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Highlights

What are the main findings?

• The τ-z model accurately estimates soil temperature sensing depth (zTeff), with best
performance around 0.2 τ when monotonic conditions are met.

• Combining SMAP’s soil moisture, the τ-z model achieves high accuracy in estimating
zTeff, with RMSD (0.05 m) and unRMSD (0.03 m), and correlations (0.67) between
estimated and observed values.

What is the implication of the main findings?

• The τ-z model proves robust across diverse ecosystems, thereby enhancing confi-
dence in the retrieval of soil moisture and temperature from passive microwave
remote sensing.

• These results provide a solid foundation for advancing applications in agriculture,
hydrology, and climate change monitoring.

Abstract

Passive microwave remote sensing of soil moisture is crucial for monitoring the Earth’s
water cycle and surface dynamics. The penetration depth during this process is significant,
as it influences the accuracy of retrieved soil moisture data. Within L-band remote sensing,
tools such as the τ-z model interpret microwave emissions to estimate soil moisture, taking
into account the complex interactions between soil and radiation. However, in validating
these models against high-temporal-resolution, ground-based measurements, especially
from extensive networks like the Terrestrial National Ecological Observatory Network
(NEON), further research and validation efforts are needed. This study comprehensively
validates the τ-z model’s ability to estimate the soil temperature sensing depth (zTeff) using
data from the NEON and Soil Moisture Active Passive (SMAP) satellite missions. A
harmonization process was conducted to align the spatial and temporal scales of the two
datasets, enabling rigorous validation. We compared soil optical depth (τ)—a parameter
capable of theoretically unifying sensing depth representations across wet soil (~0.05 m)
to extreme dry/frozen conditions (e.g., up to ~1500 m in ice-equivalent scenarios)—and
geometric depth (z) frameworks against outputs from the τ-z model and NEON’s in situ
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profiles. The results show that: (1) for the profiles that satisfy the monotonic assumption
by the τ-z model, zTeff fits the prediction well at about 0.2 τ for the average; (2) Combining
SMAP’s soil moisture, the τ-z model achieves high accuracy in estimating zTeff, with RMSD
(0.05 m) and unRMSD (0.03 m), and correlations (0.67) between estimated and observed
values. The findings are expected to advance remote sensing techniques in various fields,
including agriculture, hydrology, and climate change research.

Keywords: L-band; soil temperature sensing depth; passive microwave; soil optical depth

1. Introduction
In recent years, the L-band passive microwave remote sensing technology has gar-

nered considerable scientific attention due to its unparalleled capability in monitoring and
retrieving a diverse array of geophysical parameters, notably soil moisture (θ) [1], snow
cover [2], and vegetation attributes [3]. This technology leverages the exquisite sensitivity of
L-band microwaves to dielectric properties, thereby facilitating the detection of subsurface
features that remain elusive to conventional remote sensing methods [4,5].

One of the primary applications of L-band passive microwave remote sensing tech-
nology is retrieving θ, as θ profoundly modulates the microwave emission signatures of
the Earth’s surface, rendering it an optimal target for L-band sensors. Recent advances in
L-band microwave soil moisture retrieval algorithms have aimed to improve the physical
consistency and spatial representativeness of the retrieved results. The advent of satel-
lites like SMOS (Soil Moisture and Ocean Salinity) [6] and Soil Moisture Active Passive
(SMAP) [7] has revolutionized large-scale θ monitoring. These satellites enable the gen-
eration of globally consistent θ products, essential for refining water and energy balance
models across diverse geographical regions. Recent developments include incorporating
auxiliary factors such as vegetation cover and dynamic extinction coefficients into improved
models [8,9], utilizing multi-angular observations [10], synergizing with C- and X-band
sensors [11], and coupling physical models with machine learning approaches [12]. These
advances have significantly enhanced the accuracy of θ retrievals.

However, they still face challenges in representing the vertical heterogeneity of soil
layers and the dynamic sensing depth under varying moisture and vegetation conditions.
These challenges underscore the need for physically grounded frameworks to address
vertical heterogeneity issues.

Regarding vertical heterogeneity issues, studies have shown that L-band microwaves
can penetrate vegetation canopies and the superficial soil layers, enabling the extraction of
subsurface soil moisture information. This penetration prowess, coupled with its ability to
bypass clouds, underscores the invaluable role of L-band passive microwave remote sensing
in monitoring subsurface conditions in environments with complex surface characteristics.

