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ABSTRACT
Belowground eukaryotic diversity serves a vital role in soil ecosystem functioning, yet the composition, structure, and macroe-
cology of these communities are significantly under-characterized. The National Ecological Observatory Network (NEON) pro-
vides publicly available datasets from long-term surveillance of numerous taxa and ecosystem properties. However, this dataset 
is not routinely evaluated for its eukaryotic component, likely because analyzing metagenomes for eukaryotic sequences is ham-
pered by low relative sequence abundance, large genomes, poorer eukaryote representation in public reference databases, and is 
not yet mainstream. We mined the NEON soil metagenome datasets for 18S rRNA sequences using a custom-built pipeline and 
produced a preliminary assessment of biodiversity trends in North American soil eukaryotes. We extracted ~800 18S rRNA reads 
per sample (~22,000 reads per site) from 1455 samples from 495 plots across 45 NEON sites in 11 biomes, which corresponded to 
5183 genera in 35 phyla. To our knowledge, this represents the first large-scale soil eukaryote analysis of NEON data. We asked 
whether taxonomic richness paralleled patterns previously established ecological trends and found that eukaryotic richness was 
negatively correlated with pH, managed sites lowered eukaryotic richness by 47%, most biomes had a distinct eukaryotic commu-
nity, and fire decreased eukaryotic richness. These findings parallel generally accepted ecological trends and support the notion 
that NEON soil metagenome datasets can and should be used to explore spatiotemporal patterns in soil eukaryote diversity, its 
association with ecosystem functioning, and its response to environmental changes in North America.

1   |   Introduction

Belowground eukaryotic diversity is integral to ecosystem 
functioning worldwide (Delgado-Baquerizo et  al.  2020), 
yet the composition, structure, and macroecology of these 
communities are significantly under-characterised (Geisen 
et  al.  2018; Oliverio et  al.  2020). This knowledge gap per-
sists in part due to the high morphological and taxonomic 

diversity of soil eukaryotes (comprising soil animals, phago-
trophic and phototrophic protists, and fungi), the complexity 
of soil communities (Anthony et  al.  2023), the challenges of 
working with microscopic organisms embedded in a spatially 
complex and recalcitrant matrix (Flemming et al. 2023), and 
the complexity of eukaryotic genomes and life histories (del 
Campo et  al.  2014). Nevertheless, the significance of below-
ground fauna to the maintenance of Earth's biosphere cannot 
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be overstated: soils contain around one quarter of global an-
imal biodiversity (Decaëns et al. 2006), which consume half 
of global leaf litter production annually (Heděnec et al. 2022), 
accelerate litter decomposition rates by 37% globally (Garcia 
Palacios et  al.  2013), and significantly increase N and P 
availability to plants (Gebremikael et  al.  2016). Not surpris-
ingly, numerous studies report positive associations between 
soil faunal richness and ecosystem functioning (Delgado-
Baquerizo et al. 2020; Jing et al. 2015; Kou et al. 2021).

However, despite the growing availability of high-throughput 
datasets, the molecular ecology of soil eukaryotes is still un-
derexplored. The National Ecological Observatory Network 
(NEON) provides a well-organised hierarchy of multi-
dimensional datasets (e.g., soil and water-extracted metag-
enomes, above- and belowground abiotic variables such as, 
soil moisture, temperature, and solar irradiation, and abun-
dance data on meso- and macroscopic organisms, such as, 
beetles and birds), including soil shotgun metagenomes from 
across the continental United States plus Alaska, Hawaii, and 
Puerto Rico that spans nearly a decade of sampling. NEON 
datasets are routinely used to evaluate trends in soil prokary-
otes (Masuda et  al.  2024; Chuckran et  al.  2024), but to our 
knowledge, little to no work has been done on their eukaryotic 
component.

A central challenge in characterising soil fauna macroecology 
is the specialised taxonomic knowledge and intensive labor 
required for traditional morphological identification. High 
throughput amplicon and shotgun metagenomic sequencing 
provide an alternative to traditional morphological identifica-
tion for studies with large sample sizes and broad taxonomic 
groups of interest. The application of these techniques in soil 
microbiology, for example, has facilitated profiling of soil micro-
bial populations by circumventing limitations in extraction and 
culturing, and by streamlining access to the taxonomic exper-
tise required to accurately characterise such communities (Guo 
et al. 2016). Similarly, shotgun metagenomics targeting soil in-
vertebrate communities has been shown to accurately reflect 
taxonomy and reference genome properties (Schmidt et al. 2022). 
However, analysing eukaryotes with these techniques is more 
challenging and less developed than for prokaryotes (Lara 
et  al.  2022; Bazant et  al.  2023). Amplicon sequencing using 
universal primer pairs misses substantial micro-eukaryotic 
biodiversity (Geisen et  al.  2015), and shotgun metagenomes 
from complex environments are expensive to sequence deeply 
enough to recover sufficient eukaryote gene markers, which are 
often swamped by the high relative abundance of prokaryotic 
sequences (Guo et al. 2016). Though several tools have been de-
veloped for better recovery and identification of eukaryote se-
quences from shotgun metagenomes (e.g., Metaxa2, Eukdetect, 
Tiara, and Metaphlan6; Bengtsson-Palme et al. 2015; Lind and 
Pollard  2011; Karlicki et  al.  2022; Blanco-Míguez et  al.  2023), 
they rely on custom reference databases that are influenced by 
what is available in NCBI and SILVA, which often misrepresent 
the diversity of many eukaryotic lineages (Mugnai et al. 2023; 
Chorlton  2024). Curated databases focused on representing 
microeukaryotes more comprehensively do exist, such as the 
protist ribosomal database (PR2; Guillo et al. 2013), and thus a 
synthetic approach utilising diverse software and databases can 
help to overcome some of these challenges.

