
Why Am I Seeing Double? An Investigation of Device
Management Flaws in Voice Assistant Platforms

Muslum Ozgur Ozmen
Arizona State University

moozmen@asu.edu

Mehmet Oguz Sakaoglu
Purdue University

msakaogl@purdue.edu

Jackson Bizjak
Purdue University
jbizjak@purdue.edu

Jianliang Wu
Simon Fraser University

wujl@sfu.ca

Antonio Bianchi
Purdue University

antoniob@purdue.edu

Dave (Jing) Tian
Purdue University
daveti@purdue.edu

Z. Berkay Celik
Purdue University
zcelik@purdue.edu

Abstract

In Voice Assistant (VA) platforms, when users add devices to their

accounts and give voice commands, complex interactions occur

between the devices, skills, VA clouds, and vendor clouds. These

interactions are governed by the device management capabilities

(DMC) of VA platforms, which rely on device names, types, and asso-

ciated skills in the user account. Prior work studied vulnerabilities

in speci�c VA components, such as hidden voice commands and

bypassing skill vetting. However, the security and privacy implica-

tions of device management �aws have largely been unexplored.

In this paper, we introduce DMC-Xplorer, a testing framework for

the automated discovery of VA device management �aws. We �rst

introduce VA description language (VDL), a new domain-speci�c

language to create VA environments for testing, using VA and skill

developer APIs. DMC-Xplorer then selects VA parameters (device

names, types, vendors, actions, and skills) in a combinatorial ap-

proach and creates VA environments with VDL. It issues real voice

commands to the environment via developer APIs and logs event

traces. It validates the traces against three formal security proper-

ties that de�ne the secure operation of VA platforms. Lastly, DMC-

Xplorer identi�es the root cause of property violations through

intervention analysis to identify VA device management �aws.

We exercised DMC-Xplorer on Amazon Alexa and Google Home

and discovered two design �aws that can be exploited to launch four

attacks. We show that malicious skills with default permissions can

eavesdrop on privacy-sensitive device states, prevent users from

controlling their devices, and disrupt the services on the VA cloud.

Keywords

IoT, voice assistant platforms, privacy, security

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(2), 719–733

© 2025 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2025-0084

1 Introduction

Voice Assistant (VA) platforms, such as Amazon Alexa [5] and

Google Home [27], enable voice-based commands to control and

monitor smart devices. To achieve these, they provide developers

APIs to develop voice-enabled skills1 [13, 42].

To control a smart device with voice, a user �rst registers their

device to its vendor (e.g., through a mobile app). The user then

installs the vendor’s skill to the VA platform, allowing the skill to

add the registered device to the user’s account. When the user gives

a voice command, the VA device (e.g., Amazon Echo) sends it to

the VA cloud for speech recognition and intent extraction. The VA

cloud sends the extracted intent to the relevant skill that runs on a

back-end server. The skill relays the command to the device vendor

cloud, which handles the request and noti�es the VA platform.

These complex interactions are governed by the device manage-

ment capabilities (DMC) of VA platforms, which includes adding

devices to a user account and controlling them with a skill until

they are removed from the user account. During these interactions,

the DMC of VA platforms provides three security properties. First, it

ensures voice command con�dentiality by determining the devices

the user refers to and sending the command only to the skills that

control those devices to ensure unauthorized skills do not receive

privacy-sensitive voice commands and device states. Second, it

o�ers voice command integrity by sending the correct command

extracted from voice to the devices. Lastly, it provides voice com-

mand availability by ensuring the voice command is executed in a

time delivering an acceptable quality-of-service (≤ 8 secs [3]).

Design �aws in the DMC of VA platforms, however, may cause

violations of these security properties. Our main observation is that

an adversary can exploit such violations by developing a malicious

skill installed by the user. Prior work has shown that malicious skills

can be (1) published in the skill marketplaces due to the weaknesses

in skill vetting [18, 43, 67, 71] and (2) installed in user accounts

through hidden voice injection [14, 17, 21, 76, 81] and skill squatting

attacks [41, 44, 59, 83, 85]. After installation, malicious skills (by

default) have permission to add devices to the user’s VA account

and exploit the design �aws in the DMC of VA platforms.

1Voice-enabled apps are called skills in Alexa and actions in Google Home. We use the
term skill to refer to an app for any VA platform.

719

Proceedings on Privacy Enhancing Technologies 2025(2) Ozmen et al.

Then, the adversary can exploit the DMC security property vio-

lations for three purposes. First, the adversary can access privacy-

sensitive device states, e.g., whether the door is unlocked, and infer

the user’s routine, e.g., when they go to sleep and when they are

not at home. Second, the adversary can manipulate the commands

issued to the devices, e.g., causing a door to unlock instead of

lock. Lastly, the adversary can cause the devices to be unrespon-

sive to voice commands, which may put users and their physical

environment at risk, e.g., a door not getting unlocked during a �re.

However, discovering design �aws in the DMC of VA platforms

has three key challenges. (1) The VA platforms lack end-to-end

testing environments to explore their DMC in a realistic and scal-

able manner. The closed-source nature of VA platforms further

exacerbates this challenge. (2) VA platforms have a large parameter

space, where VA environments with di�erent numbers of devices

that have various names, types, skills, and vendors can be created.

(3) It requires formal de�nitions of the security properties that

represent the correct and secure operation of VA platforms. Such

de�nitions allow identifying property violations during testing to

expose design �aws in the DMC of VA platforms.

In this paper, we address these challenges through DMC-Xplorer,

an automated testing framework that explores VA operation with

di�erent skills controlling multiple devices to discover DMC design

�aws in the DMC of VA platforms.

To create VA environments suitable for testing, we design a con-

cise VA description language (VDL) with a grammar in Backus–Naur

Form (BNF). When a VDL code, including a VA device and a set

of smart devices with their names, types, actions, vendors, and

skills, is executed, it uses VA and skill developer APIs to create a VA

environment. Such APIs allow developers to create and test skills

without any di�erences compared to when these skills are deployed

in real smart homes. Therefore, integrating these APIs into VDL

ensures DMC-Xplorer to directly test the real DMC of VA platforms

in a scalable manner. DMC-Xplorer then leverages a combinato-

rial testing algorithm to con�gure VA parameters (e.g., number

of devices, names, skills). It translates the parameters into VDL to

create a VA environment and issues real voice commands using

developer APIs. After each command, it logs event traces, including

device information, issued command, and the time the command

is received at the VA device and skill back-ends. It validates the

traces against three security properties formally expressed in metric

temporal logic (MTL) to identify violations. Lastly, it conducts an

intervention-based root cause analysis by identifying the parame-

ters that cause property violations to discover design �aws in the

DMC of VA platforms.

We apply DMC-Xplorer to two popular VA platforms, Amazon

Alexa and Google Home. DMC-Xplorer discovered that both plat-

forms violate the voice command availability property. Through

DMC-Xplorer’s root cause analysis, in both platforms, we identi�ed

two design �aws that a malicious skill with default permissions

can exploit. First, VA platforms allow a skill to add duplicate devices

with the same name or type as other devices on the user’s account.

A malicious skill can exploit this �aw to (1) eavesdrop on privacy-

sensitive device states when the user gives a voice command with

device name or type to Google Home and a voice command with

device type to Alexa, and (2) intercept voice commands intended for

other skills when the user gives a voice command with device name

Requests

Device Vendor
Cloud 1

Voice Assistant
Skill Back-End

Voice Assistant
Cloud

Responses

1 2

3

4

Voice
Command

Device Vendor
Cloud n

...

5

Figure 1: The interactions among VA platform components,

from a given voice command to its execution.

to Alexa. Second, VA platforms do not have a proper bound check

on the number of devices a skill can add to a user’s account. This

allows a malicious skill to add many devices to the user’s account

to (1) delay voice commands given to the Alexa, (2) block voice

commands given to Google Home, and (3) overload both Google

Home’s and Alexa’s computational resources at their cloud back-

ends. We physically con�rmed both design �aws exist in Alexa and

Google Home by adding 1K duplicate devices to the user accounts.

Unfortunately, preventing these attacks is di�cult, as any restric-

tion to skill permissions can prevent benign skills from functioning

properly, causing a security-utility trade-o�.

In summary, we make the following contributions.

• We design a domain-speci�c language (VDL) in BNF grammar

to create VA environments for di�erent VA platforms using

their developer APIs.

• We introduce DMC-Xplorer, a VA operation testing frame-

work that discovers DMC design �aws in VA platforms. DMC-

Xplorer leverages VDL to create VA environments, automati-

cally issues voice commands, logs event traces, and validates

the traces against three formal security properties.

• We use DMC-Xplorer2 on Alexa and Google Home and ex-

pose two previously unknown design �aws in their DMC.

• We develop four attacks exploiting the identi�ed design �aws

and show that a malicious skill with default permissions

can eavesdrop on privacy-sensitive device states, prevent

users from controlling devices, and overload the VA cloud’s

computational resources. We then propose three proactive

and reactive countermeasures to mitigate these attacks.

Responsible Disclosure. During our testing, we use a test-user

account on the VA platforms and limit our testing parameters to

prevent �ooding the VA cloud and sending super�uous requests.

We have sent an initial report about the design �aws to Amazon

using theAmazonVulnerability Research Program onHackerone [7]

and Google using their Vulnerability Reward Program [29]. Both

Amazon and Google acknowledged the �aws and recommended

users be cautious about the skills they install (i.e., installing skills

from trusted vendors). DMC-Xplorer is an important step towards

informing the public of the risks that skills present.

2 Background

VA platforms provide a set of APIs for third-party developers to

develop skills that monitor and control devices. Users can then

install skills through VA marketplaces with their mobile or desktop

apps or by issuing voice commands to their VA devices.

2We make DMC-Xplorer available at https://github.com/purseclab/DMC-Xplorer to
foster future research on the security of VA platforms.

720

An Investigation of Device Management Flaws in Voice Assistant Platforms Proceedings on Privacy Enhancing Technologies 2025(2)

VA platforms allow adding devices to user accounts in three

ways [19, 20]: (0) Users can manually add devices through mobile or

desktop apps; (1) VA platforms can detect and add devices without

user interaction; (2) Skills have default permissions to add devices

they detect in the user’s physical environment. Similarly, users

can remove devices from their accounts [56, 57] through mobile or

desktop apps and by uninstalling a skill, which in turn removes all

devices added by that skill.

We refer to the process of adding devices to a user’s VA account

and controlling them via a particular skill with a voice command

until the device’s removal from the user’s account as the device

management capabilities (DMC) of VA platforms. During this pro-

cess, multiple VA components, both internal to the VA platform

and external, interact with each other, as shown in Fig. 1.

Skill Back-end and Vendor Clouds. After the user gives a voice

command, the VA device relays it to the VA cloud (1). The VA

cloud converts voice into text, extracts the user’s intent, determines

which device the user wants to control, and sends a request to the

corresponding skill back-end (2). The skill back-end then commu-

nicates with the device vendor cloud, which resolves the request

(3) or relays it to other vendor clouds until the one interacting

with the device is reached (4).