Moreover, the ambiguity associated with the precise penetration depth poses
formidable challenges to utilizing L-band satellite products [13,14]. This uncertainty ham-
pers the accurate interpretation of crucial geophysical parameters, such as θ, vegetation
biomass, and snow depth, because the exact penetration depth of microwaves at L-band
remains unclear. For instance, the sensing depth issue for the L band ranges from wet soil
(~0.05 m) [15] to ice sheets (~1500 m) [16]. As a result, the precision and reliability of the
derived products are limited.

Several alternative sensing depth models have been proposed for L-band passive
microwave soil moisture remote sensing, including empirical depth weighting models [17],
theoretical penetration depth models [18], hybrid model-based approaches [19], and ma-
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chine learning-based methods [20]. Empirical models rely on site-specific calibration and
assume homogeneous soil conditions, limiting their generalizability. Theoretical models,
although grounded in electromagnetic theory, often oversimplify soil layering and neglect
the dynamic effects of vegetation. Hybrid approaches introduce complexity without sig-
nificant precision gains, and machine learning methods usually lack interpretability and
physical grounding, leading to overfitting in specific environments.

In contrast, the τ-z model [21] offers a more physically robust solution by demonstrat-
ing the superiority of τ over z and validating it through a forward simulation [15]. The
τ-z model incorporates soil thermal properties, depth-dependent attenuation, and explicit
vegetation correction through the τ parameter, making it better suited for application across
diverse environments. Our objective is to comprehensively validate the τ-z model for esti-
mating soil temperature sensing depth (zTeff) across diverse ecosystems by harmonizing
ground-based data with SMAP satellite observations, thereby addressing a critical gap
in multi-scale model evaluation under varying environmental conditions. Importantly,
this validation will enhance the accuracy of subsurface soil temperature monitoring, a key
input for climate models, agricultural water management, and cryospheric studies. By
bridging satellite and ground observations, our work advances the operational applicability
of L-band remote sensing in global ecological and hydrological research.

2. Materials
SMAP satellite, launched in 2015, provides invaluable brightness temperature (TB) data

that offer insight into soil moisture conditions, land surface freeze–thaw states, and other
geophysical parameters. These calibrated measurements, captured across L-band channels
and with high temporal frequency, are fundamental for deriving θ, monitoring freeze–thaw
dynamics, estimating land surface temperatures, and informing climate models. SMAP’s
data can be accessed at https://smap.jpl.nasa.gov/data/ (accessed on 1 October 2024).

The Terrestrial National Ecological Observatory Network (NEON) dataset is a rich
collection of ecological data spanning the continental United States, including soil tem-
perature (T), moisture (θ), and texture [22]. NEON’s dataset captures T variations at
multiple depths, which is essential for understanding ecosystem functions influenced by
thermal dynamics. θ, measured through advanced sensors, provides insights into the
water content crucial for plant growth, soil stability, and hydrological processes. Soil
texture data, determined through laboratory analysis of soil samples, reveal the pro-
portions of sand, silt, and clay particles that influence soil structure, water retention,
and nutrient availability. These datasets can be accessed through NEON’s online portal
(https://www.neonscience.org/data-collection/soils, provided by Edward Ayres via email
on 1 October 2024).

The NEON dataset has been validated against SMAP observations, demonstrating its
robust potential for soil moisture retrieval across diverse terrestrial ecosystems, including
but not limited to forested regions [23]. The alignment of NEON point measurements
with SMAP’s 36 km grid cells follows the methodology outlined in [24], utilizing their
pre-processed data. For spatial scaling, NEON site measurements (0–5 cm depth) are aggre-
gated to a 1 km × 1 km grid within a 3 km × 3 km buffer zone around each SMAP pixel
center, taking into account geolocation uncertainties. Temporally, NEON data collected at
15 min intervals are matched to SMAP’s 3-day revisit cycle by selecting the median value
within ±12 h of SMAP overpass times. The study quantifies uncertainties through RMSD
and correlation analysis, achieving RMSD < 0.05 m3/m3 and correlation coefficients > 0.6
in forested areas, with representativeness validated via land cover, soil texture, and topog-
raphy comparisons [23,25].

https://smap.jpl.nasa.gov/data/
https://www.neonscience.org/data-collection/soils


