

Secondary metabolism of *Microcystis*: current understanding and recent advances in unlocking genomic and chemical diversity

Colleen E. Yancey,¹ Lauren N. Hart,^{2,3} Gregory J. Dick^{1,4}

AUTHOR AFFILIATIONS See affiliation list on p. 14.

ABSTRACT The cyanobacterial genus *Microcystis* is globally distributed and known for its ability to produce microcystins, a structurally diverse group of cyanotoxins. However, the biosynthetic capacity of *Microcystis* is vast; its diverse genomes contain a variety of biosynthetic gene clusters (BGCs) encoding the synthesis of metabolites that may be toxic, have important ecological function, or have applications for biotechnology or drug discovery. Recent studies illustrate that these BGCs vary significantly across *Microcystis* strains, can be highly expressed in environmental conditions, and may play key roles in cellular physiology, grazer deterrence, and microbial interactions. However, many of these BGCs and metabolites remain poorly characterized or completely uncharacterized, having been identified only through genome sequencing or mass spectrometry, respectively, leaving no knowledge of their structure, bioactivity, or physiological or ecological functions. Here, we synthesize the current body of knowledge regarding the secondary metabolism of *Microcystis* in terms of genetic and chemical diversity, potential drivers of synthesis, and physiological and ecological functions. This review highlights the need for further research to characterize the largely unexplored genetic and chemical diversity of *Microcystis* in communities in the environment and discusses the challenges and opportunities of integrating high-throughput multiomic approaches to link uncharacterized gene clusters with their corresponding metabolites. *Microcystis* will continue to be a rich source for secondary metabolite research as its genetic and chemical potential likely plays a critical role in the persistence and observed dynamics of harmful algal blooms and may harbor uncharacterized toxins and metabolites.

KEYWORDS metagenomics, metabolomics, harmful algal blooms, multi-omics, secondary metabolites, *Microcystis*

*M*icrocystis spp. are among the most common bloom-forming cyanobacteria responsible for cyanobacterial harmful algal blooms (cyanoHABs) that degrade freshwater systems around the world (1). These cyanoHABs have been observed on every continent except Antarctica (2), and the presence of *Microcystis* in brackish and coastal waters (3, 4) underscores its widespread distribution. Within blooms, *Microcystis* can achieve dominance and persist seasonally (5–8), and it encodes the capacity to produce a breadth of secondary metabolites that have toxic properties (2, 9–11). These blooms can lead to several negative consequences including toxin production (2, 10, 12, 13), shifts in community composition (9, 14), and hypoxia (15). Freshwater blooms dominated by *Microcystis* threaten access to clean drinking water and recreation through the production of toxins and taste and odor compounds (11, 14, 16). Similarly, in coastal and estuarine systems, there have been reports of disruption in fish production in aquaculture and the accumulation of toxins in surface water, aquatic life, and human

Editor Edward G. Dudley, The Pennsylvania State University, University Park, Pennsylvania, USA

Address correspondence to Gregory J. Dick, gdick@umich.edu.

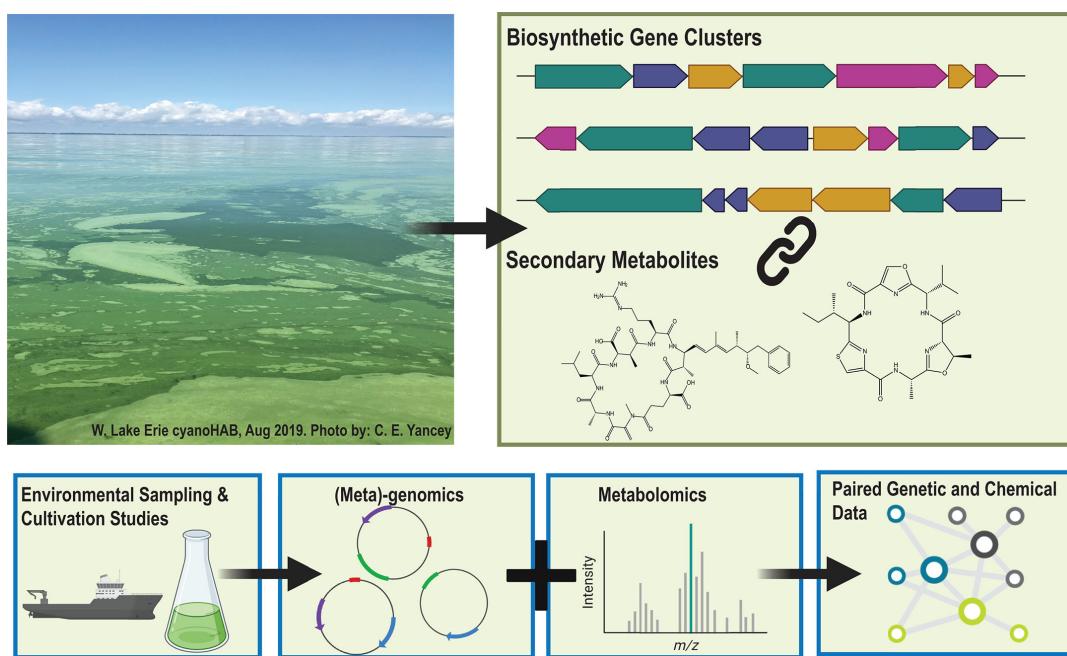
The authors declare no conflict of interest.

See the funding table on p. 15.

Published 5 January 2026

Copyright © 2026 Yancey et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

nasal passages (3, 4, 17, 18). Together, these findings underscore the broad distribution and impact *Microcystis* imposes on aquatic ecosystems.


CyanoHABs are primarily driven by eutrophication from anthropogenic sources of nutrients. Phosphorus (P) loading has been documented to drive bloom biomass and is the main target of management practices (19, 20). Continued nitrogen (N) loading, which is not officially managed in most North American freshwater systems, may favor toxic strains as many secondary metabolites with toxic properties are N-rich (21, 22). As a result of eutrophication and increased environmental variability since the Industrial Revolution, the intensity and frequency of cyanobacterial blooms are increasing in freshwater and marine systems, disproportionately to other taxa of phytoplankton (1). Models predict that by the year 2090, there will be 18–39 days of intense harmful algal bloom growth versus the average 7 days currently experienced in temperate systems (23). Studies aimed at addressing the impacts of climate change on bloom severity have shown that elevated temperature and carbon dioxide levels will not only increase *Microcystis* biomass but also microcystin content per cell (24, 25). Intensifying environmental variability and nutrient loading emphasize the need to better understand the consequences of persistent cyanobacterial biomass in aquatic systems, especially prolific toxin producers such as *Microcystis*.

Studying *Microcystis* genomes, and their biosynthetic potential, is challenging due to the high levels of diversity observed among strains. Further challenges arise in taxonomic identification and species delineation as a result of the complex nature of *Microcystis* genomes (2, 26) and their varied cell size and colony morphology (27). Due to their genetic complexity and lack of clear species and sub-species organization via phylogenomic approaches (28, 29), *Microcystis* blooms likely comprise ecologically distinct strains adapted to variable environments (28). *Microcystis* genomes have highly variable gene content across strains and thus have a large pangenome (26, 30), with a high degree of horizontal gene transfer (26, 29, 31). High levels of plasticity are also evidenced by extensive regions of repeat sequences within genomes and low synteny among strains, which may be a strategy used to adapt to shifting environments (26, 28, 30). It has also been suggested that the *Microcystis* pangenome is truly globally distributed (30). Such diverse genetic substructure among strains (28, 29) provides even more potential for biosynthetic diversity.

In general, cyanobacteria are a rich source of unique, toxic, and complex secondary metabolites (5, 8, 32). Several classes of “cyanotoxins” produced by various genera have been described previously and are monitored in water sources around the world (33–35). To date, many studies and reviews have focused on secondary metabolites produced broadly by cyanobacteria, largely based on studies of cultures, or focus solely on the hepatotoxin microcystin, which currently dominates cyanobacteria secondary metabolism research and literature (5, 6, 33, 36, 37). Harke et al. (2) reviewed canonical toxins produced by *Microcystis*, focusing on microcystins, but they did not address the many other cyanopeptides produced by *Microcystis*. While some studies have addressed the variable genome content of biogenetic clusters (BGCs) within *Microcystis* (28, 29, 38, 39), and others have identified and characterized the chemical structures of specific compounds (40–45), to our knowledge, the field currently lacks a comprehensive review of the expansive chemical and genetic diversity that defines *Microcystis* secondary metabolism. This review synthesizes the state of knowledge regarding *Microcystis*-derived metabolites, identifies areas for continued research, and addresses how improvements in omics technology may advance the field (Fig. 1). We hope that it will serve as a valuable resource for researchers as *Microcystis*-dominated cyanoHABs expand and intensify globally along with climate change.

