Why Am | Seeing Double? An Investigation of Device
Management Flaws in Voice Assistant Platforms

Muslum Ozgur Ozmen Mehmet Oguz Sakaoglu Jackson Bizjak
Arizona State University Purdue University Purdue University
moozmen@asu.edu msakaogl@purdue.edu jbizjak@purdue.edu

Jianliang Wu
Simon Fraser University
wujl@sfu.ca

Antonio Bianchi
Purdue University
antoniob@purdue.edu

Dave (Jing) Tian
Purdue University
daveti@purdue.edu

Z. Berkay Celik

Purdue University
zcelik@purdue.edu

Abstract

In Voice Assistant (VA) platforms, when users add devices to their
accounts and give voice commands, complex interactions occur
between the devices, skills, VA clouds, and vendor clouds. These
interactions are governed by the device management capabilities
(DMC) of VA platforms, which rely on device names, types, and asso-
ciated skills in the user account. Prior work studied vulnerabilities
in specific VA components, such as hidden voice commands and
bypassing skill vetting. However, the security and privacy implica-
tions of device management flaws have largely been unexplored.
In this paper, we introduce DMC-XPLORER, a testing framework for
the automated discovery of VA device management flaws. We first
introduce VA description language (VDL), a new domain-specific
language to create VA environments for testing, using VA and skill
developer APIs. DMC-XpLORER then selects VA parameters (device
names, types, vendors, actions, and skills) in a combinatorial ap-
proach and creates VA environments with VDL. It issues real voice
commands to the environment via developer APIs and logs event
traces. It validates the traces against three formal security proper-
ties that define the secure operation of VA platforms. Lastly, DMC-
Xrprorer identifies the root cause of property violations through
intervention analysis to identify VA device management flaws.
We exercised DMC-XpLorer on Amazon Alexa and Google Home
and discovered two design flaws that can be exploited to launch four
attacks. We show that malicious skills with default permissions can
eavesdrop on privacy-sensitive device states, prevent users from
controlling their devices, and disrupt the services on the VA cloud.

Keywords

IoT, voice assistant platforms, privacy, security

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a BY

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2025(2), 719-733

© 2025 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2025-0084

1 Introduction

Voice Assistant (VA) platforms, such as Amazon Alexa [5] and
Google Home [27], enable voice-based commands to control and
monitor smart devices. To achieve these, they provide developers
APIs to develop voice-enabled skills! [13, 42].

To control a smart device with voice, a user first registers their
device to its vendor (e.g., through a mobile app). The user then
installs the vendor’s skill to the VA platform, allowing the skill to
add the registered device to the user’s account. When the user gives
a voice command, the VA device (e.g., Amazon Echo) sends it to
the VA cloud for speech recognition and intent extraction. The VA
cloud sends the extracted intent to the relevant skill that runs on a
back-end server. The skill relays the command to the device vendor
cloud, which handles the request and notifies the VA platform.

These complex interactions are governed by the device manage-
ment capabilities (DMC) of VA platforms, which includes adding
devices to a user account and controlling them with a skill until
they are removed from the user account. During these interactions,
the DMC of VA platforms provides three security properties. First, it
ensures voice command confidentiality by determining the devices
the user refers to and sending the command only to the skills that
control those devices to ensure unauthorized skills do not receive
privacy-sensitive voice commands and device states. Second, it
offers voice command integrity by sending the correct command
extracted from voice to the devices. Lastly, it provides voice com-
mand availability by ensuring the voice command is executed in a
time delivering an acceptable quality-of-service (< 8 secs [3]).

Design flaws in the DMC of VA platforms, however, may cause
violations of these security properties. Our main observation is that
an adversary can exploit such violations by developing a malicious
skill installed by the user. Prior work has shown that malicious skills
can be (1) published in the skill marketplaces due to the weaknesses
in skill vetting [18, 43, 67, 71] and (2) installed in user accounts
through hidden voice injection [14, 17, 21, 76, 81] and skill squatting
attacks [41, 44, 59, 83, 85]. After installation, malicious skills (by
default) have permission to add devices to the user’s VA account
and exploit the design flaws in the DMC of VA platforms.

Woice-enabled apps are called skills in Alexa and actions in Google Home. We use the
term skill to refer to an app for any VA platform.

Proceedings on Privacy Enhancing Technologies 2025(2)

Then, the adversary can exploit the DMC security property vio-
lations for three purposes. First, the adversary can access privacy-
sensitive device states, e.g., whether the door is unlocked, and infer
the user’s routine, e.g., when they go to sleep and when they are
not at home. Second, the adversary can manipulate the commands
issued to the devices, e.g., causing a door to unlock instead of
lock. Lastly, the adversary can cause the devices to be unrespon-
sive to voice commands, which may put users and their physical
environment at risk, e.g., a door not getting unlocked during a fire.

However, discovering design flaws in the DMC of VA platforms
has three key challenges. (1) The VA platforms lack end-to-end
testing environments to explore their DMC in a realistic and scal-
able manner. The closed-source nature of VA platforms further
exacerbates this challenge. (2) VA platforms have a large parameter
space, where VA environments with different numbers of devices
that have various names, types, skills, and vendors can be created.
(3) It requires formal definitions of the security properties that
represent the correct and secure operation of VA platforms. Such
definitions allow identifying property violations during testing to
expose design flaws in the DMC of VA platforms.

In this paper, we address these challenges through DMC-XpPLORER,
an automated testing framework that explores VA operation with
different skills controlling multiple devices to discover DMC design
flaws in the DMC of VA platforms.

To create VA environments suitable for testing, we design a con-
cise VA description language (VDL) with a grammar in Backus—Naur
Form (BNF). When a VDL code, including a VA device and a set
of smart devices with their names, types, actions, vendors, and
skills, is executed, it uses VA and skill developer APIs to create a VA
environment. Such APIs allow developers to create and test skills
without any differences compared to when these skills are deployed
in real smart homes. Therefore, integrating these APIs into VDL
ensures DMC-XpLoRreR to directly test the real DMC of VA platforms
in a scalable manner. DMC-Xrrorer then leverages a combinato-
rial testing algorithm to configure VA parameters (e.g., number
of devices, names, skills). It translates the parameters into VDL to
create a VA environment and issues real voice commands using
developer APIs. After each command, it logs event traces, including
device information, issued command, and the time the command
is received at the VA device and skill back-ends. It validates the
traces against three security properties formally expressed in metric
temporal logic (MTL) to identify violations. Lastly, it conducts an
intervention-based root cause analysis by identifying the parame-
ters that cause property violations to discover design flaws in the
DMC of VA platforms.

We apply DMC-XprLoRER to two popular VA platforms, Amazon
Alexa and Google Home. DMC-XrLorer discovered that both plat-
forms violate the voice command availability property. Through
DMC-XPLORER’S root cause analysis, in both platforms, we identified
two design flaws that a malicious skill with default permissions
can exploit. First, VA platforms allow a skill to add duplicate devices
with the same name or type as other devices on the user’s account.
A malicious skill can exploit this flaw to (1) eavesdrop on privacy-
sensitive device states when the user gives a voice command with
device name or type to Google Home and a voice command with
device type to Alexa, and (2) intercept voice commands intended for
other skills when the user gives a voice command with device name

720

Ozmen et al.
O O

Voice Device Vendor
. Command Q @ Cloud 1
Requests v A

— Voice Assistant > yoige Assistant v A @

Cloud 0
ou Rosponses Skill Back-End Dev(i;e \(/jendor J

oud n

Figure 1: The interactions among VA platform components,
from a given voice command to its execution.

to Alexa. Second, VA platforms do not have a proper bound check
on the number of devices a skill can add to a user’s account. This
allows a malicious skill to add many devices to the user’s account
to (1) delay voice commands given to the Alexa, (2) block voice
commands given to Google Home, and (3) overload both Google
Home’s and Alexa’s computational resources at their cloud back-
ends. We physically confirmed both design flaws exist in Alexa and
Google Home by adding 1K duplicate devices to the user accounts.
Unfortunately, preventing these attacks is difficult, as any restric-
tion to skill permissions can prevent benign skills from functioning
properly, causing a security-utility trade-off.
In summary, we make the following contributions.

o We design a domain-specific language (VDL) in BNF grammar
to create VA environments for different VA platforms using
their developer APIs.

e We introduce DMC-XPLORER, a VA operation testing frame-
work that discovers DMC design flaws in VA platforms. DMC-
XpLORER leverages VDL to create VA environments, automati-
cally issues voice commands, logs event traces, and validates
the traces against three formal security properties.

e We use DMC-Xprorer? on Alexa and Google Home and ex-
pose two previously unknown design flaws in their DMC.

e We develop four attacks exploiting the identified design flaws
and show that a malicious skill with default permissions
can eavesdrop on privacy-sensitive device states, prevent
users from controlling devices, and overload the VA cloud’s
computational resources. We then propose three proactive
and reactive countermeasures to mitigate these attacks.

Responsible Disclosure. During our testing, we use a test-user
account on the VA platforms and limit our testing parameters to
prevent flooding the VA cloud and sending superfluous requests.

We have sent an initial report about the design flaws to Amazon
using the Amazon Vulnerability Research Program on Hackerone [7]
and Google using their Vulnerability Reward Program [29]. Both
Amazon and Google acknowledged the flaws and recommended
users be cautious about the skills they install (i.e., installing skills
from trusted vendors). DMC-XpLORER is an important step towards
informing the public of the risks that skills present.

2 Background

VA platforms provide a set of APIs for third-party developers to
develop skills that monitor and control devices. Users can then
install skills through VA marketplaces with their mobile or desktop
apps or by issuing voice commands to their VA devices.

2We make DMC-XPLORER available at https://github.com/purseclab/DMC-Xplorer to
foster future research on the security of VA platforms.

An Investigation of Device Management Flaws in Voice Assistant Platforms

VA platforms allow adding devices to user accounts in three
ways [19, 20]: (a) Users can manually add devices through mobile or
desktop apps; (b) VA platforms can detect and add devices without
user interaction; (c) Skills have default permissions to add devices
they detect in the user’s physical environment. Similarly, users
can remove devices from their accounts [56, 57] through mobile or
desktop apps and by uninstalling a skill, which in turn removes all
devices added by that skill.

We refer to the process of adding devices to a user’s VA account
and controlling them via a particular skill with a voice command
until the device’s removal from the user’s account as the device
management capabilities (DMC) of VA platforms. During this pro-
cess, multiple VA components, both internal to the VA platform
and external, interact with each other, as shown in Fig. 1.

Skill Back-end and Vendor Clouds. After the user gives a voice
command, the VA device relays it to the VA cloud (®). The VA
cloud converts voice into text, extracts the user’s intent, determines
which device the user wants to control, and sends a request to the
corresponding skill back-end (®). The skill back-end then commu-
nicates with the device vendor cloud, which resolves the request
(®) or relays it to other vendor clouds until the one interacting
with the device is reached (@).