Voice Command Execution. The vendor cloud sends commands

to devices in two ways. First, for devices connected to the Internet,

the vendor cloud directly issues the command (5). The vendor

cloud then responds to the skill back-end, which noti�es the VA

cloud that the command is executed. Second, for devices connected

to a VA device over short-range communications (e.g., BLE), the

vendor cloud forms a command message and sends it to the skill

back-end. The skill back-end sends it to the VA cloud, which sends it

to the VA device. The VA device issues the command to the device.

3 Problem Statement

By studying the developer documentation of popular VA platforms

(e.g., Alexa [2] and Google Home [28]), we observe that the DMC

of VA platforms ensures three key security properties: Voice Com-

mand (VC) Con�dentiality, VC Integrity, and VC Availability. These

properties ensure, respectively, that the VA platform does not send

requests to unintended skills, sends the user-intended command to

the device, and issues the commands to skill back-ends in a time

delivering an acceptable quality-of-service. VA platforms achieve

these properties using the device information stored in the user

account, which is governed by the DMC of VA platforms.

These security properties, however, can be violated by skills due

to potential design �aws in the DMC of VA platforms. The property

violations express deviations from the expected execution of voice

commands, indicating that commands are sent to the unintended

skills to cause privacy issues, the VA sends an incorrect command

to a device, and the VA fails to execute voice commands. We show

in Sec. 6 that malicious skills with default permissions can exploit

these violations and launch attacks on Amazon Alexa and Google

Home to jeopardize the security and privacy of smart homes.

Voice Command Con�dentiality (P1). This property ensures

each user-intended skill receives the voice command request while

others do not. For instance, when the user gives a voice command

lock the front door, VC con�dentiality ensures only the skill that

controls the lock receives a request. VA platforms ensure VC con�-

dentiality by correctly determining the device(s) the user intends

to control and only issuing commands to their associated skills.

The adversary can exploit VC con�dentiality violations to obtain

privacy-sensitive information about smart home device states. For

instance, when the user gives a voice command to turn o� their

bedroom lights, the adversary receives this command. Such informa-

tion could help the adversary to infer the user’s routine (e.g., when

they go to sleep) and location (e.g., whether they are at home).

Voice Command Integrity (P2). This property holds if the VA

sends the user-intended commands to devices. For instance, when

the user gives a voice command lock the front door, VC integrity

ensures the VA platform does not issue an incorrect command

(e.g., unlock). VA platforms o�er VC integrity by issuing the correct

command extracted from the user’s voice command to devices.

The adversary can leverage VC integrity violations to manipulate

the commands given to devices. For instance, the user gives the

voice command lock the front door, but the adversary causes the

VA platform to issue the unlock command.

Voice Command Availability (P3). This property ensures the

user’s voice command is executed within an acceptable time, e.g., ≤

8 secs [3]. VA platforms o�er VC availability by extracting the user’s

intent from a voice command, �nding the corresponding devices in

the user’s VA account, and issuing the commands within a given

time frame, to guarantee the desired quality of service.

VC availability violations allow an adversary to deny or delay

voice commands, preventing users from controlling their devices.

This poses a security risk, especially when VAs are used to control

safety-critical devices, such as door locks, cameras, and �re alarms.

3.1 Threat Model

We consider an adversary who aims to trigger the security property

violations in the DMC of VA platforms to obtain privacy-sensitive

information, manipulate device commands, and prevent users from

controlling their devices. We assume the adversary achieves this

by developing a skill installed to the user’s VA account. To be

installed by a victim, the adversary’s skill must be �rst approved for

publication on the skill marketplace. Unfortunately, VA platforms’

skill vetting process cannot prevent the attacker’s skill from being

published since the adversary’s skill uses the default permissions in

the DMC of VA platforms. Additionally, prior work has shown the

weaknesses in the skill vetting process and demonstrated that skill

vetting can be bypassed and skills are only vetted when initially

submitted but not routinely afterward [18, 43, 67, 71].

After vetting, the adversary can distribute the skill to many users

by publishing it on the VA skill marketplace [18, 44]. To ensure

that the skill is installed by users, the adversary can leverage skill

squatting attacks and give their skills similar names to popular

skills [41, 44, 59, 83, 85]. Additionally, the adversary can also target

a speci�c user to install their skill. To this end, the adversary can

(1) conduct hidden voice injection attacks [14, 16, 17, 21, 76, 81]

(e.g., Alexa installs a skill when it is given a voice command as

‘Alexa, enable [Skill Name]’), or (2) trick the user into installing the

skill via phishing and social engineering methods [72].

721

Proceedings on Privacy Enhancing Technologies 2025(2) Ozmen et al.

VA Device Management Testing Security Analysis

Configuration Parameters

1 2 3

VA ParametersDevice Parameters

Property

Violations

Property

Validation

VA Event

Logger

Event

Traces

Parameter

Generation

Voice Command

Execution

VA Environment

Initialization via

VDL

VA

Environment

Devices

Virtual VA Device

Skills, Skill Back-ends

VA Description

Language (VDL)

VDL Design

Device

Management

Flaws

Property-

Parameter

Mapping

Figure 2: Overview of DMC-Xplorer architecture.

3.2 Design Challenges

C1: Creating a VA Testing Environment. Discovering design

�aws in the DMC of VA platforms requires a VA testing environment

that allows generating di�erent user accounts with various param-

eters (e.g., devices with di�erent names, types, actions, and skills)

and sending voice commands to validate security properties. One

may consider conducting tests with physical VA devices; however,

multiple tests with di�erent parameters are impractical due to the

manual e�ort required. Unfortunately, the closed-source nature of

VA platforms prevents us from directly testing their DMC software

to expose design �aws. Although VA and skill developer APIs exist

for black-box testing, simply sending inputs through such APIs is

not enough to expose DMC design �aws. This is because identify-

ing the design �aws in the DMC of VA platforms requires creating

di�erent VA environments with various parameters.

To address this, we design a domain-speci�c language that uses

VA and skill developer APIs to generate real VA environments that

enable creating di�erent tests and issuing real voice commands in an

automated and scalable manner. However, designing a generalizable

and practical domain-speci�c language for VAs is a challenging task

because VA environments can include diverse devices (e.g., light,

camera, door lock) with di�erent actions (e.g., on/o�, dimming).

C2: Large Parameter Space. Various user VA accounts can be

generated with di�erent numbers of devices with di�erent names,

types, and skills. One may use falsi�cation [8, 52] or fuzzing [49] to

identify the user account parameters (e.g., number of devices and

their names, types, and skills) that violate the security properties.

Yet, falsi�cation needs numerical feedback for parameter selection.

Unfortunately, VA security properties are boolean-typed (satis�ed

or violated) and, thus, cannot guide falsi�cation. Similarly, most

fuzzing techniques require feedback from prior tests (e.g., code

coverage). Since VA platforms are closed-source, they are infeasible.

One may use black-box fuzzing [74] without guidance. Yet, it

would generate random parameters, which may not expose prop-

erty violations. There are also black-box fuzzing techniques with

guided input mutation, such as the skill squatting attacks [41] that

mutates voice to �nd phonetically similar words. However, these

mutation strategies are designed speci�cally to expose di�erent

types of �aws and vulnerabilities, and therefore, cannot be applied

to identify DMC design �aws. To address these, we �rst identify the

VA parameters that in�uence security properties.We then introduce

a combinatorial approach to test parameter combinations and dis-

cover design �aws in the DMC of VA platforms. To our knowledge,

our mutation strategy is the �rst to create semantically di�erent

VA environments by mutating VA parameters.

C3: Formally Checking the Security Properties. After deter-

mining the user account parameters, we must send voice commands

and check if the security properties hold in each test. This requires

formally representing the properties amenable for validation. Prior

work on VA security has explored properties to identify and prevent

privacy-sensitive information leakages [30, 47, 62] and check which

skill is invoked given a voice command [41, 85]. Although such

properties can be useful in detecting VC con�dentiality violations,

they cannot detect VC integrity and availability as these proper-

ties require reasoning about the speci�c voice command sent to

devices and the temporal aspects of VC execution. To address this,

we formally de�ne new security properties through MTL, which

extends the operators of linear temporal logic (LTL) with timing

constraints [40]. Lastly, VA platforms do not generate logs that

would allow property validation. Thus, we build a logging mecha-

nism that records events during VA platform operation to validate

the security properties after each voice command.

4 DMC-Xplorer Design

We introduce DMC-Xplorer, an automated VA operation testing

framework that identi�es design �aws in the DMC of VA platforms.

Fig. 2 illustrates the overview of DMC-Xplorer.

We �rst design a domain-speci�c language VDL (VA Description

Language), addressing C1 (1 , Sec. 4.1). VDL provides a concise

syntax to create an environment with a VA controlling multiple

devices parameterized by their names, types, vendors, actions, and

associated skills. When a VDL code is executed, it generates a VA

environment by leveraging VA and skill developer APIs to add

devices and skills to a user account and associate them with a

virtual VA device and skill back-ends. DMC-Xplorer then addresses

C2 by selecting VA parameters through a combinatorial algorithm

that generates di�erent numbers of devices with various names and

types, controlled by single or multiple skills (2 , Sec. 4.2). It next

uses VDL to create a VA environment from the parameters.

DMC-Xplorer then issues real voice commands to the created

VA environment through developer APIs. This ensures direct test-

ing of the DMC of VA platforms when a voice command is given.

After each voice command, DMC-Xplorer logs event traces with

device con�gurations, issued voice commands, and the requests

each skill receives. Lastly, it validates the traces against three se-

curity properties formally represented in MTL and conducts an

intervention-based root cause analysis to discover the design �aws

in the DMC of VA platforms, addressing C3 (3 , Sec. 4.3).

TargetApplication of DMC-Xplorer. We introduceDMC-Xplorer

for VA developers to identify the design �aws in the DMC of their

platforms. Identifying such �aws during development can allow

developers to make more informed design choices and revise their

722

An Investigation of Device Management Flaws in Voice Assistant Platforms Proceedings on Privacy Enhancing Technologies 2025(2)

setupInst := Setup (vaList)

vaList := vaInst | vaList

vaInst := VoiceAssistant (vaProperties)

vaProperties := vaPlatform, vaDevType

devList := devInst | devInst @ actList | devList

deviceDefn := class Device[(SmartHome)]:

(ID: devID, vendor: vName, skill: skillID)

devInst := Device (devProperties)

devProperties := ID, vendor, skill

actList := action | action @ actPrmList | actList

action := string

actPrmList := actionParameter | actPrmList

actionParameter := string | integer

Basic data types;

vaPlatform := string

vaDevType := string

devID := string

vName := string

skillID := string

For completeness;

string := char | char string

char := 0x00 | 0x01 | . . . | 0xFF

integer := [’+’ | ’-’] naturalNumber

naturalNumber := digit | digit naturalNumber

digit := ’0’ | ’1’ | . . . | ’9’

Listing 1: Formal VDL grammar.

implementation of the DMC of their platforms. Although the in-

tended users are developers, VA end users can also use it to identify

such �aws, informing them about possible risks, as it doesn’t require

VA platform source code. We note that during testing, DMC-Xplorer

does not consider any malicious skills (considers all skills are be-

nign) while identifying the design �aws. Yet, in Sec. 6, we show

how such design �aws can be exploited through malicious skills.

