
cess at our institution to acquire approval for the participant
recruitment strategy, study setup, and participant consent
acquisition forms. All participants consented to their data
being collected and distributed for research purposes. Par-
ticipants have the right to request that their data be withheld
from inclusion in the dataset.

We recruited participants by word of mouth, reaching
out to specific clubs and groups for some of the activities,
and more generally through advertisement using university-
affiliated communication channels.

B.8 Universidad de los Andes

We collected around 40 hours of video spanning four distinct
scenarios that encompassed three physical activities (basket-
ball, bouldering, and dancing) and one procedural activity
(cooking). Figure 31 shows examples of the diverse scenar-
ios that we collected. In total, we collected 2062 takes across
all the activities. We used the unified camera rig with addi-
tional activity-specific sensors as described below.

Bouldering We partnered with a local climbing gym, which
serves as a teaching and competition center in Colombia. We
used the gym as the recording location and recruited partici-
pants who practice or teach bouldering there. Our focus was
to recruit participants with four different levels of expertise:
beginner, intermediate, advanced, and professional climbers.
We hired expert route setters to design 33 climbing routes.
These routes varied from beginner (V1) to expert level (V7).
For data collection, each participant attempted to complete
seven routes, having 3 minutes to make as many attempts as
possible for each route. The routes were selected considering
the expertise level of each participant. We located four exo

cameras to capture each take; two horizontal cameras were
facing the climbing wall, and the other two vertical cameras
were on each side of thewall. Thus, the four cameras captured
a complete view of the climbing wall and the participant’s
movements at every moment. We gathered 1251 takes for the
bouldering scenario from 40 participants.We ensured ethnic,
age, and expert-level diversity across the takes.

Dancing We collaborated with a salsa dance academy to
use as a recording location and to help with participant
recruitment. We recruited students from three expertise lev-
els: beginners, intermediate, and advanced. According to
the expertise level, each dancer performed different chore-
ographies. Beginners recorded a single choreography, while
intermediate and advanced participants recorded an addi-
tional one according to their expertise. Each attempt lasted
one minute, and the dancer performed from six to ten
attempts. The choreographies were designed by professional
dancers who teach at the academy.We used five exo cameras:
four forming a square, defining the dancing area, and the fifth
camera placed on the ceiling.Given the salsa dance’s velocity
and the movements’ complexity, this fifth exo camera gave
a crucial point of view for further analysis. We gathered 600
takes from 40 participants across the three expertise levels.

Basketball Wecollecteddata from theprofessionalwomen’s
team and students from a basketball class at our University.
Each participant performed six to ten attempts for each bas-
ketball exercise. We collected all captures at the basketball
court at our University’s Sports Center. For this setup, we
used four exo cameras around the basketball ring, ensuring
a complete view of each exercise. For this scenario, we col-
lected 167 takes from 38 participants.

Cooking We rented a professional kitchen equipped with all
the necessary utensils to perform the captures. We focused
on collecting data from two types of recipes: a dish with egg
and a drink. Each participant could choose between cooking
an omelet, scrambled eggs, tomato and eggs, and coffee latte
or tea for the drink. Each participant was free to choose how
to complete each recipe. Thus, our takes show diverse ways
to prepare each recipe. For this setup, we placed four exo
cameras around the kitchen, all facing the user, to capture
the whole kitchen without losing any detail of the person
making the recipe. We placed two cameras on a counter fac-
ing the kitchen and the other two on each side of the kitchen.
We collected 44 takes for the cooking scenario from 20 par-
ticipants.

The Institutional Review Board (IRB) of our university
reviewed and approved our study protocol. All participants
signed a consent form before participating in the study.

We partnered with professional training centers for phys-
ical activities that helped us recruit volunteers with different
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Fig. 31 Egocentric and one exocentric view for each of the recorded
scenarios in Bogota, Colombia

expertise levels. These volunteers were previously famil-
iarized with the activities and the environment where the
captures occurred. In addition, we recruited familymembers,
friends, and acquaintances of students and faculty members
of our research group for cooking.

B.9 University of Minnesota

Collection at the University of Minnesota focused on two
main scenarios: Bouldering andCooking.A total of 249 takes
with 53 unique participants were collected. We collected all
data using the unified camera rig with no additions.

Bouldering The bouldering activity was collected at a local
bouldering gym, focusing on a wall with 14 different routes
ranging in difficulty from beginner to expert. We collected
210 takes from 42 unique participants. Participants were
asked to climb four to five routes of their choice,with the abil-
ity to take breaks within or between takes. Expert climbers
who felt comfortable with the routes were able to narrate
their approach and climb in real time. As participants were

able to choose routes freely, our five exo-cameras were set
up to accommodate the entire wall.

Cooking Cooking activitywas collected on-site at each indi-
vidual’s home kitchen. Five exo cameras were set up in each
kitchen to maximize coverage of both the participant and the
environment. We captured 9 unique kitchen environments
with 14 unique participants whose skill levels ranged from
cooking novice to commercial chef. Participants focused on
three recipes each (scrambled eggs, Greek salad, and pasta
noodles from scratch), which were performed back-to-back
on the day of recording.

Our data collection protocol was reviewed and approved
by the Institutional Review Board at our university. At every
take, the study personnel provides a guidance to a participant
through the consent form prior to participation, ensuring the
participant understands the purpose of the study and all risks
involved, with each participant receiving payment propor-
tional to their contribution.

Participants were recruited via word of mouth, campus
organizations, and digital flyers which were distributed via
local social media (Facebook) communities.

B.10 University of North Carolina

Throughout our data collection at UNC, we focused on three
skill-based activity scenarios: (1) basketball, (2) soccer, and
(3) music drills. We used three unique environments (i.e., a
basketball gym, a soccer field, and a music studio) to cap-
ture the data for each scenario. All recordings took place on
the UNC campus. UNC’s Institutional Review Board (IRB)
reviewed and approved our study protocol. All participants
signed a consent form before participating in the study.

To recruit participants, we used an online research study
database, where participants from the local area could sign
up to perform our study. We recruited participants willing
to perform skill-based activities such as basketball, soccer,
or music drills regardless of their skill level. Additionally,
to recruit a more skilled group of participants, we contacted
expert musicians from UNC’s School of Music and athletes
from UNC’s basketball and soccer teams.

In total, we collected approximately 19 hours of ego-
centric and 76 hours of exocentric video data spanning
approximately 548 takes of activity demonstrations from 56
participants (41 male, 15 female). Among the 56 partici-
pants, 44 were aged 18-25, 10 aged 25-50, and 2 aged 50-75.
Furthermore, 26 participants hadmore than 10 years of expe-
rience in the scenario they chose to perform (e.g., basketball,
soccer, music), 13 participants had 1-10 years of experience,
and 17 had less than 1 year of experience. We used standard
camera placement guidelines and the same recording devices
described above.
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Basketball All participants performed three basketball
drills: Mikan Layup, Reverse Layup, and Mid-range Jump-
shooting, for 388 takes. We recruited 11 expert players from
the university teamwith 10+ years of experience. To improve
the participant skill diversity in the dataset, we also recruited
novice players with less than 1 year of playing experience.
The location of data collection was a university basketball
gym.

Music For the music scenario, we asked all 9 participants
to play 5 minutes of scales and arpeggios and 10 minutes of
free play for 27 takes. All of our participants were recruited
from the university music club and considered themselves as
experts at playing their respective instruments. The instru-
ments featured in our collected datasetwere piano, trombone,
trumpet, and saxophone. The Ego-Exo4D music guidelines
called for just piano, violin, and guitar, but we found it neces-
sary to expand this list in order to gather data for this domain.
All data was recorded in a university music room.

Soccer For soccer, we focused on three drills: dribbling,
juggling, and penalty shots for 133 takes across 12 unique
participants. 7 of these participants were experts with 10+
years of experience, whereas the remaining 5 participants
were casual soccer players. All videos were collected at a
university soccer field.

Our study protocol was approved by the Institutional
Review Board (IRB). All participants signed a consent form
before participating in the study.

B.11 University of Pennsylvania

The University of Pennsylvania focused on capturing videos
of experts of various levels playing musical instruments,
dancing, and cooking. Over the spring and summer of 2023,
UPenn captured 521 usable takes across 95 participants for
the consortium’s collections with up to 7 views.

One primary goal of this project is to capture detailed body
movement, especially hands, across ego view and exo views.
Wework to ensure highly engaged experts enjoy demonstrat-
ing their full skill capability.

The hand-object/instrument interaction region is the key
to understanding human activities and evaluating their skills.
Comprehensive hand pose information is especially impor-
tant for the full analyses of scenarios collected at UPenn,
especially the music scenario, where slight differences in
finger motion result in entirely different performances.

We also observed that experts had a tendency to not need
to look at their hands during play. Thus, we found the initial
data capture using the general camera setup to lack crucial
visual information in such scenarios due to:

(1) (in ego view) limited field of view of Aria glasses, and
skilled experts don’t need to look at their hands,

(2) (in exo views) frequent occlusion and self-occlusion
caused by participants’ motion.

We added two cameras to maximize the view coverage.
Head-mounted Camera: The head-mounted camera on a
helmet angled downwards to capture the hand/body region:
(1) (ego) it follows the subject’s body motion faithfully, and
(2) (exo) it is designed to focus on the hand-object interaction
region with much less self-occlusion. Empirically, we found
this additional camera is crucial for capturing guitar, violin,
and cooking scenarios.
Overhead Camera: We replace the head-mounted cam-
era with an overhead camera in (1) piano scenarios, where
the overhead camera can have similar performance, and (2)
dance scenarios, where the helmet can dramatically worsen
the experience and performance of the participants.

We believe the goal is not to maximize the number of
hours captured but to have the participants show (1) diverse
techniques to build models for the scenarios, and (2) unique
techniques to demonstrate their skill levels.

To get the most representative recordings of the partici-
pants, we aim to maximize their engagement during the data
capture. Specifically, we (1) walk through the whole process
with the participants before the data capture to familiarize
them with the setup (2) let them choose their favourite music
piece to play or dance with in music and dance scenarios;
and (3) have a narrate and act section for the musicians to
demonstrate how they feel about their performance.

Music Formusical instrument playing, classified as a “phys-
ical” activity, we captured takes of musicians (1) warming up
(scales and or Etudes) (2) sight-reading simple sheet akin to
Suzuki Practice books or Etudes exercises, and (3) freeplay-
ing. We captured takes of violin, piano, and guitar, with a
duet between a cello and a violin for one trial. Participants
were recruited from a diverse pool ofmusicians, spanning the
Penn Orchestra, local music schools, and independent music
students. This pool’s experience ranged from professional
instructors and performers to complete newbies. We totaled
275 takes over 37 participants. Notably, during the shooting,
we observed that participants were particularly uncomfort-
able with the helmet used to mount the GoPro; it interfered
with their head movements and the bow sometimes ended
up knocking against the mounted GoPro. To combat this,
we added additional cushioning to depending on the sub-
ject’s head shape and broke sessions into chunks to allow for
breaks.