Voice Command Execution. The vendor cloud sends commands
to devices in two ways. First, for devices connected to the Internet,
the vendor cloud directly issues the command (®). The vendor
cloud then responds to the skill back-end, which notifies the VA
cloud that the command is executed. Second, for devices connected
to a VA device over short-range communications (e.g., BLE), the
vendor cloud forms a command message and sends it to the skill
back-end. The skill back-end sends it to the VA cloud, which sends it
to the VA device. The VA device issues the command to the device.

3 Problem Statement

By studying the developer documentation of popular VA platforms
(e.g., Alexa [2] and Google Home [28]), we observe that the DMC
of VA platforms ensures three key security properties: Voice Com-
mand (VC) Confidentiality, VC Integrity, and VC Availability. These
properties ensure, respectively, that the VA platform does not send
requests to unintended skills, sends the user-intended command to
the device, and issues the commands to skill back-ends in a time
delivering an acceptable quality-of-service. VA platforms achieve
these properties using the device information stored in the user
account, which is governed by the DMC of VA platforms.

These security properties, however, can be violated by skills due
to potential design flaws in the DMC of VA platforms. The property
violations express deviations from the expected execution of voice
commands, indicating that commands are sent to the unintended
skills to cause privacy issues, the VA sends an incorrect command
to a device, and the VA fails to execute voice commands. We show
in Sec. 6 that malicious skills with default permissions can exploit
these violations and launch attacks on Amazon Alexa and Google
Home to jeopardize the security and privacy of smart homes.
Voice Command Confidentiality (P1). This property ensures
each user-intended skill receives the voice command request while
others do not. For instance, when the user gives a voice command
lock the front door, VC confidentiality ensures only the skill that

721

Proceedings on Privacy Enhancing Technologies 2025(2)

controls the lock receives a request. VA platforms ensure VC confi-
dentiality by correctly determining the device(s) the user intends
to control and only issuing commands to their associated skills.
The adversary can exploit VC confidentiality violations to obtain
privacy-sensitive information about smart home device states. For
instance, when the user gives a voice command to turn off their
bedroom lights, the adversary receives this command. Such informa-
tion could help the adversary to infer the user’s routine (e.g., when
they go to sleep) and location (e.g., whether they are at home).

Voice Command Integrity (P2). This property holds if the VA
sends the user-intended commands to devices. For instance, when
the user gives a voice command lock the front door, VC integrity
ensures the VA platform does not issue an incorrect command
(e.g., unlock). VA platforms offer VC integrity by issuing the correct
command extracted from the user’s voice command to devices.

The adversary can leverage VC integrity violations to manipulate
the commands given to devices. For instance, the user gives the
voice command lock the front door, but the adversary causes the
VA platform to issue the unlock command.

Voice Command Availability (P3). This property ensures the
user’s voice command is executed within an acceptable time, e.g., <
8 secs [3]. VA platforms offer VC availability by extracting the user’s
intent from a voice command, finding the corresponding devices in
the user’s VA account, and issuing the commands within a given
time frame, to guarantee the desired quality of service.

VC availability violations allow an adversary to deny or delay
voice commands, preventing users from controlling their devices.
This poses a security risk, especially when VAs are used to control
safety-critical devices, such as door locks, cameras, and fire alarms.

3.1 Threat Model

We consider an adversary who aims to trigger the security property
violations in the DMC of VA platforms to obtain privacy-sensitive
information, manipulate device commands, and prevent users from
controlling their devices. We assume the adversary achieves this
by developing a skill installed to the user’s VA account. To be
installed by a victim, the adversary’s skill must be first approved for
publication on the skill marketplace. Unfortunately, VA platforms’
skill vetting process cannot prevent the attacker’s skill from being
published since the adversary’s skill uses the default permissions in
the DMC of VA platforms. Additionally, prior work has shown the
weaknesses in the skill vetting process and demonstrated that skill
vetting can be bypassed and skills are only vetted when initially
submitted but not routinely afterward [18, 43, 67, 71].

After vetting, the adversary can distribute the skill to many users
by publishing it on the VA skill marketplace [18, 44]. To ensure
that the skill is installed by users, the adversary can leverage skill
squatting attacks and give their skills similar names to popular
skills [41, 44, 59, 83, 85]. Additionally, the adversary can also target
a specific user to install their skill. To this end, the adversary can
(1) conduct hidden voice injection attacks [14, 16, 17, 21, 76, 81]
(e.g., Alexa installs a skill when it is given a voice command as
‘Alexa, enable [Skill Name]’), or (2) trick the user into installing the
skill via phishing and social engineering methods [72].

Proceedings on Privacy Enhancing Technologies 2025(2)

@ VDL Design

@ VA Device Management Testing

Ozmen et al.

@ Security Analysis

VA Description |

Event\
Traces Traces

Language (VDL) H “‘
@y ==

VA
Environment < />
Devices — u|J _’

R-B-A

=
R

| 'O' 1 Property- Parameter VA Environment | Virtual VA Device Voice Command VA Event' Property Property Device

H . e e . y - i Logger 1 IV I n iolati Management
| Device Parameters VA Parameters. ' Parameter Generation Initialization via | skills, Skill Back-ends Execution gger | alidatio Violations 8
""""""""""""" v Mapping VDL S ‘\ Flaws

Figure 2: Overview of DMC-XpLoRER architecture.

3.2 Design Challenges

C1: Creating a VA Testing Environment. Discovering design
flaws in the DMC of VA platforms requires a VA testing environment
that allows generating different user accounts with various param-
eters (e.g., devices with different names, types, actions, and skills)
and sending voice commands to validate security properties. One
may consider conducting tests with physical VA devices; however,
multiple tests with different parameters are impractical due to the
manual effort required. Unfortunately, the closed-source nature of
VA platforms prevents us from directly testing their DMC software
to expose design flaws. Although VA and skill developer APIs exist
for black-box testing, simply sending inputs through such APIs is
not enough to expose DMC design flaws. This is because identify-
ing the design flaws in the DMC of VA platforms requires creating
different VA environments with various parameters.

To address this, we design a domain-specific language that uses
VA and skill developer APIs to generate real VA environments that
enable creating different tests and issuing real voice commands in an
automated and scalable manner. However, designing a generalizable
and practical domain-specific language for VAs is a challenging task
because VA environments can include diverse devices (e.g., light,
camera, door lock) with different actions (e.g., on/off, dimming).

C2: Large Parameter Space. Various user VA accounts can be
generated with different numbers of devices with different names,
types, and skills. One may use falsification [8, 52] or fuzzing [49] to
identify the user account parameters (e.g., number of devices and
their names, types, and skills) that violate the security properties.
Yet, falsification needs numerical feedback for parameter selection.
Unfortunately, VA security properties are boolean-typed (satisfied
or violated) and, thus, cannot guide falsification. Similarly, most
fuzzing techniques require feedback from prior tests (e.g., code
coverage). Since VA platforms are closed-source, they are infeasible.

One may use black-box fuzzing [74] without guidance. Yet, it
would generate random parameters, which may not expose prop-
erty violations. There are also black-box fuzzing techniques with
guided input mutation, such as the skill squatting attacks [41] that
mutates voice to find phonetically similar words. However, these
mutation strategies are designed specifically to expose different
types of flaws and vulnerabilities, and therefore, cannot be applied
to identify DMC design flaws. To address these, we first identify the
VA parameters that influence security properties. We then introduce
a combinatorial approach to test parameter combinations and dis-
cover design flaws in the DMC of VA platforms. To our knowledge,
our mutation strategy is the first to create semantically different
VA environments by mutating VA parameters.

722

C3: Formally Checking the Security Properties. After deter-
mining the user account parameters, we must send voice commands
and check if the security properties hold in each test. This requires
formally representing the properties amenable for validation. Prior
work on VA security has explored properties to identify and prevent
privacy-sensitive information leakages [30, 47, 62] and check which
skill is invoked given a voice command [41, 85]. Although such
properties can be useful in detecting VC confidentiality violations,
they cannot detect VC integrity and availability as these proper-
ties require reasoning about the specific voice command sent to
devices and the temporal aspects of VC execution. To address this,
we formally define new security properties through MTL, which
extends the operators of linear temporal logic (LTL) with timing
constraints [40]. Lastly, VA platforms do not generate logs that
would allow property validation. Thus, we build a logging mecha-
nism that records events during VA platform operation to validate
the security properties after each voice command.

4 DMC-XPLORER Design

We introduce DMC-XPLORER, an automated VA operation testing
framework that identifies design flaws in the DMC of VA platforms.
Fig. 2 illustrates the overview of DMC-XPLORER.

We first design a domain-specific language VDL (VA Description
Language), addressing C1 (@, Sec. 4.1). VDL provides a concise
syntax to create an environment with a VA controlling multiple
devices parameterized by their names, types, vendors, actions, and
associated skills. When a VDL code is executed, it generates a VA
environment by leveraging VA and skill developer APIs to add
devices and skills to a user account and associate them with a
virtual VA device and skill back-ends. DMC-XrLorer then addresses
C2 by selecting VA parameters through a combinatorial algorithm
that generates different numbers of devices with various names and
types, controlled by single or multiple skills (@, Sec. 4.2). It next
uses VDL to create a VA environment from the parameters.

DMC-XprLoReR then issues real voice commands to the created
VA environment through developer APIs. This ensures direct test-
ing of the DMC of VA platforms when a voice command is given.
After each voice command, DMC-Xrrorer logs event traces with
device configurations, issued voice commands, and the requests
each skill receives. Lastly, it validates the traces against three se-
curity properties formally represented in MTL and conducts an
intervention-based root cause analysis to discover the design flaws
in the DMC of VA platforms, addressing C3 (3, Sec. 4.3).

Target Application of DMC-XpLORER. We introduce DMC-XPLORER
for VA developers to identify the design flaws in the DMC of their
platforms. Identifying such flaws during development can allow
developers to make more informed design choices and revise their

An Investigation of Device Management Flaws in Voice Assistant Platforms

setuplnst := Setup (vaList)
vaList := valnst | vaList
valnst := VoiceAssistant (vaProperties)
vaProperties := vaPlatform, vaDevIype
devList := devInst | devinst @ actList | devList
deviceDefn := class Device[(SmartHome)]:

(ID: devID, vendor: vName, skill: skilllD)

devinst := Device (devProperties)
devProperties := ID, vendor, skill
actList := action | action @ actPrmList | actList
action := string
actPrmlList := actionParameter | actPrmList

actionParameter := string | integer

Basic data types;

vaPlatform := string
vaDevIype := string
devID := string
vName := string
skilllD := string
For completeness;
string := char | char string
char := 0x00 | 0x01 | . . . | OxFF
integer := [+’ | -’] naturalNumber
naturalNumber := digit | digit naturalNumber
digit:=0" || ...|"9

Listing 1: Formal VDL grammar.

implementation of the DMC of their platforms. Although the in-
tended users are developers, VA end users can also use it to identify
such flaws, informing them about possible risks, as it doesn’t require
VA platform source code. We note that during testing, DMC-XPLORER
does not consider any malicious skills (considers all skills are be-
nign) while identifying the design flaws. Yet, in Sec. 6, we show
how such design flaws can be exploited through malicious skills.