4.1 VA Description Language (VDL)

We design a domain-speci�c language, VDL, which provides a con-

cise syntax to simplify the task of creating VA environments. VDL

is a key component of DMC-Xplorer since it allows creating VA

environments for di�erent platforms (e.g., Alexa and Google Home)

with di�erent sets of devices controlled by multiple skills. DMC-

Xplorer uses these environments to issue voice commands and

validate VA platforms’ behaviors against security properties to

discover the design �aws in their DMC (detailed in Sec. 4.2).

4.1.1 VDL Grammar. Listing 1 presents the VDL grammar in the

BNF notation. VDL describes VA environments with a VA device and

a set of devices in the user account. To determine the attributes/pa-

rameters of the VA environments, we study the developer documen-

tations of popular VA platforms and analyze how they store the VA

and device information. We de�ne a VA device with two attributes:

platform (e.g., Alexa) and type (e.g., Echo). Each device in the user

account has a type, name, actions, vendor name, and associated

skill. VDL includes default actions as turn on and turn off, and al-

lows users to de�ne other actions. Here, device actions can include

numerical values (e.g., dim the light to 10%). Thus, VDL includes an

action parameter list that supports integer values.

Table 1: Built-in smart home device classes and their actions.

Smart Home Classes Supported Actions

Lights turnOn, turnO�, brighten, dim

Thermostat setTemp, increase, decrease

Lock lock, unlock, status

Cooler increaseSpeed, decreaseSpeed

Camera answer, show, hide

Washing Machine status, pause, resume

Refrigerator checkTemp, setTemp

Television setVolume, play, pause

1 class waterHeater(smartDevice) :

2 def __init__(self, devID, vName, skillID) :

3 smartDevice.__init__(self, devID, vName, skillID)

4 waterHeaterInst = waterHeater(“3”, “ManuC”, “Skill3”)

Listing 2: An example of a new class de�nition in VDL.

@ Operator. We de�ne a linkage (@) operator in VDL to associate

action parameters to actions, actions to devices, and devices to VAs

while constructing a VA environment.

Classes and Objects. We integrated eight common device types as

built-in classes for VDL. Table 1 outlines the built-in device classes

and their actions.We de�ne these smart home device types based on

a generic Device superclass that contains ID, vendor, skill class

variables. Since VAs have similar capabilities, we implemented a

single VA class named VoiceAssistant that has two class variables,

the VA platform (i.e., Alexa, Google Home) and VA device type

(i.e., Echo, Nest). We also de�ne a Setup class that is called to create

the VA environment through API calls.

The code block in Listing 2 shows the implementation of a new

smart home device class and the creation of an instance of the

newly implemented device. In this example, the user constructs a

new device class (water heater) that is not built-in and creates an

instance that can be used in testing the DMC of VA platforms. This

feature gives users a variety of testing options since new smart

home device classes can be easily introduced.

Functions. To improve the usability of VDL, we develop functions

to make it concise and clear. Since DMC-Xplorer’s DMC testing in-

cludes repetitions of the parameters, we introduce a set of functions

to facilitate e�cient grammar.

• Group. DMC-Xplorer generates VA parameters in which

a group of smart devices has the same name (detailed in

Sec. 4.2). To reduce code repetition, we propose a group func-

tion to facilitate de�ning such device groups. The group func-

tion takes a smart device class, a list of device IDs, vendors,

skills, and the linked VA object as parameters and returns a

list of corresponding device objects.

• Compare. This setup class function generates the same set

of devices for two di�erent VAs. It can be used to compare

the behavior of two di�erent VAs for the same set of devices.

• All. This setup class function generates a sample device

from all device classes. This function only requires de�ning

a VA and setup class. It then generates devices of all types

and assigns a valid value for the parameters of each device.

723

Proceedings on Privacy Enhancing Technologies 2025(2) Ozmen et al.

Virtual VA

Device

User VA Account

DevicesSkills

Skill Back-

ends

VDL

VA EnvironmentSkill Developer API

3

2

1

Voice Assistant API

4

Figure 3: VDL executor’s VA testing environment creation.

1 alexaEnv = VoiceAssistant(“Alexa”, “Echo”)

2 dev1 = Light(“bedroom light”, “Philips”, “Skill1”)

3 dev2 = Lock(“front door lock”, “Schlage”, “Skill2”)

4 LightActionList = [“turnOn”, “Dim@10”, “turnOff”]

5 LockActionList = [“lock”, “unlock”]

6 dev1@LightActionList

7 dev2@LockActionList

8 alexasetup = Setup(alexaEnv)

9 alexasetup@dev2

10 alexasetup@dev1

Listing 3: An example VDL code that corresponds to a VA

testing environment with Alexa, two devices, and two skills.

4.1.2 VDL Execution. Figure 3 shows how VDL executor creates

a VA environment, including a virtual VA device, a set of devices,

and a set of skills with back-ends, using VA and skill developer

APIs. These APIs are provided to developers to create and test their

skills without any di�erences when these skills are deployed in real

smart home environments. Therefore, integrating such APIs into

VDL allows us to test the real DMC of VA platforms.

Given a VDL code, VDL executor �rst links the virtual VA device

to a user account using the developer APIs (1). Through the virtual

VA device, VDL executor enables sending real voice commands to

the VA cloud. VDL executor next builds the skills and their back-

ends, which handle the voice command requests (2 - 3). It uses

VA APIs to set the skill type and the work�ow between the VA

cloud and the skill back-end. It speci�es an API endpoint on a web

server as the skill back-end. The skill back-ends directly respond

to requests from the VA cloud to control devices, mimicking the

operation of vendor clouds.

After creating skills and their back-ends, VDL executor associates

each skill with an authorization code, which grants the skill permis-

sion to add devices to the user’s VA account. Thus, it leverages the

skills to add devices with names, types, actions, and vendor names

provided in the VDL code to the user account (4).

Example. We present a sample VDL code in Listing 3, which

represents an Alexa-controlled VA environment with a light and

door lock. Given this code, VDL executor �rst de�nes a virtual VA

device for Alexa (Line 1). It then instantiates two devices with built-

in light and lock classes (Line 2-3). For instance, from Line 2, it

sets the device’s type as light, name as bedroom light, vendor as

Philips, and skill as Skill 1. It then creates device actions (Line

4-5), e.g., the lock and unlock actions for the front door lock.

Here, we leverage the linkage operator (@) to associate illu-

minance action parameter to an action (bedroom light’s dim)

(Line 4) and the device action lists to the devices (Line 6-7). Lastly,

VDL executor sets up the Alexa environment (Line 8) and links the

devices to the VA setup (Line 9-10).

Algorithm 1 DMC-Xplorer VA Device Management Testing

Input: Security Properties (Lp), VA Parameter-Property Mapping (M[v, p]), List of
voice commands (Lvc)

Output: Data Traces (D), Property Violations (Lvio)
1: function VA_Explore(Lp , M[v, p], Lvc)
2: for each p in Lp do
3: Lv = argj (M[j, p] = 1)

4: params← Combinatorial(Lv)
5: vdl← create_vdl(params)
6: va_env← vdl.execute()
7: Di ← va_env.execute(Lvc)
8: D = D ∪ {Di, params}
9: if �8 ⊭ ? then Lvio = Lvio ∪ params
10: end if
11: end for
12: return D, Lvio
13: end function

4.2 VA Device Management Testing

DMC-Xplorer uses VDL to create VA environments and issues real

voice commands to discover design �aws in the DMC of VA plat-

forms. For each environment, DMC-Xplorer must determine the VA

parameters, namely, the number of devices and each device’s type,

name, vendor, skill, and actions. These parameters encompass all

parameters that a VA uses in the user account for their DMC. As

detailed in C2, Sec. 3.2, unfortunately, prior parameter generation

methods may not uncover DMC design �aws in VA platforms.

To address this, we �rst map the security properties to the VA pa-

rameters that may in�uence them. VA parameters are the variables

in VDL (number of devices and each device’s name, type, vendor,

skill, and actions), and properties are VC con�dentiality, integrity,

and availability, as detailed in Sec. 3. DMC-Xplorer then selects the

parameters in a combinatorial approach, creating parameter com-

binations that comprehensively cover the parameter space. It next

creates testing environments through VDL and issues real voice

commands, as shown in Algorithm 1.

The algorithm takes, as input, security properties, a list of voice

commands, and the VA parameter-property mapping. For each secu-

rity property, the algorithm �nds the parameters that impact it from

their mapping (Line 3). It then generates VA parameters through a

combinatorial approach (Line 4) and translates them into VDL (Line

5). It executes the VDL code to create a VA environment through VA

developer APIs (Line 6). It then issues real voice commands to the

devices (Line 7) and logs event traces, including timestamped com-

mands and their skill back-end requests (Line 8). It uses these traces

to validate formally represented security properties and discover

design �aws in the DMC of VA platforms (Line 9-10) (See Sec. 4.3).

4.2.1 VA Parameter and Security Property Mapping. We construct

a binary matrix, M[v, p], by studying VA developer documentations,

to map each VA parameter (v) to the security properties (p) that

they may impact. In the matrix, M[v, p] = 1 means v in�uences p

and 0means it does not. This matrix allows selectively mutating the

parameters for a scalable exploration of the DMC of VA platforms.

First, the device types and names may in�uence all security prop-

erties as they are included in voice commands. Second, the number

of devices may also in�uence all properties. as more devices in the

user account may increase the request delays of voice commands

and complicate correctly determining the skills and actions. Third,

the device actions may impact VC integrity, as they may cause

mismatches between the given voice command and the device’s

724

An Investigation of Device Management Flaws in Voice Assistant Platforms Proceedings on Privacy Enhancing Technologies 2025(2)

supported actions. Yet, actions do not impact the voice command

delay and which devices receive the given command. Fourth, the

skills may a�ect all properties because they receive the given voice

commands. Lastly, the device vendors do not impact any prop-

erty since they are not referred to in voice commands, and do not

in�uence the request delay or actions devices receive.

4.2.2 VA Parameter Selection. DMC-Xplorer generates di�erent

sets of parameters, guided by the parameter to security property

mapping, to create VA environments for property validation. It

adopts a hierarchical approach to selecting VA parameters. It �rst

determines the number of devices, and for each device, it creates

its types, names, skills, and actions.

Selection of the Number of Devices. DMC-Xplorer determines

the max number of devices it can add to a user’s VA account, and if

the VA platform does not impose a limit, it stops at a user-de�ned

limit to enable scalable exploration. DMC-Xplorer then uses a scal-

ing parameter (d) to divide the max number of devices into speci�c

values. For instance, if the max value is 1000 and d = 6, it cre-

ates {2, 200, 400, 600, 800, 1000} devices in each test. Here, the min

number of devices is 2 as a single device would generate trivial tests.

Selection of Device Parameters. DMC-Xplorer next selects each

device’s parameters by focusing on the property-parameter map-

ping. Our observation is that, for the DMC of VA platforms, the

speci�c device types, names, skills, and actions are insigni�cant.

Instead, the number of devices having the same parameter may im-

pact security properties since it determines the number of devices

a voice command intends to control. For instance, while creating

two devices, generating a light and lock is indi�erent from gen-

erating a camera and TV as each device type is unique and the

command will only refer to one device. Thus, instead of mutating

parameter values, DMC-Xplorermutates the number of devices that

have the same property. This ensures that it generates semantically

meaningful parameters for comprehensive and scalable testing.