Cooking Cooking, categorized as “procedural”, consisted
of preparing four dishes: an egg dish, a salad, a noodle dish,
and a dessert. The group of participants consisted primarily
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Fig. 32 The Aria Glass ego view, head-mounted semi-ego view, overhead view and other static exo views in playing guitar in Philadelphia, PA,
USA

of Penn students with experience ranging from amateurs to
hobbyists. Professionals were unavailable due to scheduling
conflicts. We totaled 81 takes over 20 participants. The entire
filming process was undertaken within a three-week span,
primarily at the apartment of one of the team’s participants.
This location expedited our data collection for this task by
providing a stove and fridge for regular use.

Dancing Dance captures, classified as a “physical”, consist
of four takes of dancers performing dance routines to a song.
The dance types recorded included Lindy-Hop Jazz, Bolly-
wood, Latin, and Chinese Folk Dance; across these genres,
we totaled 165 takes over 38 participants. The Lindy-Hop
Jazz dancers came from the Jazz SwingAttacks, a dance club
in Philadelphia. Contact was established via Instagram, and
data, collected weekly over a month. This group contained
a balanced mix of experienced instructors and beginner
dancers. The Bollywood dancers, the Drexel’s Philly Maza,
were recorded in the Drexel Engineering Building. They
compete nationally but routinely train beginner recruits. The
Chinese Folk Dancers were members of the local Great Wall
Chinese School’s dance club and independent student vol-
unteers with prior competitive dance training. These were
captured in the SIG Lab for collections (See Figure 32).

All participants were confirmed to be at least 18 years
of age by the time of participation and gave written consent
for participating in these data collection trials. The consent
form, in compliance with IRB guidelines, but gives partici-
pants the choice to back out. The collected information on
basic demographic information should not be used to identify
participants individually. All other data collected per partic-
ipant (prior experience with task, average times spent per
session, etc) could not be used to identify participants.

B.12 University of Tokyo

In Tokyo, we collected video data for three scenarios:
cooking and health for procedural activities and soccer
for physical activities. We followed the standard camera
configuration and calibration procedure of the Ego-Exo4D
dataset for all scenarios. In the following paragraphs, we
will describe the specifics of each scenario, particularly the
unique aspects of our data gathering.

Cooking We recruited 12 Japanese participants living in the
Tokyo area through a temporary employment agency. The
gender and age of the participants were balanced to collect
diverse behavior patterns. The participants cook three days or
more eachweek in their daily lives. Each participant prepared
three dishes: an omelet, a white radish & lettuce & tomato &
cucumber salad, and a sushi roll. We recorded both versions
with and without narrations for each dish and participant.
A one-page summary of each recipe was provided before
data collection and was shown during video recording so
that the participants could prepare the dishes smoothly, and
the procedure of each recipe should be consistent between
the participants.

All video recording of the cooking scenario was done in
a rental kitchen studio equipped with an island kitchen and
all the necessary kitchenware for four consecutive days. The
studio is situated in a busy location in downtown Tokyo, and
some external noises, like ambulance sirens, were audible
during the recordings. We collected 68 takes from 12 partic-
ipants. Of the 68 takes, 34 takes are with narrations, and 34
takes are without narrations. The length of each participant’s
making each dish twice with and without narrations is about
35 minutes, ranging from 24 min 27 sec (Sushi roll) to 55
min 4 sec (Salad). The length includes time for the camera
synchronization procedure.

During the recording of the cooking scenario, we dis-
covered a flickering issue in some of the video data due to
the incompatibility between the Aria Glass sampling rate
and the power frequency in Tokyo. To overcome this issue,
we attempted to shoot as much as possible in daylight and
adjusted the fpswhen using artificial lighting.While process-
ing the videos, we discovered some exo videos had decoding
errors due to damaged frames. Each corrupted video con-
tained one to three damaged frames for an unknown reason.
To address this, we re-encoded these videos by replacing the
damaged frames preventing decoding with the nearest good
frame. Note that some videos still contain damaged frames as
long as those frames did not influence decoding. In addition,
the original MP4 files recorded by GoPro contain 4 streams:
video, audio, data0, and data1, but the re-encoded videos only
contain a video stream and an audio stream.
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Health We recruited 17 Japanese participants living around
Tokyo, Japan, through a temporary employment agency. The
gender and age of the participants were balanced to col-
lect diverse behavior patterns. We recorded videos of the
17 participants performing two tasks: COVID-19 rapid anti-
gen testing using three test kits and performing CPR on a
mannequin. We conducted all recordings in the same meet-
ing room on campus over two days. For the COVID test,
an instruction manual of each test kit was provided to the
participants before and during the recording. Also, we did
not show the participants or record any COVID test results
for privacy protection. For CPR, the participants took an
introductory lifesaving course provided by the Tokyo Fire
Department before recording. Besides, a one-page summary
of the CPR procedure was provided before the data collec-
tion and shown during the video recording. This is so that the
participants can perform CPR smoothly and the procedure is
consistent among the participants.Wecollected73 takes from
17 participants. All of the CPR procedures (17 takes) were
recorded without narration. For the COVID test, we recorded
the videos of the 17 participants using the three test kits (51
takes) without narrations. The video length of each partici-
pant’s performing CPR is 9 min 48 sec on average, including
the camera synchronization procedure. Similarly, the video
length of each participant’s using the three COVID test kits
is 29 min 22 sec on average. Additionally, we recorded extra
takes of 5 participants out of the 17 using a test kit with
narrations (5 takes in total).

Soccer Wegathered videos of 14 Japanese participants, each
performing three fundamental soccer drills: dribbling and
juggling for two minutes each and penalty kicks ten times.
Of the 14 participants, 13 are soccer players from a univer-
sity football club. We recruited them through the staff of the
club. The remaining one participant is not from the club but
is an expert with over ten years of soccer experience. All
the participants are male, and their age ranges from 18 to
30s. We recorded the videos on an outdoor soccer field at
a local university over four days, with three to four partici-
pants participating each day. For juggling, we instructed the
participants to include various movements such as juggling
with thigh, inside and outside of feet, and alternating feet.
For penalty kicks, we instructed them to shoot to the right
side of the goal 5 times and to the left side five times. During
penalty kicks, a helper aids the participant in retrieving the
ball. This helper stands within the goal area and might be
recorded by some cameras. We collected 42 takes from 14
participants. All the takes were recorded without narrations.

Our university’s institutional review board reviewed and
approved our study protocol. We explained the objective and
the range of use of the videos through documents and took
consent from each participant before the recording. In par-

ticular, we took the consent not to blur their faces to keep the
naturalness of the videos.

C Participants

We provide self-declared information on ethnic groups by
the participants. Sharing this information was optional for
all research subjects. Ethnicity is reported based on location
specific categories as defined by the relevant partner lab. No
such information was gathered from research subjects par-
ticipating in our collections in California, New York, and
Pittsburgh, Pennsylvania.

Atlanta, Georgia, USA 100% of participants that reside
in Fulton County, Georgia self-reported their ethnic group
membership as follows:

Ethnicity Number of participants

Asian 23
White 8
Hispanic/Latino 3

Bloomington, Indiana, USA 100%of participants that reside
in Monroe County, Indiana self-reported their ethnic group
membership as follows:

Ethnicity Number of participants

Asian 22
Black 1
Middle Eastern 1
White 18
Prefer not to say 1

Minneapolis, Minnesota, USA 100% of participants that
reside inHennepinCounty,Minnesota self-reported their eth-
nic group membership as follows:

Ethnicity Number of participants

White 41
Hispanic/Latino 4
Asian 8
Black 1

Tokyo, Japan 100% of participants that reside in Tokyo self-
reported their ethnic group membership as follows:
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Ethnicity Number of participants

Asian (Japanese) 45

Hyderabad, India 100% of participants that reside in Hyder-
abad self-reported their ethnic groupmembership as follows:

Ethnicity Number of participants

Asian (Indian) 95

Chapel Hill, North Carolina, USA 100% of participants that
reside in Orange County, North Carolina self-reported their
ethnic group membership as follows:

Ethnicity Number of participants

White 20
Indian 1
Asian 13
African American 9
Hispanic/Latino 3
Prefer not to say 3

Vancouver, British Columbia, Canada 100% of participants
that reside in Vancouver self-reported their ethnic group
membership as follows. Please note that research subjects
in this case opted not to use any assigned category and inde-
pendently described their identity.

Ethnicity Number of participants

African/Nigerian 4
Asian 9
White/Caucasian 10
Chinese 26
European 1
Iranian/Persian 14
Italian 1
Jamaican 2
Kazakh 1
Kyrgyz 2
Middle Eastern 1
Mixed 3
South Asian 2

Philadelphia, Pennsylvania, USA 100% of participants that
reside in Philadelphia Country, Pennsylvania self-reported
their ethnic group membership as follows:

Ethnicity Number of participants

White/Caucasian 10
Asian 30
African American 3
Hispanic/Latino 4
Prefer not to say 43

Singapore 100% of participants that reside in Singapore
self-reported their ethnic group membership as follows:

Ethnicity Number of participants

Chinese 65
Indian 3
Singaporean 2
Indian/Chinese 2
Prefer not to say 17

Bogota, Colombia 100%of participants that reside in Singa-
pore self-reported their ethnic group membership as follows:

Ethnicity Number of participants

Black/
Afro-descendant/
Afro-Colombian 7
Mixed 104
Palenquero 1
Raizal 1
White/Caucasian 38
Prefer not to say 23

Participant surveys were separated into two: a pre-task
questionnaire and a post-task questionnaire. The pre-task
questionnaire aims to capture the participant’s perceived
skill level whereas the post-task questionnaire captures the
participant’s reflection on how well the task went. The
list of questions for both questionnaires can be found in
Table 16 with questions/answers designed for consistency
and ease of filling in, as participants would be filling these
out before/after each recording. This involved using multi-
ple choice and Yes/No answers with open text fields being
utilized sparingly.

D Language Descriptions

As introduced in the main paper, Ego-Exo4D provides three
forms of parallel text corpora for the video: expert commen-
tary, narrate and act, and atomic action descriptions. Table 17
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Table 16 Questions for the pre-task and post-task questionnaires. *: Only applicable for non-dance/non-music scenarios. †: Only applicable for
Dance/Music scenarios. ‡: Bouldering scenario only

Question Answer Type

Pre-Task Recording Location multiple choice

How many times do you estimate you have done this task? multiple choice

How often do you carry out this task? multiple choice

How many years have you been doing this task? multiple choice

Have you taught this activity to others before? Yes/No

Have you recorded a video of yourself carrying out or explaining this task before? Yes/No

Have you watched videos of others doing this task before? Yes/No

Do you have any qualifications/professional training that are related to the task? Yes/No

How long does it typically take you to complete this task?∗ text

How long would you typically spend in one practice session of this task?† text

Post-Task Self Reported Quality multiple choice

Completed Route?‡ Yes/No

What mistakes/errors did you make during this task? text

Any issues with the familiarity of the tools/location? text

Did it take longer/shorter than your initial expectation and why? text

How did you find wearing the camera? multiple choice

How easy was the setup for recording? multiple choice

Any other comments to take on board? text

shows examples from different scenarios highlighting their
distinctions in style and point of view. Figure 33 shows word
clouds per scenario and annotation type highlighting the dif-
ferences in vocabulary and word frequency.