Remote Sens. 2025, 17, 3845 4 of 17

In our study, both SMAP and NEON data are identical to those used in [25], allowing
for the tracking of data quality control procedures. θ and T values from all layers at
47 sites, spanning from July 2019 to June 2022, are used as ground truth, covering a period
of over 36 months. In particular, the site-averaged θ measurements over the 0–10 cm
depth interval align with the volume-averaged soil moisture representation used in SMAP
calibration/validation protocols [18,19], ensuring consistency with the satellite product’s
effective sensing depth. Some sites were excluded from the analysis due to the limited
availability of high-quality data. These issues included the ocean’s impact on SMAP
measurements (NEON sites GUAN and LAJA in Puerto Rico), insufficient coincidental
SMAP and NEON data (BARR, BONA, and HEAL in Alaska), unavailability of NEON soil
moisture data (PUUM), and frost heaving, which caused in situ sensor depths to change
throughout the time series (TOOL, HEAL, BARR, and BONA in Alaska). As a result, 40 of
the 47 NEON terrestrial sites were retained for further analysis [25] to test the τ-z model
in various landscapes, including high-biomass landscapes, which are usually excluded in
SMAP (Figure 1).

Figure 1. The locations and elevation of the 40 sites collected by NEON in this study. The color bar
shows the elevation map.

The upper portion of Figure 2 illustrates T ranges across all soil layers at each NEON
site, spanning depths from 0.02 m to 2 m (or to a restricting geological feature if shallower),
with up to 9 sensor depths per site. The lower portion compares NEON’s site-averaged
θ observations (1–11 cm; red) against SMAP’s gridded retrievals (blue). It is essential to
note that this comparison represents a sparse network analysis, as NEON sites are spatially
discrete. They may not fully capture regional heterogeneity, whereas SMAP provides
spatially continuous grid-scale data (36 km resolution).
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Figure 2. Violin plots comparing soil temperature and moisture distributions from NEON ground-
based profiles (green and red) and SMAP satellite observations (blue). Each plot displays the kernel
density-smoothed distribution (represented by the violin shape) for both datasets.

While NEON’s in situ measurements provide high-precision, localized insights into θ

dynamics within specific ecosystems, upscaling these point-based observations to SMAP’s
grid scale introduces uncertainties. These include: (1) spatial representativeness gaps
between NEON’s localized footprints and SMAP’s pixel-averaged values, and (2) potential
mismatches in effective sensing depth (NEON: 1–11 cm vs. SMAP: ~0–10 cm volume-
averaged). Despite these challenges, the comparison highlights both the complementary
value of ground validation and the need for careful error quantification when integrating
sparse network data with satellite products.

In contrast, SMAP’s θ retrieval data provides a global perspective with a lower spatial
resolution. While valuable for studying large-scale phenomena, satellite-based estimations
are susceptible to atmospheric interference, surface roughness, and vegetation cover, lead-
ing to inherent uncertainties. These uncertainties are evident in the smoother trends of the
blue line compared to NEON’s more erratic red line. The comparison of the two datasets
highlights the complementary nature of NEON’s precise point-based measurements and
SMAP’s broader global coverage. NEON’s data offers insights into local-to-regional soil
moisture dynamics, while SMAP’s retrievals enable investigations into global-scale pro-
cesses. The differences between the two datasets highlight the importance of integrating
multiple data sources to gain a comprehensive understanding of soil moisture dynamics
across various spatial and temporal scales (Figure 2).
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3. Methods
Section 3.1 introduces the radiation transfer model, which serves as the foundational

framework for simulating how radiation interacts with and propagates through the studied
system (e.g., soil or vegetation canopies). To quantify its thermal behavior, Teff, which
represents the temperature that best characterizes the system’s radiative energy output,
accounts for both surface and subsurface heat exchanges.

For analyzing vertical variations, the τ-z model is then applied to describe how key
variables (such as T or θ) change with soil depth in Section 3.2. This model incorporates op-
tical depth (τ) to link measurements at different depths (z), enabling spatial characterization
of thermal gradients.

Lastly, to ensure rigorous data analysis, Section 3.3 employs advanced mathematical
tools, including statistical indices, which help quantify uncertainties and identify dominant
patterns in the datasets.