GENOMIC INSIGHTS INTO DIVERSITY OF SECONDARY METABOLITES

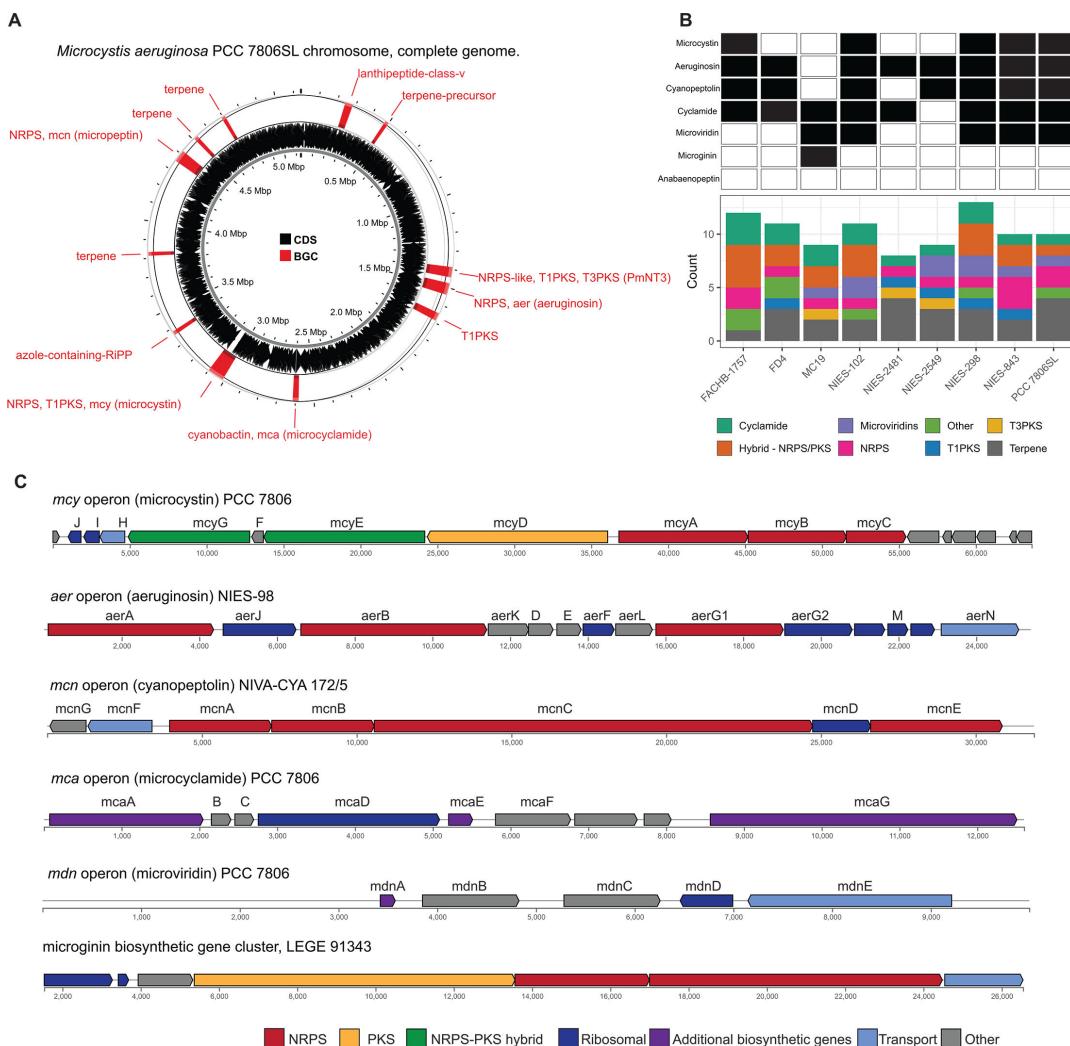
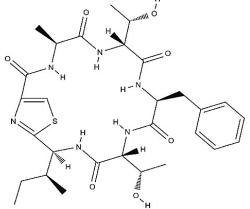
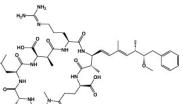
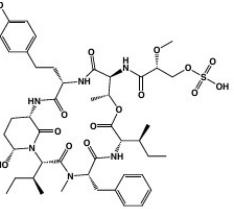
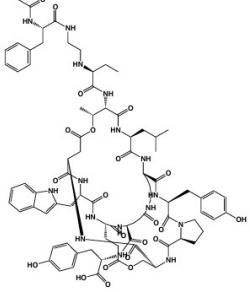
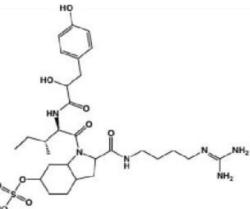

Studies of *Microcystis* cultures revealed their high diversity of secondary metabolites and the BGCs encoding their synthesis (5, 38). BGCs make up about 2%–7% of *Microcystis* genomes, and they are often distributed genome-wide (Fig. 2A) (38). Horizontal gene

FIG 1 Schematic overview of workflows used in *Microcystis* secondary metabolism studies. Lake water collected from visible algal scums can be used for metagenomic and metabolomic analyses. These methods enable the identification of biosynthetic gene clusters and secondary metabolites for further study and characterization.

transfer likely plays a role in BGC acquisition (26, 31, 38), although some clusters, such as the *mcy* operon that encodes microcystin, have been shown to have ancient origins, and their distribution among genera is primarily due to gene loss (46). BGCs are also thought to be dynamic, with tightly regulated controls on transcription and frequent rearrangements in gene order (38, 39, 47). It is likely that multifaceted combinations of biotic and abiotic factors have contributed to the evolution of the BGCs observed today in *Microcystis* genomes (28, 35), yet much remains unknown about their variation on a species or subspecies level and why these metabolites are being synthesized from a functional standpoint. Currently, there are 13 linked BGCs and metabolites deposited on the Minimum Information about a Biosynthetic Gene Cluster (MiBIG) database (48) that are known to be produced by *Microcystis* (accessed July 2025) (Table 1). All entries describe gene clusters that encode cyanopeptides either synthesized via nonribosomal peptide synthetase (NRPS), hybrid NRPS/polyketide synthase (PKS), or ribosomal pathways.

Genomic content of BGCs across strains within *Microcystis* subclades tends to be similar but not identical (28, 29, 69). It is likely each strain or species of *Microcystis* contains a co-evolved, tailored arsenal of secondary metabolites that are fine-tuned to the specific conditions of their environment (28). However, the presence of a gene cluster does not guarantee biosynthesis as these clusters may be transcriptionally regulated and deactivated through transposition or recombination (38, 39, 47), which are commonly observed in *Microcystis* (2, 26). Biosynthesis in natural systems is also likely dependent on several abiotic and biotic factors such as the availability of substrates, C:N ratios within water bodies, and interaction with competitors and grazers (70, 71). As a result, it is important to use genome mining as a blueprint for biosynthetic potential, but approaches such as metatranscriptomics and chemical profiling (e.g., mass spectrometry) are critical to determine which secondary metabolites are being actively biosynthesized.

FIG 2 Overview of BGCs found in *Microcystis* spp. genomes. (A) Genomic map of the complete genome from *Microcystis aeruginosa* PCC 7806 (NCBI accession: NZ_CP020771.1). Both characterized and uncharacterized BGCs are depicted and labeled in red. Coding DNA sequences (CDSs) are shown in black. The genomic map was generated with Proksee. (B) Summary of BGCs from *Microcystis* genomes with finished status (level 6) from IMG (accessed July 2025). The top panel shows the presence or absence of gene clusters that encode characterized secondary metabolites (black indicates presence). The bottom panel shows the count and types of both characterized and uncharacterized biosynthetic gene clusters, highlighting vast genetic diversity and the need for continued exploration in well-characterized isolates. (C) Select examples of common BGCs found in *Microcystis*. Identified CDSs are labeled for each cluster where available. Gene schematics were modified from the MiBIG repository (accessed July 2025).






CHARACTERIZED SECONDARY METABOLITES

Microcystis can produce a wide range of secondary metabolites, with varying function, toxicity, and chemical structure. However, understanding of the biosynthetic processes underlying *Microcystis* secondary metabolite production remains limited, beyond a few well-characterized cyanopeptides (2, 36). The following sections summarize what is currently understood about *Microcystis* secondary metabolites, the genes that encode them, and some of the key knowledge gaps that remain.