To this end, DMC-Xplorer uses another scaling parameter (l)

indicating the portion of devices that have the same name, type,

skills, or actions. For instance, if the number of devices is 20 andl =

5, it creates {1, 5, 10, 15, 20} devices with the same type in each test

and sends the voice command to the given type (See Sec. 4.2.3). The

higher values of the scaling parameters (d,l) provide a more �ne-

grained search, whereas their lower values o�er higher scalability.

We set these parameters in Sec. 6 to values that enable a reasonable

trade-o�. While determining each test’s parameters, DMC-Xplorer

starts with the min number of devices and mutates each parameter

until a property violation occurs or the parameters are completed.

4.2.3 Voice Command Execution. After determining VA param-

eters, DMC-Xplorer leverages VDL to create a VA environment

and issues voice commands for testing. Particularly, DMC-Xplorer

parses each set of VA parameters into a VDL code. DMC-Xplorer

then executes the VDL code to generate a VA environment. Lastly,

it issues real voice commands to the created environment.

4.2.4 VA Event Logger. DMC-Xplorer logs events for each issued

voice command (t) and for each request received by skill back-ends

(d), enabling it to validate security properties.

Voice Command Events. We de�ne each voice command event

(t) as t = (devices, vc, ts, exNum). The devices is an array of

1 D1 = {t1 , d1,1 , d1,2} // Events recorded

2 t1= (d e v i c e s : [bedroom light , kitchen light] ,

vc : [type : L igh t , command : tu rn on] , ts : 5 : 0 0 : 0 0 ,

exNum : 1) // [turn on all lights] command given at 5:00:00

3 d1,1 =(S k i l l 1 , cmd : tu rn on , t s : 5 : 0 0 : 0 2 , ex : 1)

4 d1,2 =(S k i l l 2 , cmd : tu rn on , t s : 5 : 0 0 : 0 4 , ex : 1)

Listing 4: Example logs collected by DMC-Xplorer.

devices that the voice command (vc) intends to control. The vc has

three attributes: command, type, and name, e.g., the command turn

on all lights contains vc.command = turn on, vc.type = Light,

vc.name = null attributes. The ts is the timestamp when the voice

command is issued. The exNum is a unique voice command ID used

to relate voice command and skill back-end events.

Skill Back-end Events. DMC-Xplorer logs events at skill back-

ends (d) for each request received from the VA cloud. This enables

DMC-Xplorer to analyze the requests the VA cloud issues after

it receives the voice command. We express each skill back-end

event as d = (skill#, command, ts, ex). The skill# is an identi-

�er. The command is the request type received from the VA cloud,

e.g., turn on, and the ts is the request’s timestamp. Lastly, the ex

is the last issued voice command’s ID, which is used to associate

each voice command event with skill back-end events.

The logs contain a data trace for each issued voice command as Di
= {ti, di,1, di,2, . . . , di,m}, where m is the number of requests received

across all skill back-ends after the voice command ti is issued.

Each event di,j is one request issued from the voice command i

and received by the skill back-end j.

Example. Listing 4 shows example events DMC-Xplorer logs.

Here, DMC-Xplorer adds two devices to the user’s VA account,

(1) a device named kitchen with type Light, and associated with

Skill 1, (2) and a device named bedroom with type Light, and

associated with Skill 2. DMC-Xplorer then issues a voice com-

mand as turn on all lights. It logs an event to record the voice

command (t1), and two events to record the requests received by

the two skill back-ends (d1,1 and d1,2).

4.3 Security Analysis

4.3.1 Security Property Formalization. We represent the security

properties (detailed in Sec. 3) with MTL. This formalization trans-

forms high-level security properties into veri�able formulas that

allow formally validating them on event traces. Table 2 presents the

security properties, their formalization, and their security goals.

VC Con�dentiality (P1). P1 checks whether each user-intended

skill receives a request for the user’s voice command and other

skills do not. For this, P1 validates whether each skill that receives

the voice command controls the device(s) referred by the user. To

determine if a skill controls a speci�c device, this property checks

the list of devices that the skill has added to the user account. P1

violations mean that a skill that does not control any of the devices

the voice command refers to, indicating an unauthorized skill has

received the voice command.

VC Integrity (P2). P2 checks whether the correct command given

by the user is issued to the device. To this end, it validates if the

command in the voice command event (t) is equal to the command

725

Proceedings on Privacy Enhancing Technologies 2025(2) Ozmen et al.

Table 2: Descriptions and formal representations of security properties ensured by the DMC of VA platforms.

ID Security Property Description Formal Representation† Security Goal

P1 VC Con�dentiality
Each user-intended skill must receive the VC request

□(d.skill.devices ∈ t.devices)
Prevent adversaries from eavesdropping

while the others must not. on privacy-sensitive device states.

P2 VC Integrity
The correct commands intended by the user

□(d.command = vc.command)
Prevent adversaries from sending

must be sent to devices. unintended commands to devices.

P3 VC Availability
The user’s voice command must be executed

□(d.command→ ⋄ [0,thld]vc.command)
Prevent adversaries from blocking

within a quality of service time. or delaying voice commands.

†
□ means always. t.devices are the devices the voice command refers to, and d.skill.devices represents the devices controlled by the skills that receive a request for the given

command. d.command is the command the device receives, and vc.command is the voice command. ⋄[0,thld] means eventually in [0, thld] secs.

in the skill back-end event (d). P2 violations mean the VA platform

issues unintended commands to devices.

VC Availability (P3). P3 validates if the given voice command is

executed within a delay threshold (i.e., quality of service time). We

determine the delay threshold (thld) as 8 secs based on Alexa and

Google Home developer documentations and empirically validate

it. If P3 holds, the voice command is executed without delay.

4.3.2 Security Property Validation. DMC-Xplorer validates MTL

formulas on the recorded event traces after executing each voice

command. Our formalization allows using any MTL checker for

property validation. In the DMC-Xplorer prototype, we integrated

PSY-Taliro [68] to validate theMTL formulas on event traces through

a dynamic programming-based algorithm. However, it depends on

additional libraries. For a stand-alone implementation, we leverage

the intuitiveness of our security properties and implement a custom

property-checking algorithm. After validating each security prop-

erty, DMC-Xplorer outputs the VA parameters, logs, and whether

each property is violated or satis�ed.

4.3.3 Intervention-based Root Cause Analysis. DMC-Xplorer’s out-

put allows analyzing the root causes of the violations by deter-

mining the common VA parameters that cause the violations. This

approach is similar to the intervention analysis in causal inference,

which enables distinguishing causal structures based on observa-

tions from intervening in a variable [31].

In our context, when DMC-Xplorer mutates a VA parameter to

di�erent values while keeping other parameters the same, and it

does not cause a property violation, then this parameter cannot

be the root cause. In contrast, if changing the parameter (while

keeping others the same) causes a violation, then this parameter’s

change is the root cause. Particularly, we compare two probabilities,

Prob(p|do(vi = Vi,1))
?
= Prob(p|do(vi = Vi,2))

where p is a security property, do represents the interventions, vi
represents the VA parameters, and Vi represents speci�c parameter

values. If a parameter is the root cause for violations, its changes

cause a signi�cant increase in the probability of the security prop-

erty being violated, allowing us to identify the root causes.

Since DMC-Xplorer’s VA device management testing algorithm

mutates parameters individually, its output enables us to directly

conduct intervention-based root cause analysis without running

additional tests. In turn, the identi�ed root causes reveal the design

�aws in the DMC of VA platforms.

5 Implementation

We have implemented DMC-Xplorer for Alexa [5] and Google

Home [27] as they are the most popular VA platforms. DMC-Xplorer

requires minimal manual e�ort before automated testing: (1) cre-

ating a user account and a virtual VA device, (2) building skills

through smart home skill templates, (3) setting up an event logger,

and (4) determining the request delay threshold. DMC-Xplorer then

automates VA device management testing on Alexa and Google

Home APIs by sending pre-recorded audio to the virtual VA device.

To detail, we �rst create a test VA account on both platforms to

enable VDL executor to install skills that add devices to the user

account. We then set up a virtual VA device using the VA SDKs. For

each skill, VDL executor uses the VA APIs to create their back-end.

As the VA event logger, we con�gure a relational database on a

cloud service [6]. For both VA platforms, we determine the request

delay threshold required to validate VC availability (P3) through

developer documentations [3]. These documentations state that

VA platforms time out and give users an error message after 8

secs. Thus, we set the delay threshold at 8 secs. We empirically

con�rmed this threshold by issuing a voice command and delaying

the response from our skill back-end to record the time Alexa and

Google wait before giving an error. We detail the manual e�ort

required for porting DMC-Xplorer to other VA platforms in Sec. 7.2.

5.1 Platform-speci�c Implementation Details

Amazon Alexa. We implement Alexa skill back-ends in Node.js

on AWS lambda [10] to handle Discovery (initial connection),

AcceptGrant (account sign-in), ReportState (state query), and

PowerController (device control) queries [73]. VDL executor adds

devices proactively, so it does not report any devices in its response

to Discovery messages. In ReportState, VDL executor reports the

device is currently in a hard-coded state. For PowerController, it

reports the device’s new state is whichever state Alexa required

the skill to change it to. Each skill back-end includes approximately

200 LoC used to handle the requests. We use the same code for each

skill back-end except for a hard-coded skill number.

For account sign-in, we leverage the Login With Amazon [48]

authentication model. We get an access code and a refresh code

rather than one authorization code. The access code is used in

proactive requests to the Alexa API, identifying the user, skill, and

authorizing requests to add devices. Although the code expires after

an hour, sending the refresh code to the Login With Amazon API

retrieves a new access code.

VDL executor uses the Alexa /v3/events API [73] to report the

devices from each skill. This API limits the number of reported

devices per message. We space the requests by 100 ms to comply

726

An Investigation of Device Management Flaws in Voice Assistant Platforms Proceedings on Privacy Enhancing Technologies 2025(2)

Table 3: Design �aws discovered by DMC-Xplorer and the attacks that can be performed on Alexa and Google Home.

Exploited Design Flaw Impacted Platform

Duplicate Devices No Proper Bound Check Attack User Voice Command Attack Consequence Alexa Google

✓ ✗ Eavesdropping
[Cmd] [Type]

Malicious skill learns the voice command sent to a benign skill
✓ ✓

[Cmd] [Name] ✗ ✓

✓ ✗ Intercepting [Cmd] [Name] Malicious skill intercepts the voice command sent to a benign skill ✓ ✗

✓ ✓ Delaying [Cmd] [Type] Malicious skill delays the voice command sent to a benign skill ✓ ✗

✓ ✓ Blocking [Cmd] [Name/Type] Malicious skill blocks the voice command sent to a benign skill ✗ ✓

✓ ✓ VA Overloading [Cmd] [Type] Malicious skill overloads the Alexa servers ✓ ✗

with these checks. To set up a virtual VA device, we use Alexa’s code-

based linking [9] to get an authorization code and issue requests to

the speech API [4] on behalf of the user. DMC-Xplorer then sends

the voice commands, containing the authorization code and an

audio �le, to the SpeechRecognizer API.