To better understand soil eukaryote diversity in North America 
and exploit a previously underused resource for exploring eu-
karyote diversity, we extracted, identified, and analyzed eukary-
otic SSU rDNA sequences from shotgun metagenome datasets 
collected by NEON (1455 samples collected from 495 plots from 
45 sites in 11 biomes throughout the US) using a custom pipeline 
capable of (1) handling data formats specific to NEON and (2) in-
corporating pre-existing software specializing in the processing 
and analysis of eukaryotic sequences from shotgun metagenom-
ics. Utilizing a eukaryote sensitive hmm profile and the curated 
protist ribosomal database (PR2), we extracted sequences align-
ing to the eukaryotic 18S rRNA gene and asked (1) whether there 
is sufficient eukaryotic sequence data in NEON shotgun metag-
enomes to conduct meaningful analyses; (2) if so, which are the 
most taxonomically rich eukaryotic phyla in US soils; and (3) as 
an initial validation of the dataset, whether the recovered pat-
terns match generally accepted ecological trends. Specifically, 
we explore changes in soil eukaryotic biodiversity following fire 
and compare biodiversity at paired low- and high-management 
intensity sites with the expectation that biodiversity would de-
crease following fire and be lower at more intensively managed 
sites. In addition, we explore biome-level differences in commu-
nity composition.

2   |   Methods

2.1   |   Soil Extraction, Library Preparation, 
Sequencing, and Data Management

Soil extraction, library preparation, sequencing, and raw se-
quence data management were all performed by NEON follow-
ing their standardized protocols (NEON  2022a). Soil samples 
are collected during the peak period of the growing season and 
initially collected annually at all sites but are currently collected 
annually at the 20 Core sites and every 5 years at the 27 Gradient 
sites (Figure 1). Samples are collected to a maximum depth of 
30 cm (or restrictive feature if shallower), split into organic and 
mineral soil layers if an organic layer is present, then stored at 
−60°C to −85°C until they can be processed (NEON 2024). 136 
site-years of data from 45 of the 47 NEON terrestrial sites 12′ 
were available at the time of downloading and ~25 site-years 
of new data are added annually (20 Core sites and ~5 Gradient 
sites). At each site, samples are collected from 10 plots distrib-
uted over 30 ± 20 km2 (median ± median absolute deviation) 
during each sampling event and the data used in this study 
come from 1455 samples collected from 495 plots across 45 sites. 
Plots span 11 biomes: evergreen forest, mixed forest, deciduous 
forest, woody wetland, shrub/scrub, dwarf scrub, grassland/her-
baceous, sedge/herbaceous, pasture/hay, cultivated crops, and 
emergent herbaceous wetlands (NEON uses the US National 
Land Cover Database to classify vegetation type; NEON 2022b).

Whole genomic DNA was extracted from 0.25 ± 0.03 g of each 
thawed soil sample with the Qiagen DNeasy 96 PowerSoil Pro 
Kit (cat #47017), according to the manufacturer's instructions. 
The concentrations of extracted DNA were assessed using 
a Promega Quantus Fluorometer with a QuantiFluor ONE 
dsDNA Kit (#E4870) according to the manufacturer's instruc-
tions (Manual: Quantus_FluorometerManual_TM396_rev 
01/2020). Shotgun metagenome libraries were made using the 

 17550998, 2026, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.70062, W

iley O
nline L

ibrary on [16/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3 of 14Molecular Ecology Resources, 2026

KAPA HyperPrep Kit from Kapa Biosystems, quantified using 
qPCR, normalized, then sequenced on an Illumina NextSeq 
550 (Manual: 15069765v01) with read lengths of 2 × 150 bp and 
an insert length of 300 bp. Resulting sequences were uploaded 
to MG-RAST for quality control, processing, and downstream 
analyses, then sent to NEON for storage in their public portal.

2.2   |   Bioinformatics

To accommodate the changing tool landscape, continual data 
updates from NEON, and a need for customizable tool usage, 
we built an in-house bioinformatics pipeline (Figure 2) that (1) 
handles data formats specific to NEON and (2) incorporates 
pre-existing software and databases specially made for the 
processing and analysis of eukaryotic sequences from shotgun 
metagenomics. The present iteration of this pipeline was de-
veloped for use within our lab group only and currently is not 
guaranteed to be cross-platform compatible (e.g., via dockerized 
containment), does not contain robust error-catching, check-
points, or thorough documentation, but future development 
could expand its functionality to include additional eukaryote-
specific tools. The latest version of the pipeline's source code can 
be found on GitHub (see data availability).