Microcystin

First identified in 1959 as the “fast death factor” (72), microcystin (MC) and the related hazards surrounding this toxin have been at the forefront of *Microcystis* secondary metabolism research (36). Several reviews focus on MCs (37, 73, 74); here, we briefly summarize key aspects, recent advances, and remaining questions. MCs are efficient

TABLE 1 Summary of identified metabolites and BGCs encoded in *Microcystis* genomes and deposited on the MiBIG database (accessed July 2025)^a

Strain(s)	Secondary metabolite(s) identified	Biosynthetic mechanism	Biosynthetic genes	Bioactivity	Reference
PCC 7806	Microcyclamide	Ribosomal	<i>mcaA-mcaG</i>	Moderate cytotoxicity against P388 murine leukemia cells, cardiotoxicity and lethality of zebrafish (LC50 = 43 µg/mL), and potential grazer deterrent	(49, 50)
	Microcyclamide GL616				
	Microcystin	NRPS, PKS, and hybrid NRPS- PKS	<i>mcyA-mcyJ</i>	Hepatotoxin via protein phosphatase PP1A and PP2A inhibition	(51, 52)
	Microcystin LR				
K-139, <i>Microcystis</i> sp.	Microcpeptin/cyanopeptolin	NRPS	<i>mcnA-mcnG</i>	Eukaryotic trypsin inhibition, crustacean cytotoxicity/lethality	(53–56)
NIVA-CYA 172/5					
	Cyanopeptolin 960				
NIES-298, MRC	Microviridin B, Microviridin J	Ribosomal	<i>mdnA-mdnD</i>	Protease inhibition including trypsin, elastase, and chymotrypsin	(49, 57, 58)
	Microviridin B				
NIES-98	Aeruginosin	NRPS	<i>aerA-aerN</i>	Trypsin and thrombin inhibition	(59–62)
	Aeruginosin 98B				

(Continued on next page)

TABLE 1 Summary of identified metabolites and BGCs encoded in *Microcystis* genomes and deposited on the MiBIG database (accessed July 2025)^a (Continued)

Strain(s)	Secondary metabolite(s) identified	Biosynthetic mechanism	Biosynthetic genes	Bioactivity	Reference
NIES-298	Aerucyclamide	Ribosomal	<i>mcaA-mcG</i>	Antiparasitic activity against <i>P. falciparum</i> and <i>T. brucei</i> and potential grazer deterrent	(49, 63)
Aerucyclamide C					
PCC 9432	Aeruginosamide	Ribosomal	MICCA_2630 002- MICCA_2630 007	Cytotoxicity against human breast cancer cells and mild inhibitory activity against human cytochrome P450	(64, 65)
Aeruginosimide B					
PCC 7005	Piricyclamide	Ribosomal	<i>pirA-pirG</i>	Potential grazer deterrent	(47)
Piricyclamide 7005E3					
NIES-87	Kasumigamide	NRPS-PKS	<i>makasAmakasD</i>	Growth inhibition of <i>C. neglecta</i> (MIC = 2 µg/mL)	(66)
Kasumigamide					
LEGE 91341	Microginin	NRPS-PKS	IQ234_09865- IQ234_09895	Angiotensin-converting enzyme inhibition and aminopeptidase inhibition	(67)
Microginin 527					

(Continued on next page)

TABLE 1 Summary of identified metabolites and BGCs encoded in *Microcystis* genomes and deposited on the MiBIG database (accessed July 2025)^a (Continued)

Strain(s)	Secondary metabolite(s) identified	Biosynthetic mechanism	Biosynthetic genes	Bioactivity	Reference
Western Lake Erie Culture Collection Isolates	Anabaenopeptin	NRPS	<i>apnA-E</i>	Protease inhibition including serine proteases and protein phosphatases	(68)

Anabaenopeptin B

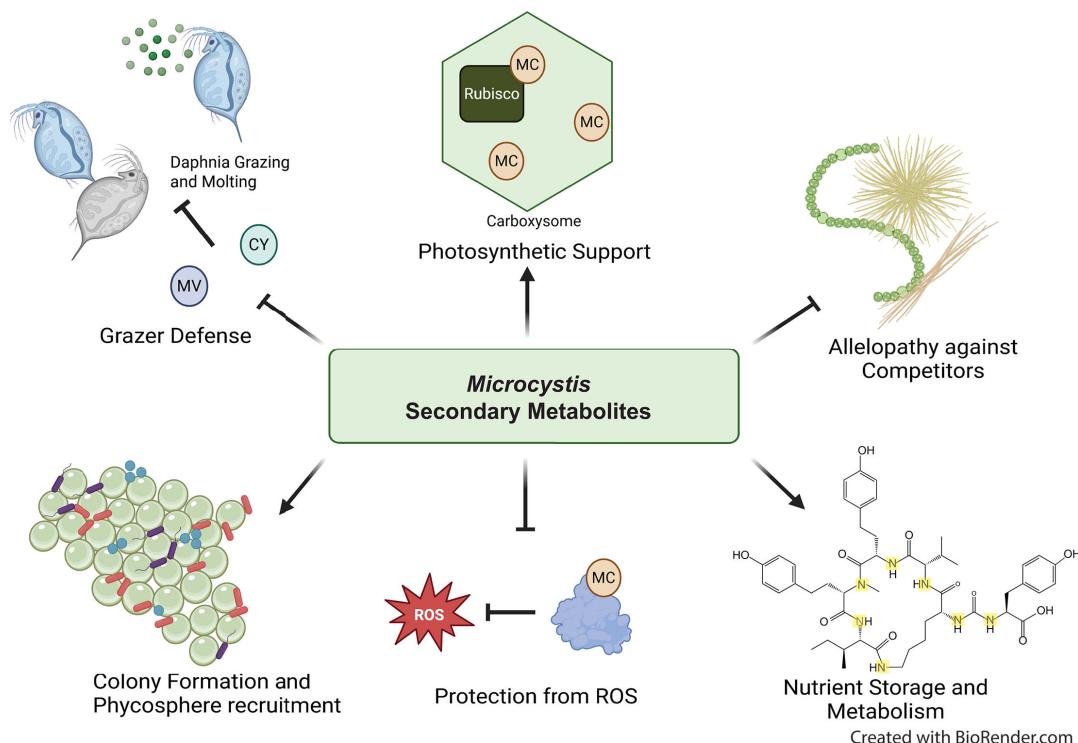
^aDue to emerging detection in *Microcystis* genomes and blooms, anabaenopeptins are also included. For each secondary metabolite discussed, a congener is also displayed. Chemical structures were obtained from PubChem (<https://pubchem.ncbi.nlm.nih.gov/>).

eukaryotic protein phosphatase 1 and 2A inhibitors that can lead to illness including liver damage, and in extreme cases, death (75, 76). Within the last 30 years, MC intoxication has been reported in humans (76, 77), sheep (78), and other mammals and birds (79). MCs have been responsible for drinking water crises in the United States (14) and China (11), when levels of microcystin exceed the World Health Organization (WHO) guidelines for maximum concentration in drinking water (1 µg/L).

Structurally, MCs are cyclic heptapeptides (Table 1) that contain the unusual (2S,3S,8S,9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid (Adda) domain (74, 80), which has become an essential marker in detection assays (81). The structure was first determined in 1984 (80), and 279 congeners have since been characterized (74). MCs contain highly variable X and Z amino acid positions that can contain leucine, arginine, tyrosine, and other amino acids (73, 74), which can greatly impact the toxicity of the congener produced (73, 82). For example, MC-LR, one of the most common forms of MCs, is over 100 times more toxic than MC-RR (83). Continued MC research aims to discover new congeners, understand their chemical ecology (36, 74), and uncover the determinants and roles of congener diversity. While the gene sequence influences which MC congeners are synthesized (84, 85), amino acid availability (86), relaxed substrate binding specificity (84), the availability and type of nitrogen (71), as well as carbon: nitrogen (C:N) ratios (87) can also influence the final chemical structure.

MCs are synthesized nonribosomally via a multienzyme complex that contains NRPS, PKS, and hybrid PKS-NRPS enzymes. In *Microcystis*, the cluster contains 10 *mcy* genes encoding biosynthesis and putative tailoring and transport enzymes and is controlled by a bidirectional promoter between *mcyA* and *D* (Fig. 2C) (51). The *mcy* BGC is dynamic, with frequent recombination and point mutations, and these shifts in genetic substructure can impact congener production (84, 85, 88, 89). The *mcy* genes *A*, *B*, and *C* are the most hypervariable in sequence structure (84). Recently, a novel partial *mcy* genotype, in which only *mcyB* and *C* and a truncated *mcyA* are present, and *mcy* genes *D-J* are absent, was detected in western Lake Erie and found to be abundant and transcriptionally active (89). Further work suggested that this partial operon encodes a tetrapeptide that shows signs of bioactivity, eliciting mild elevation of some markers of hepatotoxicity and inflammation in human liver epithelial cell lines (90). Although more work is needed to assess the toxicity of this molecule, these findings highlight the capacity for genetic rearrangement of *mcy* genes to generate novel metabolites, as well as our limited understanding of diversity and depth of *Microcystis* secondary metabolite biosynthesis despite intensive study of MCs for over 50 years.

Despite the well-recognized global importance and impacts on human and environmental health of MCs, their functional role(s) in *Microcystis* physiology and in natural communities remains elusive. Proposed roles of MCs include benthic survival and


recruitment, iron acquisition, nutrient metabolism and storage, grazer defense, colony formation, allelopathy, quorum sensing, oxidative stress protection, and photosynthesis (Fig. 3) and are summarized in Section 5 and elsewhere (37, 91). Given that many of these hypotheses have experimental support, it seems likely that MCs have a multifaceted functionality. Understanding this functionality would be valuable from a basic scientific perspective, and it could also inform predictive models, strategies, and policies to mitigate bloom toxicity as it relates to MC production (21, 92).