In Figure 34 we further emphasize the characteristics of
each text corpus across three axes: total vocabulary size, aver-
age number of captions per video, and caption length. See
caption for details.

D.1 Expert Commentary Tool

To collect expert commentary, we developed a web-based
tool, which is open sourced as part of the Ego-Exo4D
dataset and benchmark suite. See Figure 35. Known as the
Narrator, this application supports video playback for Ego-
Exo4D skills demonstrations, records time-stamped verbal
commentary, and allows exporting and viewing commented
videos. As a web-based platform, the Narrator can be simply
accessed through a browser, with minimal set-up and less
restrictive system requirements compared to tools requir-
ing local installation. These attributes made it efficient to
onboard and manage our geographically distributed experts.
We acknowledge the EPIC Narrator (Damen et al., 2018) as
the open-sourced inspiration and source code for this initia-
tive.

D.2 Atomic Action Description Statistics

See Table 18 for atomic action descriptions summary statis-
tics.

E Benchmarks: annotations and baselines

Weemployed a unified dataset split for EgoExo4Dapplicable
for all benchmarks. Splits were defined at the “take” level,
i.e. each take was allocated to either the training, validation,
or testing set. Any derivatives from individual takes (e.g.
segment clips) simply inherit the split assignment from the
original take.

Additionally, the splits were stratified according to activ-
ity types and proficiency scores. This was done to ensure a
balanced distribution of data across the training, validation,
and testing sets, with proportional representation of activities
and proficiency levels. To prevent data leakage, participants
and all their associated artifacts were assigned exclusively to
one of the splits. This constraint was particularly important
because several participants contributed multiple takes, and
it was crucial to avoid sharing their data between the splits.
In the end we divided a total of 5045 takes into 3082 training,
842 validation and 1121 testing takes.
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Table 17 Example excerpts from all three language types. Experts
are charged with critiquing the performance of the participants, point-
ing out strengths and weaknesses and explaining how the participant’s
approach influences the quality of their skill demonstration. Narrate and

act focuses more on what the camera wearer is doing and, sometimes,
briefly why. Atomic action descriptions are about the specific actions
seen

Domain Atomic Action Description Narrate and Act Example commentary

Cooking C turns on heat on the gas
burner.

So I’m going to start out by
boiling some water.

Here the preparer is checking the pasta for
done-ness. It’s important to do this and
not rely on what a package says. Use a
package that gives you cooking time as a
guideline and start to check your pasta, you
know, a few minutes before the maximum
amount of time given for cooking that spe-
cific pasta.

Health C inserts the nasal swab in
the buffer test tube on the
covid test kit pack with his
right hand.

Open the newly picked up
tube, place the swab in the
tube, stirring the swab in the
tube.

So this individual has done a great job of
making sure that her nasal passageways
have adequate time in contactwith her nasal
swab. Something that might make it a little
bit easier for her is if she could tilt her head
back just a bit so that she wouldn’t have
to strain quite so much to get that access.
Additionally, she did a great job making
sure that the nasal swab was about an inch
into her nose.

Bike repair C holds the bike wheel with
her left hand.

And then I will locate the
location of the valve cap
and pull the tube out of the
wheel.

It’s a great method to always double check
or do a pre-check before beginning work
on a bicycle to make sure the issue that
you are working to fix is the only issue that
is occurring. If not, you could find a sec-
ondary issue or something else that may
be greater than the one you are currently
working on.

Music C puts the bow on the violin
with his right hand.

So regardless of how tricky
left hand passage work is
you want to always keep
your bow completely inde-
pendent.

This is a really great use of the bow and
decision to play in this middle third of the
bow. This is exactly where they should be
playing. And we can hear that the note
envelope is very consistent and that it’s very
controlled and that it also allows the rhythm
to be stable...

Basketball C runs towards the hoopwith
the basketball.

Now I’m going to do a
reverse layup, stepping right,
left, going up with the right
hand.

As the ball goes through the basket, she
catches the ball and does an excellent job
of keeping the ball high, never allowing the
ball to drop down to her waist area, but
keeping the ball high in her upper chest,
neck area throughout the drill...

Bouldering C places both hands on a red
hand hold.

So I know that a lot of these
holds, I’m going to need my
weight leaning to the left to
utilize

Once the climber recovered from the foot
cut, the climber pasted the right foot on this
foot jib and thendid a toematch. Sobrought
this foot in and then dropped the right foot
down and to the right to again counterbal-
ance so that the climber can then move
their left hand out left. But at this point the
climber is just a little too gassed to be able
to make this move, which is unfortunate.
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Table 17 continued

Domain Atomic Action Description Narrate and Act Example commentary

Soccer C kicks the ball to the right
with his right foot.

Angle approach, start position is good,
maybe slightly squarer than 45, but again
because the intended outcome from previ-
ous actions is into the left, by being a little
squarer is going to help himbe able to rotate
his hips to move to the left, but on a slight
angle is good and help him with his tech-
nical action.

Dance C moves her right leg for-
ward while swinging both
hands.

Ring and wing, one, two,
one, two, three

She is doing these steps in placewhen she’s
traveling forward. At this point, she really
could be further forward all the way, still
on the screen, but towards the edge of the
screen, if she was to take bigger steps. And
she could take bigger steps if she bends her
knees and lowers her center of gravity and
then extends her leg outward...

Table 18 Atomic action descriptions per-domain statistics

Category 1x Coverage 2x Coverage # of Descriptions Descriptions Per Minute Unique Nouns Unique Verbs

Basketball 778 116 50299 53.330 (+- 26.049) 201 134

Bike Repair 202 160 31317 24.891 (+- 9.555) 642 393

Cooking 360 266 189225 27.745 (+- 12.843) 1744 823

Dance 307 417 43663 30.852 (+- 13.915) 504 468

Health 299 97 43769 24.304 (+- 11.234) 619 384

Music 85 75 10695 4.278 (+- 8.969) 255 163

Rock Climbing 1270 103 32246 32.350 (+- 11.974) 301 224

Soccer 225 53 31253 38.467 (+- 23.957) 229 125

All 3526 1287 432467 31.293 (+- 20.209) 2924 1481

E.1 Relation

Annotations We used a multi-stage annotation process for
annotating paired ego-exo videos:

• Stage 0: Object Enumeration. Annotator marks each
object that is active at some point of the egocentric video
with a bounding box in a frame where it is clearly visible
and provides a free-form textual description.

• Stage 1: Egocentric video annotation. Annotatorwatches
the egocentric video and is also shown (a) text and (b) a
bounding box for one of the objects annotated in the pre-
vious stage. Annotator then marks a segmentation mask
for that object in all the video frames where the object is
visible. Segment Anything (Kirillov et al., 2023) is lever-
aged to generate segmentation masks efficiently using
only point clicks.

• Stage 2: Exocentric video annotation. As shown in Fig-
ure 36, the annotator watches a temporally synchronized
exocentric video and is also providedwith the (a) text and
(b) several ego segmentation masks of this object. Anno-

tator then marks a segmentation mask for this object in
all the exo video frames, whenever the object is visible.

What are the objects of interest? We focus on objects that
are active at some point during the execution of the activ-
ity. These objects are not only interesting because they are
essential to the activity, but they are also challenging to track,
since they aremoving/changing state. In particular, our anno-
tation guidelines requested annotators to list (a) objects that
the camera-wearer interacts with through their body or tools;
(b) other objects that are relevant to the activity (e.g., sup-
porting surfaces like kitchen top); and (c) body parts (hands
and legs). Note that every time an object changes visual state
(adopting the Point-of-No-Return definition from (Grauman
et al., 2022)), it is marked as a new object (e.g., annotators list
tomato and sliced tomato as two distinct object instances).
Which objects to annotate with masks? For scenarios that
involve fewobjects (Music,Basketball andSoccer),we anno-
tated all object instances. Instead, for Cooking, Health and
Bike Repair we sampled object instances based on their fre-
quency of occurrence and their size, due to time and budget
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Fig. 33 Word clouds for each
scenario and annotation type.
The vocabulary for atomic
action descriptions typically
focuses on the person’s hands
and how they complete the
actions (e.g. using
left/right/hand) whereas narrate
and act describe the high level
goals/objects. The expert
commentary has the largest
variety of words, including
specialist words for each
scenario such as swab/solution
for health and axle/valve for
bike repair

constraints. In particular, we binned each object annotated
in the Object Enumeration stage into bins based on their
frequency of occurrence across the dataset (high, low) and
object size (small, large). We then uniformly sampled object
instances from these bins while accounting for annotation
time and budget and proceeded with segmentation mask
annotations. We ignored all objects with area < 150 pixels.
For Cooking, specifically, we also filtered out a few objects

such as spices, mixtures and liquids, as they tend to be too
small to match in the exo view. Finally, we skipped exocen-
tric mask annotations for objects that were visible in fewer
than 10 frames of the egocentric video.
What frame rate to annotate at?We annotated segmentation
masks at 1 frameper second, except for videos from theMusic
scenariowhich we annotated at 0.1 fps due to extremely long
video durations.
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Fig. 34 Comparisons between the vocabulary size (left) number of
captions per video (center) and length of caption (right) for the atomic
action description, narrate and act, and expert commentaries. Statis-
tics are shown both per scenario and over the entire dataset. We see
that the expert commentary tends to use a much larger vocabulary and
more lengthy statements, since commentators are giving more elabo-
rate statements of advice and explanation. The temporal density of the
atomic action descriptions is greater than the other two forms, since

the annotators are pausing to describe every single action of the camera
wearer. Narrate-and-act comments use a vocabulary size in between the
other two, reflecting the more free-form speech (compared to the writ-
ten atomic actions) is used. Trends are mostly similar across scenarios,
with the most noticeable differences being the temporal density; it is
particularly high for both cooking and soccer. In the former, there are
many procedural steps, whereas in the latter there are many instances
of the drill being executed

In total, our annotation process yielded segmentation
masks for 5,566 objects in 1,335 ego-exo video-pairs.
Approximately 4M million frames were annotated result-
ing in a total of 742K ego and 1.1M exo paired segmentation
masks. Apart from this we also annotated 367K ego only seg-
mentation masks. Collectively this results in a total of 2.2M
segmentation masks. Table 19 shows a detailed breakdown
per scenario for the paired masks.