GoogleHome. We set up a Firebase function [26] for the skill back-

end of Google Home actions to handle the login procedure (initial

connection and account sign-in), onQuery (state query), onExecute

(device control), and SYNC (add devices) requests [36]. The Firebase

function also gets authorization to use the HomeGraph API, which

allows issuing RequestSync messages to the Google Home cloud.

Each Google skill has the same back-end, around 300 lines of Node.js

code, with just a hard-coded skill number changed.

There is no Google Home API to add devices directly. Thus, VDL

executor uses RequestSync and SYNC messages to accomplish this.

A skill sending a RequestSync message to Google Home causes

Google to reply with a SYNCmessage. The skill then responds to this

message specifying the devices it is adding. For this reason, the skill

back-end creates the device con�guration when it receives a SYNC

request. To this aim, it reads the current execution number from

the database, and it uses the current execution number and input

arrays to determine the devices that it needs to send in the report.

VDL executor invokes each skill to send a RequestSync message to

Google Home and updates the execution number in the database

instead of adding devices directly.

6 Evaluation

We leverage DMC-Xplorer to discover design �aws in the DMC of

two most popular VA platforms, Amazon Alexa and Google Home.

DMC-Xplorer selects the VA parameters through a combinato-

rial approach, with the scaling parameters d and l set as 6. We

select these parameters since they enable a scalable but comprehen-

sive exploration. We found that a more �ne-grained exploration

does not reveal additional design �aws while increasing the test-

ing overhead. DMC-Xplorer then translates the parameters into

VDL and executes the VDL code to generate VA environments.

To control the devices, DMC-Xplorer issues voice commands as

turn on all [device type] and turn on [device name].

We run our experiments on a computer with an Intel Core i5

CPU running at 3.9 GHz with 16 GB RAM.

Property Violations. DMC-Xplorer �nds that both Alexa and

Google Home violate the P3 (VC availability) security property.

These violations indicate that the voice command execution is

delayed by more than 8 secs. DMC-Xplorer also �nds that neither

platform violates the P1 and P2 properties, indicating that (1) the

skills that receive voice commands have added the user-referred

devices to the user’s VA account, and (2) the commands delivered to

the skill back-ends correctly match the issued voice commands. To

ensure that the parameters eliminated with the parameter-property

mapping matrix (See Sec. 4.2.1) do not cause missed violations, we

conducted experiments while mutating those parameters and found

that they do not cause additional violations.

Root Causes. DMC-Xplorer’s root cause analysis indicates that

the property violations on Amazon Alexa are due to devices with

the same name or type being in the user account or a high number

of devices. For instance, DMC-Xplorer found that when it adds 200

devices with the same name to the user account from two skills

and issues the command turn on [device name], Alexa only sends

a request to the last skill that added the device.

For Google Home, DMC-Xplorer found that all violations occur

when 1K devices with the same name or type are added to the

user account. DMC-Xplorer discovered that although Google Home

allows a skill to add 1K devices to the user account, it does not send

a request to skill back-ends when the user issues a voice command

if the devices have the same name or type, violating P3.

Thus, DMC-Xplorer’s root cause analysis found there are two

design �aws in the DMC of Alexa and Google Home: (1) duplicate

devices in the user account and (2) no proper bound on the number

of devices added by a skill. We physically validated that both design

�aws exist in Alexa and Google Home by adding 1K duplicate devices

to the user VA accounts. Table 3 summarizes the design �aws and

the attacks we introduce to exploit them through malicious skills.

6.1 Duplicate Devices in the User’s VA Account

We refer to duplicate devices as devices in the user’s VA account

that have the same name and/or type. DMC-Xplorer’s root cause

analysis found that both platforms allow skills to add duplicate

devices to user accounts. Although duplicate devices may have

unique ids that distinguish them in the user account, when a user

issues a voice command, the VA platforms fail to distinguish them.

The VA platforms do not prevent skills from adding duplicate

devices for two main reasons. First, users may have multiple devices

with the same type (e.g., multiple light devices) or name (e.g., mul-

tiple living room lights) in their home. Second, a user may register

the same device to multiple skills (e.g., the user registers a Hue light

through a Philips skill and the Apple HomeKit skill), which in turn

causes these skills to add duplicate devices to the user account.

To investigate the impact of duplicate devices in user accounts,

we leverage the DMC-Xplorer event traces and analyze the number

of requests received by skill back-ends.We found that when the user

issues a voice command [Cmd] [Device Type] (e.g., turn on the

lights), both platforms send a request to all devices of the given

type. On Alexa, when the user controls devices with a speci�c name,

727

Proceedings on Privacy Enhancing Technologies 2025(2) Ozmen et al.

Benign

Skill

Attacker

Skill

User
Alexa

Cloud

Attacker

Skill

Benign

Skill

VC with device

name or type Attacker

Skill

Benign

Skill

Google

Cloud

Alexa

Cloud

Add Device

Add Device with the

same type or name

Attack Setup

User

VC with device

type

A1: Eavesdropping Attack

VC Request

VC Request

A2: Intercepting Voice Commands Attack

VC with

device name

VC Request

No VC Request

User VA Account

Skills

Benign Skill
Attacker Skill

Devices

Front Door Lock
Front Door Lock

Figure 4: Illustration of eavesdropping and intercepting voice command (VC) attacks with a �nite state machine. Each node

represents a VA component, and the edges represent their interactions.

it sends a request to the most recently added device with that name.

For example, if there are multiple devices named bedroom light

and the user issues the voice command turn on bedroom light,

only the last added bedroom light receives the request. In contrast,

when the user issues a voice command to a device name on Google

Home, it sends a command to every device with that name.

Our �ndings on Alexa and Google Home show that skills can

add duplicate devices to user accounts with any device information

without notifying the user. An attacker can leverage malicious skills

and exploit such DMC permissions to launch two di�erent attacks.

6.1.1 A1: Eavesdropping on the Privacy-Sensitive Device States. We

design an attack in which a malicious skill (installed by a user) adds

devices with the same type or name as another device to eavesdrop

on the user’s voice commands. The attacker can launch this attack

by the following three steps, as illustrated in Fig. 4.

1 The attacker skill adds a device with the same name or type

as another device to the user’s VA account.

Benign Skill→ door

Attacker Skill→ door

2 The user issues a voice command to a device type or name

([Cmd] [Type/Name]), where an attacker has added device(s)

with that device type/name to the user account.

User→ unlock all doors

3 The attacker skill learns the user’s voice command.

unlock-door→ Benign Skill Back-end

unlock-door→ Attacker Skill Back-end

Attack Impact. When a user issues a voice command to a device

type (e.g., lock the doors) or name (e.g., lock the patio door),

the attacker skill back-end receives the request to change device

states (Table 3, �rst row). Here, the attacker can infer if the user’s

doors are locked or not. Since the attacker is not limited in the

number of devices they can add to a user account, they can addmany

devices with common types and names and obtain device states

every time a user issues a voice command (detailed in Sec. 6.1.3).

Additionally, this attack is stealthy, as benign skills and physical

devices receive voice commands and operate as usual. For instance,

when the user issues the unlock all doors command, the doors

physically get unlocked. However, the attacker also receives this

command, unbeknownst to the user.

The eavesdropping attack does not apply to Alexa when the

user issues a voice command to a device with its name. This is

because, in such cases, Alexa only sends the command to the last

added duplicate device, which makes Alexa vulnerable to our voice

command interception attack, as detailed next.

6.1.2 A2: Intercepting Voice Commands. We design an attack on

Alexa where an attacker intercepts the voice commands sent to

devices that a user intends to control, as shown in Fig. 4. While A2

has similar steps with A1, here, the attacker needs to add a device

to a user account with the same name already added by the user.

1 The attacker skill adds a device with the same name as an-

other device on the Alexa user account.

Benign Skill→ front door

Attacker Skill→ front door

2 The user issues a voice command to a device name where

an attacker has added a device with that name.

User→ lock the front door

3 The attacker skill intercepts the user’s voice command.

lock-front-door ̸→ Benign Skill Back-end

lock-front-door→ Attacker Skill Back-end

Attack Impact. When a user issues a voice command to a device

name, the attacker’s skill intercepts the request, preventing the

physical device from receiving the command (Table 3, second Row).

This attack does not apply to Google Home because it sends a

request to every device with the same name rather than the most

recently added device, making it susceptible to the eavesdropping

attack, as detailed in Sec. 6.1.1.

The users can notice this attack since their voice command will

not be executed by the physical device. Yet, the attacker can care-

fully select which commands they intercept to remain stealthy. For

instance, intercepting a turn off the bedroom light command

can be noticed. On the contrary, users may be less likely to no-

tice if the attacker intercepts the commands given to cameras

(e.g., turn on the front camera) and door locks (e.g., lock the

front door). To be more stealthy, the attacker’s skill back-end can

also send fake con�rmation messages to the user, stating the com-

mand has been executed, while in reality, it has not.

6.1.3 Selecting Device Types and Names. The eavesdropping and

intercepting attacks require the attacker to add a duplicate device to

the user’s VA account.We conduct additional analysis to understand

how an attacker can determine which device types and names

they can add to users’ VA accounts to maximize their chances of

eavesdropping on and intercepting voice commands.

We found there are 17 supported device types on Alexa [5] and

79 on Google Home [27]. Thus, to conduct an eavesdropping attack,

the attacker only needs to add 17 devices to Alexa and 79 devices to

Google Home. This would allow the attacker to eavesdrop on any

voice command given as [Cmd] [Device Type] for both platforms.

728

An Investigation of Device Management Flaws in Voice Assistant Platforms Proceedings on Privacy Enhancing Technologies 2025(2)

Figure 5: Delay between a voice command and request to

control di�erent numbers of devices.

Selecting device names is more challenging since users can name

their devices di�erently. To understand how users name their de-

vices on VA platforms, we studied posts on o�cial and third-party

smart home forums. We found that users usually give predictable

names to their devices in the form of [Location] [Device Type] [11,

12, 35, 69]. For instance, they name the light in the bedroom as

bedroom light and the one in the kitchen as kitchen light. This

naming convention allows users to remember the device names and

distinguish them while giving commands. Thus, the attacker can

select the device names they add to user accounts as di�erent com-

binations of locations and device types. This would maximize their

chances of conducting eavesdropping attacks on Google Home

and intercepting attacks on Alexa when the user issues a voice

command in the form of [Cmd] [Device Name].

6.2 No Bound Check on Number of Devices

DMC-Xplorer’s root cause analysis indicated that both Alexa and

Google Home allow a skill to add a large number of devices to a

user account. We conducted additional experiments with a varying

number of devices (1 to 1K) con�gured with di�erent names and

types to understand the behavior of both VA platforms.

In our �rst experiment, we add an increasing number of dupli-

cate devices from a skill and issue the voice command turn on all

[device type]. Figure 5 shows the response time with an increas-

ing number of devices. On Alexa, we measure the delay between

when a voice command is issued and when a skill back-end receives

the �rst and last requests. On Google Home, we only show one

delay measurement as it sends a single request containing a list of

devices that the voice command intends to control.

