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ABSTRACT

Belowground eukaryotic diversity serves a vital role in soil ecosystem functioning, yet the composition, structure, and macroe-
cology of these communities are significantly under-characterized. The National Ecological Observatory Network (NEON) pro-
vides publicly available datasets from long-term surveillance of numerous taxa and ecosystem properties. However, this dataset
is not routinely evaluated for its eukaryotic component, likely because analyzing metagenomes for eukaryotic sequences is ham-
pered by low relative sequence abundance, large genomes, poorer eukaryote representation in public reference databases, and is
not yet mainstream. We mined the NEON soil metagenome datasets for 18S rRNA sequences using a custom-built pipeline and
produced a preliminary assessment of biodiversity trends in North American soil eukaryotes. We extracted ~800 18S rRNA reads
per sample (~22,000 reads per site) from 1455 samples from 495 plots across 45 NEON sites in 11 biomes, which corresponded to
5183 genera in 35 phyla. To our knowledge, this represents the first large-scale soil eukaryote analysis of NEON data. We asked
whether taxonomic richness paralleled patterns previously established ecological trends and found that eukaryotic richness was
negatively correlated with pH, managed sites lowered eukaryotic richness by 47%, most biomes had a distinct eukaryotic commu-
nity, and fire decreased eukaryotic richness. These findings parallel generally accepted ecological trends and support the notion
that NEON soil metagenome datasets can and should be used to explore spatiotemporal patterns in soil eukaryote diversity, its
association with ecosystem functioning, and its response to environmental changes in North America.

1 | Introduction diversity of soil eukaryotes (comprising soil animals, phago-

trophic and phototrophic protists, and fungi), the complexity

Belowground eukaryotic diversity is integral to ecosystem
functioning worldwide (Delgado-Baquerizo et al. 2020),
yet the composition, structure, and macroecology of these
communities are significantly under-characterised (Geisen
et al. 2018; Oliverio et al. 2020). This knowledge gap per-
sists in part due to the high morphological and taxonomic

of soil communities (Anthony et al. 2023), the challenges of
working with microscopic organisms embedded in a spatially
complex and recalcitrant matrix (Flemming et al. 2023), and
the complexity of eukaryotic genomes and life histories (del
Campo et al. 2014). Nevertheless, the significance of below-
ground fauna to the maintenance of Earth's biosphere cannot
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be overstated: soils contain around one quarter of global an-
imal biodiversity (Decaéns et al. 2006), which consume half
of global leaf litter production annually (Hedénec et al. 2022),
accelerate litter decomposition rates by 37% globally (Garcia
Palacios et al. 2013), and significantly increase N and P
availability to plants (Gebremikael et al. 2016). Not surpris-
ingly, numerous studies report positive associations between
soil faunal richness and ecosystem functioning (Delgado-
Baquerizo et al. 2020; Jing et al. 2015; Kou et al. 2021).

However, despite the growing availability of high-throughput
datasets, the molecular ecology of soil eukaryotes is still un-
derexplored. The National Ecological Observatory Network
(NEON) provides a well-organised hierarchy of multi-
dimensional datasets (e.g., soil and water-extracted metag-
enomes, above- and belowground abiotic variables such as,
soil moisture, temperature, and solar irradiation, and abun-
dance data on meso- and macroscopic organisms, such as,
beetles and birds), including soil shotgun metagenomes from
across the continental United States plus Alaska, Hawaii, and
Puerto Rico that spans nearly a decade of sampling. NEON
datasets are routinely used to evaluate trends in soil prokary-
otes (Masuda et al. 2024; Chuckran et al. 2024), but to our
knowledge, little to no work has been done on their eukaryotic
component.

A central challenge in characterising soil fauna macroecology
is the specialised taxonomic knowledge and intensive labor
required for traditional morphological identification. High
throughput amplicon and shotgun metagenomic sequencing
provide an alternative to traditional morphological identifica-
tion for studies with large sample sizes and broad taxonomic
groups of interest. The application of these techniques in soil
microbiology, for example, has facilitated profiling of soil micro-
bial populations by circumventing limitations in extraction and
culturing, and by streamlining access to the taxonomic exper-
tise required to accurately characterise such communities (Guo
et al. 2016). Similarly, shotgun metagenomics targeting soil in-
vertebrate communities has been shown to accurately reflect
taxonomy and reference genome properties (Schmidt et al. 2022).
However, analysing eukaryotes with these techniques is more
challenging and less developed than for prokaryotes (Lara
et al. 2022; Bazant et al. 2023). Amplicon sequencing using
universal primer pairs misses substantial micro-eukaryotic
biodiversity (Geisen et al. 2015), and shotgun metagenomes
from complex environments are expensive to sequence deeply
enough to recover sufficient eukaryote gene markers, which are
often swamped by the high relative abundance of prokaryotic
sequences (Guo et al. 2016). Though several tools have been de-
veloped for better recovery and identification of eukaryote se-
quences from shotgun metagenomes (e.g., Metaxa2, Eukdetect,
Tiara, and Metaphlan6; Bengtsson-Palme et al. 2015; Lind and
Pollard 2011; Karlicki et al. 2022; Blanco-Miguez et al. 2023),
they rely on custom reference databases that are influenced by
what is available in NCBI and SILVA, which often misrepresent
the diversity of many eukaryotic lineages (Mugnai et al. 2023;
Chorlton 2024). Curated databases focused on representing
microeukaryotes more comprehensively do exist, such as the
protist ribosomal database (PR?; Guillo et al. 2013), and thus a
synthetic approach utilising diverse software and databases can
help to overcome some of these challenges.