Characterized secondary metabolites beyond microcystin

While over 90% of research on cyanobacterial secondary metabolites has been focused on MCs (36, 98), many other metabolites with diverse chemical structures are produced and may contribute to bloom toxicity and/or affect food web dynamics and remain understudied (99–101). Multiple cyanopeptides are often present in cyanoHABs, and recent studies show that these cocktails may have synergistic toxicological effects on aquatic organisms and humans (102, 103).

Aeruginosins

Aeruginosins are linear tetrapeptides (Table 1) that inhibit trypsin activity and are encoded in NRPS BGCs (Fig. 2C) (59, 60, 104). Like many classes of *Microcystis* secondary metabolites, aeruginosins contain unusual moieties including 4-hydroxyphenyllactic acid (Hpla) and 2-carboxy-6-hydroxyoctahydroindole (Choi) (59, 104). Multiple congeners of this metabolite have been identified (40, 105, 106), including those that are brominated or chlorinated (107). While the Hpla and Choi moieties tend to be conserved, there

FIG 3 Proposed ecological functions of synthesized *Microcystis* secondary metabolites. Secondary metabolites produced by *Microcystis* likely have multifaceted functionality and may support (clockwise from top left) the following: defense from grazers, photosynthetic function, colony formation and phycosphere recruitment, photosynthetic machinery, competition, nitrogen storage and metabolism, protection from ROS, and/or recruitment and selection of the phycosphere microbiome. For example, cyanopeptides such as cyclamides (CY) and microviridins (MV) may deter grazers and inhibit *Daphnia* molting (70, 93). Microcystins (MC) and other cyanopeptides are involved in photosynthesis and carbon assimilation (91) (reviewed in (91), allelopathy (94), nitrogen storage and metabolism (95), binding proteins to protect from ROS (96), and shaping the phycosphere microbiome (97). N-rich Anabaenapeptins (bottom right) may also play a role in N storage and metabolism.

is flexibility within amino acids at the second position, which may contribute to the observed chemical variation (104, 108, 109).

Some of the diversity observed in aeruginosin congeners may be due to the highly varied and dynamic nature of the aeruginosin biosynthesis genes in the *aer* operon (60, 61). Core genes responsible for the bulk of NRPS synthesis are conserved in most *aer* operons, but accessory or tailoring genes are more varied in both sequence structure and presence or absence (38, 109). For example, the presence and sequence variation of genes *aerJ*, *aerG2*, and *aerM* may be responsible for the synthesis of chlorinated isoforms (38), while *aerK* appears to be essential for biosynthesis by *Microcystis*, but not *Planktothrix* spp (109). Aeruginosin class-related secondary metabolites including aeruginoside are also produced by *Microcystis* (64), while others, such as sputum and pseudosputum, are produced by other cyanobacterial taxa (109–111). It remains unclear whether *Microcystis* can produce these related metabolites as well. While this class of secondary metabolites is highly diverse and has strong inhibitory properties against trypsin and thrombin (62), the functional role of aeruginosins in natural communities is not well understood (53, 103, 112, 113).

Cyanopeptolins

Cyanopeptolins are peptide lactones that were first characterized in the *Microcystis aeruginosa* isolate PCC 7806 (114). These depsipeptides contain lactone rings, a 3-amino-6-hydroxy-2-piperidone (Ahp) residue, and n-hexanoic acid moieties (Table 1) (114, 115). Cyanopeptolins can occur in similar concentrations (nanomolar) as MCs in surface freshwater and can cause inhibitory effects on eukaryotic organisms via trypsin inhibition (36, 115). Micropeptins, such as micropeptin K139, are structurally related to cyanopeptolins and can be synthesized by *Microcystis* as well (116, 117). Several congeners inhibit crustacean activity in concentrations as low as the picomolar range (56), raising questions regarding their threats to organism and ecosystem health.

The NRPS biosynthetic gene cluster that encodes for cyanopeptolins is highly varied, even within the same genus (35, 54, 55). Flexibility in the *mcn* gene cluster (Fig. 2C) is so great that operons may lack entire genes and still synthesize complete cyanopeptolin congeners (38). Cyanopeptolins are synthesized by multiple cyanobacteria genera including *Microcystis*, *Planktothrix*, and *Anabaena*, which may contribute to its chemical diversity. Phylogenetic analysis has revealed the gene cluster that encodes this metabolite has independently evolved in these three taxa and that *mcnA-F* encodes its production in *Microcystis* (54, 116). The halogenase gene *mcnD* is sporadically distributed across *mcn* BGCs and has been linked to the production of chlorinated cyanopeptolin variants (60). While gene clusters, structural characteristics, and inhibitory properties have been studied from cultured isolates, cyanopeptolins are largely understudied but increasingly detected in natural communities (39, 99).

Cyclamides: Piricyclamides, Aerucyclamides, Microcyclamides, and Aeruginosamides

Another common and diverse group of secondary metabolites produced by *Microcystis* are the “cyclamides,” which are ribosomally synthesized macrocyclic molecules within the cyanobactin class (8, 118). Being one of the largest groups of secondary metabolites found in *Microcystis* and other cyanobacteria, cyclamides are classified together based on their ribosomal and post-translationally modified biosynthetic pathways (RiPPs) (119). Characterized cyclamides produced by *Microcystis* include piricyclamides, aerucyclamides, microcyclamides, and aeruginosamides (Table 1) (47, 49, 63, 64). These metabolites may have various functional groups in their chemical structures: prenylations, gennylations, and disulfide bridges, which are observed in piricyclamides (47); cyclic hexapeptide structures as seen in microcyclamides (120); and oxazole and thiazole rings observed in the side chains of aerucyclamide compounds (63).

The gene clusters that encode for cyclamide metabolites (Fig. 2C) are also highly varied and can be inactivated in culture by insertion elements (47). Some evidence suggests that synthesized products are used in grazer defense as their concentration was observed to increase in *Microcystis* cells consumed by *Daphnia* in grazer experiments. Cells containing cyclamides were actively exported out of the *Daphnia* body, without any further degradation, suggesting these compounds may be a filter feeding deterrent (70). Additional studies have demonstrated selective antiparasitic activity of aerucyclamides (63). These metabolites have been detected simultaneously in culture in combination with other known cyanopeptides (94), highlighting the need to investigate the synergistic effects of co-occurring *Microcystis* secondary metabolites in natural bodies of water. This highly diverse class has high potential for drug discovery due to its potential versatility in biotechnology.

Microviridins

Microviridins are also ribosomally synthesized metabolites (Fig. 2C), but they are unique as they contain unusual tricyclic structures and several ester bonds (Table 1) (41, 121). These metabolites are believed to be the first tricyclic compounds isolated from nature and have tyrosinase inhibitory effects (41). After ribosomal synthesis, *microviridins* are tailored by ATP-grasp ligases and transporter peptidases to finalize their chemical structure (122). Chemical variation observed in *microviridins* may be in part due to gene variation (8, 38). Precursor peptide genes such as *mdnA* lack conservation across *Microcystis* strains and may contribute to the chemical diversity of this class (123). Absence of *mdnD* (Fig. 2C) could account for *microviridins* lacking N-acetylation (38). *Microviridin* congeners have a range of cytotoxic effects from highly lethal to undetectable (8). For example, *microviridin J* is a strong inhibitor against *Daphnia* molting (93), while *microviridin B* (Table 1), which demonstrates weaker protease inhibition, may be more suitable for biomedical application (122).

Microginins

Microcystis also produces *microginins*, which are linear peptides that inhibit a variety of peptidases (Table 1) (124, 125). The BGC encoding for *microginins* is a hybrid NRPS/PKS cluster (Fig. 2C) (126) and was recently confirmed to be present in *Microcystis* along with the production of 12 novel congeners (67). These peptides can range greatly in size from three to six amino acids long and tend to derive from decanoic acid (125–127). *Microginins* are highly diverse, with as many as 50 congeners existing in a single bloom (127). *Microginin* congeners may be produced in tandem with *microcystin* (128). Recently, *microginins* have received more attention due to their angiotensin-converting enzyme (ACE) inhibitory activity and potential application in pharmaceuticals (129). This cluster or class of metabolites remains poorly understood, but should be considered in future studies and screenings due to its bioactivity and recent identification in natural *Microcystis* blooms and culture (39, 67, 127).

Anabaenopeptins

Along with many other cyanobacterial genera, *Microcystis* can produce anabaenopeptins (Table 1), cyclic hexapeptides with nanomolar inhibitory effects on mammalian carboxypeptidases, via the NRPS BGC *apn* (130–132). This class of cyanopeptides is the second-most studied after *microcystins*, with a rapidly growing body of literature covering the chemical diversity and ecology of the metabolites within it (98). This BGC is not verified in the MIBiG database, although many studies have confirmed the presence of anabaenopeptin BGC and its synthesis product in unicellular *Microcystis* cultures (69, 133), with over 124 congeners verified from this metabolite class across cyanobacterial genera (68). This BGC was likely acquired from a horizontal gene cluster from *Planktothrix* spp. and may contribute to bloom dynamics in multialgal communities (134). A recent report showing that anabaenopeptins are often present at concentrations higher than

microcystins in the western basin of Lake Erie (135) highlights the need for a better understanding of their impacts on human and ecosystem health.