On Alexa, adding 1K devices causes an average delay of 61.2

secs before the �rst request received by the skill back-end and a 5-

minute delay on the last request. On Google Home, the max number

of devices we could test was 500 because, with 1K devices, the skill

back-end does not receive a request at all. Yet, on Google Home,

the same number of devices yields a lower delay, e.g., adding 500

devices causes an average delay of 4.15 secs. Overall, we observe

that delay increases with the number of devices the voice command

refers to, and it is not a�ected by the device type or name.

In our second experiment, we aim to understand if a skill can de-

lay requests to devices added by another skill. Fig. 6 shows the delay

between a user issuing the voice command turn on all Device A

and skill-1 back-end receiving the request, while skill-2 adds a

di�erent number of Device A or B to the user account. On Alexa,

there is a delay of 10.8±3.86 secs with 200 Device A added by

Figure 6: Delay of a voice command given to Device A with

varying # of devices and device types in the user VA account.

skill-2, but there is minimal delay when 200 Device B are added.

On Google Home, there is a smaller increase in the delay on Alexa,

up to 1.99 secs with 200 Device A and 1.33 secs with 200 Device B.

In our last experiment, we analyzed the limit on the number of

devices a skill can add. DMC-Xplorer was able to add 3K devices,

the maximum amount we tested, to Alexa without any restriction.

For Google Home, DMC-Xplorer’s request to add 2K devices was ac-

cepted, but the request to add 3K resulted in no devices being added.

Our analysis revealed three key observations. First, Alexa has a

large delay with an increasing number of devices. Second, Google

Home does not send a request to skill back-ends if the voice com-

mand controls more than 500 devices in the user account. Lastly,

Alexa allows skills to add many devices, whereas Google Home

limits it to 2K. Based on these observations, we design two attacks

that exploit the no proper bound check on Alexa and Google Home.

6.2.1 A3: Delaying/Blocking Voice Commands. We design an attack

in which a malicious skill adds 1K duplicate devices to delay voice

commands on Alexa and block them on Google Home. This attack

can be conducted by following the steps shown in Fig. 7.

1 The attacker skill adds many devices with the same name or

type as another device on the user account.

Benign Skill→ door

Attacker Skill→ door (x1000)

2 The user issues a voice command for that speci�c device

type or name ([Cmd] [Type/Name]).

User→ lock all doors

3a Benign skill back-end receives a delayed command in Alexa.

lock-door
delay
−−−→ Benign Skill Back-end

lock-door
delay
−−−→ Attacker Skill Back-end

3b Google Home blocks the given voice command’s transmis-

sion to all skill back-ends.

lock-door ̸→ Benign Skill Back-end

lock-door ̸→ Attacker Skill Back-end

Attack Impact. When a user issues a voice command to a device

type on Alexa, this attack causes the command to be executed with

a long delay (e.g., 61.8 secs delay with 1K duplicate devices). Yet,

the delaying attack is not successful when the user issues a voice

command to device names. This is because, in such cases, the voice

command is sent to the most recently added device, resulting in the

interception attack (A2). On Google Home, when a user issues a

729

Proceedings on Privacy Enhancing Technologies 2025(2) Ozmen et al.

Benign

Skill

Attacker

Skill

User
Google

Cloud

Attacker

Skill

Benign

Skill

VC with

device type

Attacker

Skill

Benign

Skill

Alexa

Cloud

Add Device

Add Many Devices with

the same type or name

Attack Setup

User

A3a: Delaying Voice Commands Attack

VC Requests

VC Request

A3b: Blocking Voice Commands Attack

VC with device

name or type

No VC Request

User VA Account

Skills

Benign Skill
Attacker Skill

Devices

Front Door Lock
Front Door Lock

…

No VC Request

Figure 7: Illustration of delaying and blocking voice commands.

voice command to a device type or name, this attack blocks the re-

quest from reaching any skill back-end. This attack may be noticed

by users as their commands are delayed or blocked. However, simi-

lar to A2, the attacker can carefully select which device commands

they delay or block to remain stealthy (e.g., cameras, door locks).

6.2.2 A4: Overloading VA’s Computational Resources. We design an

attack that targets the VA cloud instead of users without requiring a

skill to be added to the marketplace, as the skill is only added to the

attacker’s VA account. The attacker adds many devices to the VA

account(s) they created and sends voice commands to overload the

VA cloud. This attack can be launched through the following steps.

1 The attacker creates a skill and adds it to the VA account(s)

they created.

2 The attacker repeatedly adds new devices (with the same

type or name) to their account(s) through VA APIs.

Attacker Skill→ door (x3000)

3 The attacker issues a command to all devices.

Attacker→ lock all doors

4 In turn, the VA device sends thousands of requests to the VA

cloud, overloading its servers.

Attack Impact. When the attacker gives a voice command, the

Alexa cloud performs signi�cantly higher computation compared

to the attacker, as the attacker issues a single API request in mil-

liseconds, whereas the Alexa cloud takes over a minute to issue

requests. This attack can easily scale, as the attacker can open mul-

tiple VA accounts. With such a large number of devices, this attack

can cause signi�cant usage of Alexa computational resources. We

note that this attack does not work on Google Home as it does not

allow over 2K devices and has a lower delay.

6.3 Testing Performance

Testing Time Overhead. DMC-Xplorer’s testing time includes

(1) running the testing algorithm, (2) recording events, and (3) vali-

dating them against security properties. DMC-Xplorer’s VA testing

algorithm selects VA parameters, translates them into VDL, exe-

cutes it, and issues voice commands. The �rst two steps require time

in milliseconds. After issuing each voice command, DMC-Xplorer

waits until the request delay threshold (8 secs), which dominates the

total testing time. Thus, the testing time increases linearly with the

number of voice commands sent. In our experiments, DMC-Xplorer

takes, on average, ≈ 130 minutes on both platforms.

Event Log Storage Overhead. DMC-Xplorer records one event

per voice command, and the skill back-end records an event for

each received request from the VA cloud. Each event is, on average,

16 bytes. For instance, if we add 10 devices (5 lights and 5 cameras)

and issue the voice command turn on the lights, the skill back-

end records 5 events, a total of 80 bytes. DMC-Xplorer records ≈ 2

MB of event traces during our experiments.

7 Limitations and Discussion

7.1 Countermeasures

The attacks (A1-A4) introduced in Sec. 6 stem from skills being

allowed to add duplicate devices in the user account and add many

devices without a proper bound check. To conduct these attacks,

the only capability required by the attacker’s skill is adding devices

to the user account, the permission automatically granted to all

smart home skills on Alexa and Google Home.

One may consider using an access control mechanism to prevent

our attacks. Yet, traditional IoT access control mechanisms [33, 61,

63, 80] cannot prevent the attacks we introduced. The reason is

that skills all have the same permissions and any restrictions can

prevent benign skills from functioning properly. Thus, we provide

three user-centered countermeasures against our attacks.

User Approval for Duplicate Devices. DMC-Xplorer exposed

that skills, with default permissions, can add duplicate devices

to a user account. This allows an attacker to eavesdrop on voice

commands (A1) and intercept them (A2) with a malicious skill.

Unfortunately, preventing skills from adding duplicate devices

by enforcing unique names and types hurt VA usability (e.g., a user

may own multiple devices of the same type or install multiple skills

to control a device, resulting in these skills adding the device with

the same name [55]). Thus, to mitigate these attacks, VA platforms

may ask users for con�rmation through run-time prompts in mobile

VA apps when a duplicate device is added to their VA account. To

implement this countermeasure, VA developers can check each

request to add a device against existing devices in the user account

and send runtime prompts to the user. This interaction prevents an

attacker from adding duplicate devices without the user’s notice.

However, the continuous runtime prompts may create permission

fatigue in the users, causing them to allow duplicate devices without

checking their validity. Therefore, it is critical to design intuitive

runtime prompts and evaluate their usability and e�ectiveness with

large-scale user studies in future work.

Bound Checking on the Number of Devices. Blocking and

delaying voice commands (A3) and overloading the computational

resources of the VA cloud (A4) are caused by skills being able to add

a high number of devices. To address this, VA platforms can limit the

number of devices a skill can add to a lower amount (e.g., 200) and

have users opt-in to a higher limit. VA developers can implement

this by checking if the number of existing devices in the user’s

730

An Investigation of Device Management Flaws in Voice Assistant Platforms Proceedings on Privacy Enhancing Technologies 2025(2)

VA account is less than the limit before adding a new device. This

would prevent skills from adding any number of devices to the user

account by default but would require users to approve the higher

device limit. As a user-centric defense, similar to the user approval

for duplicate devices, this countermeasure can also be evaluated in

terms of usability and e�ectiveness through user studies.

VA Account Vetting. The �rst two countermeasures o�er proac-

tive defenses to prevent malicious skills from adding duplicate or a

high number of devices. As a reactive measure, VA platforms can

vet user accounts to detect suspicious activity. For instance, VA

platforms can vet user accounts by validating whether the account

includes a large number of devices or any duplicate devices and

sending warning messages to the users. To this end, VA platforms

can conduct large-scale measurement studies to check whether

such symptoms exist in user VA accounts.

Unfortunately, such countermeasures are currently lacking in VA

platforms, allowing adversaries to eavesdrop on privacy-sensitive

device states, prevent users from controlling their devices, and

overload the computational resources of the VA cloud.

7.2 Practical Considerations

Broader Impact of DMC-Xplorer. DMC-Xplorer can be used to

explore di�erent design �aws and privacy issues in VA platforms

and reproduce existing VA attacks. For example, DMC-Xplorer can

issue hidden adversarial voice commands to observe if such com-

mands, combined with a set of devices on a user account, cause

VA platforms to send incorrect requests. As another example, DMC-

Xplorer’s parameter selection can be extended to smart homes

where multiple VAs control common devices. For this analysis,

events from each VA can be correlated through common devices

they control to explore con�icting device states. Our MTL formu-

las are generalizable for these analyses to identify con�dentiality,

integrity, and availability violations due to di�erent design �aws.

Porting DMC-Xplorer to other VA Platforms. DMC-Xplorer

and VDL can be generalized to other VA platforms with the fol-

lowing steps: (0) create skills and their back-ends that respond to

requests, (1) parse the VDL code using VAAPIs to create a VA testing

environment from VA parameters, and (2) issue voice commands

and collect event logs to discover security property violations.

Some VA platforms may structure VA components di�erently

than Alexa and Google Home. For instance, Mycroft [24] allows

each skill to keep track of a user’s devices and determine which

device to send requests to. In such cases, instead of adding devices

through VA APIs, DMC-Xplorer can leverage skills to store di�erent

devices on the Mycroft device. It can then issue voice commands to

the Mycroft device to validate the security properties.

8 Related Work

VA Security and Privacy. There has been a growing interest in the

security and privacy of VA platforms [75]. A line of work revealed

weaknesses in the skill vetting of the VA platforms [18, 44, 66] and

identi�ed the policy-violating skills [30, 47, 62, 78]. Another line of

work studied skill squatting attacks, in which an attacker exploits

the frequent misinterpretations of the user’s voice commands to

stealthily mislead the user into installing and using a malicious

skill [41, 44, 59, 83, 85]. Prior works also showed attacks against

speech recognition [14, 16, 17, 21, 76, 81] and proposed defenses [1,

22, 34, 46, 50, 77, 82, 84] against them.