Our pipeline used an hmm profile to retrieve 18S sequences 
from shotgun metagenomes (Wheeler and Eddy  2013; 
Seemann 2018; see Figure 2), as done previously (Thompson 
et  al.  2020) and in a way functionally analogous to the 

approach in Metaxa2 (Bengtsson-Palme et  al.  2015). Briefly, 
the pipeline (A) sorts then merges raw forward and reverse 
fastq files using fastq-tools (Jones 2020) and FLASH (Magoč 
and Salzberg  2011), respectively (note that sorting was re-
quired as the sequence order in paired-end files downloaded 
from NEON's online portal did not match). Merging is per-
formed prior to trimming following Maran and Davis (2022), 
and the default parameters are used except for -M (max-
overlap), which was set to 150 bp. The pipeline next (A) eval-
uates the sequence quality of the merged raw data using 
FastQC, (2) trims low quality nucleotides or whole reads 
using Trimmomatic with the following settings: LEADING 
2, TRAILING 2, SLIDINGWINDOW 4:15 (default), MINLEN 
30 (Bolger et al. 2014), then (B) checks the post-trimming se-
quence quality using FastQC (Andrews  2010) and MultiQC 
(Ewels et al. 2016). After trimming, reads matching the target 
marker gene (the 18S rRNA for this paper) are (3) extracted 
using nhmmer (Wheeler and Eddy  2013) with the eukary-
ote hmm profile developed for the rRNA prediction software 
Barrnap and an e-value cutoff of 1e-5 (Seemann 2018), filtered 
by hit score, and (4) aligned against the PR2 database, version 
4.10.0 (Guillo et  al.  2013), using BLASTn v2.7.1+ (Camacho 
et al. 2009). Plastid sequences, sequences shorter than 125 bp 
or with query coverage less than 90%, and sequences with 
an identity score below 93% are then removed (note that se-
quences undergo two trimming steps is an artefact of the pipe-
line's design to ultimately accommodate multiple approaches 
and to reduce downstream computation time in downstream 
analyses). Though such a conservative identity threshold 

FIGURE 1    |    Locations of NEON core and gradient sites.

 17550998, 2026, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.70062, W

iley O
nline L

ibrary on [16/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 14 Molecular Ecology Resources, 2026

could potentially bias against underrepresented microeukary-
ote clades (e.g., non-metazoan and fungal kingdoms) and thus 
weaken the power of our study, our use of the PR2 database, 
which emphasizes the breadth of eukaryotic diversity, and the 
shortness of our reads (~138 bp) relative to the size of the full 
18S gene (~2.5 kb) largely mitigates this risk. Unlike targeted 
metagenomics where PCR amplifies a specific region of a 
marker gene that is consistent across all individuals sampled, 
shotgun metagenome libraries provide random coverage of 
whole sequenced genomes. Given sufficient sequencing depth, 
these randomized pieces can be assembled (i.e., lengthened), 
then aligned for greater identification accuracy and precision. 
However, eukaryote sequences are generally represented in 
low abundance in soil shotgun metagenomes due to low rela-
tive abundance in environmental samples and DNA extraction 
biases (Santos et al. 2015) and can be difficult to assemble un-
less especially deep sequencing is performed (Commichaux 
et al. 2002). As the NEON extraction and sequencing protocols 
follow the standard procedures for prokaryotes (e.g., 0.25 g 
soil extracted) and no specific strategies were employed to en-
sure the capturing of eukaryotes, eukaryote sequence density 
was not high enough to perform assembly. To get around the 
limitations of using relatively short sequences to identify taxa 
against the 18S rRNA gene (Wu et al. 2015), the pipeline (5) 
groups extracted eukaryote sequences by their taxonomic as-
signment (i.e., in this case, genus) according to the taxonomy 

of our reference database (PR2). These assignments were used 
(6) to build “taxon frequency” tables and (7) manually checked 
for erroneous or nonsensical taxa (e.g., marine taxa) prior to 
downstream analyses. The latest version of the pipeline can be 
found on GitHub (Andy-Thmpsn 2025—see data availability). 
To ground-truth the approach used in the pipeline, we ran our 
data through Eukdetect on default settings.

2.3   |   Site Properties

Soil properties for each metagenomics sample were from 
(NEON 2022a). NEON site management data (NEON 2022b) 
was used to determine the CLBJ soil plots that burned be-
tween the metagenomics soil sampling in April 2017 and 2018. 
Properties for paired sites used to assess the impact of lower 
and higher management intensities on soil biodiversity are 
shown in Table 1. The paired sites span different regions of the 
US and cover a wide range of climates (e.g., mean annual tem-
perature, MAT: 4°C–25°C; mean annual precipitation, MAP: 
344–2451 mm), but each set of paired sites has similar climates 
(median difference in MAT and MAP is 0.7°C and 15 mm, 
respectively) and are relatively nearby (median distance be-
tween sites: 27 km). Since management type and intensity can 
vary within the site sampling boundary, the impact of man-
agement intensity was assessed based on data from the NEON 