4.1 VA Description Language (VDL)

We design a domain-specific language, VDL, which provides a con-
cise syntax to simplify the task of creating VA environments. VDL
is a key component of DMC-XrLorer since it allows creating VA
environments for different platforms (e.g., Alexa and Google Home)
with different sets of devices controlled by multiple skills. DMC-
XpLORER uses these environments to issue voice commands and
validate VA platforms’ behaviors against security properties to
discover the design flaws in their DMC (detailed in Sec. 4.2).

4.1.1 VDL Grammar. Listing 1 presents the VDL grammar in the
BNF notation. VDL describes VA environments with a VA device and
a set of devices in the user account. To determine the attributes/pa-
rameters of the VA environments, we study the developer documen-
tations of popular VA platforms and analyze how they store the VA
and device information. We define a VA device with two attributes:
platform (e.g., Alexa) and type (e.g., Echo). Each device in the user
account has a type, name, actions, vendor name, and associated
skill. VDL includes default actions as turn on and turn off, and al-
lows users to define other actions. Here, device actions can include
numerical values (e.g., dim the light to 10%). Thus, VDL includes an
action parameter list that supports integer values.

723

Proceedings on Privacy Enhancing Technologies 2025(2)

Table 1: Built-in smart home device classes and their actions.

‘ Smart Home Classes ‘ Supported Actions ‘
Lights turnOn, turnOff, brighten, dim
Thermostat setTemp, increase, decrease
Lock lock, unlock, status
Cooler increaseSpeed, decreaseSpeed
Camera answer, show, hide
Washing Machine status, pause, resume
Refrigerator checkTemp, setTemp
Television setVolume, play, pause

1 classwaterHeater(smartDevice):

2 def __init__ (self, devID, vName, skillID):

3 smartDevice.__init__ (self, devID, vName, skillID)

4 waterHeaterInst = waterHeater(“3”, “ManuC”, “Skill13”)

Listing 2: An example of a new class definition in VDL.

@ Operator. We define a linkage (@) operator in VDL to associate
action parameters to actions, actions to devices, and devices to VAs
while constructing a VA environment.

Classes and Objects. We integrated eight common device types as
built-in classes for VDL. Table 1 outlines the built-in device classes
and their actions. We define these smart home device types based on
a generic Device superclass that contains ID, vendor, skill class
variables. Since VAs have similar capabilities, we implemented a
single VA class named VoiceAssistant that has two class variables,
the VA platform (i.e., Alexa, Google Home) and VA device type
(i.e., Echo, Nest). We also define a Setup class that is called to create
the VA environment through API calls.

The code block in Listing 2 shows the implementation of a new
smart home device class and the creation of an instance of the
newly implemented device. In this example, the user constructs a
new device class (water heater) that is not built-in and creates an
instance that can be used in testing the DMC of VA platforms. This
feature gives users a variety of testing options since new smart
home device classes can be easily introduced.

Functions. To improve the usability of VDL, we develop functions
to make it concise and clear. Since DMC-XpLoRrer’s DMC testing in-
cludes repetitions of the parameters, we introduce a set of functions
to facilitate efficient grammar.

e Group. DMC-XrLoRrER generates VA parameters in which
a group of smart devices has the same name (detailed in
Sec. 4.2). To reduce code repetition, we propose a group func-
tion to facilitate defining such device groups. The group func-
tion takes a smart device class, a list of device IDs, vendors,
skills, and the linked VA object as parameters and returns a
list of corresponding device objects.

e Compare. This setup class function generates the same set
of devices for two different VAs. It can be used to compare
the behavior of two different VAs for the same set of devices.

o All This setup class function generates a sample device
from all device classes. This function only requires defining
a VA and setup class. It then generates devices of all types
and assigns a valid value for the parameters of each device.

Proceedings on Privacy Enhancing Technologies 2025(2)

Skill Developer API VA Environment

<é§(@_©»'l bd % kill Back-

|| Virtual VA
Device

@y" (Goo) ends

; | UserVAA;;;;L'E. Q E

Devices I

Figure 3: VDL executor’s VA testing environment creation.

1 alexaEnv = VoiceAssistant(“Alexa”, “Echo”)
2 devl=Light(“bedroomlight”, “Philips”, “Skill1”)
3 dev2=Lock(“front door lock”, “Schlage”, “Skill2”)
4 LightActionList = [“turnOn”, “Dim@10”, “turn0ff”]
5 LockActionList = [“lock”, “unlock”]
6 devi@LightActionList
7 dev2@LockActionList
8 alexasetup = Setup(alexaEnv)
9 alexasetup@dev?2
10 alexasetup@devi

Listing 3: An example VDL code that corresponds to a VA

testing environment with Alexa, two devices, and two skills.

4.1.2 VDL Execution. Figure 3 shows how VDL executor creates
a VA environment, including a virtual VA device, a set of devices,
and a set of skills with back-ends, using VA and skill developer
APIs. These APIs are provided to developers to create and test their
skills without any differences when these skills are deployed in real
smart home environments. Therefore, integrating such APIs into
VDL allows us to test the real DMC of VA platforms.

Given a VDL code, VDL executor first links the virtual VA device
to a user account using the developer APIs (@). Through the virtual
VA device, VDL executor enables sending real voice commands to
the VA cloud. VDL executor next builds the skills and their back-
ends, which handle the voice command requests (@-®). It uses
VA APIs to set the skill type and the workflow between the VA
cloud and the skill back-end. It specifies an API endpoint on a web
server as the skill back-end. The skill back-ends directly respond
to requests from the VA cloud to control devices, mimicking the
operation of vendor clouds.

After creating skills and their back-ends, VDL executor associates
each skill with an authorization code, which grants the skill permis-
sion to add devices to the user’s VA account. Thus, it leverages the
skills to add devices with names, types, actions, and vendor names
provided in the VDL code to the user account (®).

Example. We present a sample VDL code in Listing 3, which
represents an Alexa-controlled VA environment with a light and
door lock. Given this code, VDL executor first defines a virtual VA
device for Alexa (Line 1). It then instantiates two devices with built-
in light and lock classes (Line 2-3). For instance, from Line 2, it
sets the device’s type as 1ight, name as bedroom light, vendor as
Philips, and skill as Skill 1. It then creates device actions (Line
4-5), e.g., the lock and unlock actions for the front door lock.

Here, we leverage the linkage operator (@) to associate illu-
minance action parameter to an action (bedroom light’s dim)
(Line 4) and the device action lists to the devices (Line 6-7). Lastly,
VDL executor sets up the Alexa environment (Line 8) and links the
devices to the VA setup (Line 9-10).

724

Ozmen et al.

Algorithm 1 DMC-XrLorer VA Device Management Testing

Input: Security Properties (Lp), VA Parameter-Property Mapping (M[v, p]), List of
voice commands (Lyc)
Output: Data Traces (D), Property Violations (Lyio)
1: function VA_ExPLORE(Lp, M[V, p], Lvc)
2: for eachpinl, do
3: Ly =arg;(M[3.p] =1)
4: params « Combinatorial(Ly)
5: VDL ¢— CREATE_VDL(params)
6 Va_env <« VDL.EXECUTE()
7 Dj « va_env.EXECUTE(Lyc)
8 D =DU {D;, params}

9: if D; ¥ p then Lyio = Lyio U params
10: end if
11: end for
12: return D, Lyj,

13: end function

4.2 VA Device Management Testing

DMC-XpLORER Uses VDL to create VA environments and issues real
voice commands to discover design flaws in the DMC of VA plat-
forms. For each environment, DMC-XpLoRER must determine the VA
parameters, namely, the number of devices and each device’s type,
name, vendor, skill, and actions. These parameters encompass all
parameters that a VA uses in the user account for their DMC. As
detailed in C2, Sec. 3.2, unfortunately, prior parameter generation
methods may not uncover DMC design flaws in VA platforms.

To address this, we first map the security properties to the VA pa-
rameters that may influence them. VA parameters are the variables
in VDL (number of devices and each device’s name, type, vendor,
skill, and actions), and properties are VC confidentiality, integrity,
and availability, as detailed in Sec. 3. DMC-Xprorer then selects the
parameters in a combinatorial approach, creating parameter com-
binations that comprehensively cover the parameter space. It next
creates testing environments through VDL and issues real voice
commands, as shown in Algorithm 1.

The algorithm takes, as input, security properties, a list of voice
commands, and the VA parameter-property mapping. For each secu-
rity property, the algorithm finds the parameters that impact it from
their mapping (Line 3). It then generates VA parameters through a
combinatorial approach (Line 4) and translates them into VDL (Line
5). It executes the VDL code to create a VA environment through VA
developer APIs (Line 6). It then issues real voice commands to the
devices (Line 7) and logs event traces, including timestamped com-
mands and their skill back-end requests (Line 8). It uses these traces
to validate formally represented security properties and discover
design flaws in the DMC of VA platforms (Line 9-10) (See Sec. 4.3).

4.2.1 VA Parameter and Security Property Mapping. We construct
a binary matrix, M[v, p], by studying VA developer documentations,
to map each VA parameter (v) to the security properties (p) that
they may impact. In the matrix, M[v, p] = 1 means v influences p
and @ means it does not. This matrix allows selectively mutating the
parameters for a scalable exploration of the DMC of VA platforms.

First, the device types and names may influence all security prop-
erties as they are included in voice commands. Second, the number
of devices may also influence all properties. as more devices in the
user account may increase the request delays of voice commands
and complicate correctly determining the skills and actions. Third,
the device actions may impact VC integrity, as they may cause
mismatches between the given voice command and the device’s

An Investigation of Device Management Flaws in Voice Assistant Platforms

supported actions. Yet, actions do not impact the voice command
delay and which devices receive the given command. Fourth, the
skills may affect all properties because they receive the given voice
commands. Lastly, the device vendors do not impact any prop-
erty since they are not referred to in voice commands, and do not
influence the request delay or actions devices receive.

4.2.2 VA Parameter Selection. DMC-XrLORER generates different
sets of parameters, guided by the parameter to security property
mapping, to create VA environments for property validation. It
adopts a hierarchical approach to selecting VA parameters. It first
determines the number of devices, and for each device, it creates
its types, names, skills, and actions.

Selection of the Number of Devices. DMC-XpLorer determines
the max number of devices it can add to a user’s VA account, and if
the VA platform does not impose a limit, it stops at a user-defined
limit to enable scalable exploration. DMC-XrLorer then uses a scal-
ing parameter (p) to divide the max number of devices into specific
values. For instance, if the max value is 1000 and p = 6, it cre-
ates {2, 200, 400, 600, 800, 1000} devices in each test. Here, the min
number of devices is 2 as a single device would generate trivial tests.

Selection of Device Parameters. DMC-XpLoRER next selects each
device’s parameters by focusing on the property-parameter map-
ping. Our observation is that, for the DMC of VA platforms, the
specific device types, names, skills, and actions are insignificant.
Instead, the number of devices having the same parameter may im-
pact security properties since it determines the number of devices
a voice command intends to control. For instance, while creating
two devices, generating a light and lock is indifferent from gen-
erating a camera and TV as each device type is unique and the
command will only refer to one device. Thus, instead of mutating
parameter values, DMC-XpLoRER mutates the number of devices that
have the same property. This ensures that it generates semantically
meaningful parameters for comprehensive and scalable testing.
To this end, DMC-XpLorer uses another scaling parameter (w)
indicating the portion of devices that have the same name, type,
skills, or actions. For instance, if the number of devices is 20 and w =
5, it creates {1, 5, 10, 15, 20} devices with the same type in each test
and sends the voice command to the given type (See Sec. 4.2.3). The
higher values of the scaling parameters (p,) provide a more fine-
grained search, whereas their lower values offer higher scalability.
We set these parameters in Sec. 6 to values that enable a reasonable
trade-off. While determining each test’s parameters, DMC-XPLORER
starts with the min number of devices and mutates each parameter
until a property violation occurs or the parameters are completed.