3.1. Soil Effective Temperature (Teff)

Without considering the impact of soil roughness and vegetation, the primary control
function is described by the microwave transfer function as,

TB = εLTe f f (1)

where TB and Teff are mentioned, εL is the emissivity of the soil bulk determined mainly by
θ. Teff effectively reflects the effects of θ and T profiles due to its deeper penetration depth
at the L-band. In 1978, Wilheit expressed Teff [26] as

Te f f =
∫ ∞

0
T(z)α(z)exp

[
−
∫ z

0
α
(
z′
)
dz′
]

dz (2)

where z is the depth from the surface to the soil layer concerned, i.e., the geometric depth.
T(z) is the physical temperature at depth z, and α(z) is an attenuation coefficient determined
by dielectric constant ε and wavelength λ. ε′ and ε′′ are the real/imaginary part of ε profiles
determined primarily by θ. The detailed form of α(z) is

α(z) =
4π

λ
ε′′ (z)/2

[
ε′(z)

] 1
2 (3)

With Lv’s scheme [21,27], soil optical depth (τ) is derived in Equation (3) as

τz =
∫ z

0
α
(
z′
)
dz′ (4)

So, Teff is rewritten as

Te f f =
∫ +∞

0
T(τ)e−τdτ (5)

Compared to Equation (2), Equation (5) takes the integral of τ instead of soil depth z.
Subsequently, τ is further replaced with t = 1 − e−τ , and Equation (5) evolves to

Te f f =
∫ 1

0
T(t)dt (6)

It is hard to retrieve T from Equation (6) because the equation is not closed, i.e., there
are two inputs at least, θ and T on the right side, and only one output (TB) on the left.
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3.2. The τ-z Model

Within a comparable τ framework, the τ-z model employs τ, rather than geometric
depth (z), to delineate the sensing depth. The factors influencing the microwave-based
T-z profile within the soil encompass the soil’s physicochemical characteristics, as well as
the frequency and energy of the microwave band. Specifically, physical attributes such as
soil density, moisture content, particle size distribution, and particle arrangement have a
considerable influence on zTeff.

The τ-z model was proposed in 2019 [21] to quantify the relationship between z and τ,
where τ increases with soil depth [17,24]. As a τ value corresponds to only one soil depth
for a certain θ and T combination, we can use τ to replace physical soil depth.T(τ) =

∫ τ
0 (Ts + ae−ττ) dτ

T(τ) =
∫ τd

0 (Ts + ae−ττ) dτ
(7)

where a is the T gradient in K/τ, Ts is the surface temperature, Td is the soil temperature,
which can be considered constant at an annual scale, and τd is the τ corresponding to
Td [21]. Then, the τ-z model defines zTeff (i.e., τTeff in terms of τ), which equals Teff. Teff is
the soil temperature at zTeff. Furthermore, since the soil depth is between [0,+∞) and τ, we
can define t = 1 − e−τ ∈ [0,1).

τTe f f = −In

(
1 − t| Te f f

Td−Ts =1−(1−t)b ·(−log(1−t)+1)

)
(8)

By knowing τTeff, zTeff is then expressed as

zTe f f = λτTe f f
[
ε′(x)

] 1
2 /2πε′′ (x) (9)

Since the θ/T profile is not uniform even for a thin layer, Equation (9) works only with

a constant θ/T within the depth interval [0, zTeff]. Additionally, we use Teff_nor =
Te f f −Ts
Td−Ts

for
explanation convenience.

3.3. The Statistics

The validation process is summarized as follows: Starting from a temperature profile
(T profile), Teff is derived using Equation (2). Subsequently, by setting Teff equal to the
temperature at the effective sensing depth (T|z = zTeff), zTeff is determined. This process
allows for the validation of the estimated zTeff obtained from Equations (7)–(9).

To assess the τ-z model’s performance in estimating zTeff, we compared the estimates
from the τ-z model with those from NEON’s profiles. We calculated several widely used
metrics for analysis and interpretation, including RMSD, unbiased RMSD (unRMSD), mean
difference (MD), and Pearson correlation (r). They are defined as

RMSD =

√√√√ 1
N

N

∑
i=1

(xi − yi)
2 (10)

where x and y represent the soil temperature sensing depth as estimated by the τ-z model
and NEON measurement samples for a given site, i is the individual sample ID, and N is
the number of coincidental samples for that site; unRMSD is defined as

unRMSD =

√√√√ 1
N

N

∑
i=1

[(xi − x)− (yi − y)]2 (11)
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where x and y represent the mean of the soil temperature sensing depth as estimated by
the τ-z model and NEON measurements for the site; MD is defined as

MD =
1
N

N

∑
i=1

(xi − yi) (12)

and r is defined as

r =
∑N

i=1 (xi − x)(yi − y)√
∑N

i=1(xi − x)2∑N
i=1(yi − y)2

(13)

These metrics address key uncertainty dimensions—error size, relative performance,
and pattern consistency—providing a holistic view of model reliability across regions. This
approach aligns with our focus on the broad-scale behavior of models. All this information
can be found at [24,28,29].