E.1.1 Ego-exo correspondence

Correspondence Baseline Implementation Details Spatial
baseline model. To adapt the architecture of SegSwap (Shen

et al., 2022) for our correspondence problem, we addition-
ally condition the model on the segmentation mask of the
object of interest by feeding the query mask as a third input
to the model. In particular, we first pass the egocentric frame,
the exocentric frame and the query mask (as a binary mask)
through avisual backbonenetwork.We thenflatten the result-
ing features into three sequences and pass them through the
cross-image transformer with alternating self-attention and
cross-attention layers. We first use the query mask features
to attend to the features in the query view which are then
used to cross-attend over features from the target view. This
allows the model to reason over features from both views
conditioned on the input mask. The resulting sequences for
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Fig. 35 Our expert commentary web tool called Narrator provides an
easy-to-use platform for experts. Experts can streamvideo, record audio
commentaries, and provide proficiency ratings and justifications. The

tool also supports drawing on the video feed (see red arrow and cir-
cles on the right frame), allowing for manual spatial grounding during
commentary

both views are “unflattened” and passed through a decoder
to predict object segmentation masks in both views. We also
pass the target view features through a classification head to
classify if the query object is visible in the target view.

We train the model to perform mask prediction using a
point-wise binary cross-entropy loss and a dice loss over
the predicted and ground truth masks. We use only pairs of
frames where the object of interest is visible on both views
and apply the losses on predicted masks in both the views.
During inference, we only consider the mask predicted in the
target view and discard the predicted mask in the query view.
We train the head performing Visibility classification using a
binary cross-entropy loss on all the frames of the sequence.
Spatio-temporal baseline model. To encourage the model to
learn associations of the objects between egocentric and exo-
centric views, we train XView-XMem to track the object in a
sequence of interleaved frames of egocentric and exocentric
views, i.e., each egocentric frame is followed by an exocen-
tric frame and vice versa, as shown in Figure 37.

To mitigate track drift (within and across views), we also
explore feeding theXSegTx embeddings to theXMemwork-
ing memory. Since these embeddings are trained to guide
the mask decoder at each frame independently, they capture
rich information about the object of interest. The extracted
image features from the ResNet in XMem are fused with
the encoded embeddings from multiple layers of SA (self-
attention) and CA (cross-attention) layers of XSegTx. They

are then projected into keys and stored in memory for track-
ing.

For our spatial baselinemodel,wedownsample the images
to 480x480 resolution for all the views while using padding
to keep the original aspect ratio of the images. For the image
backbone we use the same ResNet50 (He et al., 2016) check-
point as SegSwap and freeze its weights during training. Our
cross-image transformer architecture also follows (Shen et
al., 2022). We use a batch size of 32 and Adam (Kingma &
Ba, 2014) as our optimizer with a learning rate of 0.0002
which decays to 0.0001 after 50,000 iterations. We run all
our experiments on a single Nvidia RTX A6000 GPU for
200,000 iterations.

For our spatio-temporal baseline model, we use the same
visual backbone (ResNet50 (Heet al., 2016)) and architecture
as XMem (Cheng & Schwing, 2022). Our only modification
is in the information that gets inserted in theworkingmemory
at each frame.We first extract features from both ResNet and
XSegTx for both both query and target frames. The corre-
sponding features are then concatenated and projected to the
original feature dimension through simple 2D convolution.
We train on sequences of 8 interleaved ego and exo frames.
The model is trained using AdamW as our optimizer with
a learning rate of 0.00001 for 50,000 iterations and weight
decay 0.05. The batch size is 8 clip pairs. We initialize our
model with the original pretrained XMem, and keep both the
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Fig. 36 Multi-stage annotation process for Ego-Exo Relation annota-
tions. After enumerating all active objects in the egocentric video, an
object is selected and annotated with segmentation masks in all frames
of the egocentric video. Then, annotators are given the exo video as

well as the textual descriptions and sample egocentric segmentation
masks for the object of the interest, and mark segmentation masks for
the specified object of interest in all the frames where it is visible

Table 19 Relation annotation statistics.We show statistics for each sce-
nario including the number of takes, total number of objects annotated
and the number of egocentric and exocentric segmentation masks

Scenario # Takes # Objects # Ego Masks # Exo Masks

basketball 394 602 21820 31165

bike 210 714 53886 71763

cooking 478 3481 549507 888384

health 127 570 77596 86585

music 112 153 33624 5599

soccer 12 22 2411 2475

Total 1335 5566 741965 1091135

ResNet backbone as well as our finetuned XSegTx models
frozen. Note that we do not apply any data augmentations.

Data We use 1028 takes from the Ego-Exo dataset to train
and evaluate models for this benchmark. In particular, we use
the common split shared across benchmarks, with 838 takes
for training, 201 takes for validation and 295 takes for testing.
We extract pairs of images between egocentric and exocentric
views which have corresponding object masks annotated for
training. This gives us a total of about 193k pairs for training.

Results Webreak down our results across different activities
in Fig. 38.We note that some activities are generally easier to
model (e.g., basketball, soccer) because of limited variation
in object shape and appearance whereas some activities (e.g.,
cooking and bike repair) are much harder to model due to
larger diversity in appearance, shape and size of the objects

Table 20 Breakdown of ego-exo translation results per scenario for the
subtasks of ego track prediction (IoU) and ego clip generation (LPIPS)

Scenario IoU (%) ↑ LPIPS ↓

Basketball 14.5 0.41

Soccer 17.0 0.51

Music 4.5 0.30

Health 12.9 0.40

Bike 6.4 0.52

Cook 9.5 0.47

Fig. 37 Overview of our spatio-temporal XView-XMem baseline
model for the correspondence task
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Fig. 38 Performance of both baselines per activity scenario

Fig. 39 Correspondence evaluated across different object sizes in the
target (exo) view. The object sizes range from 7e−6% to 11% pixels in
the target view

across views. We also explicitly evaluate our baselines on
their ability to predict masks for very small objects. To do
so, we split our validation set based on the predicted object
size in proportion to pixels in the image. We see that, all
our baselines struggle on very small objects and perform
increasingly well on larger object sizes.

E.1.2 Ego-exo translation

In Table 20 we provide a break down of ego-exo translation
results across different scenarios, using GNT-mask for track
prediction and DiT-pix for clip generation. We can observe
similar trends for the two subtasks: the methods achieve bet-
ter results in basketball and soccer scenarios than in bike and
cook scenarios, which is reasonable as the objects in bike
and cook scenarios are more complex and diverse (See Fig-
ure 39).

E.2 Fine-grained keystep recognition

Data annotation details We collect manual annotations for
keysteps (actions that contribute towards the completion of
a procedural task) and build a keystep taxonomy in parallel.

Figure 40 shows the annotation user interface. We provide
annotators a composite view of time-synchronized ego and
exo videos. Each keystep annotation contains the start and
end timestamps, a category label, a natural language descrip-
tion, and a flag indicating whether the keystep is essential
or optional for task completion. Annotators interact with a
search widget which displays keystep labels with their com-
plete path within a hierarchical tree, e.g., Making cucumber
& tomato salad> Prepare dressing> To a bowl or jar>Add
salt.

As the activities performed by the camera wearers are
unscripted, it is not possible to establish a comprehensive
keystep taxonomy prior to annotation. To address this chal-
lenge, we designed an iterative, data-driven process for
taxonomy development. We first initialize the taxonomy
using various resources including recipes and instruction arti-
cles from the Web. This initial taxonomy captures keysteps
that are generally expected in the activities, but it is assumed
to be incomplete for the specific variations the camera
wearers performed in the recordings. Subsequently, in each
iteration, annotators receive the current taxonomy and are
instructed to add new keysteps when they encounter actions
not represented in it (see Figure 41). Any newly added
keysteps are kept valid only for the duration of each anno-
tation session and are not visible in other sessions. After a
batch of videos have been annotated, we review the newly
added keysteps to ensure their validity and update the taxon-
omy before repeating the process.We finalized the taxonomy
after the third iteration, afterwhichwe re-annotated the entire
set of videos with the final taxonomy for consistency.

Dataset splits The keysteps in our dataset exhibit a very
long-tailed distribution. To address this challenge, we set
a cutoff threshold at 20 samples per keystep, limiting our
analysis to 278 unique keysteps. For simplicity, we consider
only the leaf node keysteps in the hierarchy. Exploring the
hierarchical structure including parent nodes is a promis-
ing direction but we leave this as future work. In all, the
dataset for keystep recognition comprises 130,979 segments,
with an average duration of 11.34 seconds each. Specifically,
the training set contains 74,342 segments, of which 14,326
are from the ego view and the rest from the exo view. The
validation set consists of 23,636 segments, including 4,517
ego-view segments, and the test set has 33,001 segments with
6,373 in the ego view (Table 21).

Implementation details We use clips of size 8 × 224 ×
224, with frames sampled at a rate of 1/32 for all baselines
except for EgoVLPv2 (where we adhere to its pretraining
scheme and sample 4 frames). The patch size is 16× 16. For
training, we resize the shorter side of the frame to a random
value within the range of [256, 320], followed by randomly
sampling a 224 × 224 region from the resized video. For
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evaluation, we sample a single temporal clip in the middle of
the video, scale down the shorter spatial side of the video to
224 pixels and select 3 spatial crops (top-left, center, bottom-
right) from the temporal clip to cover a larger spatial extent
within the clip. The final prediction is derived by averaging
the scores obtained for these 3 crops. We train our model
for a total of 100 epochs on 4 NVIDIA V100 GPUs with
a batch size of 32. The model checkpoint yielding the best
performance on the validation set is selected and evaluated
on the test set.

Results breakdown by keystep We present a more detailed
analysis of per-step performance in Figure 42, comparing
training with ego-view videos and exo-view videos. We can
observe that exo views show performance advantages over
ego views in several steps, with the keystep ‘have a conversa-
tion asking different questions’ benefiting themost from exo.
Conversely, ego views are more effective in steps involving
manipulation of small objects, like ‘cut carrots’ and ‘unpack
the new tube’. This observation can be linked to the position-
ing of exo cameras, which are often placed further away from
the subject, enabling them to capture a broader view, though
possibly missing finer details of the activity. We hope these
findings provide insight for future research on the effective
use of exo-view videos during training.

E.3 Energy-efficient multimodal keystep recognition

Energy profiler We adapt off-the-shelf profiler software
built for PyTorch to compute the total multiply-accumulate
operations (MACs) and memory transfer (MB) required to
estimate total energy in Eqn. 1. The quantities are time-
normalized — total energy consumption is expressed as
power (mW). We describe each component of the profiler
below.

• Computeoperations (MACs)Weuse thenativePyTorch
FLOP counter to get the total FLOP count in the forward
pass. We convert this to MACs (approximately 2 FLOPs
= 1 MAC).

• Memory transfer (bytes)We consider GPUs as our pro-
cessing device, and use the PyTorch memory profiler to
get the list of all operations executed in the forward pass
(model.forward() call) and their associated GPU
memory usage. The total memory is the sum of the indi-
vidual operation memory costs.