FIGURE 2    |    Pipeline flowchart with some sequence statistics. Pipeline step numbers in figure correspond to numbers in text. (A) phred scores 
for all bp positions across all raw sequences from all sites BEFORE trimming. Lower scores are represented by red lines in red areas of graph (i.e., < 
phred of 20). (B) phred scores for all bp positions across all raw sequences AFTER trimming. Note higher overall sequence quality. An estimated av-
erage 95.4% of sequences retained after trimming (data not shown). (C) Read abundance by domain by site (organised by number of sampling events 
per site, increasing to the right). Counts are of taxonomic ids made after HMMR extraction targeting 18S and do not represent relative abundances 
found in raw reads or nature. Bacterial and archaeal reads were likely retained due to shared conserved regions between 18S and 16S and are not 
likely artefacts. Curation for eukaryotic false positives were carried out in subsequent steps. Eukaryotic reads are broadly abundant (≥~1000) in 
every site.
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tower base plots only (i.e., excluding distributed plots) because 
the tower plots are typically managed similarly within a site, 
whereas the distributed plots may encompass different man-
agement types.

2.4   |   Data Analyses

Abundance counts for each site were normalised using a 
Hellinger transformation using the labdsv package for all 
analyses below. OTU tables were analysed in R version 4.41 
with the mctoolsr package (Leff 2022) and vegan version 2.3-5 
(Oksanen et  al.  2016). Rarefaction (Figure  S1) and species 

accumulation curves (Figure S2) were generated to visualise 
sequencing depth while vegan was used to visualise taxon 
abundance. NEON site characteristics relevant to the study, 
such as, elevation, latitude, soil temperature, and soil mois-
ture, were also included in the analysis (see Table 2 for all site 
characteristics). Mixed models using the lme4 and lmerTest 
packages were used to evaluate regressions between OTU 
richness and site characteristics, where the site characteristics 
were the fixed variable and site and plot were random effects. 
To evaluate trends in our data, our study used mixed model re-
gressions for several site characteristics to assess whether re-
lationships with OTU richness were present (seen in Table 2). 
Analyses focused on the major groups (fungi, metazoa, etc.) 

TABLE 1    |    Site details for paired lower and higher management intensity sites.

Site ID MATa (°C)
MAPb 
(mm)

Dominant 
NLCD 

vegetation 
classesc

Management 
intensity (type)

Distance 
between site 
pairs (km) Region

WREF 9.2 2225 EF Lower 30 Washington

ABBY 10 2451 EF|GH|SS Higher (forestry)

UNDE 4.3 802 DF|MF|WW Lower 81 Wisconsin/
MichiganSTEI 4.8 797 DF|MF|WW Higher (forestry)

KONZ 12.4 870 DF|GH Lower 4 Kansas

KONA 12.7 850 CC Higher (cropland)

CPER 8.6 344 GH Lower 150 Colorado

STER 9.7 433 CC Higher (cropland)

WOOD 4.9 494 EHW|GH Lower 11 North Dakota

DCFS 4.9 490 GH Higher (cattle grazing)

GUAN 23 840 EF Lower 23 Puerto Rico

LAJA 25 830 CC|GH|PH Higher (cattle grazing)
aMean annual temperature.
bMean annual precipitation.
cNational Land Cover Database Vegetation classes: CC, Cultivated Crops; DF, Deciduous Forest; EF, Evergreen Forest; EHW, Emergent Herbaceous Wetlands; GH, 
Grassland/Herbaceous; MF, Mixed Forest; PH, Pasture/Hay; SS, Shrub/Scrub; WW, Woody Wetlands.

TABLE 2    |    Correlation values of taxonomic group richness by characteristics of the soils where the sample was collected.

All Fungi Streptophyta Metazoa Nematoda Arthropoda Annelida

Elevation 0.05 0.05*** −0.02 −0.07 −0.01 −0.07 −0.11*

Latitude 0.30*** 0.30*** 0.25*** 0.12* 0.13* 0.08 0.09

Soil Temp −0.29*** −0.29*** −0.17 −0.12* −0.15** −0.09 −0.03

Soil Moisture 0.08* 0.07 −0.03 0.22*** 0.20*** 0.14** 0.24***

Soil pH (water) −0.31*** −0.31*** 0.01 −0.33*** −0.21*** −0.28*** −0.24***

% N 0.16*** 0.16** 0 0.34*** 0.19*** 0.29*** 0.26***

% Organic C 0.22*** 0.22*** 0 0.39*** 0.21*** 0.36*** 0.23***

Ammonium 0.01 0.01 −0.06 0.07 −0.05 0.1 0.04

Nitrate −0.12 −0.12* −0.01 −0.02 −0.1 0.02 −0.08

Note: Significance level is indicated by *< 0.05, **< 0.01, ***< 0.001. Significance is determined by mixed models including plot and site as random effects. Negative 
values are coloured red and positive values are coloured in blue. Colours are scaled by magnitude of correlation.
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as well as the three most abundant metazoan phyla to iden-
tify patterns that can be explored in further studies. To as-
sess whether known ecological trends could be supported by 
our data, we compared OTU richness in managed and un-
managed sites and OTU richness after a fire at one of our sites. 
Mixed model regressions with plot and site as random effects 
were used. All taxa and then subsets of phyla were used to 
visualise this (the subsets were based on higher abundance 
phyla to allow for meaningful analysis). NMDS plots were 
used to visualise community differences by site biome using 
Jaccard's index. Jaccard's index was used to account for pres-
ence and absence since differences in size (physical size of or-
ganism, number of gene copies, and potential genome length) 
of taxonomic groups may skew read counts in our study. We 
encourage future studies to explore statistical methods to in-
corporate relative taxon prevalence. PERMANOVA in vegan 
was used to test for statistical differences (including site and 
plot as factors), and pairwise comparisons (using FDR correc-
tions) were computed in the ecole package using the function: 
pairwise adonis.