4. Results
The assumptions of the τ-z model for determining soil temperature sensing depth

include stratified soil with varying but internally uniform thermophysical properties, the
potential for linear or nonlinear temperature variation with depth, the absence of significant
internal heat sources or sinks, and a specific mathematical relationship linking zTeff to Teff.

4.1. The τ-z and Its Assumption

Figure 3 shows the τ-z model in the τ frame and its transformation to the z frame for
each NEON site, along with their annual mean soil moisture from SMAP. zTeff ranges from
0 to 1.4 times the penetration depth (τ = 1) if the Teff_nor changes from 1 to 0. While the
τ-z model shows a unique τ-Teff_nor relationship in τ, z depends on θ. With wet soil, zTeff

would be shallower. For instance, when Teff_nor = 0.5, JORN (mean annual temperature
(MAT): 15.7 ◦C, mean annual precipitation (MAP): 271 mm) would be zTeff = 0.1 m and
zTeff = 0.025 m for UNDE (MAT: 4.3 ◦C, MAP: 802 mm). The zTeff shown in Figure 3 is based
on an annual average θ from SMAP. Regarding a specified moment, zTeff should fit the
average θ and may change according to the θ profile.

Figure 4 illustrates a quantitative analysis of categorical distributions across distinct
climatic or experimental conditions, represented by four different color schemes. It should
be noted that, on both short-term (diurnal) and long-term (seasonal) scales, soil temperature
profiles generally exhibit distinct monotonic patterns under stable conditions: diurnally,
surface temperatures fluctuate sharply due to solar radiation, while deeper layers (>10 cm)
show smoother, near-monotonic decreases during the day and increases at night; seasonally,
temperate regions typically display piecewise monotonicity, such as decreasing with depth
in summer and increasing in winter.

However, these monotonic trends may break down in the presence of phase changes
(e.g., freezing/thawing), abrupt moisture variations, or anthropogenic heat inputs, limiting
the approach’s applicability under such conditions [30]. The blue hue signifies the ‘frozen’
state, which means the soil temperature profile contains at least one layer at ≤0 ◦C. The or-
ange coloration represents the ‘unfrozen & nonmonotonic (i.e., the soil temperature profile is
not monotonic in the vertical direction)’ category. The yellow tone indicates the ‘monotonic
within three times the penetration depth (i.e., τ = 3 and eτ |τ=−3 < 0.05, ‘monotonic ∈ [0, 3τ)’
in short heretheafter) category, where the orange satisfies the assumption roughly in τ.
The profiles that strictly fit the assumption in the τ-z model are in purple, categorized as
‘monotonic’. The monotonic character is affected by soil thermal conductivity, moisture,
type, color, structure, etc [31]. Generally, the τ-z model will work best for the monotonic
category, followed sequentially by the orange, red, and blue categories. The bars, vertically
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aligned within their respective color zones, illustrate the proportional representation of
each category within the corresponding condition. As expected, sites at higher latitudes
and elevations tended to have more frozen conditions, and unfrozen and nonmonotonic
conditions were rare at all sites.

Figure 3. The τ-z model and the soil temperature sensing depth (zTeff) inferred from SMAP soil
moisture data and soil texture data from each NEON site.

Figure 4. The categories analyzed include the fraction of frozen soil, unfrozen and nonmonotonic soil
profiles, monotonic ∈ [0, 3τ), and monotonic soil behavior.
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Similarly, a more limited array of categories is represented in the ‘monotonic ∈ [0, 3τ)’
(orange) category, with notable variations in their proportional contributions. Lastly, the
‘monotonic’ (purple) category displays a narrower range of categories, each with a distinct
proportionality, as indicated by the heights of their bars.