• Sensor capture For each modality, we measure the time
for which it is active as the number of observations sam-
pled containing the modality. We require that the sensors
capture at least 1 second worth of samples (roughly 100
samples) as energy consumption is ill-defined for an
instantaneous capture.
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Fig. 40 The keystep annotation tool shows a composite view of the time-synchronized ego-exo videos and the keystep time segment annotations.
Each annotation consists of the start and end timestamps, a category label, a natural language description, and an essential/optional flag

Energy tiers As mentioned in the main paper, there is a
natural trade-off between efficiency and better performance.
Thus, we evaluate models in two tiers by setting a budget
for the power consumption in each tier, namely 20 mW for
the high-efficiency tier and 2.8W for the high-performance
tier. We select the high-efficiency budget based on the energy
consumption of current single-modality, efficient architec-
tures (e.g., X3D-XS (Feichtenhofer, 2020)) with an eye to
the future where multi-modal models operate within it. For
the high-performance tier, we set the budget to a value that
permits the use of powerful transformer-based action recog-
nition models like LaViLa (Zhao et al., 2023). Once a model
runs out of budget, in our setup it uses its latest prediction
for all future steps.

Complete baseline details

• X3D-XS (Feichtenhofer, 2020). This is a vision-only
model comprising the X3D-XS feature encoder, which
progressively expands the feature size and representa-
tional capacity of its layers, and later contracts them for
achieving better performance-efficiency trade-off. This

Fig. 41 Adding new keysteps to a taxonomy. Annotators utilize a spe-
cializedwidget to introduce newkeysteps at any levelwithin the existing
taxonomy hierarchy

is the most lightweight model in our family of keystep
predictors. The encoder has a depth factor of 2.2, and
takes 4 RGB frames of size 160×160 sampled at 15 fps,
as inputs.
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• LaViLa (Zhao et al., 2023). This is another vision-only
model where the visual feature encoder is trained through
CLIP-style video-language pre-training. To improve the
feature quality over vanilla CLIP-style pre-training, this
method augments the number of video-text pairs by
leveraging pre-trained large language models (LLM) to
generate textual descriptions of un-annotated videos and
rephrase existing narrations. In particular, we use the
frozen TimeSformer (Bertasius et al., 2021)-Base (TSF-
B) visual encoder pre-trained on the Ego4D dataset. To
generate the feature for a target frame, the encoder sam-
ples 12 RGB frames of size 224 × 224 at 30 fps from a
time window centered around the target frame and pads
the samples with the boundary frames on both ends to
create a 16-frame clip.

• Light-ASDNet (Liao et al., 2023). This is an audio-only
model that represents audio as spectrograms and effi-
ciently encodes them by splitting 2D convolutions into
1D convolutions along the spectrogram temporal dimen-
sion (Liao et al., 2023). In our setup, the spectrograms are
Kaldi (Povey et al., 2011)-compliant, and consist of 196
temporal windows and 160 Mel-frequency bins, respec-
tively.

• Audio-Visual Late Fusion (AV-LF). This is an audio-
visual model that does late fusion of visual features
(encoded with X3D-XS or LaViLa) and audio features
from Light-ASDNet by using linear layers.

Experimental setup We instantiate the task by considering
keystep prediction episodes where the multimodal samples
arrive in a streaming fashion. As mentioned above, we use
vision and audio as our task modalities, where vision com-
prises RGB frames that are streaming at 30 frames per second
(fps), and the audio modality is made up of time-aligned
single-channel chunks that are 0.4 seconds long and sam-
pled at 16 kHz.However, the setup can be extended to include
IMU, and potentially other sensors as well. We evaluate all
models at the rate of 5 fps on a total of 211 test episodes
of variable length, where the shortest episode is ∼15 sec-
onds, and the longest episode is ∼34 minutes. We filter out
episodes where all steps belong to the background class.

Implementation details We train all keystep prediction
models for 150 epochs using the cross entropy loss. We use
the AdamW (Loshchilov & Hutter, 2019) optimizer with an
initial learning rate of 10−4 and a weight decay of 10−5. We
set the batch size to 512 for vision-only models, and 384 for
audio-only and audio-visual models.

Performance breakdownbymodality In Fig. 43, we present
a detailed analysis of the keystep labels where the best
vision-only model from the high-efficiency tier yields the
maximum improvement or decline in performance compared

to its audio-only counterpart.We observe that the vision-only
model produces a large improvement over the audio-only
model usually in steps where the activity does not produce
distinctive sounds (e.g., add green chillies, get celeries, etc).
On the other hand, using audio alone helps the most when
the activities involve sounds that are strongly indicative of
the nature of the task (e.g., stir fry egg mixture, cut butter,
etc).

Finally, we envision that future work on this task will
explore more sophisticated learned policies, potentially
trained using reinforcement learning, in order to adaptively
decide when to sample which modality instead of using fixed
heuristics. Another promising direction is to investigate effi-
cient transformer-based recognition backbones (Xu et al.,
2021; Zhao & Krähenbühl, 2022) that can improve recogni-
tion performance without significantly affecting the model
efficiency.

E.4 Procedure Understanding

Complete baseline details Graph-based baselines. Graph-
based baselines are composed of a keystep assignment and a
procedural reasoning component (see Figure 23(a)).

Keystep assignment (A1) is applied to obtain a pseudo-
labeling of the providedvideo segmentswhen the supervision
is at the procedure-level (i.e., segments are unlabeled and
only keystep names are provided). This is achieved bymeans
of an EgoVLPv2 model (Lin et al., 2022) pre-trained on
ego-exo videos and narrations. Video segments and keystep
names are projected to the shared video-language space using
EgoVLPv2. We hence assigned each video segment to the
closest keystep in the representation space according to the
cosine distance. In the problem formulation with instance-
level supervision (i.e., when keystep labels are available for
all segments during both training and testing), we use ground
truth labels instead of those obtained from keystep assign-
ment. Additionally, we provide a baseline where the keystep
assignment step is replaced with label predictions from the
Keystep Recognition task (A2). Note that in the training set,
segments with a confidence score below 20% have been dis-
carded.

The procedural reasoning component (B) creates for
each procedure a transition graph based on keystep co-
occurrences. In the graph, each node represents a keystep
category, while directed edges represent the probability of
transitioning from one node to another one. An edge A → B
is assigned the following weight based on statistics collected
from the training videos:

P(B|A) = # times keystep B follows keystep A
# occurrences of keystep A
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Fig. 42 Keystep recognition evaluated per keystep label on a validation split, comparing training with only ego-view videos versus exo-view videos.
The accuracy delta (exo-ego) is displayed, where a positive value indicates better exo and a negative value indicates better ego performance

Fig. 43 Improvement (left) or degradation (right) in keystep recogni-
tion performance per keystep label, when comparing the most efficient
vision-only (X3D-XS (Feichtenhofer, 2020) + s = 10) and audio-
only (Light-ASDNet (Liao et al., 2023) + s = 5) models from the

high-efficiency tier. The plots show the 15 keysteps where improve-
ment or degradation are largest. $ reports the amount of improve-
ment/degradation

At test time, the graph is used to perform procedure under-
standing and answer the keystep-level questions. Specifi-
cally, given current segment si : 1) keystep yprev is predicted
as the previous keystep with confidence score equal to the
transition probability P(yi |yprev), where yi is the inferred
or ground truth keystep label for segment si ; 2) segment
si is predicted as optional based on the empirical proba-
bility # training videos containing yi

# training videos ; 3) segment si is predicted
as a procedural mistake with a score equal to the sum of
the transition probabilities to yi from keysteps y prev that
are missing from the keystep history, i.e.,

∑
y prev [y prev /∈

Si−1] · P(yi |yprev), where [·] is the indicator function; 4)
keystep y is predicted as a possible missing keystep with
probability [yi /∈ Y:i−1] · P(y|yi ); 5) keystep y is predicted
as a future keystep with probability P(yi |y).

End-to-end baseline. This baseline aims to provide an end-
to-end approach to performprocedure understanding directly
from the input clip. The baseline predicts previous keysteps,
optional keysteps, and next keysteps by feeding video seg-
ment features extracted with EgoVLPv2 (Pramanick et al.,
2023) to three dedicated MLPs. Figure 23(b) illustrates the
architecture of the baseline. At training time, MLPs are
supervised from the pseudo-labels obtained by graph-based
baselines usingMean Squared Error (MSE) score to align the
predicted probability distributions to the supervising ones.
Missing keysteps and proceduralmistakes are predicted from
the outputs of the MLP components as in graph-based base-
lines.
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E.5 Proficiency estimation

Annotations for demonstrator proficiency estimation We
derive annotations for this task from participant surveys (see
Section C) and expert commentary (see Section D.1). Par-
ticipant surveys contain responses to questions about prior
experiences in the task such as “How many years have you
been doing this task?”, and “Do you have any qualifica-
tions/professional training related to the task?” (see Table 16
for the complete list). On the other hand, expert commentary
is performed by task-specific experts and includes 1 to 10
proficiency scores for each video from the participant (see
Section D.1). After consulting with experts hired for each
scenario, we designed scenario-specific conversion functions
that use the surveys and expert commentaries to produce an
estimate of a participant’s proficiency score (see Table 22).
For example, in basketball and soccer, we use the years of
experience to determine skill level since we found this to be
an accurate indicator of skill based on analyzing the videos.
On the other hand, to determine skill level in bouldering,
we use the highest difficulty level of the route solved by the
participant.

Annotations for demonstration proficiency estimation
Table 23 shows examples of expert comments and cor-
responding annotation tags derived from them indicating
whether the comment suggests a good execution and/or tips
for improvements.