To better understand soil eukaryote diversity in North America
and exploit a previously underused resource for exploring eu-
karyote diversity, we extracted, identified, and analyzed eukary-
otic SSU rDNA sequences from shotgun metagenome datasets
collected by NEON (1455 samples collected from 495 plots from
45 sites in 11 biomes throughout the US) using a custom pipeline
capable of (1) handling data formats specific to NEON and (2) in-
corporating pre-existing software specializing in the processing
and analysis of eukaryotic sequences from shotgun metagenom-
ics. Utilizing a eukaryote sensitive hmm profile and the curated
protist ribosomal database (PR?), we extracted sequences align-
ing to the eukaryotic 18S rRNA gene and asked (1) whether there
is sufficient eukaryotic sequence data in NEON shotgun metag-
enomes to conduct meaningful analyses; (2) if so, which are the
most taxonomically rich eukaryotic phyla in US soils; and (3) as
an initial validation of the dataset, whether the recovered pat-
terns match generally accepted ecological trends. Specifically,
we explore changes in soil eukaryotic biodiversity following fire
and compare biodiversity at paired low- and high-management
intensity sites with the expectation that biodiversity would de-
crease following fire and be lower at more intensively managed
sites. In addition, we explore biome-level differences in commu-
nity composition.

2 | Methods

2.1 | Soil Extraction, Library Preparation,
Sequencing, and Data Management

Soil extraction, library preparation, sequencing, and raw se-
quence data management were all performed by NEON follow-
ing their standardized protocols (NEON 2022a). Soil samples
are collected during the peak period of the growing season and
initially collected annually at all sites but are currently collected
annually at the 20 Core sites and every 5years at the 27 Gradient
sites (Figure 1). Samples are collected to a maximum depth of
30cm (or restrictive feature if shallower), split into organic and
mineral soil layers if an organic layer is present, then stored at
—60°C to —85°C until they can be processed (NEON 2024). 136
site-years of data from 45 of the 47 NEON terrestrial sites 12’
were available at the time of downloading and ~25 site-years
of new data are added annually (20 Core sites and ~5 Gradient
sites). At each site, samples are collected from 10 plots distrib-
uted over 30+20km? (median+median absolute deviation)
during each sampling event and the data used in this study
come from 1455 samples collected from 495 plots across 45 sites.
Plots span 11 biomes: evergreen forest, mixed forest, deciduous
forest, woody wetland, shrub/scrub, dwarf scrub, grassland/her-
baceous, sedge/herbaceous, pasture/hay, cultivated crops, and
emergent herbaceous wetlands (NEON uses the US National
Land Cover Database to classify vegetation type; NEON 2022b).

Whole genomic DNA was extracted from 0.25+0.03g of each
thawed soil sample with the Qiagen DNeasy 96 PowerSoil Pro
Kit (cat #47017), according to the manufacturer's instructions.
The concentrations of extracted DNA were assessed using
a Promega Quantus Fluorometer with a QuantiFluor ONE
dsDNA Kit (#E4870) according to the manufacturer's instruc-
tions (Manual: Quantus_FluorometerManual_TM396_rev
01/2020). Shotgun metagenome libraries were made using the
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FIGURE1 | Locations of NEON core and gradient sites.

KAPA HyperPrep Kit from Kapa Biosystems, quantified using
gPCR, normalized, then sequenced on an Illumina NextSeq
550 (Manual: 15069765v01) with read lengths of 2x150bp and
an insert length of 300bp. Resulting sequences were uploaded
to MG-RAST for quality control, processing, and downstream
analyses, then sent to NEON for storage in their public portal.

2.2 | Bioinformatics

To accommodate the changing tool landscape, continual data
updates from NEON, and a need for customizable tool usage,
we built an in-house bioinformatics pipeline (Figure 2) that (1)
handles data formats specific to NEON and (2) incorporates
pre-existing software and databases specially made for the
processing and analysis of eukaryotic sequences from shotgun
metagenomics. The present iteration of this pipeline was de-
veloped for use within our lab group only and currently is not
guaranteed to be cross-platform compatible (e.g., via dockerized
containment), does not contain robust error-catching, check-
points, or thorough documentation, but future development
could expand its functionality to include additional eukaryote-
specific tools. The latest version of the pipeline's source code can
be found on GitHub (see data availability).