4.2.3 Voice Command Execution. After determining VA param-
eters, DMC-XpLORER leverages VDL to create a VA environment
and issues voice commands for testing. Particularly, DMC-XPLORER
parses each set of VA parameters into a VDL code. DMC-XPLORER
then executes the VDL code to generate a VA environment. Lastly,
it issues real voice commands to the created environment.

4.2.4 VA Event Logger. DMC-XrLoRER logs events for each issued
voice command (t) and for each request received by skill back-ends
(d), enabling it to validate security properties.

Voice Command Events. We define each voice command event
(t) as t = (devices, vc, ts, exNum). The devices is an array of

725

Proceedings on Privacy Enhancing Technologies 2025(2)

1 Dy ={ty, dq1, d1 2} // Events recorded
2 ty= (devices:[bedroomlight, kitchenlight],
ts:5:00:00,
exNum:1) //[turn on all lights] command given at 5:00:00
di;1=(Skill 1, cmd: turn on, ts:5:00:02, ex:1)
4 dip=(Skill 2, cmd:turn on, ts:5:00:04, ex:1)

vc:[type:Light, command:turn on],

Listing 4: Example logs collected by DMC-XPLORER.

devices that the voice command (vc) intends to control. The vc has
three attributes: command, type, and name, e.g., the command turn
on all lights contains vc.command = turn on, vc.type = Light,
vc.name = null attributes. The ts is the timestamp when the voice
command is issued. The exNum is a unique voice command ID used
to relate voice command and skill back-end events.

Skill Back-end Events. DMC-XrLorer logs events at skill back-
ends (d) for each request received from the VA cloud. This enables
DMC-XrLoRER to analyze the requests the VA cloud issues after
it receives the voice command. We express each skill back-end
event as d = (skill#, command, ts, ex). The skill# is an identi-
fier. The command is the request type received from the VA cloud,
e.g., turn on, and the ts is the request’s timestamp. Lastly, the ex
is the last issued voice command’s ID, which is used to associate
each voice command event with skill back-end events.

The logs contain a data trace for each issued voice command as D;
={ti,dis, dio, ..., din}, where mis the number of requests received
across all skill back-ends after the voice command t; is issued.
Each event d; ; is one request issued from the voice command i
and received by the skill back-end j.

Example. Listing 4 shows example events DMC-XpLoRER logs.
Here, DMC-XpLoreR adds two devices to the user’s VA account,
(1) a device named kitchen with type Light, and associated with
Skill 1, (2) and a device named bedroom with type Light, and
associated with Skill 2. DMC-Xrrorer then issues a voice com-
mand as turn on all lights. It logs an event to record the voice
command (t7), and two events to record the requests received by
the two skill back-ends (dq 7 and d;).

4.3 Security Analysis

4.3.1 Security Property Formalization. We represent the security
properties (detailed in Sec. 3) with MTL. This formalization trans-
forms high-level security properties into verifiable formulas that
allow formally validating them on event traces. Table 2 presents the
security properties, their formalization, and their security goals.
VC Confidentiality (P1). P1 checks whether each user-intended
skill receives a request for the user’s voice command and other
skills do not. For this, P1 validates whether each skill that receives
the voice command controls the device(s) referred by the user. To
determine if a skill controls a specific device, this property checks
the list of devices that the skill has added to the user account. P1
violations mean that a skill that does not control any of the devices
the voice command refers to, indicating an unauthorized skill has
received the voice command.

VC Integrity (P2). P2 checks whether the correct command given

by the user is issued to the device. To this end, it validates if the
command in the voice command event (t) is equal to the command

Proceedings on Privacy Enhancing Technologies 2025(2)

Ozmen et al.

Table 2: Descriptions and formal representations of security properties ensured by the DMC of VA platforms.

ID Security Property Description

Formal Representation® Security Goal

P1 VC Confidentiality while the others must not.

Each user-intended skill must receive the VC request

Prevent adversaries from eavesdropping

oO(d.skill.devices € t.devices) . . .
on privacy-sensitive device states.

The correct commands intended by the user

P2 VC Integrity must be sent to devices.

Prevent adversaries from sending

oO(d.command = vc.command . .
() unintended commands to devices.

The user’s voice command must be executed

P3 VC Availability within a quality of service time.

Prevent adversaries from blocking

O(d.command — © vc.command . .
((o.th1d]) or delaying voice commands.

O means always. t.devices are the devices the voice command refers to, and d.skill.devices represents the devices controlled by the skills that receive a request for the given
command. d.command is the command the device receives, and vc.command is the voice command. o[th14] means eventually in [0, thld] secs.

in the skill back-end event (d). P2 violations mean the VA platform
issues unintended commands to devices.

VC Availability (P3). P3 validates if the given voice command is
executed within a delay threshold (i.e., quality of service time). We
determine the delay threshold (thld) as 8 secs based on Alexa and
Google Home developer documentations and empirically validate
it. If P3 holds, the voice command is executed without delay.

4.3.2 Security Property Validation. DMC-Xprorer validates MTL
formulas on the recorded event traces after executing each voice
command. Our formalization allows using any MTL checker for
property validation. In the DMC-XpLoRER prototype, we integrated
PSY-Taliro [68] to validate the MTL formulas on event traces through
a dynamic programming-based algorithm. However, it depends on
additional libraries. For a stand-alone implementation, we leverage
the intuitiveness of our security properties and implement a custom
property-checking algorithm. After validating each security prop-
erty, DMC-XpLORER outputs the VA parameters, logs, and whether
each property is violated or satisfied.

4.3.3 Intervention-based Root Cause Analysis. DMC-XPLORER’S out-
put allows analyzing the root causes of the violations by deter-
mining the common VA parameters that cause the violations. This
approach is similar to the intervention analysis in causal inference,
which enables distinguishing causal structures based on observa-
tions from intervening in a variable [31].

In our context, when DMC-XpLorer mutates a VA parameter to
different values while keeping other parameters the same, and it
does not cause a property violation, then this parameter cannot
be the root cause. In contrast, if changing the parameter (while
keeping others the same) causes a violation, then this parameter’s
change is the root cause. Particularly, we compare two probabilities,

Prob(p|do(vi = Vi 1)) = Prob(p|do(v; = Vi2))

where p is a security property, do represents the interventions, v;
represents the VA parameters, and V; represents specific parameter
values. If a parameter is the root cause for violations, its changes
cause a significant increase in the probability of the security prop-
erty being violated, allowing us to identify the root causes.

Since DMC-XrrLorer’s VA device management testing algorithm
mutates parameters individually, its output enables us to directly
conduct intervention-based root cause analysis without running
additional tests. In turn, the identified root causes reveal the design
flaws in the DMC of VA platforms.

726

5 Implementation

We have implemented DMC-Xrprorer for Alexa [5] and Google
Home [27] as they are the most popular VA platforms. DMC-XPLORER
requires minimal manual effort before automated testing: (1) cre-
ating a user account and a virtual VA device, (2) building skills
through smart home skill templates, (3) setting up an event logger,
and (4) determining the request delay threshold. DMC-XpLorer then
automates VA device management testing on Alexa and Google
Home APIs by sending pre-recorded audio to the virtual VA device.
To detail, we first create a test VA account on both platforms to
enable VDL executor to install skills that add devices to the user
account. We then set up a virtual VA device using the VA SDKs. For
each skill, VDL executor uses the VA APIs to create their back-end.

As the VA event logger, we configure a relational database on a
cloud service [6]. For both VA platforms, we determine the request
delay threshold required to validate VC availability (P3) through
developer documentations [3]. These documentations state that
VA platforms time out and give users an error message after 8
secs. Thus, we set the delay threshold at 8 secs. We empirically
confirmed this threshold by issuing a voice command and delaying
the response from our skill back-end to record the time Alexa and
Google wait before giving an error. We detail the manual effort
required for porting DMC-XpLoreR to other VA platforms in Sec. 7.2.

5.1 Platform-specific Implementation Details

Amazon Alexa. We implement Alexa skill back-ends in Node.js
on AWS lambda [10] to handle Discovery (initial connection),
AcceptGrant (account sign-in), ReportState (state query), and
PowerController (device control) queries [73]. VDL executor adds
devices proactively, so it does not report any devices in its response
to Discovery messages. In ReportState, VDL executor reports the
device is currently in a hard-coded state. For PowerController, it
reports the device’s new state is whichever state Alexa required
the skill to change it to. Each skill back-end includes approximately
200 LoC used to handle the requests. We use the same code for each
skill back-end except for a hard-coded skill number.

For account sign-in, we leverage the Login With Amazon [48]
authentication model. We get an access code and a refresh code
rather than one authorization code. The access code is used in
proactive requests to the Alexa API, identifying the user, skill, and
authorizing requests to add devices. Although the code expires after
an hour, sending the refresh code to the Login With Amazon API
retrieves a new access code.

VDL executor uses the Alexa /v3/events API [73] to report the
devices from each skill. This API limits the number of reported
devices per message. We space the requests by 100 ms to comply

An Investigation of Device Management Flaws in Voice Assistant Platforms

Proceedings on Privacy Enhancing Technologies 2025(2)

Table 3: Design flaws discovered by DMC-XpLorer and the attacks that can be performed on Alexa and Google Home.

Exploited Design Flaw Impacted Platform
Duplicate Devices | No Proper Bound Check Attack User Voice Command Attack Consequence Alexa| Google

v X Eavesdropping (Cmd] [Type] Malicious skill learns the voice command sent to a benign skill 4 4

[Cmd] [Name] X v
v X Intercepting [Cmd] [Name] Malicious skill intercepts the voice command sent to a benign skill| v X
v v Delaying [Cmd] [Type] Malicious skill delays the voice command sent to a benign skill v X
4 v Blocking [Cmd] [Name/Type] Malicious skill blocks the voice command sent to a benign skill X v
v v VA Overloading [Cmd] [Type] Malicious skill overloads the Alexa servers v X

with these checks. To set up a virtual VA device, we use Alexa’s code-
based linking [9] to get an authorization code and issue requests to
the speech API [4] on behalf of the user. DMC-XpLorer then sends
the voice commands, containing the authorization code and an
audio file, to the SpeechRecognizer API.

Google Home. We set up a Firebase function [26] for the skill back-
end of Google Home actions to handle the login procedure (initial
connection and account sign-in), onQuery (state query), onExecute
(device control), and SYNC (add devices) requests [36]. The Firebase
function also gets authorization to use the HomeGraph API, which
allows issuing RequestSync messages to the Google Home cloud.
Each Google skill has the same back-end, around 300 lines of Node.js
code, with just a hard-coded skill number changed.