4.2. The Overall Performance

Upon categorizing the dataset into four distinct groups, as depicted in Figure 4,
Figure 5 subsequently illustrates Teff_nor, alongside its intricate correlation with τ. The τ-z
prediction model manifests as a standardized curve, invariant across all low-frequency
microwave bands, encompassing various profile scenarios. Consequently, as a benchmark
for subsequent evaluations, this τ-z curve remains constant across all subplots. We calculate
τ based on the soil moisture and temperature profiles using Equations (3) and (4). Given
that NEON sites encompass a maximum of nine layers for soil temperature and eight layers
for soil moisture, we employ a rigorous linear interpolation methodology, incorporating
exploration both towards the surface and to a depth of 2 m to derive a refined soil profile
with enhanced precision. The real and imaginary parts of the dielectric constant can be
acquired with various schemes, such as Mironov [32], which is a particular fit for the
L-bands. While Mironov’s model (2009) offers superior accuracy for L-band frozen soils,
Dobson’s model (1985) [33] was selected for its broader frequency applicability (0.3–3 GHz),
inclusivity of soil textures, and computational efficiency, which are critical for large-scale
validation across diverse ecosystems.

 

Figure 5. The relationship between the Teff_nor and τ was evaluated against the τ-z model across
40 sites within the National Ecological Observatory Network (NEON). The black line represents the
τ-z model predictions, while the individual data points, colored to differentiate between various sites,
serve to illustrate the model’s performance against the empirical data.
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In the category of frozen soil, although the τ-z model is theoretically applicable
to frozen conditions provided soil temperature exhibits monotonic behavior, accurately
quantifying τ presents a formidable challenge due to the irregular scatter distribution.
This issue is further exacerbated in the ‘unfrozen & nonmonotonic’ category, where the
nonmonotonicity of the soil profile frequently results in Teff_nor falling outside the valid
range [0, 1], rendering a significant portion of outlier points incompatible with the τ-z model.
For the ‘monotonic ∈ [0, 3τ)’ category, the τ-z model exhibits good adherence with most
scatter points, albeit with a notable presence of outliers. Although these outliers constitute
a minor fraction, meticulous prefatory validation of the model’s applicability remains
essential. The ‘monotonic’ category serves as a paradigm wherein soil profiles strictly
adhere to the prerequisites of the τ-z model. An observation of this subset reveals that most
points align closely with the τ-z curve within the range of [0.2, 0.8]. Notably, two exceptions
arise: firstly, where the slope is steeper than the τ-z curve in the interval [0.2, 0.3], indicating
a more rapid increase in τ than predicted; secondly, a distinct cluster of SOAP/CPER is
marked in Italics because too few inputs are available. For the remaining 36 sites (Figure 5),
the ‘monotonic’ case exhibits superior performance by markedly diminishing (RMSD) from
0.198/0.194 times τ to 0.110 (Table 1). Similarly, unRMSD is also reduced from 0.200/0.192
to 0.107.

Table 1. The statistics for Figure 5. The ‘unfrozen & nonmonotonic’ is marked in Italics because too
few inputs are available.

Frozen Unfrozen & Nonmonotonic Monotonic ∈ [0, 3τ) Monotonic

RMSD (τ) 0.294 0.027 0.215 0.149
unRMSD (τ) 0.095 0.018 0.218 0.168

MD (τ) Dobson −0.094 −0.012 −0.040 −0.064
PearsonCC 0.205 −0.022 0.487 0.695

Regarding Mean Difference (MD), the ‘frozen’ case demonstrates a bias of −0.132,
whereas the other three cases present a comparable bias of approximately −0.04. Notably, r
undergoes a substantial enhancement, escalating from approximately 0.496/0.444/0.454 for
the remaining scenarios to 0.668 for the ‘monotonic’ case, indicating a stronger correlation
between the observed and predicted values. Only OSBS and TEAK show negative r values,
which is expected because the τ-z model does not fit the ‘unfrozen & nonmonotonic’.