Our pipeline used an hmm profile to retrieve 18S sequences
from shotgun metagenomes (Wheeler and Eddy 2013;
Seemann 2018; see Figure 2), as done previously (Thompson
et al. 2020) and in a way functionally analogous to the

approach in Metaxa2 (Bengtsson-Palme et al. 2015). Briefly,
the pipeline (A) sorts then merges raw forward and reverse
fastq files using fastg-tools (Jones 2020) and FLASH (Magoc¢
and Salzberg 2011), respectively (note that sorting was re-
quired as the sequence order in paired-end files downloaded
from NEON's online portal did not match). Merging is per-
formed prior to trimming following Maran and Davis (2022),
and the default parameters are used except for -M (max-
overlap), which was set to 150bp. The pipeline next (A) eval-
uates the sequence quality of the merged raw data using
FastQC, (2) trims low quality nucleotides or whole reads
using Trimmomatic with the following settings: LEADING
2, TRAILING 2, SLIDINGWINDOW 4:15 (default), MINLEN
30 (Bolger et al. 2014), then (B) checks the post-trimming se-
quence quality using FastQC (Andrews 2010) and MultiQC
(Ewels et al. 2016). After trimming, reads matching the target
marker gene (the 18S rRNA for this paper) are (3) extracted
using nhmmer (Wheeler and Eddy 2013) with the eukary-
ote hmm profile developed for the rRNA prediction software
Barrnap and an e-value cutoff of 1e-5 (Seemann 2018), filtered
by hit score, and (4) aligned against the PR? database, version
4.10.0 (Guillo et al. 2013), using BLASTn v2.7.14+ (Camacho
et al. 2009). Plastid sequences, sequences shorter than 125bp
or with query coverage less than 90%, and sequences with
an identity score below 93% are then removed (note that se-
quences undergo two trimming steps is an artefact of the pipe-
line's design to ultimately accommodate multiple approaches
and to reduce downstream computation time in downstream
analyses). Though such a conservative identity threshold
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FIGURE 2 | Pipeline flowchart with some sequence statistics. Pipeline step numbers in figure correspond to numbers in text. (A) phred scores
for all bp positions across all raw sequences from all sites BEFORE trimming. Lower scores are represented by red lines in red areas of graph (i.e., <
phred of 20). (B) phred scores for all bp positions across all raw sequences AFTER trimming. Note higher overall sequence quality. An estimated av-
erage 95.4% of sequences retained after trimming (data not shown). (C) Read abundance by domain by site (organised by number of sampling events
per site, increasing to the right). Counts are of taxonomic ids made after HMMR extraction targeting 18S and do not represent relative abundances
found in raw reads or nature. Bacterial and archaeal reads were likely retained due to shared conserved regions between 18S and 16S and are not
likely artefacts. Curation for eukaryotic false positives were carried out in subsequent steps. Eukaryotic reads are broadly abundant (>~1000) in

every site.

could potentially bias against underrepresented microeukary-
ote clades (e.g., non-metazoan and fungal kingdoms) and thus
weaken the power of our study, our use of the PR? database,
which emphasizes the breadth of eukaryotic diversity, and the
shortness of our reads (~138 bp) relative to the size of the full
18S gene (~2.5kb) largely mitigates this risk. Unlike targeted
metagenomics where PCR amplifies a specific region of a
marker gene that is consistent across all individuals sampled,
shotgun metagenome libraries provide random coverage of
whole sequenced genomes. Given sufficient sequencing depth,
these randomized pieces can be assembled (i.e., lengthened),
then aligned for greater identification accuracy and precision.
However, eukaryote sequences are generally represented in
low abundance in soil shotgun metagenomes due to low rela-
tive abundance in environmental samples and DNA extraction
biases (Santos et al. 2015) and can be difficult to assemble un-
less especially deep sequencing is performed (Commichaux
etal. 2002). As the NEON extraction and sequencing protocols
follow the standard procedures for prokaryotes (e.g., 0.25g
soil extracted) and no specific strategies were employed to en-
sure the capturing of eukaryotes, eukaryote sequence density
was not high enough to perform assembly. To get around the
limitations of using relatively short sequences to identify taxa
against the 18S rRNA gene (Wu et al. 2015), the pipeline (5)
groups extracted eukaryote sequences by their taxonomic as-
signment (i.e., in this case, genus) according to the taxonomy

of our reference database (PR?). These assignments were used
(6) to build “taxon frequency” tables and (7) manually checked
for erroneous or nonsensical taxa (e.g., marine taxa) prior to
downstream analyses. The latest version of the pipeline can be
found on GitHub (Andy-Thmpsn 2025—see data availability).
To ground-truth the approach used in the pipeline, we ran our
data through Eukdetect on default settings.