There is no Google Home API to add devices directly. Thus, VDL
executor uses RequestSync and SYNC messages to accomplish this.
A skill sending a RequestSync message to Google Home causes
Google to reply with a SYNC message. The skill then responds to this
message specifying the devices it is adding. For this reason, the skill
back-end creates the device configuration when it receives a SYNC
request. To this aim, it reads the current execution number from
the database, and it uses the current execution number and input
arrays to determine the devices that it needs to send in the report.
VDL executor invokes each skill to send a RequestSync message to
Google Home and updates the execution number in the database
instead of adding devices directly.

6 Evaluation

We leverage DMC-XpLorer to discover design flaws in the DMC of
two most popular VA platforms, Amazon Alexa and Google Home.

DMC-XprLoReR selects the VA parameters through a combinato-
rial approach, with the scaling parameters p and w set as 6. We
select these parameters since they enable a scalable but comprehen-
sive exploration. We found that a more fine-grained exploration
does not reveal additional design flaws while increasing the test-
ing overhead. DMC-XproRrer then translates the parameters into
VDL and executes the VDL code to generate VA environments.
To control the devices, DMC-XPLORER issues voice commands as
turnon all [device type] and turn on [device name].

We run our experiments on a computer with an Intel Core i5
CPU running at 3.9 GHz with 16 GB RAM.

Property Violations. DMC-Xprorer finds that both Alexa and
Google Home violate the P3 (VC availability) security property.
These violations indicate that the voice command execution is
delayed by more than 8 secs. DMC-Xprorer also finds that neither
platform violates the P1 and P2 properties, indicating that (1) the
skills that receive voice commands have added the user-referred

727

devices to the user’s VA account, and (2) the commands delivered to
the skill back-ends correctly match the issued voice commands. To
ensure that the parameters eliminated with the parameter-property
mapping matrix (See Sec. 4.2.1) do not cause missed violations, we
conducted experiments while mutating those parameters and found
that they do not cause additional violations.

Root Causes. DMC-XPLORER’S r0o0t cause analysis indicates that
the property violations on Amazon Alexa are due to devices with
the same name or type being in the user account or a high number
of devices. For instance, DMC-XpLoreR found that when it adds 200
devices with the same name to the user account from two skills
and issues the command turn on [device name], Alexa only sends
arequest to the last skill that added the device.

For Google Home, DMC-Xrrorer found that all violations occur
when 1K devices with the same name or type are added to the
user account. DMC-Xrprorer discovered that although Google Home
allows a skill to add 1K devices to the user account, it does not send
a request to skill back-ends when the user issues a voice command
if the devices have the same name or type, violating P3.

Thus, DMC-XpLORER’S root cause analysis found there are two
design flaws in the DMC of Alexa and Google Home: (1) duplicate
devices in the user account and (2) no proper bound on the number
of devices added by a skill. We physically validated that both design
flaws exist in Alexa and Google Home by adding 1K duplicate devices
to the user VA accounts. Table 3 summarizes the design flaws and
the attacks we introduce to exploit them through malicious skills.

6.1 Duplicate Devices in the User’s VA Account

We refer to duplicate devices as devices in the user’s VA account
that have the same name and/or type. DMC-XPLORER’S root cause
analysis found that both platforms allow skills to add duplicate
devices to user accounts. Although duplicate devices may have
unique ids that distinguish them in the user account, when a user
issues a voice command, the VA platforms fail to distinguish them.
The VA platforms do not prevent skills from adding duplicate
devices for two main reasons. First, users may have multiple devices
with the same type (e.g., multiple light devices) or name (e.g., mul-
tiple living room lights) in their home. Second, a user may register
the same device to multiple skills (e.g., the user registers a Hue light
through a Philips skill and the Apple HomeKit skill), which in turn
causes these skills to add duplicate devices to the user account.
To investigate the impact of duplicate devices in user accounts,
we leverage the DMC-XpLoRER event traces and analyze the number
of requests received by skill back-ends. We found that when the user
issues a voice command [Cmd] [Device Type] (e.g., turn on the
lights), both platforms send a request to all devices of the given
type. On Alexa, when the user controls devices with a specific name,

Proceedings on Privacy Enhancing Technologies 2025(2)

Ozmen et al.

Add Device VC with device
Benign Vi User VA Account name or type Google vC Request
skill Skills C'°"d
Benign Skill
Attacker Skill -
(Attacker) Devices de\\//iiewrlrtahme i
Skill R R Front Door Lock Alexa Benign Benign
1/ Add Device with the Front Door Lock VC with device Cloud Skiﬁ No VC Request | - gyij
same type or name type vC Request

Attack Setup

Al: Eavesdropping Attack

A2: Intercepting Voice Commands Attack

Figure 4: Illustration of eavesdropping and intercepting voice command (VC) attacks with a finite state machine. Each node
represents a VA component, and the edges represent their interactions.

it sends a request to the most recently added device with that name.

For example, if there are multiple devices named bedroom light

and the user issues the voice command turn on bedroom light,
only the last added bedroom 1ight receives the request. In contrast,

when the user issues a voice command to a device name on Google
Home, it sends a command to every device with that name.

Our findings on Alexa and Google Home show that skills can
add duplicate devices to user accounts with any device information
without notifying the user. An attacker can leverage malicious skills

and exploit such DMC permissions to launch two different attacks.

6.1.1 Al: Eavesdropping on the Privacy-Sensitive Device States. We
design an attack in which a malicious skill (installed by a user) adds
devices with the same type or name as another device to eavesdrop
on the user’s voice commands. The attacker can launch this attack
by the following three steps, as illustrated in Fig. 4.

@ The attacker skill adds a device with the same name or type
as another device to the user’s VA account.
Benign Skill — door
Attacker Skill — door

@ The user issues a voice command to a device type or name
([Cmd] [Type/Name]), where an attacker has added device(s)
with that device type/name to the user account.

User — unlock all doors

© The attacker skill learns the user’s voice command.

unlock-door — Benign Skill Back-end
unlock-door — Attacker Skill Back-end

Attack Impact. When a user issues a voice command to a device
type (e.g., lock the doors) or name (e.g., lock the patio door),
the attacker skill back-end receives the request to change device
states (Table 3, first row). Here, the attacker can infer if the user’s
doors are locked or not. Since the attacker is not limited in the
number of devices they can add to a user account, they can add many
devices with common types and names and obtain device states
every time a user issues a voice command (detailed in Sec. 6.1.3).

Additionally, this attack is stealthy, as benign skills and physical
devices receive voice commands and operate as usual. For instance,
when the user issues the unlock all doors command, the doors
physically get unlocked. However, the attacker also receives this
command, unbeknownst to the user.

The eavesdropping attack does not apply to Alexa when the
user issues a voice command to a device with its name. This is
because, in such cases, Alexa only sends the command to the last
added duplicate device, which makes Alexa vulnerable to our voice
command interception attack, as detailed next.

728

6.1.2 A2: Intercepting Voice Commands. We design an attack on
Alexa where an attacker intercepts the voice commands sent to
devices that a user intends to control, as shown in Fig. 4. While A2
has similar steps with A1, here, the attacker needs to add a device
to a user account with the same name already added by the user.

@ The attacker skill adds a device with the same name as an-
other device on the Alexa user account.

Benign Skill — front door
Attacker Skill — front door

@ The user issues a voice command to a device name where
an attacker has added a device with that name.

User — lock the front door

© The attacker skill intercepts the user’s voice command.

lock-front-door /4 Benign Skill Back-end
lock-front-door — Attacker Skill Back-end

Attack Impact. When a user issues a voice command to a device
name, the attacker’s skill intercepts the request, preventing the
physical device from receiving the command (Table 3, second Row).
This attack does not apply to Google Home because it sends a
request to every device with the same name rather than the most
recently added device, making it susceptible to the eavesdropping
attack, as detailed in Sec. 6.1.1.

The users can notice this attack since their voice command will
not be executed by the physical device. Yet, the attacker can care-
fully select which commands they intercept to remain stealthy. For
instance, intercepting a turn of f the bedroom light command
can be noticed. On the contrary, users may be less likely to no-
tice if the attacker intercepts the commands given to cameras
(e.g., turn on the front camera) and door locks (e.g., lock the
front door). To be more stealthy, the attacker’s skill back-end can
also send fake confirmation messages to the user, stating the com-
mand has been executed, while in reality, it has not.

6.1.3 Selecting Device Types and Names. The eavesdropping and
intercepting attacks require the attacker to add a duplicate device to
the user’s VA account. We conduct additional analysis to understand
how an attacker can determine which device types and names
they can add to users’ VA accounts to maximize their chances of
eavesdropping on and intercepting voice commands.

We found there are 17 supported device types on Alexa [5] and
79 on Google Home [27]. Thus, to conduct an eavesdropping attack,
the attacker only needs to add 17 devices to Alexa and 79 devices to
Google Home. This would allow the attacker to eavesdrop on any
voice command given as [Cmd] [Device Type] for both platforms.

An Investigation of Device Management Flaws in Voice Assistant Platforms

— —3— Alexa, First Request
8 300 [| —%— Alexa, Last Request]
@ Google, Only Request
>
©
o}]
8 200
o
[
2
o 100]
1%}
e}
(]
ol
0 200 400 600 800 1000

Number of Devices in User VA Account

Figure 5: Delay between a voice command and request to
control different numbers of devices.

Selecting device names is more challenging since users can name
their devices differently. To understand how users name their de-
vices on VA platforms, we studied posts on official and third-party
smart home forums. We found that users usually give predictable
names to their devices in the form of [Location] [Device Type] [11,
12, 35, 69]. For instance, they name the light in the bedroom as
bedroom light and the one in the kitchen as kitchen light. This
naming convention allows users to remember the device names and
distinguish them while giving commands. Thus, the attacker can
select the device names they add to user accounts as different com-
binations of locations and device types. This would maximize their
chances of conducting eavesdropping attacks on Google Home
and intercepting attacks on Alexa when the user issues a voice
command in the form of [Cmd] [Device Name].

6.2 No Bound Check on Number of Devices

DMC-XpLORER’S ToOt cause analysis indicated that both Alexa and
Google Home allow a skill to add a large number of devices to a
user account. We conducted additional experiments with a varying
number of devices (1 to 1K) configured with different names and
types to understand the behavior of both VA platforms.

In our first experiment, we add an increasing number of dupli-
cate devices from a skill and issue the voice command turn on all
[device type]. Figure 5 shows the response time with an increas-
ing number of devices. On Alexa, we measure the delay between
when a voice command is issued and when a skill back-end receives
the first and last requests. On Google Home, we only show one
delay measurement as it sends a single request containing a list of
devices that the voice command intends to control.

On Alexa, adding 1K devices causes an average delay of 61.2
secs before the first request received by the skill back-end and a 5-
minute delay on the last request. On Google Home, the max number
of devices we could test was 500 because, with 1K devices, the skill
back-end does not receive a request at all. Yet, on Google Home,
the same number of devices yields a lower delay, e.g., adding 500
devices causes an average delay of 4.15 secs. Overall, we observe
that delay increases with the number of devices the voice command
refers to, and it is not affected by the device type or name.