Baseline implementation details

Demonstrator proficiency estimation We use the TimeS-
Former (Bertasius et al., 2021) architecture for the base-
line. TimeSFormer is a video transformer designed for
video action recognition/classification that introduces a novel
decoupled spatiotemporal attentionmechanism.We resize all
videos to 448 pixels along the smallest dimension and use a
clip size of 16 frameswith a frame rate of 16 FPS. Themodels
are trained to classify individual clips using the cross-entropy
loss on 8 Quadro RTX 6000 GPUs for 15 epochs.
Demonstrator proficiency estimation We adopt Action-
Former (Zhang et al., 2022), a video action localization
model for our experiments. Unlike traditional action local-
ization that defines time windows as outputs, we instead
perform timestamp regression since our annotations con-
tain only a single point in time for each good execution or
tip for improvement. We accordingly adapt ActionFormer’s
post-processing strategy and evaluation metrics. In our task,
the predicted timestamps correspond to frames retained
after non-maximum suppression (NMS). We remove the
regression head of ActionFormer and infer the predicted
timestamps from the indices of frames retained after NMS.
We also modify the NMS module of ActionFormer to rely Ta

bl
e
22

A
nn
ot
at
io
ns

fo
rd

em
on
st
ra
to
rp

ro
fic
ie
nc
y
es
tim

at
io
n.
W
e
de
si
gn
ed

sc
en
ar
io
-s
pe
ci
fic

co
nv
er
si
on

fu
nc
tio

ns
th
at
ta
ke

in
pa
rt
ic
ip
an
ts
ur
ve
ys

an
d
ex
pe
rt
co
m
m
en
ta
ry

as
se
ss
m
en
ts
to

es
tim

at
e

pr
ofi

ci
en
cy

of
pa
rt
ic
ip
an
ts
(i
.e
.,
no
vi
ce
,e
ar
ly

ex
pe
rt
,i
nt
er
m
ed
ia
te
ex
pe
rt
,a
nd

la
te
ex
pe
rt
).
L
eg
en
d:

X
=
ye
ar
s
of

ex
pe
ri
en
ce

pe
rf
or
m
in
g
th
e
ta
sk
,T

=
pr
of
es
si
on

al
tr
ai
ni
ng

in
th
e
ta
sk
,H

=
hi
gh

es
t

di
ffi
cu
lty

le
ve
ls
ol
ve
d
by

pa
rt
ic
ip
an
ti
n
bo

ul
de
ri
ng

,N
=
es
tim

at
ed

nu
m
be
ro

ft
im

es
pe
rf
or
m
in
g
th
e
ta
sk
,P

=
av
er
ag
e
pr
ofi

ci
en
cy

ra
tin

g
fr
om

ex
pe
rt
co
m
m
en
ta
ry

Sc
en
ar
io

N
ov
ic
e

E
ar
ly

E
xp

er
t

In
te
rm

ed
ia
te
E
xp

er
t

L
at
e
E
xp

er
t

B
as
ke
tb
al
l

X
∈
[0
,
1)

X
∈
[1
,
3)

X
∈
[3
,
10

)
X

≥
10

So
cc
er

X
∈
[0
,
1)

X
∈
[1
,
3)

X
∈
[3
,
10

)
X

≥
10

D
an
ci
ng

X
∈
[0
,
3)

X
∈
[3
,
5)

(X
∈
[5
,
10

))
∨
((
X

≥
10

)
∧
¬
P
)

(X
≥

10
)
∧
T

B
ou
ld
er
in
g

H
≤

V
3

H
==

V
4

H
==

V
5

H
≥

V
6

M
us
ic
(v
io
lin

)
(X

∈
[0
,
3)
)
∨
(N

∈
[0
,
50
0)
)

(X
∈
[3
,
5)
)
∨
(N

∈
[5
00

,
10
00

))
(X

∈
[5
,
10

))
∨
(N

∈
[1
00
0,

10
00
0)
)

(X
≥

10
)
∨
(N

≥
10
00
0)

M
us
ic
(g
ui
ta
r)

(X
∈
[0
,
1)
)
∨
(N

∈
[0
,
50
0)
)

(X
∈
[1
,
3)
)
∨
(N

∈
[5
00

,
10
00

))
(X

∈
[3
,
10

))
∨
(N

∈
[1
00
0,

10
00
0)
)

(X
≥

10
)
∨
(N

≥
10
00
0)

M
us
ic
(p
ia
no
)

(X
∈
[0
,
1)
)
∨
(N

∈
[0
,
50
0)
)

(X
∈
[1
,
5)
)
∨
(N

∈
[5
00

,
10
00

))
(X

∈
[5
,
10

))
∨
(N

∈
[1
00
0,

10
00
0)
)

(X
≥

10
)
∨
(N

≥
10
00
0)

C
oo
ki
ng

P
<

3.
5

P
∈
[3
.5
,
5)

P
∈
[5
,
8)

P
≥

8

123



8422 International Journal of Computer Vision (2025) 133:8356–8435

Table 23 Annotations for
demonstration proficiency
estimation. We annotated expert
comments about a participant’s
task execution with tags
indicating whether each
comment describes a good
execution or suggests tips for
improving skills. Note that the
same comment might describe
one aspect of the task as being
good while suggesting
improvements in another aspect
(e.g., see row 1)

Scenario Expert comment Good execution Tips to improve

Basketball Nice release. I like the follow through here.
You’d like to see the guide hand maybe up
a little bit higher on the release of that shot.
Maybe to give it better ball control when
you’re letting go of the shot.

Yes Yes

Basketball Great footwork, left foot take off, lifting of
the right knee and extending that body up.
Love how he’s looking up, checking out
the backboard, shooting hand behind the
basketball. Nice job.

Yes No

Basketball He’s also really far away from his body and
themore he cankeephis armupbyhis ear, it
will give him the most opportunity to make
the basket without the defense interrupting.

No Yes

Bike repair It’s a great method to always double check
or do a pre-check before beginning work
on a bicycle to make sure the issue that
you are working to fix is the only issue that
is occurring. If not, you could find a sec-
ondary issue or something else that may
be greater than the one you are currently
working on.

Yes No

Bike repair As you can see she clearly slipped on
loosening the nut which essentially creates
damage to the surface of the nut itself and
can round out the nut.

No Yes

Bouldering The climber was efficiently able to position
herself with one hand on each hold at the
start and had, once her hands were posi-
tioned, she matched her feet on the hold
and efficiently moved to the next hold.

Yes No

Bouldering And since she popped out and is swing-
ing out, she can’t really keep the tension
through her one arm because she’s so
locked off. So it caused her to kind of just
fall off thewall and lose all tension through-
out all of her body.

No Yes

Cooking You can see there, she’s not able to stir
properly. She has to push it around, which
means that the lime is not gonna be very
evenly distributed among the pieces of
tomato and cucumber.

No Yes

Cooking Using a grinder for fresh pepper is an
excellent way to get a lot of flavor. The
fresh grind of pepper as opposed to buy-
ing already ground pepper really expels the
oils and everything in those peppercorns
and allows the flavor to be as big as it can
possibly be.

Yes No

on the L1-distance between predicted timestamps instead of
the tIoU between segments used in (Zhang et al., 2022). Dur-
ing training, we keep the classification loss from (Zhang et
al., 2022) and replace the regression loss with the loss func-
tion defined in (Kwak et al., 2020). We train our models with
Omnivore features (Girdhar et al., 2022) extracted with a clip
size of 32 frames and a stride of 16 frames from all the videos.

Scenario-specific results on demonstrator proficiency esti-
mation We show scenario-specific results in Table 24.
TimeSFormer achieves good performance with the egocen-
tric view in cooking since a close-up view of the objects of
interest and hand poses is essential to assessing skill in these
scenarios. On the other hand, the model performs better with
the exocentric view in bouldering on the test data since the
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Fig. 44 Distribution of
demonstrator proficiency scores
per scenario

overall body pose is a useful indicator of proficiency. Unfor-
tunately, it fails to improve over the majority-class baseline
is most scenarios on the test splits except basketball, high-
lighting a distribution shift between the val and test splits.

E.6 Ego Pose

CVPR 2024 challenges We organized two Ego Pose chal-
lenges as part of the EgoVisworkshop at CVPR2024, aiming
to encourage researchers to explore and utilize the dataset.
We had eight participants in total, divided evenly between
the Body Pose challenge and the Hand Pose challenge.

BodyPose Therewere a total of four submissions to the hand
pose challenge, with three outperforming the best baseline
method, as shown in Table 25. The best participant outper-
formed the baseline by 3.19 cm in MPJPE.

Table 25 Leaderboard of Ego-Exo4D Body Pose challenge at EgoVis
CVPR 2024

MPJPE MPJVE

Location-based (baseline) 18.51 0.64

Levelwise att ViT 18.09 0.62

UCB Ego 17.19 0.57

Multi-Scale Model Fusion 15.32 0.55

First place: Multi-Scale model fusion (Baoqi Pei, Yifei
Huang, Guo Chen, Jilan Xu, Yicheng Liu, Yuping He,
Kanghua Pan, Tong Lu, Limin Wang, Yali Wang, Yu Qiao)

Instead of implementing a new baseline model, this
approach leverages the existing location-based baseline and
focused on improving performance by fusing predictions
from multiple models with varying numbers of transformer
layers (ranging from 1 to 6). This approach allowed them to
address variations in data distributions and stabilize predic-
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Table 24 Breakdown of results for demonstrator proficiency estimation across scenarios. Top-1 accuracies per scenario for the TimeSFormer model

Scenario Val Test

Majority-class Ego Exos Ego + Exos Majority-class Ego Exos Ego + Exos

Basketball 35.66 56.64 56.64 51.75 46.71 79.64 71.86 76.65

Cooking 50.94 56.60 45.28 49.06 39.54 19.77 33.72 32.56

Dancing 43.31 42.52 31.50 32.28 46.62 43.24 40.55 42.57

Music 44.44 69.44 50.00 58.33 73.24 56.34 45.07 50.70

Bouldering 0.00 27.67 18.24 17.61 19.57 39.13 43.04 43.04

Soccer 74.42 65.11 37.21 41.86 72.73 65.15 31.82 30.30

Table 26 Leaderboard of Ego-Exo4D Hand Pose challenge at EgoVis
CVPR 2024

MPJPE PA-MPJPE

POTTER (baseline) 28.94 11.07

PCIE EgoHandPose 25.51 8.49

Hand3D 30.52 9.30

POTTER-ensemble 28.68 10.24

tions. By combining the outputs from the different versions
of the baseline, they achieved an improved MPJPE of 15.32.
Second place: UCB Ego (Brent Yi, Vickie Ye, Georgios
Pavlakos, Lea Müller, Maya Zheng, Yi Ma, Jitendra Malik,
Angjoo Kanazawa)

The submission by UCB EGO to the Ego-Exo4D Body
Pose Challenge centers around their development of a con-
ditional human motion diffusion model that operates using
30Hz SLAM pose data to directly sample SMPL human
body parameters. The model was trained exclusively on the
AMASS dataset, which poses a limitation of domain trans-
fer to the Ego-Exo4D dataset. To address this limitation, the
team introduced an AdapterNet to estimate floor height and
route procedural tasks to the baseline model while focus-
ing the diffusion model on physical activities. This hybrid
approach allowed the team to achieve a MPJPE of 17.19 cm.
Third place: Levelwise attention ViT (Congsheng Xu, Jin-
fan Liu, Yifan Liu, Shuwen Wu)

The authors proposed a model that combines two Vision
Transformer (ViT) structures to leverage both coarse-grained
and fine-grained information for 3D human pose estimation.
They used a baseline ViT model with 8 attention heads and 3
layers for coarse-grained estimation, and a Huge-ViT model
with 16 attention heads and 32 layers for fine-grained esti-
mation. They combine the outputs from both ViTs through a
weighting strategy. By assigning a higher weight to the fine-
grained results, the method balances local detail and global
information. This weighting approach resulted in a MPJPE
of 18.09 cm.