3   |   Results

3.1   |   Eukaryote Sequences in NEON Shotgun 
Metagenome Datasets

We recovered ~1.36 × 106 reads aligning to eukaryotic 18S 
rRNA references across 45 sites, 6 years, and 1305 samples 
(mean ~22,000 reads per site-year combination, ~800 per 
sample) with an average read length of 138 bp, which is suf-
ficient to identify taxa to at least families in eukaryotes (Wu 
et al. 2015). Our filtering was stringent and excluded an aver-
age of 75% of extracted 18S sequences from the final analysis 
(Table S1). Our reads corresponded to 5183 genera belonging 
to 35 phyla, including all common soil animal, many protist, 
and prominent fungal phyla (e.g., Arthropoda, Nematoda, 
Rotifera, Tardigrada, Ciliophora, Cercozoa, Tubulinea, 
Evosea, Chlorophyta, Stramenopiles, Apicomplexa, 
Euglenozoa, and Ascomycota), a diversity of genera similar to 
that found in similar studies (Delgado-Baquerizo et al. 2018; 
Aslani et al. 2022; Vasar et al. 2022). Eukdetect recovered 35 
genera from a subset of 280 samples from 36 sites, with 34 
(97%) assigned to kingdom Fungi. In comparison, only ~34% 
of genera (1759 of 5183) recovered with this study's barrnap 
hmm profile approach were Fungi (Table S2).

3.2   |   Distribution of Major Taxonomic Groups in 
the NEON Data Set

Our pipeline recovered 35 kingdoms including Fungi, 
Rhizaria, Metazoa, and Streptophyta (Figure 3). Fungi were 
the most diverse with 1734 OTUs, then Metazoa with 1458 
OTUs, Streptophyta with 801 OTUs, and Cercozoa with 132 
OTUs (Figure 3a,b). Within Fungi, Ascomycota was the most 
diverse phylum with 906 OTUs, then Basidiomycota with 475 
OTUs, and Mucoromycota with 33 OTUs. Within Metazoa, 
Arthropoda was the most diverse phylum with 846 unique 
OTUs, then Nematoda with 242 OTUs, and Annelida with 
127 OTUs.

3.3   |   Trends in the Eukaryotic Community Data

Our study also measured correlations between sample taxo-
nomic richness (number of unique OTUs) and sample char-
acteristics (Table  2). Total eukaryote richness was positively 
correlated with latitude, soil moisture, percent nitrogen, and 
percent organic carbon, and negatively correlated with soil 
temperature and soil pH (Table  2). Across all higher tax-
onomic levels, these trends remained the same, except for 
Streptophyta, where only latitude was significantly and pos-
itively correlated. For the other lower taxonomic groups, the 
trends followed that of total eukaryote richness, except for 
latitude and soil temperature for Arthropoda and Annelida 
(Table  2). Contrary to patterns typically observed for abo-
veground biodiversity, where latitude (Hillebrand 2004) neg-
atively correlated with richness, the richness of several taxa 
(Fungi, Metazoa, Streptophyta, and Nematoda) was positively 
related to latitude, albeit weakly.

The richness of all taxa except fungi was positively correlated 
with soil moisture, while fungal richness was unrelated, per-
haps due to their greater drought tolerance than most other soil 
biota (Cosme 2023). Given the important role that organic mat-
ter plays at the base of the soil food web, it was unsurprising that 
the richness of all heterotrophic taxa was positively related to 
soil organic C content, while Streptophyta (autotrophs) richness 
was unrelated to organic C content or N content. Inorganic N 
(nitrate and ammonium) availability was generally unrelated to 
taxon richness.

3.4   |   Do the Patterns From This Data Match 
Established Ecological Trends?