These works di�er from DMC-Xplorer as they focus on skill man-

agement and speech recognition vulnerabilities, and therefore, they

(1) do not create VA environments with skills, back-ends, devices,

and a VA device, and (2) formalize and validate security properties.

In contrast, DMC-Xplorer discovers design �aws in the DMC of VA

platforms using their APIs by creating VA environments and issu-

ing real voice commands for testing. The created VA environment

with each VA component enables DMC-Xplorer to discover design

�aws in the DMC of VA platforms that can only be revealed when

multiple devices from multiple skills are added to user accounts.

Security of IoT Component Interactions. Prior work explores

the security of the interactions between IoT components [25, 37, 51,

53, 58, 86]. For instance, recent work [86] showed that an attacker

could create a phantom device to acquire privacy-sensitive infor-

mation and intercept commands, yielding similar consequences to

DMC-Xplorer’s eavesdropping and intercepting attacks.

However, these works do not consider the interactions between

IoT devices and VA components. In contrast,DMC-Xplorer discovers

design �aws in the DMC of VA platforms by exploring the interac-

tions between the VA cloud, skills, and skill back-ends. We show

that an attacker can leverage malicious skills (rather than phantom

devices) to exploit such design �aws and conduct various attacks.

Fuzzing. Traditional software fuzzers have been used to expose

memory corruption vulnerabilities [15, 32, 54, 65, 79]. Black-box

fuzzers and testing tools have also been proposed to link trigger-

action platform rules [72] and �nd vulnerabilities in IoT device

�rmware [23]. Instead, DMC-Xplorer identi�es DMC design �aws

in VA platforms through VDL, new formal security properties, and

a parameter mutation algorithm. Recent fuzzers identify seman-

tic bugs with oracles that de�ne the correct operation of robotic

vehicles [38, 39] and autonomous driving software [45, 60, 64, 70]

to discover vulnerabilities. Yet, they cannot be extended for DMC

design �aws of VA platforms because, instead of program inputs,

we explore di�erent VA parameters and leverage VA security prop-

erties as opposed to code-level (quantitative) feedback for testing.

9 Conclusions

We introduce DMC-Xplorer, a VA operation testing framework that

discovers design �aws in the DMC of VA platforms. DMC-Xplorer

creates VA environments with a set of devices that have di�erent

names, types, and skills through a new domain-speci�c language

VDL. It then sends voice commands to the devices using VA de-

veloper APIs. After sending each voice command, DMC-Xplorer

logs events, validates them against a set of security properties for-

mally represented with MTL, and conducts intervention-based root

cause analysis to determine the VA parameters causing property

violations. We use DMC-Xplorer on Alexa and Google Home and

discover design �aws in their DMC that a skill with default permis-

sions can exploit. We design four attacks exploiting the design �aws

in which a malicious skill can eavesdrop on privacy-sensitive device

states, intercept, block, or delay voice commands, and overload the

VA’s computational resources. Lastly, we propose proactive and

reactive countermeasures to mitigate these attacks.

731

Proceedings on Privacy Enhancing Technologies 2025(2) Ozmen et al.

Acknowledgments

We thank our revision editor and the anonymous reviewers for

their comments and suggestions. This work has been partially sup-

ported by the National Science Foundation (NSF) under grants

CNS-2144645 and CNS-2145744. The views expressed are those of

the authors only.

References
[1] Shimaa Ahmed, Ilia Shumailov, Nicolas Papernot, and Kassem Fawaz. 2022. To-

wards more robust keyword spotting for voice assistants. In USENIX Security.
[2] Alexa Developer Documentation 2024. https://developer.amazon.com/en-

US/docs/alexa/documentation-home.html. [Online; accessed 20-April-2024].
[3] Alexa Response Time 2024. https://developer.amazon.com/en-US/docs/alexa/de

vice-apis/alexa-response.html. [Online; accessed 20-April-2024].
[4] Alexa SpeechRecognizer 2.3 2024. https://developer.amazon.com/en-US/d

ocs/alexa/alexa-voice-service/speechrecognizer.html. [Online; accessed
10-April-2024].

[5] Amazon Alexa 2024. https://alexa.amazon.com/. [Online; accessed 22-April-
2024].

[6] Amazon Relational Database Service (RDS) 2024. https://aws.amazon.com/rds/.
[Online; accessed 10-April-2024].

[7] Amazon Vulnerability Research Program 2024. https://hackerone.com/amazonvr
p?type=team. [Online; accessed 25-April-2024].

[8] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankara-
narayanan. 2011. S-taliro: A tool for temporal logic falsi�cation for hybrid
systems. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems.

[9] Authorize an AVS Device Through Code-Based Linking 2024. https://developer.
amazon.com/en-US/docs/alexa/alexa-voice-service/authorize-cbl.html. [Online;
accessed 10-April-2024].

[10] AWS Lambda 2024. https://aws.amazon.com/lambda/. [Online; accessed
10-April-2024].

[11] Best Practices for Naming Devices 2019. https://en.community.sonos.com/ama
zon-alexa-and-sonos-229102/best-practices-for-naming-of-devices-6819283.
[Online; accessed 10-May-2024].

[12] Best Way to Name Devices 2018. https://community.smartthings.com/t/best-
way-to-name-devices-in-regards-to-alexa-2018/138257. [Online; accessed
10-May-2024].

[13] Build your skill 2024. https://developer.amazon.com/en-US/docs/alexa/build/buil
d-your-skill-overview.html. [Online; accessed 10-April-2024].

[14] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah Sherr,
Clay Shields, David Wagner, and Wenchao Zhou. 2016. Hidden voice commands.
In USENIX Security.

[15] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-adaptive
mutational fuzzing. In IEEE Symposium on Security and Privacy (S&P).

[16] G. Chen, S. Chen, L. Fan, X. Du, Z. Zhao, F. Song, and Y. Liu. 2021. Who is Real
Bob? Adversarial Attacks on Speaker Recognition Systems. In IEEE Symposium
on Security and Privacy (S&P).

[17] Guangke Chen, Yedi Zhang, Zhe Zhao, and Fu Song. 2023. QFA2SR: Query-
Free Adversarial Transfer Attacks to Speaker Recognition Systems. In USENIX
Security.

[18] Long Cheng, Christin Wilson, Song Liao, Je�rey Young, Daniel Dong, and
Hongxin Hu. 2020. Dangerous Skills Got Certi�ed: Measuring the Trustworthi-
ness of Skill Certi�cation in Voice Personal Assistant Platforms. In ACM SIGSAC
Conference on Computer and Communications Security (CCS).

[19] Connect Smart Home Devices in the Google Home App 2024. https://support.go
ogle.com/googlenest/answer/9159862. [Online; accessed 10-April-2024].

[20] Connect Smart Home Devices to Alexa 2024. https://www.amazon.com/gp/he
lp/customer/display.html?nodeId=G3RKPNRKF33ECTW7. [Online; accessed
10-April-2024].

[21] Sergio Esposito, Daniele Sgandurra, and Giampaolo Bella. 2022. Alexa versus
Alexa: Controlling Smart Speakers by Self-Issuing Voice Commands. In ACM on
Asia Conference on Computer and Communications Security (AsiaCCS).

[22] Huan Feng, Kassem Fawaz, and Kang G. Shin. 2017. Continuous Authentica-
tion for Voice Assistants. In International Conference on Mobile Computing and
Networking (MobiCom).

[23] Xiaotao Feng, Ruoxi Sun, Xiaogang Zhu, Minhui Xue, Sheng Wen, Dongxi Liu,
Surya Nepal, and Yang Xiang. 2021. Snipuzz: Black-box fuzzing of iot �rmware
via message snippet inference. In ACM SIGSAC Conference on Computer and
Communications Security (CCS).

[24] Kris Gesling. 2023. Mycroft Development Setup. https://mycroft-ai.gitbook.io/
docs/skill-development/introduction. [Online; accessed 15-April-2024].

[25] Furkan Goksel, Muslum Ozgur Ozmen, Michael Reeves, Basavesh Shivakumar,
and Z Berkay Celik. 2021. On the safety implications of misordered events and

commands in IoT systems. In IEEE Security and Privacy Workshops (SPW).
[26] Google Firebase 2024. https://�rebase.google.com/. [Online; accessed 10-April-

2024].
[27] Google Home 2024. https://assistant.google.com/. [Online; accessed 12-April-

2024].
[28] Google Home Developer Documentation 2024. https://developers.home.google.c

om/docs. [Online; accessed 20-April-2024].
[29] Google VRP 2024. https://www.google.com/about/appsecurity/reward-program/.

[Online; accessed 10-April-2024].
[30] Zhixiu Guo, Zijin Lin, Pan Li, and Kai Chen. 2020. SkillExplorer: Understanding

the Behavior of Skills in Large Scale. In USENIX Security.
[31] York Hagmayer, Steven A Sloman, David A Lagnado, and Michael R Waldmann.

2007. Causal reasoning through intervention. Causal learning: Psychology, phi-
losophy, and computation.

[32] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos. 2013.
Dowsing for Over�ows: A Guided Fuzzer to Find Bu�er Boundary Violations. In
USENIX Security.

[33] Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Dürmuth, Ear-
lence Fernandes, and Blase Ur. 2018. Rethinking Access Control and Authentica-
tion for the Home Internet of Things (IoT).. In USENIX Security.

[34] Ashish Hooda, Matthew Wallace, Kushal Jhunjhunwalla, Earlence Fernandes,
and Kassem Fawaz. 2022. SkillFence: A Systems Approach to Practically Mitigat-
ing Voice-Based Confusion Attacks. ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies (IMWUT) (2022).

[35] How To Name Your Smart Home Devices for Better Voice Control 2019. https:
//www.howtogeek.com/404609/how-to-name-your-smarthome-devices-for-
better-voice-control/. [Online; accessed 10-May-2024].

[36] Intent Ful�llment 2024. https://developers.google.com/assistant/smarthome/de
velop/process-intents. [Online; accessed 10-April-2024].

[37] Yan Jia, Luyi Xing, Yuhang Mao, Dongfang Zhao, XiaoFeng Wang, Shangru Zhao,
and Yuqing Zhang. 2020. Burglars’ IoT paradise: Understanding and mitigating
security risks of general messaging protocols on IoT clouds. In IEEE Symposium
on Security and Privacy (S&P).

[38] Hyungsub Kim, Muslum Ozgur Ozmen, Antonio Bianchi, Z Berkay Celik, and
Dongyan Xu. 2021. PGFUZZ: Policy-Guided Fuzzing for Robotic Vehicles. In
Network and Distributed System Security Symposium (NDSS).

[39] Taegyu Kim, Chung Hwan Kim, Junghwan Rhee, Fan Fei, Zhan Tu, Gregory
Walkup, Xiangyu Zhang, Xinyan Deng, and Dongyan Xu. 2019. RVFUZZER:
�nding input validation bugs in robotic vehicles through control-guided testing.
In USENIX Security.

[40] Ron Koymans. 1990. Specifying real-time properties with metric temporal logic.
In Real-time systems.

[41] Deepak Kumar, Riccardo Paccagnella, Paul Murley, Eric Hennenfent, Joshua
Mason, Adam Bates, and Michael Bailey. 2018. Skill squatting attacks on Amazon
Alexa. In USENIX Security.