4.3. The Performance at Individual Sites

The NEON infrastructure encompasses a range of land surface types, including grass-
lands, forests, and shrublands/scrubs. Utilizing SMAP TB for these sites underscores its
potential in retrieving θ. In this context, by substituting θ with SMAP-derived θ retrievals,
we can derive zTeff estimates employing the τ-z model globally, and the estimation accuracy
depends on the SMAP retrievals. In Figure 6, the zTeff/τTeff estimation is made directly
through the τ-z model, and the validation depth is inferred from the soil profiles acquired
by the NEON network. Based on the SMAP’s θ product, a comprehensive analysis of the
scatter plot comparisons in Figure 7 reveals a diverse zTeff across multiple ecological sites.
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Figure 6. The soil temperature sensing depth comparison inferred from Equation (9) using SMAP
data, compared to the one from the NEON profile. The dotted line is a 1:1 ratio reference.
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Figure 7. The compilation of the Teff_nor and τ relation test against the τ-z model at 40 sites under
four soil conditions.

Figure 6 presents multiple scatter plots, each uniquely representing a site (e.g., BLAN,
JERC, STEI) and visually distinguished by τTeff in τ-z estimation. Each plot compares
T against sensing depth inferred from the NEON profiles, elucidating the comparison
between these variables. The densely distributed data points within each plot represent
numerous measurements taken across various depths, illustrating a range of soil temper-
atures at different depths. Some sites exhibit tighter clusters of data points, reflecting a
consistent relationship between soil temperature and depth (e.g., ORNL, TALL).

In contrast, others display more dispersed data points, indicating more significant
variability in T profiles (e.g., YELL, MOAB). Across all sites, the zTeff varies significantly,
with the lowest temperatures recorded at greater depths and the highest closer to the
surface. θ derived from SMAP exhibits discrepancies with ground truth data for select sites,
notably STEI, KONA, and NIWO, as evidenced in Figure 2 (bottom). For the remaining
sites, the RMSD and unRMSD are observed to be less than 0.1 m, respectively, at locations
such as JERC, TREE, MLBS, ORNL, WREF, and TEAK. The corresponding MD is also
less than 0.05 m at most sites. Regarding r, over half of the sites exhibit negative values,
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indicating the need for meticulous scrutiny of the SMAP soil moisture estimates through
rigorous validation procedures. This underscores the importance of cautiously applying
SMAP soil moisture data in subsequent analyses.

Collectively, these scatter plots provide a comprehensive overview of zTeff variations
with the estimation depth from SMAP, highlighting the complexity and uniqueness of T
profiles in diverse environments. This information is vital for understanding the impact
of T on ecological processes. It could inform the development of predictive models for T
under varying climatic and environmental conditions. T has no significant contribution to
the other layers in the emission [15]. The soil moisture or temperature at the penetration
depth cannot represent the soil moisture or soil temperature used in Equation (9).

Furthermore, spatial and temporal variation complicates the TB signal at the L-band.
θ varies spatially and temporally due to rainfall, evaporation, and vegetation cover. This
heterogeneity poses challenges for satellite-based soil moisture retrieval algorithms, which
often assume homogeneity over the spatial resolution of the sensor. Seen from the NEON
network, each site consists of several sensors, and the data acquired from these sensors
show different vertical structures. This increases the uncertainty in applying the τ-z
model, although the accuracy of RMSD, unRMSD, and MD can reach 0.2 (τ) for most cases
(Figure 5). In ‘monotonic’ conditions, the accuracy can even improve to 0.1 (τ). This means
further analysis of zTeff or zθ is needed.

The third factor pertains to the contradiction between the geometric framework em-
ployed in the model-derived forward simulation for soil moisture retrieval and the τ

framework. This discrepancy hinders a seamless transition from one framework to another,
posing challenges in accurately describing and interpreting soil moisture retrieval processes.
The soil moisture retrieval algorithms from satellite observations rely on various assump-
tions and models that may not fully capture the complexity of soil–microwave interactions.
For example, the τ-z model, which explains the relationship between τ and Teff, does not
accurately estimate the depths of soil moisture sensing. While the τ-z model can help
investigate soil emission behavior in vertical structures, it does not always translate directly
to precise soil moisture measurements.

In summary, the inconsistencies in θ estimates from satellite missions arise from sev-
eral factors: uncertainties in microwave penetration depth, variations in space and time,
algorithm limitations, instrumental constraints, and uncertainties in ground truth. Address-
ing these challenges requires a multidisciplinary approach that integrates advancements in
sensor technology, algorithm development, and ground-based validation efforts.