To test our approach's ability to capture ecologically relevant 
soil biodiversity trends using NEON datasets, we compared 
our results to generally accepted ecological patterns. First, we 
compared the number of unique OTUs at sets of nearby paired 
sites with higher and lower management intensities (two pairs 
each for forestry, cattle grazing, and cropland management). 
Site pairs with low-high management were UNDE-STEI and 
WREF-ABBY (forestry), GUAN-LAJA and WOOD-DCFS (cat-
tle grazing), and KONZ-KONA and CPER-STER (cropland). 
We compared among all taxa, Annelida, Arthropoda, and 
Nematoda. For all taxa, we found that sites with lower man-
agement intensities had higher richness (# of unique OTUs) 
compared to higher management intensity sites (Figure  4a; 
p = 0.03), with typically 30 fewer genus-level OTUs (47% re-
duction in mean richness) at sites with higher management 
intensities. Unlike most pairs, there was little difference in the 
mean richness of the WOOD and DCFS sites, which might re-
sult from the relatively low grazing intensity at DCFS (https://​
www.​neons​cience.​org/​field​-​sites/​​dcfs). Mean richness was also 
similar at WREF and ABBY, which is more surprising given that 
ABBY was logged and re-planted with Douglas fir around 2005 
(although it did retain small patches of mature trees), whereas 
WREF is old-growth forest. Among the more intensively man-
aged sites, croplands and grazing lands had the lowest richness 
(45 and 36 OTUs, respectively), while sites used for forestry had 
the highest richness (83 OTUs), possibly reflecting differences 
in management intensity as well as geographic and ecoclimatic 
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FIGURE 3    |     Legend on next page.
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differences. For the phylum Annelida, we found the same trend 
as for all taxa with a lower mean richness in higher manage-
ment intensity sites (p = 0.007; Figure  4b). On average, there 
were 3.5 fewer OTUs (a 78% reduction in mean richness). There 
was also lower richness in cropland (0.5 OTUs) and grazing-
land sites (0.75 OTUs) compared to forestry sites (5 OTUs). For 
phyla Arthropoda (Figure  4c) and Nematoda (Figure  4d), we 
found no significant differences in management (p = 0.6 and 0.4, 
respectively).

The second test was whether fire had an impact on soil eukary-
otes. In one site—CLBJ from north-central Texas—there was a 

fire in several plots between 2017 and 2018. Richness was high-
est for all taxa before the fire (in 2017) then gradually decreased 
from 2018 to 2019 (Figure 5). Year was a significant parameter 
in our mixed model (p = 0.007) and richness was significantly 
lower in 2019 than in 2017 (p = 0.008). We also tested these 
patterns with only the phyla Ascomycota, Basidiomycota, and 
Nematoda and found the same pattern as for all taxa grouped, 
with significantly lower richness in 2019 than in 2017 for 
Ascomycota (p = 0.023) and year as significant in our mixed 
model (p = 0.01). There were similar trends for Basidiomycota 
and Nematoda richness, but they were not significant (p = 0.09 
and p = 0.16, respectively).

FIGURE 3    |    Boxplots of the relative abundances of all superkingdoms (a), metazoa (c), and fungi (e). Boxplots of log(unique OTUs) of all su-
perkingdoms (b), metazoa (d), and fungi (f). Boxplots represent the median with the colored line and whiskers with the 5th and 95th percentiles. All 
samples are shown.

FIGURE 4    |    Richness (# of OTUs) by paired management sites. Box plots represent the median with the black line and whiskers with the 5th and 
95th percentiles. High management sites are shown in grey and low management sites are shown in green. STEI, UNDE, ABBY, and WREF are for-
estry sites; LAJA, GUAN, DCFS, and WOOD are cattle grazing sites; and KONA, KONZ, STER, and CPER are cropland sites. Percent reduction of the 
mean from paired low management and high management sites is shown to the right of the high management sites. (a) Depicts all taxa, (b) depicts 
the phylum Annelida, (c) depicts the phylum Arthropoda, and (d) depicts the phylum Nematoda.
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The third pattern we assessed was whether distinct bi-
omes hosted unique eukaryotic communities. We used 
PERMANOVAs and NMDS using Jaccard's index (to ac-
count for taxon presence/absence only) to quantify and vi-
sualize these trends. For all taxa, most biomes possessed a 
unique eukaryote community (Figure  6a; PERMANOVA 
p-value = 0.001; Table S3). However, as betadisper was also sig-
nificant (p < 0.001), the diversity within sites and biomes could 
confound our results. We also measured bray-curtis within 
site (Figure S3) and standard deviation by site (Figure S4) and 
found high dissimilarity among sites and a wide standard devi-
ation. When we ran pairwise comparisons, we found that most 
biomes were significantly different from one another (p < 0.05), 
except for shrub scrub vs. emergent herbaceous wetlands, pas-
ture hay vs. emergent herbaceous wetlands, and deciduous 
forest vs. woody wetlands, which were not significantly dif-
ferent from one another when looking at multiple comparison 
adjusted (FDR) p-values (Table  S3). Exploring phylum-level 
differences revealed that Ascomyota (Figure 6b) had a signif-
icant PERMANOVA (p = 0.001), but also a significant betadis-
per (p < 0.001), which potentially confounds our conclusions 
as previously mentioned for the all taxa group. For pairwise 
comparisons, we found that all comparisons were significant 
except: nixed forest vs. woody wetlands, dwarf scrub vs. sedge 
herbaceous, emergent herbaceous wetlands vs. sedge herba-
ceous, and deciduous forest vs. woody wetlands (Table S4). For 
the phylum Arthropoda (Figure  6c), we found a significant 
PERMANOVA (p = 0.001), but also a significant betadisper 
(p < 0.001). For pairwise comparisons, there were 32 significant 
comparisons and 23 non-significant comparisons (see Table S5 

for further details). The phylum Nematoda (Figure 6d) likewise 
had a significant PERMANOVA (p = 0.001) but also a signif-
icant betadisper (p < 0.001). For pairwise comparisons, there 
were 19 significant comparisons and 36 non-significant com-
parisons (see Table S6 for more details).