Hand Pose There are in total 4 submissions to the hand
pose challenge, with 3 outperformed the baseline method

POTTER (Zheng et al., 2023) as shown in Table 26. The best
participant outperformed the baseline model by 11.85% in
MPJPE, and by 23.31% in PA-MPJPE.
First place: PCIE EgoHandPose (Chen et al., 2024)

The authors propose the Hand Pose Vision Transformer
(HP-ViT). The HP-ViT comprises a ViT backbone and trans-
former head to estimate joint position in 3D, utilizingMPJPE
and RLE loss function. To be more specific, the model
employed regression loss based on RLE (Li et al., 2021) to
minimize the gap between output and input distributions. The
experiments show that the model with ViT-Huge (Dosovit-
skiy, 2020) as backbone achieves the best performance. The
ensembling model with different setting also contributes to
decrease the overall error.
Second place: Hand3D (Pavlakos et al., 2024)

The authors apply recently introduced HaMeR out-of-
the-box on the images of the EgoExo4D Challenge, and
observe very strong performance. HaMeR is a feed-forward
model that takes as input a single image of a hand and
hand side (left or right), and estimates a 3D reconstruc-
tion of the hand in the form of the MANO parametric hand
model (Romero et al., 2017). HaMeR adopts a fully trans-
formerized architecture design using a ViT-H (Dosovitskiy,
2020) backbone, followedby a transformer head. The authors
further show the limit of the method, particularly when the
occlusions/truncations are very extreme (only a few visible
fingers), the wrist location or hand orientation is ambiguous,
and finally, if the original hand bounding box crop is not very
accurate.
Third place: POTTER-ensemble (Baoqi Pei, Yifei Huang,
Guo Chen, Jilan Xu, Yicheng Liu, Yuping He, Kanghua Pan,
Tong Lu, Limin Wang, Yali Wang, Yu Qiao)

The authors handle the problems through a multi-scale
model fusion method. To be specific, the authors enhance
the baseline method POTTER (Zheng et al., 2023) by (1)
including multiple upsampling dimensions, specifically 128,
256, and 512, (2) integrating a dynamic pooling operation
before the 3D convolution operation of the model, and (3)
combining/ensembling these models to improve generaliza-
tion capabilities.
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F Detailed contribution statement

This project is the result of a large collaboration between
many institutions over the last two years. Initial authors rep-
resent the leadership team of the project. Kristen Grauman
initiated the project, served as the technical lead, initiated
the recognition and proficiency benchmarks and expert com-
mentary, and coordinated their working groups. Andrew
Westbury served as the programmanager and operations lead
for all aspects of the project. Lorenzo Torresani led devel-
opment of the capture domains, initiated the relation and
ego-pose benchmarks, and coordinated theirworking groups.
Kris Kitani led development of the multi-camera rig and sup-
ported the Ego-Exo4D engineering team on all aspects of the
data annotation and organization. Jitendra Malik served as
a scientific advisor. Authors Triantafyllos Afouras, Kumar
Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote,
Eugene Byrne, Zach Chavis, Joya Chen, Feng Cheng, Fu-Jen
Chu, Sean Crane, Avijit Dasgupta, Jing Dong, Maria Esco-
bar, Cristhian Forigua,AbrhamGebreselasie, SanjayHaresh,
Jing Huang, Md Mohaiminul Islam, Suyog Jain, Rawal
Khirodkar, Devansh Kukreja, Kevin J. Liang, Jia-Wei Liu,
Sagnik Majumder, Yongsen Mao, Miguel Martin, Effrosyni
Mavroudi, Tushar Nagarajan, Francesco Ragusa, Santhosh
Kumar Ramakrishnan, Luigi Seminara, Arjun Somayazulu,
Yale Song, Shan Su, Zihui Xue, Edward Zhang, Jinxu Zhang
were key drivers of implementation, collection, and/or anno-
tation development throughout the project. Authors Pablo
Arbeláez, Gedas Bertasius, David Crandall, Dima Damen,
Jakob Engel, Giovanni Maria Farinella, Antonino Furnari,
Bernard Ghanem, Judy Hoffman, C. V. Jawahar, Richard
Newcombe, Hyun Soo Park, James M. Rehg, Yoichi Sato,
Manolis Savva, Jianbo Shi,Mike Zheng Shou,MichaelWray
are faculty and senior researcher PIs for the project.

Camera rig Rawal Khirodkar proposed the hardware and
software specifications for the ego-exo camera rig and helped
design the capture protocol. Sean Crane investigated various
hardware setups leading to the final rig configuration and
helped draft the capture guidelines including recommended
gear. Devansh Kukreja developed the sync and take sep-
aration algorithms, experimented with different equipment
options (e.g., camera, timecode boxes, mount options), and
designed the interface to transfer data; he also managed the
ingestion pipeline, the collaboration with Aria, the integra-
tion of their code for EgoExo, and usage of the .vrs files.

Aria Jing Dong and Vijay Baiyya were responsible for
obtaining camera poses, calibration, pointclouds and eye
gaze using Aria MPS, created the 3D/4D visualizations for
the paper and supplementary material, and acted as main
contact points from the Aria team throughout the program;
with Jing leading the algorithmdevelopment and verification,

and Vijay leading the Aria MPS workflow and infrastructure
development. Jakob Engel acted as technical and scientific
advisor, and led the team that built the Aria Localization
and Point Cloud algorithms. Kiran Somasundram helped
design the capture setup and time-synchronization. Xiaqing
Pan helped to align the Aria engineering team to support the
EgoExo4D project. Mingfei Yan, Prince Gupta, and Sach
Lakhavani acted as product managers of Aria and organiza-
tional leads for the successful use of Aria in the program.
Kelly Forbes helped setting up agreements and working
through the legal requirements of using Aria devices for
recording the EgoExo4D dataset across the globe. Richard
Newcombe initiated the Aria/Ego4D collaboration and acted
as a scientific advisor throughout the program. Furthermore,
wewant to acknowledge the contribution of the entire Project
Aria team as listed in (Engel et al., 2023), including Carl Ren
and Sean Diener leading the Aria software and hardware
engineering organization, and Renzo De Nardi as technical
lead for the Aria device.

Data collection Los Andes University Pablo Arbeláez -
lead coordinator for data collection and collaborator on the
overall project design; Maria Escobar - data collection for all
phases, design of the collection setup and workflow, data
inspection, ingestion, encoding, and metadata generation;
Cristhian Forigua - data collection for all phases, participant
recruitment, consent forms design, data inspection, com-
munication with recording sites; Cristina González - data
collection for phase 1, design of the collection setup and
workflow, IRB management; Angela Castillo - data collec-
tion for phase 2, manual data inspection, and data analysis.

Georgia Tech James M. Rehg - lead coordinator for data
collection and protocol design, and overall project manager;
Bikram Boote - lead coordinator for data collection, includ-
ing recruiting and ingestion; Fiona Ryan - contributed to data
collection; Audrey Southerland - lead coordinator for IRB
development, contributed to recruiting.

National University SingaporeMike Zheng Shou - lead
coordinator for data collection and protocol design, and over-
all project manager; Joya Chen - contributed to protocol
design, camera setup design, data collection for all phases;
Jia-Wei Liu - contributed to protocol design, camera setup
design, data collection for all phases; Xinzhu Fu - contributed
to data collection for all phases; Chenan Song - contributed
to data collection for all phases.

Meta Andrew Westbury was the lead for data collection
at our site, selecting scenarios, organizing capture sessions,
recruiting participants, organizing and transferring data, and
obtaining required approvals. In California, Hao Tang and
Kevin Liang also supported all these functions, focused
on bike repair. In New York, Devansh Kukreja and Alex
Dinh lead collection for cooking scenarios. Miguel Martin
also supported California-based collections and organized
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our local camera rig. Chefs Eton Chan and Dominic Ainza
supported all culinary collections with technical guidance,
recruitment, and coordination. Dimitri Elston coordinated
and was the technical lead on bike collections. Adrian Salas
supported pilot bouldering collections in California. Across
all Ego-Exo4D collections, Devansh Kukreja continuously
communicated and refined the recording procedure with uni-
versities, and problem-solved local recording issues.

University of North Carolina at Chapel Hill Gedas
Bertasius - lead coordinator for data collection; Md
Mohaiminul Islam - the main contributor to data collection
and metadata processing across all scenarios; Wei Shan -
contributed to data collection and metadata processing for
the music and soccer scenarios; Jeff Zhuo - contributed to
data collection and metadata processing for the soccer sce-
narios; Oluwatumininu Oguntola - contributed to participant
recruiting and data collection for the music scenario.

CarnegieMellonUniversityRawalKhirodkar developed
the automatic 3D body keypoints extraction pipeline and col-
lected a subset of the soccer, bike mechanic, and cooking
sequences for the CMU portion of the dataset. Sean Crane
was in charge of the data collection, IRB documents, cap-
turing data, working with participants and processing the
data for CMU. Abrham Gebreselasie ran the actionformer-
based baseline for demonstration proficiency benchmark.
Eugene Byrne served as the engineering lead for the ini-
tial design and implementation of the dataset, camera rig,
processing pipeline and keystep annotations while at Meta.
Subsequently at CMU, he assisted in the recognition bench-
marks, implemented Ego-Exo transfer Li et al. (2021) (1 of
the 3 baseline methods for keystep recognition) and the ini-
tial implementation of keystep action detection Zhang et al.
(2022), and assisted in annotation/data quality generally.

Simon Fraser University Sanjay Haresh was the lead
coordinator for data collection, including recruiting, data
ingestion, and data analysis. Yongsen Mao also contributed
to the data collection pipeline, recruiting, data ingestion,
metadata annotations, and statistics computations. Manolis
Savva advised on data collection, protocol design, and over-
all project management. We acknowledge the assistance of
Hanxiao Jiang and Armin Kavian with recruitment and data
collection.

University of Pennsylvania Edward Zhang led data col-
lection efforts at UPenn and played a key role in subject
recruitment, subject information collection, and on-site data
recording. Jinxu Zhang led data management, information
logging, and data transfer. Shan Su is the overall project
lead, focusing on determining good camera configurations
based on 3D reconstruction feasibility and fixing issues in
data post-processing of time synchronization and take sepa-
ration.

University of Tokyo Yoichi Sato served as the primary
coordinator for data collection, while Ryosuke Furuta was

responsible for data collection across all three scenarios, par-
ticipant recruitment, and IRB submission. Zecheng Yu and
Masatoshi Tateno provided support for data collection and
were responsible formanaging and transferring data. Takuma
Yagi helped with the IRB submission process.

Indiana University David Crandall oversaw the overall
effort at Indiana University, including protocol design and
data collection.Weslie Khoo led the IRB protocol design and
compliance, arranged logistics such as ordering equipment,
and designed and oversaw the cooking scenario data collec-
tion. Yuchen Wang and Ziwei Zhao co-led the participant
recruitment and data collection for all three scenarios. Ziwei
Zhao led data preparation and transfer. We also acknowledge
Manasi Swaminathan who assisted with data collection and
video synchronization.

IIIT-Hyderabad Avijit Dasgupta was the lead on the
ground for data collection in Hyderabad helping in orga-
nizing capture sessions, data collection, and managing and
transferring data. Siddhant Bansal helped in the early stages
with IRB application, consent forms, and pilot studies. C. V.
Jawahar was the lead coordinator for data collection helped
in selecting the scenarios, and recruiting the participants.