5. Discussion
Although Figures 6 and 7 show that the τ-z model exhibits robustness in the test data,

several limitations constrain the model’s universal applicability.
First, its reliance on assumptions about monotonic temperature–depth relationships

reduces accuracy in profiles with abrupt gradients, such as those influenced by rapid
freezing/thawing cycles or layered soil textures. Second, spatial and temporal mismatches
between coarse-resolution satellite data and point-scale ground observations introduce
uncertainty, especially in heterogeneous landscapes where soil moisture dynamics vary
sharply over short distances. Third, uncertainties in L-band passive microwave temperature
sensing also arise from vegetation, surface roughness, snow cover, and limitations in depth
validation. For instance, the vegetation canopy attenuates thermal emissions, with the
L-band penetration depth decreasing by ~15% under dense forest cover, as demonstrated
in boreal forest experiments [34]. Surface roughness induces emissivity variability, causing
up to ±2 K errors in derived soil temperatures at 36 km resolution (compared to NEON’s
0.2 km2 sites), particularly in heterogeneous terrain [23]. Snow cover complicates thermal
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profiling by altering dielectric properties; in forested regions, snow–canopy interactions
reduce temperature retrieval accuracy by ~22% [35]. These findings underscore the need
for enhanced vegetation correction, refined roughness parameterization, and multi-scale
validation to refine L-band temperature depth estimates.

A critical gap in L-band passive microwave remote sensing lies in the ambiguous
conceptualization of sensing depth, which has inadvertently constrained the operational
utility of SMAP and SMOS datasets. While prior studies frequently employ penetration
depth metrics, these definitions remain inconsistent across the literature, ranging from elec-
tromagnetic attenuation coefficients to empirical thresholds, without empirical validation
or standardized measurement protocols. This definitional ambiguity has led to a de facto
neglect of the issue: no major satellite mission has publicly endorsed specific penetration
depth formulations, and researchers often avoid explicit depth quantification in retrieval
algorithms. In contrast, our work focuses exclusively on the physically grounded soil
temperature effective sensing depth (zTeff), derived through harmonization of SMAP’s TB

observations with NEON’s high-resolution (0–0.3 m) ground thermal profiles. By explicitly
accounting for soil state transitions (e.g., thawing fronts)—which previous studies either
oversimplified or treated as edge cases—we achieve an RMSD of 0.05 m (unRMSD 0.1 m)
in zTeff estimation across diverse ecosystems. This represents a marked improvement over
models relying on vague penetration depth concepts, which typically exhibit errors greater
than 0.3 m in heterogeneous landscapes.

6. Conclusions
The τ-z model provides a rigorous mathematical framework for estimating zTeff, where

observed soil temperature (T) aligns with its effective counterpart (Teff). This study ad-
vances prior validations—such as those by [15,21]—by demonstrating the model’s robust-
ness across a broader spectrum of soil conditions (e.g., monotonic, frozen, and nonmono-
tonic profiles) and spatial scales, leveraging high-temporal-resolution data from NEON and
SMAP. These results highlight the model’s operational potential for global soil moisture val-
idation, particularly in regions with limited in situ measurements—a critical advancement
for enhancing the reliability of L-band remote sensing missions.

Our multi-scale validation approach yields three interconnected insights into the τ-z
model’s performance. First, the model demonstrates exceptional accuracy under monotonic
soil conditions, where temperature gradients align predictably with depth. In homogeneous
soil profiles, the model demonstrates robust performance, with both RMSD and unRMSD
stabilizing at 0.11 τ. Concurrently, the correlation coefficient (r) improves from 0.4 to 0.69,
indicating stronger agreement between modeled and observed data. Notably, the model’s
adaptability is most evident in heterogeneous conditions, such as frozen soils or transiently
thawed layers. Even under these complex scenarios, accuracy remains acceptable, with
RMSD values approximately 0.2 τ. This suggests the τ-z framework effectively captures
complex soil moisture dynamics, even when temperature–depth relationships deviate from
idealized assumptions.

By addressing limitations of prior works through multi-scale, categorical validation,
this study sets a new benchmark for evaluating soil moisture retrieval models. The findings
enhance confidence in the τ-z model’s applicability across agriculture, hydrology, and
climate science, offering a pathway toward more accurate Earth system monitoring using
multi-source remote sensing data. For instance, it shows that a TB trend in the Antarctic
continent observed by SMAP may not be due to a temperature increase in the ice sheet, but
rather to various zTeff values [36].
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