Finally, we attempted to find trends between richness (num-
ber of unique OTUs) and site characteristics. Here, we explore 
one such trend, as an exhaustive exploration of these trends 
is beyond the scope of our study. Since nematodes have been 
significantly correlated with organic carbon (Martin and 
Sprunger 2021), we checked for that relationship in our data. 
We plotted Nematoda richness (# of OTUs) against organic 
carbon (Figure 7) and found a positive relationship that was 
significant when taking the square root of both organic car-
bon and richness and using site and plot as nested random 
effects (p = 0.003).

4   |   Discussion

4.1   |   Custom Pipeline Allows for Quick and Easy 
Processing of the Data

The NEON metagenomics data was produced for researchers 
to evaluate soil microbial communities across the US (Werbin 
et  al.  2021). We repurposed these data to evaluate eukaryotic 
soil communities and encourage others to further explore this 
valuable dataset for deeper insights into trends within soil eu-
karyotic communities and soil characteristics.

FIGURE 5    |    Richness (# of OTUs) of four CLBJ plots by year that were burned in between sampling between 2017 and 2018. Boxplots represent the 
median with the black line and whiskers with the 5th and 95th percentiles. All points are shown in colours. Lines represent plot changes over time. 
Analyses were conducted on all taxa and subsets of phyla: Ascomycota, Basidiomycota, and Nematoda.
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Our approach recovered greater eukaryotic diversity than did a 
recently developed tool, Eukdetect, likely due to differences in 
strategy and database. First, Eukdetect searches query metag-
enomes for all markers corresponding to eukaryotes in its ref-
erence dataset and only calls a taxon as present if more than 
a certain percentage of the query aligns. Though a robust ap-
proach, this can produce false negatives in high-complexity 
environments like soil, as eukaryote sequences are much rarer 
in soil shotgun metagenomes. Ribosomal sequences are rela-
tively more abundant and thus can serve as a good target for 
taxonomic assessment when sequencing is shallow. As NEON 
metagenomes were produced using protocols standard for pro-
karyotes (i.e., 0.25 g soil extracted, 2 × 150 read inserts, and 
standard sequencing; NEON 2022a), eukaryote taxa were more 
likely to be missed due to insufficient DNA extraction volume 
and sequencing depth, or misidentified due to insufficient read 
lengths. Though targeting the 18S gene alone is also limited (e.g., 
low taxonomic resolution in eukaryotes and higher misidentifi-
cation rate due to shorter insert lengths), it has the potential to 
be more sensitive in datasets with low average coverage due to 
higher source complexity.

4.2   |   Data Validation and Example Use Cases

A traditional validation of the metagenomics-based soil biodi-
versity data that we generated might involve comparisons to 
data collected via traditional methods (e.g., microscopy and 
visual identification). However, given the geographic and tax-
onomic scope of the dataset, such an approach is not feasible, 
and existing datasets are neither taxonomically comprehensive 
enough nor span the sites encompassed in the NEON datasets. 
Instead, we validated the dataset by exploring it for expected 
patterns of diversity and responses to disturbance.

To test for ecologically significant trends, we ran correlations with 
soil characteristics and taxonomic richness. We computed these 
correlations for all taxa and then also subsets of taxa (Table 2). 
For all taxa, there were several highly significant correlations 
found; however, many of these correlations were rather weak. 
This suggests that environmental drivers of eukaryotic richness 
are group specific, though broadly latitude, soil temperature, 
soil moisture, soil pH, and carbon and nitrogen influence taxo-
nomic distribution at the domain level, albeit weakly. Previous 

FIGURE 6    |    NMDS plot of the 11 different biomes in our study. Transparent points are shown in the background. The mean of all the points is 
shown with standard error bars. Names correspond to the color of the points. (a) Depicts all taxa, (b) depicts the phylum Ascomycota, (c) depicts the 
phylum Arthropoda, and (d) depicts the phylum Nematoda.
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studies have shown that mean annual precipitation predicted 
soil eukaryote richness most strongly, and our study found that 
soil moisture was indeed significantly and weakly correlated 
with most taxon richness (Aslani et al. 2022). Soil pH was like-
wise significant and weakly correlated, though more analyses 
are needed to confirm this trend. Soil pH has been shown to 
be highly correlated with soil microbial communities (Fierer 
and Jackson 2006; Wang et al. 2019; Aslani et al. 2022) and may 
be correlated with eukaryotic communities as well (Köninger 
et  al.  2023), though the differing methodologies across these 
studies complicate direct comparison with our own findings. 
Interestingly, we found a consistent positive relationship with 
elevation for all taxa as a group as well as Fungi, Streptophyta, 
Metazoa, and Nematoda individually, contradicting the find-
ings of current aboveground studies (Hillebrand 2004), though 
belowground studies showed no relationship (Fungi: Dennis 
et al. 2012; microscopic eukaryotes: Shen et al. 2014) or a nega-
tive relationship (protists; Huang et al. 2023). Our correlations 
were rather weak; therefore, it is possible that either our large 
sample size created false positives in our statistical models, 
colder biomes (higher latitude) may preserve DNA better than 
warmer biomes (lower latitudes) (Kjær et al. 2022), or niche dif-
ferentiation may allow soil eukaryotes to adapt to colder biomes 
(Wang et  al.  2021). Overall, we recovered patterns consistent 
with previously established ecological trends, with the exception 
of latitude, which warrants further investigation.