2.3 | Site Properties

Soil properties for each metagenomics sample were from
(NEON 2022a). NEON site management data (NEON 2022b)
was used to determine the CLBJ soil plots that burned be-
tween the metagenomics soil sampling in April 2017 and 2018.
Properties for paired sites used to assess the impact of lower
and higher management intensities on soil biodiversity are
shown in Table 1. The paired sites span different regions of the
US and cover a wide range of climates (e.g., mean annual tem-
perature, MAT: 4°C-25°C; mean annual precipitation, MAP:
344-2451 mm), but each set of paired sites has similar climates
(median difference in MAT and MAP is 0.7°C and 15mm,
respectively) and are relatively nearby (median distance be-
tween sites: 27 km). Since management type and intensity can
vary within the site sampling boundary, the impact of man-
agement intensity was assessed based on data from the NEON
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tower base plots only (i.e., excluding distributed plots) because
the tower plots are typically managed similarly within a site,
whereas the distributed plots may encompass different man-
agement types.

2.4 | Data Analyses

Abundance counts for each site were normalised using a
Hellinger transformation using the labdsv package for all
analyses below. OTU tables were analysed in R version 4.41
with the mctoolsr package (Leff 2022) and vegan version 2.3-5
(Oksanen et al. 2016). Rarefaction (Figure S1) and species

accumulation curves (Figure S2) were generated to visualise
sequencing depth while vegan was used to visualise taxon
abundance. NEON site characteristics relevant to the study,
such as, elevation, latitude, soil temperature, and soil mois-
ture, were also included in the analysis (see Table 2 for all site
characteristics). Mixed models using the lme4 and ImerTest
packages were used to evaluate regressions between OTU
richness and site characteristics, where the site characteristics
were the fixed variable and site and plot were random effects.
To evaluate trends in our data, our study used mixed model re-
gressions for several site characteristics to assess whether re-
lationships with OTU richness were present (seen in Table 2).
Analyses focused on the major groups (fungi, metazoa, etc.)

TABLE1 | Site details for paired lower and higher management intensity sites.

Dominant
NLCD Distance
MAP) vegetation Management between site
Site ID MAT? (°C) (mm) classes® intensity (type) pairs (km) Region
WREF 9.2 2225 EF Lower 30 Washington
ABBY 10 2451 EFIGHISS Higher (forestry)
UNDE 4.3 802 DFIMFIWW Lower 81 Wisconsin/
STEI 48 797 DFIMFIWW Higher (forestry) Michigan
KONZ 12.4 870 DFIGH Lower 4 Kansas
KONA 12.7 850 cC Higher (cropland)
CPER 8.6 344 GH Lower 150 Colorado
STER 9.7 433 cc Higher (cropland)
WOOD 4.9 494 EHWIGH Lower 11 North Dakota
DCFS 4.9 490 GH Higher (cattle grazing)
GUAN 23 840 EF Lower 23 Puerto Rico
LAJA 25 830 CCIGHIPH Higher (cattle grazing)

2Mean annual temperature.
bMean annual precipitation.

“National Land Cover Database Vegetation classes: CC, Cultivated Crops; DF, Deciduous Forest; EF, Evergreen Forest; EHW, Emergent Herbaceous Wetlands; GH,
Grassland/Herbaceous; MF, Mixed Forest; PH, Pasture/Hay; SS, Shrub/Scrub; WW, Woody Wetlands.

TABLE 2 | Correlation values of taxonomic group richness by characteristics of the soils where the sample was collected.

All Fungi Streptophyta Metazoa Nematoda Arthropoda Annelida
Elevation 0.05 0.05%** —0.02 —0.07 —0.01 —0.07 —0.11*
Latitude 0.25%** 0.12* 0.13* 0.08 0.09
Soil Temp -0.17 —0.12* —0.15%* —0.09 —0.03
Soil Moisture 0.08* 0.07 —0.03 0.22%** 0.20%** 0.14** 0.24%%*
Soil pH (water) 0.01 —0.21%*%* —0.24%**
% N 0.16%** 0.16%* 0 0.19%** 0.26%**
% Organic C 0.22%** 0.22%** 0 0.21%** 0.23%%*
Ammonium 0.01 0.01 —0.06 0.07 —0.05 0.1 0.04
Nitrate —0.12 —0.12* —0.01 —0.02 -0.1 0.02 —0.08