In our second experiment, we aim to understand if a skill can de-
lay requests to devices added by another skill. Fig. 6 shows the delay
between a user issuing the voice command turn on all Device A
and skill-1 back-end receiving the request, while skill-2 adds a
different number of Device A or B to the user account. On Alexa,
there is a delay of 10.8+3.86 secs with 200 Device A added by

729

Proceedings on Privacy Enhancing Technologies 2025(2)

15 |—# Alexa, Device A in VA Account
—#— Alexa, Device B in VA Account
Google, Device A in VA Account
I Google, Device B in VA Account

-~
~
-
L _ 4
-~
P

o

&~ s
0 50 100 150 200
Number of Devices Added to User VA Account

Observed Delay (sec)
\
\

0

Figure 6: Delay of a voice command given to Device A with
varying # of devices and device types in the user VA account.

skill-2, but there is minimal delay when 200 Device B are added.
On Google Home, there is a smaller increase in the delay on Alexa,
up to 1.99 secs with 200 Device A and 1.33 secs with 200 Device B.

In our last experiment, we analyzed the limit on the number of
devices a skill can add. DMC-XpLoreR was able to add 3K devices,
the maximum amount we tested, to Alexa without any restriction.
For Google Home, DMC-XpLoreR’s request to add 2K devices was ac-
cepted, but the request to add 3K resulted in no devices being added.

Our analysis revealed three key observations. First, Alexa has a
large delay with an increasing number of devices. Second, Google
Home does not send a request to skill back-ends if the voice com-
mand controls more than 500 devices in the user account. Lastly,
Alexa allows skills to add many devices, whereas Google Home
limits it to 2K. Based on these observations, we design two attacks
that exploit the no proper bound check on Alexa and Google Home.

6.2.1 A3: Delaying/Blocking Voice Commands. We design an attack
in which a malicious skill adds 1K duplicate devices to delay voice
commands on Alexa and block them on Google Home. This attack
can be conducted by following the steps shown in Fig. 7.

@ The attacker skill adds many devices with the same name or

type as another device on the user account.
Benign Skill — door
Attacker Skill — door (x1000)

@ The user issues a voice command for that specific device
type or name ([Cmd] [Type/Name]).

User — lock all doors
@ Benign skill back-end receives a delayed command in Alexa.

delay . .
lock-door — Benign Skill Back-end

delay .
lock-door —— Attacker Skill Back-end

€@ Google Home blocks the given voice command’s transmis-
sion to all skill back-ends.
lock-door /> Benign Skill Back-end
lock-door /4 Attacker Skill Back-end

Attack Impact. When a user issues a voice command to a device
type on Alexa, this attack causes the command to be executed with
a long delay (e.g., 61.8 secs delay with 1K duplicate devices). Yet,
the delaying attack is not successful when the user issues a voice
command to device names. This is because, in such cases, the voice
command is sent to the most recently added device, resulting in the
interception attack (A2). On Google Home, when a user issues a

Proceedings on Privacy Enhancing Technologies 2025(2)

Ozmen et al.

Benign Add Device User VA Account)
skill Skills VCwith
Benign Skill device type
Attacker Skill
Attacker) Devices
skill Front Door Lock

Add Many Devices with
the same type or name

Front Door Lock

Attacker’
VC with device No VC Request skill
@ name or type x
X Benign
Skill

Attack Setup

A3a: Delaying Voice Commands Attack

Cloud
No VC Request
A3b: Blocking Voice Commands Attack

Figure 7: Illustration of delaying and blocking voice commands.

voice command to a device type or name, this attack blocks the re-
quest from reaching any skill back-end. This attack may be noticed
by users as their commands are delayed or blocked. However, simi-
lar to A2, the attacker can carefully select which device commands
they delay or block to remain stealthy (e.g., cameras, door locks).

6.2.2 A4: Overloading VA’s Computational Resources. We design an
attack that targets the VA cloud instead of users without requiring a
skill to be added to the marketplace, as the skill is only added to the
attacker’s VA account. The attacker adds many devices to the VA
account(s) they created and sends voice commands to overload the
VA cloud. This attack can be launched through the following steps.

@ The attacker creates a skill and adds it to the VA account(s)
they created.

@ The attacker repeatedly adds new devices (with the same
type or name) to their account(s) through VA APIs.

Attacker Skill — door (x3000)

@ The attacker issues a command to all devices.

Attacker — lock all doors

@ In turn, the VA device sends thousands of requests to the VA
cloud, overloading its servers.

Attack Impact. When the attacker gives a voice command, the
Alexa cloud performs significantly higher computation compared
to the attacker, as the attacker issues a single API request in mil-
liseconds, whereas the Alexa cloud takes over a minute to issue
requests. This attack can easily scale, as the attacker can open mul-
tiple VA accounts. With such a large number of devices, this attack
can cause significant usage of Alexa computational resources. We
note that this attack does not work on Google Home as it does not
allow over 2K devices and has a lower delay.

6.3 Testing Performance

Testing Time Overhead. DMC-XrLoRERs testing time includes
(1) running the testing algorithm, (2) recording events, and (3) vali-
dating them against security properties. DMC-XpLORER’s VA testing
algorithm selects VA parameters, translates them into VDL, exe-
cutes it, and issues voice commands. The first two steps require time
in milliseconds. After issuing each voice command, DMC-XPLORER
waits until the request delay threshold (8 secs), which dominates the
total testing time. Thus, the testing time increases linearly with the
number of voice commands sent. In our experiments, DMC-XPLORER
takes, on average, ~ 130 minutes on both platforms.

Event Log Storage Overhead. DMC-XpLoRER records one event
per voice command, and the skill back-end records an event for
each received request from the VA cloud. Each event is, on average,

730

16 bytes. For instance, if we add 10 devices (5 lights and 5 cameras)
and issue the voice command turn on the lights, the skill back-
end records 5 events, a total of 80 bytes. DMC-XpLORER records ~ 2
MB of event traces during our experiments.

7 Limitations and Discussion

7.1 Countermeasures

The attacks (A1-A4) introduced in Sec. 6 stem from skills being
allowed to add duplicate devices in the user account and add many
devices without a proper bound check. To conduct these attacks,
the only capability required by the attacker’s skill is adding devices
to the user account, the permission automatically granted to all
smart home skills on Alexa and Google Home.

One may consider using an access control mechanism to prevent
our attacks. Yet, traditional IoT access control mechanisms [33, 61,
63, 80] cannot prevent the attacks we introduced. The reason is
that skills all have the same permissions and any restrictions can
prevent benign skills from functioning properly. Thus, we provide
three user-centered countermeasures against our attacks.

User Approval for Duplicate Devices. DMC-XpLORER exposed
that skills, with default permissions, can add duplicate devices
to a user account. This allows an attacker to eavesdrop on voice
commands (A1) and intercept them (A2) with a malicious skill.
Unfortunately, preventing skills from adding duplicate devices
by enforcing unique names and types hurt VA usability (e.g., a user
may own multiple devices of the same type or install multiple skills
to control a device, resulting in these skills adding the device with
the same name [55]). Thus, to mitigate these attacks, VA platforms
may ask users for confirmation through run-time prompts in mobile
VA apps when a duplicate device is added to their VA account. To
implement this countermeasure, VA developers can check each
request to add a device against existing devices in the user account
and send runtime prompts to the user. This interaction prevents an
attacker from adding duplicate devices without the user’s notice.
However, the continuous runtime prompts may create permission
fatigue in the users, causing them to allow duplicate devices without
checking their validity. Therefore, it is critical to design intuitive
runtime prompts and evaluate their usability and effectiveness with
large-scale user studies in future work.
Bound Checking on the Number of Devices. Blocking and
delaying voice commands (A3) and overloading the computational
resources of the VA cloud (A4) are caused by skills being able to add
a high number of devices. To address this, VA platforms can limit the
number of devices a skill can add to a lower amount (e.g., 200) and
have users opt-in to a higher limit. VA developers can implement
this by checking if the number of existing devices in the user’s

An Investigation of Device Management Flaws in Voice Assistant Platforms

VA account is less than the limit before adding a new device. This
would prevent skills from adding any number of devices to the user
account by default but would require users to approve the higher
device limit. As a user-centric defense, similar to the user approval
for duplicate devices, this countermeasure can also be evaluated in
terms of usability and effectiveness through user studies.

VA Account Vetting. The first two countermeasures offer proac-
tive defenses to prevent malicious skills from adding duplicate or a
high number of devices. As a reactive measure, VA platforms can
vet user accounts to detect suspicious activity. For instance, VA
platforms can vet user accounts by validating whether the account
includes a large number of devices or any duplicate devices and
sending warning messages to the users. To this end, VA platforms
can conduct large-scale measurement studies to check whether
such symptoms exist in user VA accounts.

Unfortunately, such countermeasures are currently lacking in VA
platforms, allowing adversaries to eavesdrop on privacy-sensitive
device states, prevent users from controlling their devices, and
overload the computational resources of the VA cloud.

7.2 Practical Considerations

Broader Impact of DMC-XPLORER. DMC-XPLORER can be used to
explore different design flaws and privacy issues in VA platforms
and reproduce existing VA attacks. For example, DMC-XPLORER can
issue hidden adversarial voice commands to observe if such com-
mands, combined with a set of devices on a user account, cause
VA platforms to send incorrect requests. As another example, DMC-
XPLORER'S parameter selection can be extended to smart homes
where multiple VAs control common devices. For this analysis,
events from each VA can be correlated through common devices
they control to explore conflicting device states. Our MTL formu-
las are generalizable for these analyses to identify confidentiality,
integrity, and availability violations due to different design flaws.

Porting DMC-XpLORER to other VA Platforms. DMC-XPLORER
and VDL can be generalized to other VA platforms with the fol-
lowing steps: (a) create skills and their back-ends that respond to
requests, (b) parse the VDL code using VA APIs to create a VA testing
environment from VA parameters, and (c) issue voice commands
and collect event logs to discover security property violations.

Some VA platforms may structure VA components differently
than Alexa and Google Home. For instance, Mycroft [24] allows
each skill to keep track of a user’s devices and determine which
device to send requests to. In such cases, instead of adding devices
through VA APIs, DMC-XpLoRrER can leverage skills to store different
devices on the Mycroft device. It can then issue voice commands to
the Mycroft device to validate the security properties.

8 Related Work

VA Security and Privacy. There has been a growing interest in the
security and privacy of VA platforms [75]. A line of work revealed
weaknesses in the skill vetting of the VA platforms [18, 44, 66] and
identified the policy-violating skills [30, 47, 62, 78]. Another line of
work studied skill squatting attacks, in which an attacker exploits
the frequent misinterpretations of the user’s voice commands to
stealthily mislead the user into installing and using a malicious

731

Proceedings on Privacy Enhancing Technologies 2025(2)

skill [41, 44, 59, 83, 85]. Prior works also showed attacks against
speech recognition [14, 16, 17, 21, 76, 81] and proposed defenses [1,
22, 34, 46, 50, 77, 82, 84] against them.