We also evaluated OTU richness at site pairs with low and high 
management intensity. We looked at six paired sites where one had 
lower management intensity and the other had higher manage-
ment intensity. High management intensity in our case referred 
to forest management, cattle grazing, and croplands whereas low 
management referred to minimally managed forests and grass-
lands. We expected higher richness in low management sites as 
those should have experienced less human disturbance and pol-
lution. In the paired sites, low management sites generally had 
higher richness than high management sites (Figure 4a), which 
is consistent with studies showing decreased biodiversity at man-
aged sites (Paillet et al. 2010; Qu et al. 2024). However, phylum-
level responses to management intensity were varied. Phylum 
Annelida experienced decreased richness in high management 
sites compared to low management (Figure 4b), while Arthropoda 
and Nematoda showed no significant difference between manage-
ment intensities, indicating that these trends may be phylum spe-
cific. We encourage future studies to analyse trends in other phyla 
not covered in this study.

At the CLBJ site (north-central Texas) there was a fire in several 
of the plots between 2017 and 2018 (Figure 5), with a decrease 
in total richness after the fire (from 2017 to 2019). This finding 
parallels other studies that have shown decreases in soil eukary-
otes due to fire (Moretti et al. 2006; Certini et al. 2021). When 
we evaluated phylum-level differences, we found again that the 

FIGURE 7    |    Richness (# of OTUs) over organic % C of nematoda only. Both richness and % Organic C were square root transformed to meet as-
sumptions of a linear regression. Back-transformed counts are shown in the graph. The linear regression line is shown.
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responses were phylum specific. For example, Ascomycota de-
creased from 2017 to 2019 (Figure 5b), but neither Basidiomycota 
(Figure 5c) nor Nematoda (Figure 5d) did. Since Ascomycota is a 
highly abundant fungi and fungi were the most abundant king-
dom in our study, Ascomycota alone could be driving the recov-
ered trend for all taxa as a group. We did not assess other natural 
disasters such as, hurricanes, climate change, or temperature 
rise and their impact on soil eukaryote communities, but future 
studies should use the NEON data to evaluate the effects of these 
and other natural disasters.

Finally, we examined how community composition corre-
sponded to NEON-assigned biomes. To test whether communi-
ties from different biomes were distinct, we used beta diversity 
measurements. Most of the biomes had unique communities 
(significant differences measured by PERMANOVAs) except 
for a few biomes (Figure  6a; Table  S3). With this large of a 
dataset, it is not surprising that communities differed signifi-
cantly by biome. Such patterns, while deserving further eco-
logical investigation, help validate our pipeline's utility and 
are consistent with previous work showing unique eukaryotic 
community composition across biomes (Köninger et al. 2023). 
Further, when delving deeper into phylum-level differences, we 
found that for the phylum Ascomycota (Figure 6b; Table S4), 
several of the forest biomes (Mixed Forest, Woody Wetlands, 
and Deciduous Forest) did not differ significantly, but all other 
biomes were significantly different. The clustering of forest 
biomes suggests that Ascomycota community composition in 
forest soils is driven by factors which (1) are relatively constant 
across latitudinal and altitudinal gradients and (2) differ from 
those driving plant communities. For Arthropoda (Figure 6c; 
Table S5), most biomes clustered except for Sedge Herbaceous, 
Dwarf Scrub, and Emergent Herbaceous Wetlands, suggesting 
that Arthropoda communities were more similar across biomes 
than other phyla. For Nematoda (Figure 5d; Table S6), most bi-
omes were not significantly different from one another except 
for Shrub Scrub, indicating again that Nematoda composition 
may not vary much between biomes, except in a few distinct 
biomes.

Despite the limited depth of our reads and strength of our anal-
yses, we recovered well-established ecological trends, except for 
a positive relationship of elevation with OTU richness. We are 
confident that our findings indicate that NEON shotgun metag-
enomes can be used to explore soil eukaryote diversity and 
distribution. The NEON datasets are large, well documented, 
and well supported, and are thus ripe for broader exploration 
of eukaryotic trends than we have shown here. For example, 
we only evaluated prominent opisthokonts at the phylum level 
(Fungi and Metazoa), but many important eukaryote phyla are 
outside these lineages (Geisen et  al.  2018). Additionally, stud-
ies could analyse trends at higher taxonomic levels (reliably to 
family), explore the relationship of eukaryotic richness with lat-
itude and other environmental factors we didn't discuss, as well 
as evaluate further phylum level differences or search for more 
trends present in the literature (e.g., effects of drought, deluge, 
hurricanes, and temperature). Moreover, future studies could 
compare the richness obtained from multiple approaches and 
databases (e.g., Metaxa2 with SILVA and Eukdetect). Finally, 
improving tool sensitivity and database breadth will allow for 
analyses at higher taxonomic levels (e.g., family and genus) 

and more robust statistical tests of underexplored datasets like 
NEON shotgun metagenomes.
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