UNCHARACTERIZED SECONDARY METABOLITES

Genomes of *Microcystis* display an overwhelming number of BGCs that have not yet been linked with a known metabolite, potentially signaling a vast array of undiscovered biosynthetic diversity (Fig. 2A and B) (69). This was identified as a challenge as far back as 2013, with the identification of “orphan BGCs”—those without a known biosynthetic product – in sequenced *Microcystis* genomes (26). The enormity of this knowledge gap has come into view more clearly over the years with accumulation of more (meta)genomic data. The challenge of linking already characterized or newly discovered compounds with their corresponding BGCs in a high-throughput manner can be facilitated with integrated analysis of paired genomic and metabolomic data (136).

A total of 58 high-quality genomes belonging to the genus *Microcystis* are deposited in the Joint Genome Institute (JGI) supported Integrated Microbial Genomes and Microbiomes (IMG/MER) database (<https://img.jgi.doe.gov/>, accessed July 2025). While most of these genomes come from well-studied culture isolates, their biosynthetic repertoire remains coarsely resolved. From these genomes, 13 BGCs have been characterized and deposited onto the MiBIG database (Table 1, accessed July 2025; Fig. 2). Gene annotation may provide hints about metabolites of interest; however, pairing both metabolomic and genomic data is essential to understand the synthesis and structure of these secondary metabolites. Since *Microcystis* genomes tend to have about 10 to 15 BGCs per genome, and many of these have not been linked to a product (Fig. 2A and C), continued research is needed to directly link strains, BGCs, and chemical structures.

While exploring the extent and diversity of “cyanopeptides” is important (8, 34), the expansive wealth of BGCs encoding various PKS, terpene, and ribosomal pathways should not be ignored. Compounds synthesized via PKS pathways in *Microcystis* remain largely uncharacterized. Several novel PKS-BGCs identified from western Lake Erie metagenomes are transcriptionally active (39), suggesting the synthesis of molecules with polyketide properties. Other works have shown that *Microcystis* may be a rich source for type III PKSs, which are highly understudied in cyanobacteria (69, 133, 137). In Lake Erie cyanoHABs, these same BGCs can be among the most abundant and highly expressed (39), underscoring the need to understand their physiological and ecological functions.

ENVIRONMENTAL DRIVERS

Anthropogenic eutrophication and environmental variability contribute to the persistence, intensification, and spread of cyanoHAB events globally (1, 12, 138, 139). Phosphorus (P) inputs have long been identified as a driving force contributing to cyanoHAB formation (20). However, nitrogen (N) has also been identified as a limiting or co-limiting nutrient, ultimately altering cyanoHAB composition, intensity, and toxicity (10, 12, 140), suggesting that dual nutrient management would be beneficial in many systems (141, 142). Other factors that must be considered in predicting future cyanoHABs include increasing temperatures and atmospheric carbon dioxide concentrations, as well as decreases in dissolved oxygen within the water column (138). However, growing evidence suggests that nutrient availability, specifically the building blocks of secondary metabolites, which tend to be N-rich compounds (Table 2), may have the greatest impact on *Microcystis* secondary metabolism.

The contribution of N to *Microcystis*-dominated cyanoHABs has recently received greater attention. Elevated concentrations of N, which is not currently restricted by either the United States or Canada within the Great Lakes, but is managed in waters in the European Union (143), can not only alter the species composition but may also favor “toxic” strains. N availability, and its stoichiometric relationship to carbon (C) and P, affects both the amount of microcystins produced and the relative abundance of

congeners (22, 144, 145). Some modeling efforts also suggest that planned P reductions will not only decrease biomass but also alleviate N-limitation, thus enhancing the production of N-rich secondary metabolites such as microcystins (21, 92). It is possible that similar trends may be observed for other N-rich secondary metabolites such as aeruginosins and microginins (Table 2), although current models focus solely on MCs.

Differential congener production may also be influenced by amino acid availability, intracellular C:N ratios, and substrate availability resulting from metabolic exchange with other microorganisms (71, 86, 87, 146). These controls on metabolite production are imperative to understand as different congeners have varying potency and toxicity, and unmanaged N may alter abiotic conditions that select for more N-rich metabolites. While many studies focus on microcystin production, N is also required to synthesize other N-rich cyanopeptides, and exogenous N availability is expected to influence their cellular quotas as well (142). Thus, future work should be expanded to include a greater range of N-rich secondary metabolites produced by *Microcystis* (Table 2). Another emerging area of research is understanding how the *Microcystis* microbiome contributes to nitrogen processing and uptake, which can influence cyanotoxin production (147).

PROPOSED FUNCTIONAL ROLES OF SYNTHESIZED SECONDARY METABOLITES

Limited evidence speaks to the functional roles of *Microcystis*-derived metabolites *in situ*. Most hypotheses are derived from culture experiments, and most work on this topic has focused on MCs, for which there is still no consensus (37). Several competing hypotheses exist regarding drivers of production (Fig. 3), and it is possible that secondary metabolites may have multifunctional roles, especially concerning microbial interactions. *In vitro* studies have suggested *Microcystis*-derived metabolites are allelopathic in nature and aid in achieving dominance through inter- and intra-species competition (94, 148). Some studies suggest *Microcystis* secondary metabolites may be used in grazer defense against multiple organisms including *Daphnia* (70) and copepods (149), although other work suggests increased grazing does not stimulate the upregulation of putative grazer defense metabolite synthesis (150). Conversely, it has been suggested these metabolites are not antagonistic in nature, but rather serve as an aid in recruitment of "helper" bacteria within the phycosphere (97, 151). More targeted studies are needed to definitively ascertain how *Microcystis*'s secondary metabolites mediate microbial interactions.

A growing body of work also suggests that *Microcystis* secondary metabolites are produced to aid in intracellular processes rather than communication or allelopathy within natural community assemblages. MCs bind proteins, including RubisCO, providing protection from reactive oxygen species during rapid growth or high light conditions (Fig. 3) (152–155). MCs may also serve as protective agents from ROS during cold temperature acclimatization (156). Since several *Microcystis* secondary metabolites are N-rich (Table 2), they may play a role in metabolism and storage of vital nutrients. For example, the production of MCs is dependent on the N concentration (140) and may be

TABLE 2 C:N ratios for various known *Microcystis* secondary metabolites, highlighting that several are considered N-rich^a

Compound	Molecular formula	C count	N count	C:N
Aeruginosin	C ₃₆ H ₅₅ N ₆ O ₉	36	6	6
Anabaenopeptin 908	C ₄₅ H ₆₈ N ₁₀ O ₁₀	45	10	4.5
Anacyclamide A10	C ₄₉ H ₇₂ N ₁₂ O ₁₄	49	12	4.08
Cyanopeptolin	C ₄₀ H ₆₃ N ₉ O ₁₄ S ₁	40	9	4.44
Microcyclamide	C ₂₆ H ₃₀ N ₈ O ₄ S ₂	26	8	3.25
Microcystin L,R	C ₄₉ H ₇₄ N ₁₀ O ₁₂	49	10	4.9
Microginin	C ₃₂ H ₅₂ N ₄ O ₇	32	4	8
Microviridin B	C ₈₄ H ₁₀₆ N ₁₆ O ₂₄	84	16	5.25
Piricyclamide	C ₅₆ H ₇₈ N ₁₀ O ₁₆ S	56	10	5.6

^aChemical formulas were obtained from the Minimum Information about a Biosynthetic Gene Cluster (MiBiG) repository (<https://mibig.secondarymetabolites.org/>).

regulated by *ntcA*, a global nitrogen regulator, which binds the *mcy* operon promoter and inhibits transcription during N-depleted conditions (157). Non-MC-producing strains of *Microcystis* require a greater accumulation of proteins involved in N metabolism, suggesting MCs play an important role in N storage in MC-producing strains (95). This research on intracellular roles of MCs should be expanded to explore the intracellular functions of other *Microcystis* secondary metabolites, especially given evidence for linkages and interchangeability between *Microcystis* secondary metabolites (94) and if these compounds may be functionally redundant but more favorable under different environmental conditions.

ADVANCES IN OMICS TECHNOLOGIES ENABLE A NEW ERA OF SECONDARY METABOLITE RESEARCH

Advancements

The significant reduction in cost of DNA sequencing has been essential to uncover the extensive intraspecies diversity of *Microcystis* both from cultured isolates and natural populations (28, 89). Third-generation sequencing platforms such as PacBio (158) and Oxford Nanopore (159) are steadily improving the quality of microbial genomes. For example, long-read sequencing recently aided in the completion of closed cyanobacteria genomes belonging to the *Aphanizomenon*, *Dolichospermum*, and *Anabaena* (ADA) clade, which are cyanobacteria with complex genomes similar to *Microcystis*, from environmental sources (160). On the IMG/MER database (accessed July 2025), only nine *Microcystis* genomes are denoted as “Finished.” Of these nine genomes, seven were completed using PacBio sequencing, and all nine were completed on cultured isolates (Fig. 2B), reflecting the challenge of assembling complete genomes with short-read sequencing due to the repeat-rich and heterogeneous nature of *Microcystis* genomes. Future sequencing efforts of *Microcystis* genomes should continue to implement long-read or proximity ligation sequencing (161) within environmental samples to identify cryptic BGCs that may encode novel compounds not observed in culture.