Note: Significance level is indicated by *<0.05, **<0.01, ***<0.001. Significance is determined by mixed models including plot and site as random effects. Negative
values are coloured red and positive values are coloured in blue. Colours are scaled by magnitude of correlation.
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as well as the three most abundant metazoan phyla to iden-
tify patterns that can be explored in further studies. To as-
sess whether known ecological trends could be supported by
our data, we compared OTU richness in managed and un-
managed sites and OTU richness after a fire at one of our sites.
Mixed model regressions with plot and site as random effects
were used. All taxa and then subsets of phyla were used to
visualise this (the subsets were based on higher abundance
phyla to allow for meaningful analysis). NMDS plots were
used to visualise community differences by site biome using
Jaccard's index. Jaccard's index was used to account for pres-
ence and absence since differences in size (physical size of or-
ganism, number of gene copies, and potential genome length)
of taxonomic groups may skew read counts in our study. We
encourage future studies to explore statistical methods to in-
corporate relative taxon prevalence. PERMANOVA in vegan
was used to test for statistical differences (including site and
plot as factors), and pairwise comparisons (using FDR correc-
tions) were computed in the ecole package using the function:
pairwise adonis.

3 | Results

3.1 | Eukaryote Sequences in NEON Shotgun
Metagenome Datasets

We recovered ~1.36 x 10° reads aligning to eukaryotic 18S
rRNA references across 45 sites, 6years, and 1305 samples
(mean ~22,000 reads per site-year combination, ~800 per
sample) with an average read length of 138 bp, which is suf-
ficient to identify taxa to at least families in eukaryotes (Wu
et al. 2015). Our filtering was stringent and excluded an aver-
age of 75% of extracted 18S sequences from the final analysis
(Table S1). Our reads corresponded to 5183 genera belonging
to 35 phyla, including all common soil animal, many protist,
and prominent fungal phyla (e.g., Arthropoda, Nematoda,
Rotifera, Tardigrada, Ciliophora, Cercozoa, Tubulinea,
Evosea,  Chlorophyta,  Stramenopiles,  Apicomplexa,
Euglenozoa, and Ascomycota), a diversity of genera similar to
that found in similar studies (Delgado-Baquerizo et al. 2018;
Aslani et al. 2022; Vasar et al. 2022). Eukdetect recovered 35
genera from a subset of 280 samples from 36 sites, with 34
(97%) assigned to kingdom Fungi. In comparison, only ~34%
of genera (1759 of 5183) recovered with this study's barrnap
hmm profile approach were Fungi (Table S2).

3.2 | Distribution of Major Taxonomic Groups in
the NEON Data Set

Our pipeline recovered 35 kingdoms including Fungi,
Rhizaria, Metazoa, and Streptophyta (Figure 3). Fungi were
the most diverse with 1734 OTUs, then Metazoa with 1458
OTUs, Streptophyta with 801 OTUs, and Cercozoa with 132
OTUs (Figure 3a,b). Within Fungi, Ascomycota was the most
diverse phylum with 906 OTUs, then Basidiomycota with 475
OTUs, and Mucoromycota with 33 OTUs. Within Metazoa,
Arthropoda was the most diverse phylum with 846 unique
OTUs, then Nematoda with 242 OTUs, and Annelida with
127 OTUs.

3.3 | Trends in the Eukaryotic Community Data

Our study also measured correlations between sample taxo-
nomic richness (number of unique OTUs) and sample char-
acteristics (Table 2). Total eukaryote richness was positively
correlated with latitude, soil moisture, percent nitrogen, and
percent organic carbon, and negatively correlated with soil
temperature and soil pH (Table 2). Across all higher tax-
onomic levels, these trends remained the same, except for
Streptophyta, where only latitude was significantly and pos-
itively correlated. For the other lower taxonomic groups, the
trends followed that of total eukaryote richness, except for
latitude and soil temperature for Arthropoda and Annelida
(Table 2). Contrary to patterns typically observed for abo-
veground biodiversity, where latitude (Hillebrand 2004) neg-
atively correlated with richness, the richness of several taxa
(Fungi, Metazoa, Streptophyta, and Nematoda) was positively
related to latitude, albeit weakly.

The richness of all taxa except fungi was positively correlated
with soil moisture, while fungal richness was unrelated, per-
haps due to their greater drought tolerance than most other soil
biota (Cosme 2023). Given the important role that organic mat-
ter plays at the base of the soil food web, it was unsurprising that
the richness of all heterotrophic taxa was positively related to
soil organic C content, while Streptophyta (autotrophs) richness
was unrelated to organic C content or N content. Inorganic N
(nitrate and ammonium) availability was generally unrelated to
taxon richness.

3.4 | Do the Patterns From This Data Match
Established Ecological Trends?