[42] Launch your smart home action 2024. https://developers.google.com/assistant/
smarthome/develop/launching. [Online; accessed 10-April-2024].

[43] Tu Le, Dongfang Zhao, ZihaoWang, XiaoFengWang, and Yuan Tian. 2024. Alexa,
is the skill always safe? Uncover Lenient Skill Vetting Process and Protect User
Privacy at Run Time. In International Conference on Software Engineering (ICSE).

[44] Christopher Lentzsch, Sheel Jayesh Shah, Benjamin Andow, Martin Degeling,
Anupam Das, and William Enck. 2021. Hey Alexa, is this Skill Safe?: Taking a
Closer Look at the Alexa Skill Ecosystem. In Network and Distributed System
Security Symposium (NDSS).

[45] Guanpeng Li, Yiran Li, Saurabh Jha, Timothy Tsai, Michael Sullivan, Siva Ku-
mar Sastry Hari, Zbigniew Kalbarczyk, and Ravishankar Iyer. 2020. AV-FUZZER:
Finding safety violations in autonomous driving systems. In International Sym-
posium on Software Reliability Engineering (ISSRE).

[46] Xinfeng Li, Xiaoyu Ji, Chen Yan, Chaohao Li, Yichen Li, Zhenning Zhang, and
Wenyuan Xu. 2023. Learning Normality is Enough: A Software-based Mitigation
against Inaudible Voice Attacks. In USENIX Security.

[47] Song Liao, LongCheng, Haipeng Cai, LinkeGuo, andHongxinHu. 2023. SkillScan-
ner: Detecting Policy-Violating Voice Applications Through Static Analysis at
the Development Phase. In ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS).

[48] Login with Amazon for Websites Overview 2024. https://developer.amazon.com
/docs/login-with-amazon/web-docs.html. [Online; accessed 20-April-2024].

[49] Valentin JM Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J Schwartz, and Maverick Woo. 2019. The art, science, and engi-
neering of fuzzing: A survey. In IEEE Transactions on Software Engineering.

[50] Yan Meng, Jiachun Li, Matthew Pillari, Arjun Deopujari, Liam Brennan, Hafsah
Shamsie, Haojin Zhu, and Yuan Tian. 2022. Your Microphone Array Retains
Your Identity: A Robust Voice Liveness Detection System for Smart Speakers. In
USENIX Security.

[51] TJ OConnor, RehamMohamed, Markus Miettinen, William Enck, Bradley Reaves,
and Ahmad-Reza Sadeghi. 2019. HomeSnitch: behavior transparency and control
for smart home IoT devices. InACMConference on Security and Privacy inWireless
and Mobile Networks (WiSec).

732

An Investigation of Device Management Flaws in Voice Assistant Platforms Proceedings on Privacy Enhancing Technologies 2025(2)

[52] Muslum Ozgur Ozmen, Xuansong Li, Andrew Chu, Z Berkay Celik, Bardh Hoxha,
and Xiangyu Zhang. 2022. Discovering IoT physical channel vulnerabilities. In
ACM SIGSAC Conference on Computer and Communications Security (CCS).

[53] Muslum Ozgur Ozmen, Ruoyu Song, Habiba Farrukh, and Z Berkay Celik. 2023.
Evasion attacks and defenses on smart home physical event veri�cation. In
Network and Distributed System Security Symposium (NDSS).

[54] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: fuzzing by
program transformation. In IEEE Symposium on Security and Privacy (S&P).

[55] Samantha Reig, Elizabeth Jeanne Carter, Lynn Kirabo, Terrence Fong, Aaron
Steinfeld, and Jodi Forlizzi. 2021. Smart home agents and devices of today and
tomorrow: Surveying use and desires. In International Conference on Human-
Agent Interaction.

[56] Remove Google Nest Devices from the Google Home App 2024. https://support.
google.com/googlenest/answer/9691327. [Online; accessed 20-April-2024].

[57] Remove Smart Home Devices from Alexa 2024. https://www.amazon.com/gp/he
lp/customer/display.html?nodeId=GH7J6YW8GMWE7BZY. [Online; accessed
20-April-2024].

[58] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. 2017. IoT Goes
Nuclear: Creating a Zigbee Chain Reaction. In IEEE Symposium on Security and
Privacy (S&P).

[59] Aafaq Sabir, Evan Lafontaine, and Anupam Das. 2022. Hey Alexa, Who Am I
Talking to?: Analyzing Users’ Perception and Awareness Regarding Third-Party
Alexa Skills. In CHI Conference on Human Factors in Computing Systems.

[60] Ivan F Salgado, Nicanor Quijano, Daniel J Fremont, and Alvaro A Cardenas. 2022.
Fuzzing Malicious Driving Behavior to �nd Vulnerabilities in Collision Avoid-
ance Systems. In IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW).

[61] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2018. Situational access
control in the internet of things. In ACM SIGSAC Conference on Computer and
Communications Security (CCS).

[62] Faysal Hossain Shezan, Hang Hu, Gang Wang, and Yuan Tian. 2020. VerHealth:
Vetting Medical Voice Applications through Policy Enforcement. In ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT).

[63] Amit Kumar Sikder, Leonardo Babun, Z Berkay Celik, Abbas Acar, Hidayet Aksu,
Patrick McDaniel, Engin Kirda, and A Selcuk Uluagac. 2020. Kratos: Multi-user
multi-device-aware access control system for the smart home. In ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec).

[64] Ruoyu Song, Muslum Ozgur Ozmen, Hyungsub Kim, Raymond Muller, Z Berkay
Celik, and Antonio Bianchi. 2023. Discovering Adversarial Driving Maneuvers
against Autonomous Vehicles. In USENIX Security.

[65] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting fuzzing through selective symbolic execution.. In
Network and Distributed System Security Symposium (NDSS).

[66] Dan Su, Jiqiang Liu, Sencun Zhu, Xiaoyang Wang, and Wei Wang. 2020. Are
you home alone?" “Yes" Disclosing Security and Privacy Vulnerabilities in Alexa
Skills. In arXiv preprint arXiv:2010.10788.

[67] Dan Su, Jiqiang Liu, Sencun Zhu, Xiaoyang Wang, and Wei Wang. 2022. Alexa
Skills: Security Vulnerabilities and Countermeasures. In IEEE Conference on
Communications and Network Security (CNS).

[68] Quinn Thibeault, Jacob Anderson, Aniruddh Chandratre, Giulia Pedrielli, and
Georgios Fainekos. 2021. Psy-taliro: A python toolbox for search-based test
generation for cyber-physical systems. In Formal Methods for Industrial Critical
Systems (FMICS).

[69] Voice Control - How to Name Your Smart Devices 2023. https://www.smarthom
e.com.au/voice-control-how-to-name-your-smart-devices/. [Online; accessed
10-May-2024].

[70] Ziwen Wan, Junjie Shen, Jalen Chuang, Xin Xia, Joshua Garcia, Jiaqi Ma, and
Qi Alfred Chen. 2022. Too Afraid to Drive: Systematic Discovery of Semantic DoS
Vulnerability in Autonomous Driving Planning under Physical-World Attacks.
In Network and Distributed System Security Symposium (NDSS).

[71] Dawei Wang, Kai Chen, and Wei Wang. 2021. Demystifying the vetting process
of voice-controlled skills on markets. In ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies (IMWUT).

[72] Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates, and Carl A Gunter. 2019.
Charting the attack surface of trigger-action IoT platforms. In ACM SIGSAC
Conference on Computer and Communications Security (CCS).

[73] What is the Alexa Skills Kit 2024. https://developer.amazon.com/en-US/doc
s/alexa/ask-overviews/what-is-the-alexa-skills-kit.html. [Online; accessed
20-April-2024].

[74] MaverickWoo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013. Sched-
uling black-box mutational fuzzing. In ACM SIGSAC Conference on Computer and
Communications Security (CCS).

[75] Chen Yan, Xiaoyu Ji, Kai Wang, Qinhong Jiang, Zizhi Jin, and Wenyuan Xu. 2022.
A Survey on Voice Assistant Security: Attacks and Countermeasures. In ACM
Computing Surveys.

[76] Qiben Yan, Kehai Liu, Qin Zhou, Hanqing Guo, and Ning Zhang. 2020. Sur�n-
gAttack: Interactive Hidden Attack on Voice Assistants Using Ultrasonic Guided

Wave. In Network and Distributed System Security Symposium (NDSS).
[77] Qiang Yang, Kaiyan Cui, and Yuanqing Zheng. 2023. VoShield: Voice Liveness

Detection with Sound Field Dynamics. In IEEE INFOCOM.
[78] Je�rey Young, Song Liao, Long Cheng, Hongxin Hu, and Huixing Deng. 2022.

SkillDetective: Automated Policy-Violation Detection of Voice Assistant Applica-
tions in the Wild. In USENIX Security.

[79] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM:
A practical concolic execution engine tailored for hybrid fuzzing. In USENIX
Security.

[80] Eric Zeng and Franziska Roesner. 2019. Understanding and Improving Security
and Privacy in Multi-User Smart Homes: A Design Exploration and In-Home
User Study.. In USENIX Security.

[81] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and
Wenyuan Xu. 2017. Dolphinattack: Inaudible voice commands. In ACM SIGSAC
Conference on Computer and Communications Security (CCS).

[82] Linghan Zhang, Sheng Tan, Zi Wang, Yili Ren, Zhi Wang, and Jie Yang. 2020.
VibLive: A Continuous Liveness Detection for Secure Voice User Interface in IoT
Environment. In Annual Computer Security Applications Conference (ACSAC).

[83] Nan Zhang, Xianghang Mi, Xuan Feng, XiaoFeng Wang, Yuan Tian, and Feng
Qian. 2019. Dangerous skills: Understanding and mitigating security risks of
voice-controlled third-party functions on virtual personal assistant systems. In
IEEE Symposium on Security and Privacy (S&P).

[84] Shaohu Zhang, Zhouyu Li, and Anupam Das. 2023. VoicePM: A Robust Privacy
Measurement on Voice Anonymity. In ACM Conference on Security and Privacy
in Wireless and Mobile Networks (WiSec).

[85] Yangyong Zhang, Lei Xu, Abner Mendoza, Guangliang Yang, Phakpoom Chin-
prutthiwong, andGuofei Gu. 2019. Life after speech recognition: Fuzzing semantic
misinterpretation for voice assistant applications. In Network and Distributed
System Security Symposium (NDSS).

[86] Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan, Yuhang Mao, Peng Liu, and
Yuqing Zhang. 2019. Discovering and understanding the security hazards in
the interactions between IoT devices, mobile apps, and clouds on smart home
platforms. In USENIX Security.

733

	Abstract
	1 Introduction
	2 Background
	3 Problem Statement
	3.1 Threat Model
	3.2 Design Challenges

	4 DMC-Xplorer Design
	4.1 VA Description Language (VDL)
	4.2 VA Device Management Testing
	4.3 Security Analysis

	5 Implementation
	5.1 Platform-specific Implementation Details

	6 Evaluation
	6.1 Duplicate Devices in the User's VA Account
	6.2 No Bound Check on Number of Devices
	6.3 Testing Performance

	7 Limitations and Discussion
	7.1 Countermeasures
	7.2 Practical Considerations

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