The field of metabolomics is also rapidly expanding due to improvements and accessibility in data processing and analysis tools. The most common method used, due to the ability to sensitively detect large varieties of metabolites, is liquid chromatography mass spectrometry (LC-MS) (162). Tandem mass spectrometry (MS/MS), which is widely applied to environmental samples, has made it possible to identify and distinguish more compounds with secondary fragmentation and feature analysis (163, 164). While these approaches are suitable for novel compound discovery and initial feature characterization, they have also been used to detect known *Microcystis* secondary metabolites with the aid of standards, achieving detection and quantification in less than 24 hours (165).

Recent efforts in developing tools and repositories for collaborative and accessible research have opened new avenues for secondary metabolite research (136). BGC mining software such as antiSMASH (166) and PRISM (167) have rapidly improved over the years and are continually refined and updated through expansive collaborative efforts and machine learning approaches. Data repositories such as the Minimum Information about a Biosynthetic Gene Cluster (MiBiG) (48), the Global Natural Products Social Molecular Networking (GNPS) (168), and the Natural Products Atlas (NPAtlas) (169) provide a wealth of genomic and metabolite data—both of novel and known compounds.

Opportunities

A major opportunity for secondary metabolite research is the integration of *in situ* ‘omic data sets, i.e., metagenomic, metatranscriptomic, and metabolomic data, into a comprehensive picture of what *Microcystis* is producing and why in natural systems. Many publicly available ‘omics data sets currently contain only a single ‘omic approach and lack metadata of environmental or experimental conditions, making determination of drivers and mechanisms of production challenging. Integrated multiomic data and paired ancillary environmental data are necessary to identify and determine functions

of secondary metabolites but are challenging and may require multiple modeling and networking approaches (170, 171). Employing “multi-omic” data set integration with basic modeling approaches is essential to better understand the secondary metabolite diversity and functionality of *Microcystis*. Training in and advancement of “multi-omic” approaches and modeling will be critical to fully harness these large and complicated data sets.

Field-based studies of diverse and novel *Microcystis* populations that employ *de novo* genome assembly and untargeted MS approaches offer high potential for discovery of novel *Microcystis* secondary metabolites and understanding of the dynamics of *Microcystis* secondary metabolites in real communities as they occur *in situ*. While isolated laboratory cultures are valuable for various analyses, they often fail to represent the breadth and diversity of environmental microbes (172). Efforts to improve this gap, such as the cultivation of over 20 *Microcystis* isolates from a single body of water (133), still suffer from isolation biases and fail to capture the complete diversity of secondary metabolites that *Microcystis* can produce in natural communities. As “meta-omic” studies become more widespread, we see an abundance of previously undescribed and putatively identified BGCs (38, 39, 133, 173) and several new secondary metabolites and congeners (107, 127, 174, 175). Discovery is also highly dependent on *de novo* assembly and untargeted MS approaches as relying on references or standards limits the ability to detect BGCs or metabolites not previously characterized. As we continue to improve analysis pipelines capable of linking genes to compounds, we will need to consider how best to enhance predictive models and machine learning to integrate newly discovered BGCs and metabolites.

CONCLUSIONS

The extent and diversity of *Microcystis* secondary metabolism is vast and still poorly characterized. Although several *Microcystis* secondary metabolites have been linked to BGCs, the congener diversity, ecological and physiological function, and mechanisms of synthesis remain unresolved for the majority of *Microcystis* secondary metabolites. Future studies should prioritize linking orphan BGCs and metabolites as well as focusing on natural communities as a source for understanding chemical diversity and drivers of synthesis, especially given the diversity of microbial communities and growing evidence that many secondary metabolites are involved in interspecies interactions. This review, like other studies, highlights the need to shift our focus toward other *Microcystis* secondary metabolites besides microcystin as several are abundant in the environment and have toxic properties that may impact food webs or pose threats to public health. Furthermore, the abundance of novel *Microcystis* BGCs and metabolites from both cultured isolates and environmental samples may be sources of novel biotechnological applications or drug discovery. Regardless of motives, the genus *Microcystis* will continue to be a rich source for secondary metabolite research as we are just beginning to understand the range of its biosynthetic potential.

AUTHOR AFFILIATIONS

¹Department of Earth and Environmental Science, University of Michigan, Ann Arbor, Michigan, USA

²Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA

³Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA

⁴Cooperative Institute for Great Lakes Research (CIGLR), School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA

PRESENT ADDRESS

Colleen E. Yancey, Research Division, New England Biolabs, Ipswich, Massachusetts, USA

AUTHOR ORCIDs

Colleen E. Yancey <http://orcid.org/0000-0002-6078-9483>Lauren N. Hart <http://orcid.org/0000-0001-8553-2839>Gregory J. Dick <http://orcid.org/0000-0001-7666-6288>

FUNDING

Funder	Grant(s)	Author(s)
National Science Foundation	OCE-1840715	Gregory J. Dick
National Institutes of Health	1P01ES028939-01	Gregory J. Dick
Cooperative Institute of Great Lakes Research	NA17OAR4320152	Gregory J. Dick

AUTHOR CONTRIBUTIONS

Colleen E. Yancey, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Supervision, Visualization | Lauren N. Hart, Data curation, Formal analysis, Investigation, Visualization | Gregory J. Dick, Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Supervision, Visualization, Writing – review and editing