To test our approach's ability to capture ecologically relevant
soil biodiversity trends using NEON datasets, we compared
our results to generally accepted ecological patterns. First, we
compared the number of unique OTUs at sets of nearby paired
sites with higher and lower management intensities (two pairs
each for forestry, cattle grazing, and cropland management).
Site pairs with low-high management were UNDE-STEI and
WREF-ABBY (forestry), GUAN-LAJA and WOOD-DCEFS (cat-
tle grazing), and KONZ-KONA and CPER-STER (cropland).
We compared among all taxa, Annelida, Arthropoda, and
Nematoda. For all taxa, we found that sites with lower man-
agement intensities had higher richness (# of unique OTUs)
compared to higher management intensity sites (Figure 4a;
p=0.03), with typically 30 fewer genus-level OTUs (47% re-
duction in mean richness) at sites with higher management
intensities. Unlike most pairs, there was little difference in the
mean richness of the WOOD and DCEFS sites, which might re-
sult from the relatively low grazing intensity at DCFS (https://
www.neonscience.org/field-sites/dcfs). Mean richness was also
similar at WREF and ABBY, which is more surprising given that
ABBY was logged and re-planted with Douglas fir around 2005
(although it did retain small patches of mature trees), whereas
WREF is old-growth forest. Among the more intensively man-
aged sites, croplands and grazing lands had the lowest richness
(45 and 36 OTUs, respectively), while sites used for forestry had
the highest richness (83 OTUs), possibly reflecting differences
in management intensity as well as geographic and ecoclimatic
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FIGURE 3 | Boxplots of the relative abundances of all superkingdoms (a), metazoa (c), and fungi (e). Boxplots of log(unique OTUs) of all su-
perkingdoms (b), metazoa (d), and fungi (f). Boxplots represent the median with the colored line and whiskers with the 5th and 95th percentiles. All

samples are shown.
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FIGURE4 | Richness (# of OTUs) by paired management sites. Box plots represent the median with the black line and whiskers with the 5th and
95th percentiles. High management sites are shown in grey and low management sites are shown in green. STEI, UNDE, ABBY, and WREF are for-
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the phylum Annelida, (c) depicts the phylum Arthropoda, and (d) depicts the phylum Nematoda.

differences. For the phylum Annelida, we found the same trend
as for all taxa with a lower mean richness in higher manage-
ment intensity sites (p=0.007; Figure 4b). On average, there
were 3.5 fewer OTUs (a 78% reduction in mean richness). There
was also lower richness in cropland (0.5 OTUs) and grazing-
land sites (0.75 OTUs) compared to forestry sites (5 OTUs). For
phyla Arthropoda (Figure 4c) and Nematoda (Figure 4d), we
found no significant differences in management (p=0.6 and 0.4,
respectively).

The second test was whether fire had an impact on soil eukary-
otes. In one site—CLBJ from north-central Texas—there was a

fire in several plots between 2017 and 2018. Richness was high-
est for all taxa before the fire (in 2017) then gradually decreased
from 2018 to 2019 (Figure 5). Year was a significant parameter
in our mixed model (p=0.007) and richness was significantly
lower in 2019 than in 2017 (p=0.008). We also tested these
patterns with only the phyla Ascomycota, Basidiomycota, and
Nematoda and found the same pattern as for all taxa grouped,
with significantly lower richness in 2019 than in 2017 for
Ascomycota (p=0.023) and year as significant in our mixed
model (p=0.01). There were similar trends for Basidiomycota
and Nematoda richness, but they were not significant (p =0.09
and p=0.16, respectively).
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Analyses were conducted on all taxa and subsets of phyla: Ascomycota, Basidiomycota, and Nematoda.

The third pattern we assessed was whether distinct bi-
omes hosted unique eukaryotic communities. We used
PERMANOVAs and NMDS using Jaccard's index (to ac-
count for taxon presence/absence only) to quantify and vi-
sualize these trends. For all taxa, most biomes possessed a
unique eukaryote community (Figure 6a; PERMANOVA
p-value=0.001; Table S3). However, as betadisper was also sig-
nificant (p <0.001), the diversity within sites and biomes could
confound our results. We also measured bray-curtis within
site (Figure S3) and standard deviation by site (Figure S4) and
found high dissimilarity among sites and a wide standard devi-
ation. When we ran pairwise comparisons, we found that most
biomes were significantly different from one another (p <0.05),
except for shrub scrub vs. emergent herbaceous wetlands, pas-
ture hay vs. emergent herbaceous wetlands, and deciduous
forest vs. woody wetlands, which were not significantly dif-
ferent from one another when looking at multiple comparison
adjusted (FDR) p-values (Table S3). Exploring phylum-level
differences revealed that Ascomyota (Figure 6b) had a signif-
icant PERMANOVA (p=0.001), but also a significant betadis-
per (p<0.001), which potentially confounds our conclusions
as previously mentioned for the all taxa group. For pairwise
comparisons, we found that all comparisons were significant
except: nixed forest vs. woody wetlands, dwarf scrub vs. sedge
herbaceous, emergent herbaceous wetlands vs. sedge herba-
ceous, and deciduous forest vs. woody wetlands (Table S4). For
the phylum Arthropoda (Figure 6¢c), we found a significant
PERMANOVA (p=0.001), but also a significant betadisper
(p<0.001). For pairwise comparisons, there were 32 significant
comparisons and 23 non-significant comparisons (see Table S5

for further details). The phylum Nematoda (Figure 6d) likewise
had a significant PERMANOVA (p=0.001) but also a signif-
icant betadisper (p<0.001). For pairwise comparisons, there
were 19 significant comparisons and 36 non-significant com-
parisons (see Table S6 for more details).