University of Minnesota Hyun Soo Park oversaw the
overall effort at the University of Minnesota, Twin Cities,
including protocol design and data collection. Zachary
Chavis led the IRBprotocol design and compliance, arranged
logistics such as ordering equipment, participant recruitment,
and designed and oversaw all scenarios of data collection.
Anush Kumar assisted data collection for all scenarios.

Language annotations Kevin J Liang co-developed the
expert commentary guidelines, interviewed and onboarded
experts, helped test and suggest features for the narrator tool,
and contributed to program management; he also developed
the atomic action descriptions guidelines, helped coordi-
nate annotations, and contributed to paper writing. Michael
Wray contributed to the definition of the expert commentary
guidelines; provided feedback for experts; co-developed the
narrate-and-act guidelines and the pre-task/post-task ques-
tionnaires; and contributed to paper writing. Kristen Grau-
man proposed the expert commentary idea, co-developed the
guidelines, interviewed and provided feedback to experts,
and contributed to paper writing. Andrew Westbury imple-
mented expert commentary, recruiting, mobilizing and man-
aging our experts and workplan. Miguel Martin contributed
to the atomic action descriptions annotation guidelines and
produced the annotation files and associated tutorial code,
and for expert commentary, he authored the initial version
of the Narrator tool, transcribed the commentaries, and pro-
duced the annotation files and associated tutorial code.

Changan Chen contributed to the development of the nar-
rator tool; provided feedback for experts; and contributed
to paper writing. Siddhant Bansal contributed to the design
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of narrate-and-act, user questionnaires, object dictionar-
ies, expert commentary cooking. Dima Damen proposed
narrate-and-act data collection and user questionnaires and
contributed to their design, and also contributed to expert
commentary for cooking scenarios. Tiffany Davis provided
significant program management support throughout expert
commentary. Devansh Kukreja built the render flow to gen-
erate video collages for annotations.

Domain resource people from our consortium were Dima
Damen and Michael Wray [cooking], Kristen Grauman and
Changan Chen [soccer], Gedas Bertasius [basketball], Kris-
ten Grauman and Jianbo Shi [music], Andrew Westbury
[health and bike repair],KevinLiang [dance], PabloArbelaez
and Maria Escobar [bouldering]

Ego-Exo4D’s panel of expert commentators is: Soccer:
John Bello, Phillip O’Kennedy, Lee Bakewell, Radcliffe
McDougald, Thomas HarrisMusic: James Peterson, Trevor
Minton,AndreaLaPlante, Ethan Fallis, AlexRogers, Jacque-
line Burd Health: Jasmine Higa, Angela Liszewski, Kristin
Blanset, Melissa Robinson, Sonya Johnson Dance: Rolanda
Williams, Deanna Martinez, Enya-Kalia Jordan, Rachel
Repinz, Yauri Dalencour, Kathryn Hightower Cooking:
Mark Manigault, Mary Drennen, Tiffany Davis, Reginald
Howell, Rosanne Field, Donnie Murphy, Kiet Duong, Laura
de Vera, Keegan Taylor Bouldering: Daniel Ramos, Mike
Kimmel, Roy Quanstrom, Christopher Deal, Carmen Acuna,
Kelsey Hanson Bike repair: Cesar Pineda, Walker Wilk-
son, Frank Trotter, Cordell Bushey, Dimitri Elston, Sam
Arsenault, Aaron Hill Basketball: Elizabeth Blose, Raven
Benton, JosephMcCarron, Cornelius Gilleyen, Cecil Brown.
Aaron Jones

Benchmarks Ego-exo correspondence Manolis Savva co-
led the correspondence benchmark and contributed to the
task definition, the annotation guidelines, the baseline design,
and paper writing. Effrosyni Mavroudi co-led the corre-
spondence benchmark and contributed to the task definition,
the annotation guidelines, the baseline design, and paper
writing. Lorenzo Torresani contributed to the task formu-
lation. Sanjay Haresh developed the spatial baselines and
contributed to data analysis, experimental results, and paper
writing. Yongsen Mao developed the spatiotemporal base-
lines and contributed to data analysis, experimental results,
and paper writing. Suyog Jain formulated the annotation
pipeline, developed annotation tools and contributed to anno-
tation guidelines and paper writing. Santhosh Ramakrishnan
contributed to the annotation guidelines and the formula-
tion of the annotation pipeline. Xitong Yang contributed
to the annotation guidelines and the task definition. We
would like to acknowledge Hanxiao Jiang for helpful dis-
cussions and preliminary ideas on baseline implementation.
Devansh Kukreja built the render flow to generate frame-
aligned videos of each camera for each take as model input.

Ego-exo translation Lorenzo Torresani co-led the trans-
lation benchmark, developed the task formulation, and
advised the baseline development. Judy Hoffman co-led the
translation benchmark and advised the baseline development.
Feng Cheng led the baseline development and implemented
the pix2pix and DiT models for track prediction and clip
generation. Mi Luo implemented the GNT baseline and the
evaluation pipeline for ego track prediction. Ziwei Zhao con-
tributed the pix2pix baseline formulti-frame input and led the
evaluation for ego clip generation. Huiyu Wang advised the
baseline development and contributed to the task definition,
the baseline design, and the metric selection and analysis.

Fine-grained keystep recognition Tushar Nagarajan co-
led the keystep recognition benchmark, co-developed the task
formulation, and advised the baseline development. David
Crandall co-led the keystep recognition benchmark and con-
tributed to the task formulation. Yale Song co-led the keystep
recognition benchmark and led the keystep annotation effort,
including design of annotation guidelines, taxonomy devel-
opment and coordination of annotation workflows; he also
contributed to the task formulation, advised baseline design,
and facilitated the delivery of EgoVLPv2 pretrained back-
bone. Triantafyllos Afouras contributed to the taxonomy
definition, managed the labeling effort, and developed soft-
ware for post-processing the annotations. Zihui Xue led the
baseline development effort, implemented the TimeSFormer,
EgoVLP, VI Encoder and Viewpoint distillation baselines,
and performed analysis of results. Eugene Byrne contributed
to the taxonomy development and to the Ego-Exo Transfer
baseline implementation and analysis. Avijit Dasgupta con-
tributed to the annotation and taxonomy development, and to
the early stage of baseline design. Miguel Martin contributed
to the annotation and the taxonomy development. Shraman
Pramanick contributed the EgoVLPv2 pretrained backbone.
Yifei Huang contributed to the early stages of task definition
and baseline design. DevanshKukreja built the render flow to
generate frame-aligned videos of each camera for each take
as model input, and to produce video collages for annota-
tions. Kristen Grauman contributed to the task formulation.

Energy-efficientmultimodalkeystep recognitionTushar
Nagarajan led the energy-efficient multimodal benchmark,
co-developed the task formulation, and advised the baseline
development. Sagnik Majumder led the baseline develop-
ment effort and contributed all baseline implementations and
analysis of results for the benchmark. Merey Ramazanova
developed the energy profiler used to evaluate all base-
lines and contributed to the experimental analysis. Mitesh
Kumar Singh helped design the energy formula. Miao Liu
and Shengxin Cindy Zha initiated this benchmark and devel-
oped an early version of the task formulation.

Procedure understanding Antonino Furnari led the pro-
cedure understanding benchmark, and contributed to the task
definition, the annotation guidelines, the baseline design, and
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paper writing. Giovanni Maria Farinella contributed to the
task definition, the annotation guidelines, the baseline design,
and paper writing. Luigi Seminara contributed to the anno-
tation guidelines, the baseline design, and paper writing; he
also developed tools for data annotation, and the baselines for
the benchmark. Francesco Ragusa contributed to the anno-
tation guidelines, the baseline design, and paper writing; he
also developed tools for data annotation, and the baselines
for the benchmark. Kumar Ashutosh contributed to the anno-
tation guidelines, baseline design, and development of data
annotation tools. Michael Wray contributed to the task def-
inition, the annotation guidelines, the baseline design, and
paper writing. Siddhant Bansal contributed to the task def-
inition, the annotation guidelines, the baseline design, and
paper writing. Gene Byrne contributed to the task definition,
the annotation guidelines and the baseline design. Tushar
Nagarajan contributed to the task definition, and the baseline
design.

Ego-exo proficiency estimation Santhosh Kumar
Ramakrishnan co-led the proficiency estimation benchmark,
co-developed the task formulation, and advised the base-
line development. Gedas Bertasius co-led the proficiency
estimation benchmark, co-developed the task formulation,
and advised the baseline development. Arjun Somayazulu
developed the demonstrator proficiency estimation baselines.
Abrham Gebreselasie developed the demonstration profi-
ciency estimation baselines. Maria Escobar contributed to
the task definition and the baseline design. Eugene Byrne
contributed to the task definition and the baseline design.
Miguel Martin developed an interface for obtaining profi-
ciency estimation scores from the recruited experts. Suyog
Jain contributed to an annotation pipeline for demonstration
proficiency estimation.DevanshKukreja built the renderflow
to generate frame-aligned videos of each camera for each
take as model input. Kristen Grauman contributed to the task
formulation.

Ego pose Kris Kitani co-led the ego-pose benchmark,
and provided directional guidance on the task definition,
the annotation methodology, and the baseline development.
Jianbo Shi co-led the ego-pose benchmark, and provided
directional guidance on automatic 3D hand pose genera-
tion and development of ego hand pose baseline methods.
Maria Escobar led the ego-pose body baseline development,
implemented the IMU-based baseline and contributed to
experiment analysis. Cristhian Forigua developed the static
pose baseline and contributed to the implementation of the
IMU-based baseline. Fu-Jen Chu developed the multi-view
annotation UI, the hand pose annotation guidelines, and the
data preprocessing code for ego-pose annotation; he also
trained and evaluated the HandOccNet baseline. Rawal Khi-
rodkar developed the multi-view triangulation and 3D body
keypoint estimation pipeline. Zhengyi Luo contributed to the
Kinpoly baseline and to the coordinate transform for Aria

head poses. ShanSu led the ego-pose hands baseline develop-
ment, and contributed to automatic 3D hand pose generation,
task definition, and annotation development; she also evalu-
ated the baseline using METRO. Suyog Jain developed the
annotation pipeline to scale the annotation collection,worked
on training the annotators andmanaged the overall annotation
process. Miguel Martin contributed to the automatic ground
truth generation pipeline and provided high-level coordina-
tion of the body and hands automatic ground truth generation.
JinxuZhang developed automatic ground truth generation for
3D hand pose; he also trained and evaluated baseline model
POTTER. Yiming Huang trained and evaluated the baseline
model THOR-net. Zhifan Zhu developed the METRO hand
pose baseline method. Jing Huang led the automatic ground
truth generation effort, refined body pose annotation guide-
lines, coordinated ego-pose body baseline development, and
ran the EgoEgo body pose baseline.
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