REFERENCES

1. Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. 2018. Cyanobacterial blooms. *Nat Rev Microbiol* 16:471–483. <https://doi.org/10.1038/s41579-018-0040-1>
2. Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA, Paerl HW. 2016. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, *Microcystis* spp. *Harmful Algae* 54:4–20. <https://doi.org/10.1016/j.hal.2015.12.007>
3. Preece EP, Hardy FJ, Moore BC, Bryan M. 2017. A review of microcystin detections in Estuarine and Marine waters: environmental implications and human health risk. *Harmful Algae* 61:31–45. <https://doi.org/10.1016/j.hal.2016.11.006>
4. Schaefer AM, Yrastorza L, Stockley N, Harvey K, Harris N, Grady R, Sullivan J, McFarland M, Reif JS. 2020. Exposure to microcystin among coastal residents during a cyanobacteria bloom in Florida. *Harmful Algae* 92:101769. <https://doi.org/10.1016/j.hal.2020.101769>
5. Dittmann E, Gugger M, Sivonen K, Fewer DP. 2015. Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. *Trends Microbiol* 23:642–652. <https://doi.org/10.1016/j.tim.2015.07.008>
6. Kehr J-C, Gatte Picchi D, Dittmann E. 2011. Natural product biosyntheses in cyanobacteria: a treasure trove of unique enzymes. *Beilstein J Org Chem* 7:1622–1635. <https://doi.org/10.3762/bjoc.7.191>
7. Martins J, Saker ML, Moreira C, Welker M, Fastner J, Vasconcelos VM. 2009. Peptide diversity in strains of the cyanobacterium *Microcystis aeruginosa* isolated from Portuguese water supplies. *Appl Microbiol Biotechnol* 82:951–961. <https://doi.org/10.1007/s00253-009-1877-z>
8. Welker M, von Döhren H. 2006. Cyanobacterial peptides – nature's own combinatorial biosynthesis. *FEMS Microbiol Rev* 30:530–563. <https://doi.org/10.1111/j.1574-6976.2006.00022.x>
9. Berry MA, Davis TW, Cory RM, Duhaime MB, Johengen TH, Kling GW, Marino JA, Den Uyl PA, Gossiaux D, Dick GJ, Denef VJ. 2017. Cyanobacterial harmful algal blooms are a biological disturbance to Western Lake Erie bacterial communities. *Environ Microbiol* 19:1149–1162. <https://doi.org/10.1111/1462-2920.13640>
10. Davis TW, Bullerjahn GS, Tuttle T, McKay RM, Watson SB. 2015. Effects of increasing nitrogen and phosphorus concentrations on phytoplankton community growth and toxicity during *Planktothrix* blooms in Sandusky Bay, Lake Erie. *Environ Sci Technol* 49:7197–7207. <https://doi.org/10.1021/acs.est.5b00799>
11. Qin B, Zhu G, Gao G, Zhang Y, Li W, Paerl HW, Carmichael WW. 2010. A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. *Environ Manage* 45:105–112. <https://doi.org/10.1007/s00267-009-9393-6>
12. Paerl HW, Scott JT. 2010. Throwing fuel on the fire: synergistic effects of excessive nitrogen inputs and global warming on harmful algal blooms. *Environ Sci Technol* 44:7756–7758. <https://doi.org/10.1021/es102665e>
13. Wilhelm SW, Farnsley SE, LeClerc GR, Layton AC, Satchwell MF, DeBruyn JM, Boyer GL, Zhu G, Paerl HW. 2011. The relationships between nutrients, cyanobacterial toxins and the microbial community in Taihu (Lake Tai), China. *Harmful Algae* 10:207–215. <https://doi.org/10.1016/j.hal.2010.10.001>
14. Steffen MM, Davis TW, McKay RML, Bullerjahn GS, Krausfeldt LE, Stough JMA, Neitzey ML, Gilbert NE, Boyer GL, Johengen TH, Gossiaux DC, Burtner AM, Palladino D, Rowe MD, Dick GJ, Meyer KA, Levy S, Boone BE, Stumpf RP, Wynne TT, Zimba PV, Gutierrez D, Wilhelm SW. 2017. Ecophysiological examination of the Lake Erie *Microcystis* bloom in 2014: linkages between biology and the water supply shutdown of Toledo, OH. *Environ Sci Technol* 51:6745–6755. <https://doi.org/10.1021/acs.est.7b00856>
15. Watson SB, Miller C, Arhonditsis G, Boyer GL, Carmichael W, Charlton MN, Confesor R, Depew DC, Höök TO, Ludsin SA, Matisoff G, McElmurry SP, Murray MW, Peter Richards R, Rao YR, Steffen MM, Wilhelm SW. 2016. The re-eutrophication of Lake Erie: harmful algal blooms and hypoxia. *Harmful Algae* 56:44–66. <https://doi.org/10.1016/j.hal.2016.04.010>
16. Graham JL, Loftin KA, Meyer MT, Ziegler AC. 2010. Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States. *Environ Sci Technol* 44:7361–7368. <https://doi.org/10.1021/es1008938>
17. Lehman PW, Kendall C, Guerin MA, Young MB, Silva SR, Boyer GL, Teh SJ. 2015. Characterization of the *Microcystis* bloom and its nitrogen supply in San Francisco Estuary using stable isotopes. *Estuaries Coast* 38:165–178. <https://doi.org/10.1007/s12237-014-9811-8>
18. Garcia AC, Bargu S, Dash P, Rabalais NN, Sutor M, Morrison W, Walker ND. 2010. Evaluating the potential risk of microcystins to blue crab (*Callinectes sapidus*) fisheries and human health in a eutrophic estuary. *Harmful Algae* 9:134–143. <https://doi.org/10.1016/j.hal.2009.08.011>
19. Barnard MA, Chaffin JD, Plaas HE, Boyer GL, Wei B, Wilhelm SW, Rossignol KL, Braddy JS, Bullerjahn GS, Bridgeman TB, Davis TW, Wei J, Bu M, Paerl HW. 2021. Roles of nutrient limitation on Western Lake Erie CyanoHAB toxin production. *Toxins (Basel)* 13:47. <https://doi.org/10.3390/toxins13010047>
20. Schindler DW. 1974. Eutrophication and recovery in experimental lakes: implications for lake management. *Science* 184:897–899. <https://doi.org/10.1126/science.184.4139.897>
21. Hellweger FL, Martin RM, Eigemann F, Smith DJ, Dick GJ, Wilhelm SW. 2022. Models predict planned phosphorus load reduction will make Lake Erie more toxic. *Science* 376:1001–1005. <https://doi.org/10.1126/science.abm6791>
22. Wagner ND, Osburn FS, Wang J, Taylor RB, Boedecker AR, Chambliss CK, Brooks BW, Scott JT. 2019. Biological stoichiometry regulates toxin

production in *Microcystis aeruginosa* (UTEX 2385). *Toxins (Basel)* 11:601. <https://doi.org/10.3390/toxins11100601>

23. Chapra SC, Boehlert B, Fant C, Bierman VJ, Henderson J, Mills D, Mas DML, Rennels L, Jantarasami L, Martinich J, Strzepek KM, Paerl HW. 2017. Climate change impacts on harmful algal blooms in U.S. Freshwaters: a screening-level assessment. *Environ Sci Technol* 51:8933–8943. <https://doi.org/10.1021/acs.est.7b01498>

24. Sandrini G, Cunsolo S, Schuurmans JM, Matthijs HCP, Huisman J. 2015. Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium *Microcystis aeruginosa* at elevated CO₂. *Front Microbiol* 6:401. <https://doi.org/10.3389/fmicb.2015.00401>

25. Davis TW, Berry DL, Boyer GL, Gobler CJ. 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of *Microcystis* during cyanobacteria blooms. *Harmful Algae* 8:715–725. <https://doi.org/10.1016/j.hal.2009.02.004>

26. Humbert J-F, Barbe V, Latifi A, Gugger M, Calteau A, Coursin T, Lajus A, Castelli V, Oztas S, Samson G, Longin C, Medigue C, de Marsac NT. 2013. A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium *Microcystis aeruginosa*. *PLoS One* 8:e70747. <https://doi.org/10.1371/journal.pone.0070747>

27. Wilson AE, Wilson WA, Hay ME. 2006. Intraspecific variation in growth and morphology of the bloom-forming cyanobacterium *Microcystis aeruginosa*. *Appl Environ Microbiol* 72:7386–7389. <https://doi.org/10.1128/AEM.00834-06>

28. Dick GJ, Duhaime MB, Evans JT, Errera RM, Godwin CM, Kharbush JJ, Nitschky HS, Powers MA, Vanderploeg HA, Schmidt KC, Smith DJ, Yancey CE, Zwiers CC, Denef VJ. 2021. The genetic and ecophysiological diversity of *Microcystis*. *Environ Microbiol* 23:7278–7313. <https://doi.org/10.1111/1462-2920.15615>

29. Pérez-Carrascal OM, Terrat Y, Giani A, Fortin N, Greer CW, Tommas N, Shapiro BJ. 2019. Coherence of *Microcystis* species revealed through population genomics. *ISME J* 13:2887–2900. <https://doi.org/10.1038/s41396-019-0481-1>

30. Meyer KA, Davis TW, Watson SB, Denef VJ, Berry MA, Dick GJ. 2017. Genome sequences of lower Great Lakes *Microcystis* sp. reveal strain-specific genes that are present and expressed in western Lake Erie blooms. *PLOS One* 12:e0183859. <https://doi.org/10.1371/journal.pone.0183859>

31. Cao H, Xu D, Zhang T, Ren Q, Xiang L, Ning C, Zhang Y, Gao R. 2022. Comprehensive and functional analyses reveal the genomic diversity and potential toxicity of *Microcystis*. *Harmful Algae* 113:102186. <https://doi.org/10.1016/j.hal.2022.102186>

32. Aesoy R, Herfindal L. 2022. Cyanobacterial anticancer compounds in clinical use: lessons from the dolastatins and cryptophycins. *The Pharmacological Potential of Cyanobacteria*:55–79. <https://doi.org/10.1016/B978-0-12-821491-6.00003-X>

33. Carmichael WW. 1992. Cyanobacteria secondary metabolites—the cyanotoxins. *J Appl Bacteriol* 72:445–459. <https://doi.org/10.1111/j.1365-2672.1992.tb01858.x>

34. Dittmann E, Fewer DP, Neilan BA. 2013. Cyanobacterial toxins: biosynthetic routes and evolutionary roots. *FEMS Microbiol Rev* 37:23–43. <https://doi.org/10.1111/j.1574-6976.2012.12000.x>

35. Pearson LA, Dittmann E, Mazmouz R, Ongley SE, D'Agostino PM, Neilan BA. 2016. The genetics, biosynthesis and regulation of toxic specialized metabolites of cyanobacteria. *Harmful Algae* 54:98–111. <https://doi.org/10.1016/j.hal.2015.11.002>

36. Janssen EML. 2019. Cyanobacterial peptides beyond microcystins - a review on co-occurrence, toxicity, and challenges for risk assessment. *Water Res* 151:488–499. <https://doi.org/10.1016/j.watres.2018.12.048>

37. Omidi A, Esterhuizen-Londt M, Pflugmacher S. 2018. Still challenging: the ecological function of the cyanobacterial toxin microcystin – What we know so far. *Toxin Rev* 37:87–105. <https://doi.org/10.1080/15569543.2017.1326059>

38. Pearson LA, Crosbie ND, Neilan BA. 2020. Distribution and conservation of known secondary metabolite biosynthesis gene clusters in the genomes of geographically diverse *Microcystis aeruginosa* strains. *Mar Freshw Res* 71:701–716. <https://doi.org/10.1071/MF18406>

39. Yancey CE, Yu F, Tripathi A, Sherman DH, Dick GJ. 2022. Expression of *Microcystis* biosynthetic gene clusters in natural populations suggests temporally dynamic synthesis of novel and known secondary metabolites in western Lake Erie. *bioRxiv*. <https://doi.org/10.1101/2022.10.12.511943>

40. Ersmark K, Del Valle JR, Hanessian S. 2008. Chemistry and biology of the aeruginosin family of serine protease inhibitors. *Angew Chem Int Ed* 47:1202–1223. <https://doi.org/10.1002/anie.200605219>

41. Ishitsuka MO, Kusumi T, Kakisawa H, Kaya K, Watanabe MM. 1990. Microviridin: a novel tricyclic depsipeptide from the toxic cyanobacterium *Microcystis viridis*. *J Am Chem Soc* 112:8180–8182. <https://doi.org/10.1021/ja00178a060>

42. Mailyan AK, Chen JL, Li W, Keller AA, Sternisha SM, Miller BG, Zakarian A. 2018. Short total synthesis of [¹⁵N]-cylindrospermopsins from ¹⁵NH₄ Cl enables precise quantification of freshwater cyanobacterial contamination. *J Am Chem Soc* 140:6027–6032.