These works differ from DMC-Xprorer as they focus on skill man-
agement and speech recognition vulnerabilities, and therefore, they
(1) do not create VA environments with skills, back-ends, devices,
and a VA device, and (2) formalize and validate security properties.
In contrast, DMC-XpLorer discovers design flaws in the DMC of VA
platforms using their APIs by creating VA environments and issu-
ing real voice commands for testing. The created VA environment
with each VA component enables DMC-XpLoreR to discover design
flaws in the DMC of VA platforms that can only be revealed when
multiple devices from multiple skills are added to user accounts.

Security of IoT Component Interactions. Prior work explores
the security of the interactions between IoT components [25, 37, 51,
53, 58, 86]. For instance, recent work [86] showed that an attacker
could create a phantom device to acquire privacy-sensitive infor-
mation and intercept commands, yielding similar consequences to
DMC-XrLoRER’S eavesdropping and intercepting attacks.

However, these works do not consider the interactions between
IoT devices and VA components. In contrast, DMC-XpLorer discovers
design flaws in the DMC of VA platforms by exploring the interac-
tions between the VA cloud, skills, and skill back-ends. We show
that an attacker can leverage malicious skills (rather than phantom
devices) to exploit such design flaws and conduct various attacks.

Fuzzing. Traditional software fuzzers have been used to expose
memory corruption vulnerabilities [15, 32, 54, 65, 79]. Black-box
fuzzers and testing tools have also been proposed to link trigger-
action platform rules [72] and find vulnerabilities in IoT device
firmware [23]. Instead, DMC-XpLorer identifies DMC design flaws
in VA platforms through VDL, new formal security properties, and
a parameter mutation algorithm. Recent fuzzers identify seman-
tic bugs with oracles that define the correct operation of robotic
vehicles [38, 39] and autonomous driving software [45, 60, 64, 70]
to discover vulnerabilities. Yet, they cannot be extended for DMC
design flaws of VA platforms because, instead of program inputs,
we explore different VA parameters and leverage VA security prop-
erties as opposed to code-level (quantitative) feedback for testing.

9 Conclusions

We introduce DMC-XPLORER, a VA operation testing framework that
discovers design flaws in the DMC of VA platforms. DMC-XPLORER
creates VA environments with a set of devices that have different
names, types, and skills through a new domain-specific language
VDL. It then sends voice commands to the devices using VA de-
veloper APIs. After sending each voice command, DMC-XPLORER
logs events, validates them against a set of security properties for-
mally represented with MTL, and conducts intervention-based root
cause analysis to determine the VA parameters causing property
violations. We use DMC-XpLorer on Alexa and Google Home and
discover design flaws in their DMC that a skill with default permis-
sions can exploit. We design four attacks exploiting the design flaws
in which a malicious skill can eavesdrop on privacy-sensitive device
states, intercept, block, or delay voice commands, and overload the
VA’s computational resources. Lastly, we propose proactive and
reactive countermeasures to mitigate these attacks.

Proceedings on Privacy Enhancing Technologies 2025(2)

Acknowledgments

We thank our revision editor and the anonymous reviewers for
their comments and suggestions. This work has been partially sup-
ported by the National Science Foundation (NSF) under grants
CNS-2144645 and CNS-2145744. The views expressed are those of
the authors only.

References

(1]
(2]
(3]

[4

[10]

[11

[12]

[13

[14]

[15

[16]

(17

[18

[19]

[20

[21]

[22

~
&

[24

[25

Shimaa Ahmed, Ilia Shumailov, Nicolas Papernot, and Kassem Fawaz. 2022. To-
wards more robust keyword spotting for voice assistants. In USENIX Security.
Alexa Developer Documentation 2024. https://developer.amazon.com/en-
US/docs/alexa/documentation-home.html. [Online; accessed 20-April-2024].
Alexa Response Time 2024. https://developer.amazon.com/en-US/docs/alexa/de
vice-apis/alexa-response.html. [Online; accessed 20-April-2024].

Alexa SpeechRecognizer 2.3 2024. https://developer.amazon.com/en-US/d
ocs/alexa/alexa-voice-service/speechrecognizer.html. [Online; accessed
10-April-2024].

Amazon Alexa 2024. https://alexa.amazon.com/. [Online; accessed 22-April-
2024].

Amazon Relational Database Service (RDS) 2024. https://aws.amazon.com/rds/.
[Online; accessed 10-April-2024].

Amazon Vulnerability Research Program 2024. https://hackerone.com/amazonvr
p?type=team. [Online; accessed 25-April-2024].

Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankara-
narayanan. 2011. S-taliro: A tool for temporal logic falsification for hybrid
systems. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems.

Authorize an AVS Device Through Code-Based Linking 2024. https://developer.
amazon.com/en-US/docs/alexa/alexa-voice- service/authorize-cbLhtml. [Online;
accessed 10-April-2024].

AWS Lambda 2024. https://aws.amazon.com/lambda/.
10-April-2024].

Best Practices for Naming Devices 2019. https://en.community.sonos.com/ama
zon-alexa-and-sonos-229102/best-practices-for-naming-of - devices-6819283.
[Online; accessed 10-May-2024].

Best Way to Name Devices 2018. https://community.smartthings.com/t/best-
way-to-name-devices-in-regards-to-alexa-2018/138257. [Online; accessed
10-May-2024).

Build your skill 2024. https://developer.amazon.com/en-US/docs/alexa/build/buil
d-your-skill-overview.html. [Online; accessed 10-April-2024].

Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah Sherr,
Clay Shields, David Wagner, and Wenchao Zhou. 2016. Hidden voice commands.
In USENIX Security.

Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-adaptive
mutational fuzzing. In IEEE Symposium on Security and Privacy (S&P).

G. Chen, S. Chen, L. Fan, X. Du, Z. Zhao, F. Song, and Y. Liu. 2021. Who is Real
Bob? Adversarial Attacks on Speaker Recognition Systems. In IEEE Symposium
on Security and Privacy (S&P).

Guangke Chen, Yedi Zhang, Zhe Zhao, and Fu Song. 2023. QFA2SR: Query-
Free Adversarial Transfer Attacks to Speaker Recognition Systems. In USENIX
Security.

Long Cheng, Christin Wilson, Song Liao, Jeffrey Young, Daniel Dong, and
Hongxin Hu. 2020. Dangerous Skills Got Certified: Measuring the Trustworthi-
ness of Skill Certification in Voice Personal Assistant Platforms. In ACM SIGSAC
Conference on Computer and Communications Security (CCS).

Connect Smart Home Devices in the Google Home App 2024. https://support.go
ogle.com/googlenest/answer/9159862. [Online; accessed 10-April-2024].
Connect Smart Home Devices to Alexa 2024. https://www.amazon.com/gp/he
Ip/customer/display.html?nodeld=G3RKPNRKF33ECTW?7. [Online; accessed
10-April-2024].

Sergio Esposito, Daniele Sgandurra, and Giampaolo Bella. 2022. Alexa versus
Alexa: Controlling Smart Speakers by Self-Issuing Voice Commands. In ACM on
Asia Conference on Computer and Communications Security (AsiaCCS).

Huan Feng, Kassem Fawaz, and Kang G. Shin. 2017. Continuous Authentica-
tion for Voice Assistants. In International Conference on Mobile Computing and
Networking (MobiCom).

Xiaotao Feng, Ruoxi Sun, Xiaogang Zhu, Minhui Xue, Sheng Wen, Dongxi Liu,
Surya Nepal, and Yang Xiang. 2021. Snipuzz: Black-box fuzzing of iot firmware
via message snippet inference. In ACM SIGSAC Conference on Computer and
Communications Security (CCS).

Kris Gesling. 2023. Mycroft Development Setup. https://mycroft-ai.gitbook.io/
docs/skill-development/introduction. [Online; accessed 15-April-2024].

Furkan Goksel, Muslum Ozgur Ozmen, Michael Reeves, Basavesh Shivakumar,
and Z Berkay Celik. 2021. On the safety implications of misordered events and

[Online; accessed

732

[26

[27

[28

[29

[30

w
—

[32

[33

(34

[36

[37

[38

[39

[41

[42

[43

[44

S
&

[46

[47

[48

[49

o
=

[51]

Ozmen et al.

commands in IoT systems. In IEEE Security and Privacy Workshops (SPW).
Google Firebase 2024. https://firebase.google.com/. [Online; accessed 10-April-
2024].

Google Home 2024. https://assistant.google.com/. [Online; accessed 12-April-
2024].

Google Home Developer Documentation 2024. https://developers.home.google.c
om/docs. [Online; accessed 20-April-2024].

Google VRP 2024. https://www.google.com/about/appsecurity/reward-program/.
[Online; accessed 10-April-2024].

Zhixiu Guo, Zijin Lin, Pan Li, and Kai Chen. 2020. SkillExplorer: Understanding
the Behavior of Skills in Large Scale. In USENIX Security.

York Hagmayer, Steven A Sloman, David A Lagnado, and Michael R Waldmann.
2007. Causal reasoning through intervention. Causal learning: Psychology, phi-
losophy, and computation.

Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos. 2013.
Dowsing for Overflows: A Guided Fuzzer to Find Buffer Boundary Violations. In
USENIX Security.

Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Diirmuth, Ear-
lence Fernandes, and Blase Ur. 2018. Rethinking Access Control and Authentica-
tion for the Home Internet of Things (IoT).. In USENIX Security.

Ashish Hooda, Matthew Wallace, Kushal Jhunjhunwalla, Earlence Fernandes,
and Kassem Fawaz. 2022. SkillFence: A Systems Approach to Practically Mitigat-
ing Voice-Based Confusion Attacks. ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies (IMWUT) (2022).

How To Name Your Smart Home Devices for Better Voice Control 2019. https:
//www.howtogeek.com/404609/how- to-name-your-smarthome-devices-for-
better-voice-control/. [Online; accessed 10-May-2024].

Intent Fulfillment 2024. https://developers.google.com/assistant/smarthome/de
velop/process-intents. [Online; accessed 10-April-2024].

Yan Jia, Luyi Xing, Yuhang Mao, Dongfang Zhao, XiaoFeng Wang, Shangru Zhao,
and Yuqing Zhang. 2020. Burglars’ IoT paradise: Understanding and mitigating
security risks of general messaging protocols on IoT clouds. In IEEE Symposium
on Security and Privacy (S&P).

Hyungsub Kim, Muslum Ozgur Ozmen, Antonio Bianchi, Z Berkay Celik, and
Dongyan Xu. 2021. PGFUZZ: Policy-Guided Fuzzing for Robotic Vehicles. In
Network and Distributed System Security Symposium (NDSS).

Taegyu Kim, Chung Hwan Kim, Junghwan Rhee, Fan Fei, Zhan Tu, Gregory
Walkup, Xiangyu Zhang, Xinyan Deng, and Dongyan Xu. 2019. RVFUZZER:
finding input validation bugs in robotic vehicles through control-guided testing.
In USENIX Security.

Ron Koymans. 1990. Specifying real-time properties with metric temporal logic.
In Real-time systems.

Deepak Kumar, Riccardo Paccagnella, Paul Murley, Eric Hennenfent, Joshua
Mason, Adam Bates, and Michael Bailey. 2018. Skill squatting attacks on Amazon
Alexa. In USENIX Security.