Finally, we attempted to find trends between richness (num-
ber of unique OTUs) and site characteristics. Here, we explore
one such trend, as an exhaustive exploration of these trends
is beyond the scope of our study. Since nematodes have been
significantly correlated with organic carbon (Martin and
Sprunger 2021), we checked for that relationship in our data.
We plotted Nematoda richness (# of OTUs) against organic
carbon (Figure 7) and found a positive relationship that was
significant when taking the square root of both organic car-
bon and richness and using site and plot as nested random
effects (p =0.003).

4 | Discussion

4.1 | Custom Pipeline Allows for Quick and Easy
Processing of the Data

The NEON metagenomics data was produced for researchers
to evaluate soil microbial communities across the US (Werbin
et al. 2021). We repurposed these data to evaluate eukaryotic
soil communities and encourage others to further explore this
valuable dataset for deeper insights into trends within soil eu-
karyotic communities and soil characteristics.

Molecular Ecology Resources, 2026
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phylum Arthropoda, and (d) depicts the phylum Nematoda.

Our approach recovered greater eukaryotic diversity than did a
recently developed tool, Eukdetect, likely due to differences in
strategy and database. First, Eukdetect searches query metag-
enomes for all markers corresponding to eukaryotes in its ref-
erence dataset and only calls a taxon as present if more than
a certain percentage of the query aligns. Though a robust ap-
proach, this can produce false negatives in high-complexity
environments like soil, as eukaryote sequences are much rarer
in soil shotgun metagenomes. Ribosomal sequences are rela-
tively more abundant and thus can serve as a good target for
taxonomic assessment when sequencing is shallow. As NEON
metagenomes were produced using protocols standard for pro-
karyotes (i.e., 0.25g soil extracted, 2 X150 read inserts, and
standard sequencing; NEON 2022a), eukaryote taxa were more
likely to be missed due to insufficient DNA extraction volume
and sequencing depth, or misidentified due to insufficient read
lengths. Though targeting the 18S gene alone is also limited (e.g.,
low taxonomic resolution in eukaryotes and higher misidentifi-
cation rate due to shorter insert lengths), it has the potential to
be more sensitive in datasets with low average coverage due to
higher source complexity.

4.2 | Data Validation and Example Use Cases

A traditional validation of the metagenomics-based soil biodi-
versity data that we generated might involve comparisons to
data collected via traditional methods (e.g., microscopy and
visual identification). However, given the geographic and tax-
onomic scope of the dataset, such an approach is not feasible,
and existing datasets are neither taxonomically comprehensive
enough nor span the sites encompassed in the NEON datasets.
Instead, we validated the dataset by exploring it for expected
patterns of diversity and responses to disturbance.

Totestfor ecologically significant trends, we ran correlations with
soil characteristics and taxonomic richness. We computed these
correlations for all taxa and then also subsets of taxa (Table 2).
For all taxa, there were several highly significant correlations
found; however, many of these correlations were rather weak.
This suggests that environmental drivers of eukaryotic richness
are group specific, though broadly latitude, soil temperature,
soil moisture, soil pH, and carbon and nitrogen influence taxo-
nomic distribution at the domain level, albeit weakly. Previous
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studies have shown that mean annual precipitation predicted
soil eukaryote richness most strongly, and our study found that
soil moisture was indeed significantly and weakly correlated
with most taxon richness (Aslani et al. 2022). Soil pH was like-
wise significant and weakly correlated, though more analyses
are needed to confirm this trend. Soil pH has been shown to
be highly correlated with soil microbial communities (Fierer
and Jackson 2006; Wang et al. 2019; Aslani et al. 2022) and may
be correlated with eukaryotic communities as well (Kéninger
et al. 2023), though the differing methodologies across these
studies complicate direct comparison with our own findings.
Interestingly, we found a consistent positive relationship with
elevation for all taxa as a group as well as Fungi, Streptophyta,
Metazoa, and Nematoda individually, contradicting the find-
ings of current aboveground studies (Hillebrand 2004), though
belowground studies showed no relationship (Fungi: Dennis
et al. 2012; microscopic eukaryotes: Shen et al. 2014) or a nega-
tive relationship (protists; Huang et al. 2023). Our correlations
were rather weak; therefore, it is possible that either our large
sample size created false positives in our statistical models,
colder biomes (higher latitude) may preserve DNA better than
warmer biomes (lower latitudes) (Kjar et al. 2022), or niche dif-
ferentiation may allow soil eukaryotes to adapt to colder biomes
(Wang et al. 2021). Overall, we recovered patterns consistent
with previously established ecological trends, with the exception
of latitude, which warrants further investigation.

We also evaluated OTU richness at site pairs with low and high
management intensity. We looked at six paired sites where one had
lower management intensity and the other had higher manage-
ment intensity. High management intensity in our case referred
to forest management, cattle grazing, and croplands whereas low
management referred to minimally managed forests and grass-
lands. We expected higher richness in low management sites as
those should have experienced less human disturbance and pol-
lution. In the paired sites, low management sites generally had
higher richness than high management sites (Figure 4a), which
is consistent with studies showing decreased biodiversity at man-
aged sites (Paillet et al. 2010; Qu et al. 2024). However, phylum-
level responses to management intensity were varied. Phylum
Annelida experienced decreased richness in high management
sites compared to low management (Figure 4b), while Arthropoda
and Nematoda showed no significant difference between manage-
ment intensities, indicating that these trends may be phylum spe-
cific. We encourage future studies to analyse trends in other phyla
not covered in this study.

At the CLBJ site (north-central Texas) there was a fire in several
of the plots between 2017 and 2018 (Figure 5), with a decrease
in total richness after the fire (from 2017 to 2019). This finding
parallels other studies that have shown decreases in soil eukary-
otes due to fire (Moretti et al. 2006; Certini et al. 2021). When
we evaluated phylum-level differences, we found again that the

Molecular Ecology Resources, 2026
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responses were phylum specific. For example, Ascomycota de-
creased from 2017 to 2019 (Figure 5b), but neither Basidiomycota
(Figure 5c) nor Nematoda (Figure 5d) did. Since Ascomycota is a
highly abundant fungi and fungi were the most abundant king-
dom in our study, Ascomycota alone could be driving the recov-
ered trend for all taxa as a group. We did not assess other natural
disasters such as, hurricanes, climate change, or temperature
rise and their impact on soil eukaryote communities, but future
studies should use the NEON data to evaluate the effects of these
and other natural disasters.

Finally, we examined how community composition corre-
sponded to NEON-assigned biomes. To test whether communi-
ties from different biomes were distinct, we used beta diversity
measurements. Most of the biomes had unique communities
(significant differences measured by PERMANOVAs) except
for a few biomes (Figure 6a; Table S3). With this large of a
dataset, it is not surprising that communities differed signifi-
cantly by biome. Such patterns, while deserving further eco-
logical investigation, help validate our pipeline's utility and
are consistent with previous work showing unique eukaryotic
community composition across biomes (Koninger et al. 2023).
Further, when delving deeper into phylum-level differences, we
found that for the phylum Ascomycota (Figure 6b; Table S4),
several of the forest biomes (Mixed Forest, Woody Wetlands,
and Deciduous Forest) did not differ significantly, but all other
biomes were significantly different. The clustering of forest
biomes suggests that Ascomycota community composition in
forest soils is driven by factors which (1) are relatively constant
across latitudinal and altitudinal gradients and (2) differ from
those driving plant communities. For Arthropoda (Figure 6c;
Table S5), most biomes clustered except for Sedge Herbaceous,
Dwarf Scrub, and Emergent Herbaceous Wetlands, suggesting
that Arthropoda communities were more similar across biomes
than other phyla. For Nematoda (Figure 5d; Table S6), most bi-
omes were not significantly different from one another except
for Shrub Scrub, indicating again that Nematoda composition
may not vary much between biomes, except in a few distinct
biomes.

Despite the limited depth of our reads and strength of our anal-
yses, we recovered well-established ecological trends, except for
a positive relationship of elevation with OTU richness. We are
confident that our findings indicate that NEON shotgun metag-
enomes can be used to explore soil eukaryote diversity and
distribution. The NEON datasets are large, well documented,
and well supported, and are thus ripe for broader exploration
of eukaryotic trends than we have shown here. For example,
we only evaluated prominent opisthokonts at the phylum level
(Fungi and Metazoa), but many important eukaryote phyla are
outside these lineages (Geisen et al. 2018). Additionally, stud-
ies could analyse trends at higher taxonomic levels (reliably to
family), explore the relationship of eukaryotic richness with lat-
itude and other environmental factors we didn't discuss, as well
as evaluate further phylum level differences or search for more
trends present in the literature (e.g., effects of drought, deluge,
hurricanes, and temperature). Moreover, future studies could
compare the richness obtained from multiple approaches and
databases (e.g., Metaxa2 with SILVA and Eukdetect). Finally,
improving tool sensitivity and database breadth will allow for
analyses at higher taxonomic levels (e.g., family and genus)

and more robust statistical tests of underexplored datasets like
NEON shotgun metagenomes.
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