Launch your smart home action 2024. https://developers.google.com/assistant/
smarthome/develop/launching. [Online; accessed 10-April-2024].

Tu Le, Dongfang Zhao, Zihao Wang, XiaoFeng Wang, and Yuan Tian. 2024. Alexa,
is the skill always safe? Uncover Lenient Skill Vetting Process and Protect User
Privacy at Run Time. In International Conference on Software Engineering (ICSE).
Christopher Lentzsch, Sheel Jayesh Shah, Benjamin Andow, Martin Degeling,
Anupam Das, and William Enck. 2021. Hey Alexa, is this Skill Safe?: Taking a
Closer Look at the Alexa Skill Ecosystem. In Network and Distributed System
Security Symposium (NDSS).

Guanpeng Li, Yiran Li, Saurabh Jha, Timothy Tsai, Michael Sullivan, Siva Ku-
mar Sastry Hari, Zbigniew Kalbarczyk, and Ravishankar Iyer. 2020. AV-FUZZER:
Finding safety violations in autonomous driving systems. In International Sym-
posium on Software Reliability Engineering (ISSRE).

Xinfeng Li, Xiaoyu Ji, Chen Yan, Chaohao Li, Yichen Li, Zhenning Zhang, and
Wenyuan Xu. 2023. Learning Normality is Enough: A Software-based Mitigation
against Inaudible Voice Attacks. In USENIX Security.

Song Liao, Long Cheng, Haipeng Cai, Linke Guo, and Hongxin Hu. 2023. SkillScan-
ner: Detecting Policy-Violating Voice Applications Through Static Analysis at
the Development Phase. In ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS).

Login with Amazon for Websites Overview 2024. https://developer.amazon.com
/docs/login-with-amazon/web-docs.html. [Online; accessed 20-April-2024].
Valentin JM Manés, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward] Schwartz, and Maverick Woo. 2019. The art, science, and engi-
neering of fuzzing: A survey. In IEEE Transactions on Software Engineering.

Yan Meng, Jiachun Li, Matthew Pillari, Arjun Deopujari, Liam Brennan, Hafsah
Shamsie, Haojin Zhu, and Yuan Tian. 2022. Your Microphone Array Retains
Your Identity: A Robust Voice Liveness Detection System for Smart Speakers. In
USENIX Security.

TJ OConnor, Reham Mohamed, Markus Miettinen, William Enck, Bradley Reaves,
and Ahmad-Reza Sadeghi. 2019. HomeSnitch: behavior transparency and control
for smart home IoT devices. In ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec).

An Investigation of Device Management Flaws in Voice Assistant Platforms

[52]

[53]

[54]

[55

(57

[58]

[59]

[60

(61

[62]

[63]

[64]

[65]

[66]

[67

[68]

[69]

[70

[71]

[72]

[75]

[76]

Muslum Ozgur Ozmen, Xuansong Li, Andrew Chu, Z Berkay Celik, Bardh Hoxha,
and Xiangyu Zhang. 2022. Discovering IoT physical channel vulnerabilities. In
ACM SIGSAC Conference on Computer and Communications Security (CCS).
Muslum Ozgur Ozmen, Ruoyu Song, Habiba Farrukh, and Z Berkay Celik. 2023.
Evasion attacks and defenses on smart home physical event verification. In
Network and Distributed System Security Symposium (NDSS).

Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: fuzzing by
program transformation. In IEEE Symposium on Security and Privacy (S&P).
Samantha Reig, Elizabeth Jeanne Carter, Lynn Kirabo, Terrence Fong, Aaron
Steinfeld, and Jodi Forlizzi. 2021. Smart home agents and devices of today and
tomorrow: Surveying use and desires. In International Conference on Human-
Agent Interaction.

Remove Google Nest Devices from the Google Home App 2024. https://support.
google.com/googlenest/answer/9691327. [Online; accessed 20-April-2024].
Remove Smart Home Devices from Alexa 2024. https://www.amazon.com/gp/he
Ip/customer/display.html?nodeld=GH7J6YW8GMWE7BZY. [Online; accessed
20-April-2024].

Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. 2017. IoT Goes
Nuclear: Creating a Zigbee Chain Reaction. In IEEE Symposium on Security and
Privacy (S&P).

Aafaq Sabir, Evan Lafontaine, and Anupam Das. 2022. Hey Alexa, Who Am I
Talking to?: Analyzing Users’ Perception and Awareness Regarding Third-Party
Alexa Skills. In CHI Conference on Human Factors in Computing Systems.

Ivan F Salgado, Nicanor Quijano, Daniel] Fremont, and Alvaro A Cardenas. 2022.
Fuzzing Malicious Driving Behavior to find Vulnerabilities in Collision Avoid-
ance Systems. In IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW).

Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2018. Situational access
control in the internet of things. In ACM SIGSAC Conference on Computer and
Communications Security (CCS).

Faysal Hossain Shezan, Hang Hu, Gang Wang, and Yuan Tian. 2020. VerHealth:
Vetting Medical Voice Applications through Policy Enforcement. In ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies IMWUT).

Amit Kumar Sikder, Leonardo Babun, Z Berkay Celik, Abbas Acar, Hidayet Aksu,
Patrick McDaniel, Engin Kirda, and A Selcuk Uluagac. 2020. Kratos: Multi-user
multi-device-aware access control system for the smart home. In ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec).

Ruoyu Song, Muslum Ozgur Ozmen, Hyungsub Kim, Raymond Muller, Z Berkay
Celik, and Antonio Bianchi. 2023. Discovering Adversarial Driving Maneuvers
against Autonomous Vehicles. In USENIX Security.

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting fuzzing through selective symbolic execution.. In
Network and Distributed System Security Symposium (NDSS).

Dan Su, Jigiang Liu, Sencun Zhu, Xiaoyang Wang, and Wei Wang. 2020. Are
you home alone?" “Yes" Disclosing Security and Privacy Vulnerabilities in Alexa
Skills. In arXiv preprint arXiv:2010.10788.

Dan Su, Jigiang Liu, Sencun Zhu, Xiaoyang Wang, and Wei Wang. 2022. Alexa
Skills: Security Vulnerabilities and Countermeasures. In IEEE Conference on
Communications and Network Security (CNS).

Quinn Thibeault, Jacob Anderson, Aniruddh Chandratre, Giulia Pedrielli, and
Georgios Fainekos. 2021. Psy-taliro: A python toolbox for search-based test
generation for cyber-physical systems. In Formal Methods for Industrial Critical
Systems (FMICS).

Voice Control - How to Name Your Smart Devices 2023. https://www.smarthom
e.com.au/voice-control-how- to-name-your-smart-devices/. [Online; accessed
10-May-2024].

Ziwen Wan, Junjie Shen, Jalen Chuang, Xin Xia, Joshua Garcia, Jiaqi Ma, and
Qi Alfred Chen. 2022. Too Afraid to Drive: Systematic Discovery of Semantic DoS
Vulnerability in Autonomous Driving Planning under Physical-World Attacks.
In Network and Distributed System Security Symposium (NDSS).

Dawei Wang, Kai Chen, and Wei Wang. 2021. Demystifying the vetting process
of voice-controlled skills on markets. In ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies IMWUT).

Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates, and Carl A Gunter. 2019.
Charting the attack surface of trigger-action IoT platforms. In ACM SIGSAC
Conference on Computer and Communications Security (CCS).

What is the Alexa Skills Kit 2024. https://developer.amazon.com/en-US/doc
s/alexa/ask-overviews/what-is-the-alexa-skills-kit.html. [Online; accessed
20-April-2024].

Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013. Sched-
uling black-box mutational fuzzing. In ACM SIGSAC Conference on Computer and
Communications Security (CCS).

Chen Yan, Xiaoyu Ji, Kai Wang, Qinhong Jiang, Zizhi Jin, and Wenyuan Xu. 2022.
A Survey on Voice Assistant Security: Attacks and Countermeasures. In ACM
Computing Surveys.

Qiben Yan, Kehai Liu, Qin Zhou, Hanqing Guo, and Ning Zhang. 2020. Surfin-
gAttack: Interactive Hidden Attack on Voice Assistants Using Ultrasonic Guided

733

[77

[78

[79

[80

(82

(83

[84

(86

]
]

]

]

Proceedings on Privacy Enhancing Technologies 2025(2)

Wave. In Network and Distributed System Security Symposium (NDSS).

Qiang Yang, Kaiyan Cui, and Yuanging Zheng. 2023. VoShield: Voice Liveness
Detection with Sound Field Dynamics. In IEEE INFOCOM.

Jeffrey Young, Song Liao, Long Cheng, Hongxin Hu, and Huixing Deng. 2022.
SkillDetective: Automated Policy-Violation Detection of Voice Assistant Applica-
tions in the Wild. In USENIX Security.

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM:
A practical concolic execution engine tailored for hybrid fuzzing. In USENIX
Security.

Eric Zeng and Franziska Roesner. 2019. Understanding and Improving Security
and Privacy in Multi-User Smart Homes: A Design Exploration and In-Home
User Study.. In USENIX Security.

Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and
Wenyuan Xu. 2017. Dolphinattack: Inaudible voice commands. In ACM SIGSAC
Conference on Computer and Communications Security (CCS).

Linghan Zhang, Sheng Tan, Zi Wang, Yili Ren, Zhi Wang, and Jie Yang. 2020.
VibLive: A Continuous Liveness Detection for Secure Voice User Interface in IoT
Environment. In Annual Computer Security Applications Conference (ACSAC).
Nan Zhang, Xianghang Mi, Xuan Feng, XiaoFeng Wang, Yuan Tian, and Feng
Qian. 2019. Dangerous skills: Understanding and mitigating security risks of
voice-controlled third-party functions on virtual personal assistant systems. In
IEEE Symposium on Security and Privacy (S&P).

Shaohu Zhang, Zhouyu Li, and Anupam Das. 2023. VoicePM: A Robust Privacy
Measurement on Voice Anonymity. In ACM Conference on Security and Privacy
in Wireless and Mobile Networks (WiSec).

Yangyong Zhang, Lei Xu, Abner Mendoza, Guangliang Yang, Phakpoom Chin-
prutthiwong, and Guofei Gu. 2019. Life after speech recognition: Fuzzing semantic
misinterpretation for voice assistant applications. In Network and Distributed
System Security Symposium (NDSS).

Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan, Yuhang Mao, Peng Liu, and
Yuqing Zhang. 2019. Discovering and understanding the security hazards in
the interactions between IoT devices, mobile apps, and clouds on smart home
platforms. In USENIX Security.

	Abstract
	1 Introduction
	2 Background
	3 Problem Statement
	3.1 Threat Model
	3.2 Design Challenges

	4 DMC-Xplorer Design
	4.1 VA Description Language (VDL)
	4.2 VA Device Management Testing
	4.3 Security Analysis

	5 Implementation
	5.1 Platform-specific Implementation Details

	6 Evaluation
	6.1 Duplicate Devices in the User's VA Account
	6.2 No Bound Check on Number of Devices
	6.3 Testing Performance

	7 Limitations and Discussion
	7.1 Countermeasures
	7.2 Practical Considerations

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