43. Martins J, Vasconcelos V. 2015. Cyanobactins from cyanobacteria: current genetic and chemical state of knowledge. *Mar Drugs* 13:6910–6946. <https://doi.org/10.3390/MD13116910>

44. Meyer S, Kehr J-C, Mainz A, Dehm D, Petras D, Süßmuth RD, Dittmann E. 2016. Biochemical dissection of the natural diversification of microcystin provides lessons for synthetic biology of NRPs. *Cell Chem Biol* 23:462–471. <https://doi.org/10.1016/j.chembiol.2016.03.011>

45. Pancrace C, Ishida K, Briand E, Pichi DG, Weiz AR, Guljamow A, Scalvenzi T, Sasso N, Hertweck C, Dittmann E, Gugger M. 2019. Unique biosynthetic pathway in bloom-forming cyanobacterial genus *microcystis* jointly assembles cytotoxic aeruginoguanidines and microguanidines. *ACS Chem Biol* 14:67–75. <https://doi.org/10.1021/acs.chembio.8b00918>

46. Rantala A, Fewer DP, Hisbergues M, Rouhiainen L, Vaitomaa J, Börner T, Sivonen K. 2004. Phylogenetic evidence for the early evolution of microcystin synthesis. *Proc Natl Acad Sci USA* 101:568–573. <https://doi.org/10.1073/pnas.0304489101>

47. Leikoski N, Fewer DP, Jokela J, Alakoski P, Wahlsten M, Sivonen K. 2012. Analysis of an inactive cyanobactin biosynthetic gene cluster leads to discovery of new natural products from strains of the genus *Microcystis*. *PLoS One* 7:e43002. <https://doi.org/10.1371/journal.pone.0043002>

48. Kautsar SA, Blin K, Shaw S, Navarro-Muñoz JC, Terlouw BR, van der Hooft JJJ, van Santen JA, Tracanna V, Suarez Duran HG, Pascal Andreu V, Selem-Mojica N, Alanjary M, Robinson SL, Lund G, Epstein SC, Sisto AC, Charkoudian LK, Collemare J, Linington RG, Weber T, Medema MH. 2020. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. *Nucleic Acids Res* 48:D454–D458. <https://doi.org/10.1093/nar/gkz882>

49. Ziemert N, Ishida K, Quillardet P, Bouchier C, Hertweck C, de Marsac NT, Dittmann E. 2008. Microcyclamide biosynthesis in two strains of *Microcystis aeruginosa*: from structure to genes and vice versa. *Appl Environ Microbiol* 74:1791–1797. <https://doi.org/10.1128/AEM.02392-07>

50. Nathane Nunes de Freitas P, Kinoshita Teramoto K, Ossanes de Souza A, Pinto E. 2023. Evaluation of the toxicity of microcyclamide produced by *Microcystis aeruginosa* in *Danio rerio* embryos. *Toxics* 11:128. <https://doi.org/10.3390/toxics11020128>

51. Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA. 2000. Structural organization of microcystin biosynthesis in *Microcystis aeruginosa* PCC7806: an integrated peptide-polyketide synthetase system. *Chem Biol* 7:753–764. [https://doi.org/10.1016/s1074-5521\(00\)0021-1](https://doi.org/10.1016/s1074-5521(00)0021-1)

52. Bouaicha N, Miles CO, Beach DG, Labidi Z, Djabri A, Benayache NY, Diversity N-Q. 2019. Characterization and Toxicology of Microcystins. *Toxins (Basel)* 11. <https://doi.org/10.3390/toxins11120714>

53. Mazur-Marzec H, Sutryk K, Hebel A, Hohlfeld N, Pietrasik A, Błaszczyk A. 2015. *Nodularia spumigena* peptides--accumulation and effect on aquatic invertebrates. *Toxins (Basel)* 7:4404–4420. <https://doi.org/10.3390/toxins7114404>

54. Rounge TB, Rohrlack T, Tooming-Klunderud A, Kristensen T, Jakobsen KS. 2007. Comparison of cyanopeptolin genes in *Planktothrix*, *Microcystis*, and *Anabaena* strains: evidence for independent evolution within each genus. *Appl Environ Microbiol* 73:7322–7330. <https://doi.org/10.1128/AEM.01475-07>

55. Tooming-Klunderud A, Rohrlack T, Shalchian-Tabrizi K, Kristensen T, Jakobsen KS. 2007. Structural analysis of a non-ribosomal halogenated cyclic peptide and its putative operon from *Microcystis*: implications for evolution of cyanopeptolins. *Microbiology (Reading, Engl)* 153:1382–1393. <https://doi.org/10.1099/mic.0.2006/001123-0>

56. Gademann K, Portmann C, Blom JF, Zeder M, Jüttner F. 2010. Multiple toxin production in the cyanobacterium *Microcystis*: isolation of the toxic protease inhibitor cyanopeptolin 1020. *J Nat Prod* 73:980–984. <https://doi.org/10.1021/np900818c>

57. Weiz AR, Ishida K, Makower K, Ziemert N, Hertweck C, Dittmann E. 2011. Leader peptide and a membrane protein scaffold guide the biosynthesis of the tricyclic peptide microviridin. *Chem Biol* 18:1413–1421. <https://doi.org/10.1016/j.chembiol.2011.09.011>

58. do Amaral SC, Monteiro PR, Neto J da S, Serra GM, Gonçalves EC, Xavier LP, Santos AV. 2021. Current knowledge on microviridin from cyanobacteria. *Mar Drugs* 19:17. <https://doi.org/10.3390/MD19010017>

59. Murakami M, Ishida K, Okino T, Okita Y, Matsuda H, Yamaguchi K. 1995. Aeruginosins 98-A and B, trypsin inhibitors from the blue-green alga *Microcystis aeruginosa* (NIES-98). *Tetrahedron Lett* 36:2785–2788. [https://doi.org/10.1016/0040-4039\(95\)00396-T](https://doi.org/10.1016/0040-4039(95)00396-T)

60. Cadel-Six S, Dauga C, Castets AM, Rippka R, Bouchier C, Tandeau de Marsac N, Welker M. 2008. Halogenase genes in nonribosomal peptide synthetase gene clusters of *Microcystis* (cyanobacteria): sporadic distribution and evolution. *Mol Biol Evol* 25:2031–2041. <https://doi.org/10.1093/molbev/msn150>

61. Ishida K, Christiansen G, Yoshida WY, Kurmayer R, Welker M, Valls N, Bonjoch J, Hertweck C, Börner T, Hemscheidt T, Dittmann E. 2007. Biosynthesis and structure of aeruginoside 126A and 126B, cyanobacterial peptide glycosides bearing a 2-carboxy-6-hydroxyoctahydroindole moiety. *Chem Biol* 14:565–576. <https://doi.org/10.1016/j.chembiol.2007.04.006>

62. Ahmed MN, Wahlsten M, Jokela J, Nees M, Stenman U-H, Alvarenga DO, Strandin T, Sivonen K, Poso A, Permi P, Metsä-Ketelä M, Koistinen H, Fewer DP. 2021. Potent inhibitor of human trypsin from the aeruginosin family of natural products. *ACS Chem Biol* 16:2537–2546. <https://doi.org/10.1021/acscchembio.1c00611>

63. Portmann C, Blom JF, Kaiser M, Brun R, Jüttner F, Gademann K. 2008. Isolation of aerucyclamides C and D and structure revision of microcyclamide 7806A: heterocyclic ribosomal peptides from *Microcystis aeruginosa* PCC 7806 and their antiparasite evaluation. *J Nat Prod* 71:1891–1896. <https://doi.org/10.1021/np800409z>

64. Leikoski N, Liu L, Jokela J, Wahlsten M, Gugger M, Calteau A, Permi P, Kerfeld CA, Sivonen K, Fewer DP. 2013. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides. *Chem Biol* 20:1033–1043. <https://doi.org/10.1016/j.chembiol.2013.06.015>

65. Cegłowska M, Kwiecień P, Szubert K, Brzuzan P, Florczyk M, Edwards C, Kosakowska A, Mazur-Marzec H. 2022. Biological activity and stability of aeruginosamides from cyanobacteria. *Mar Drugs* 20:93. <https://doi.org/10.3390/MD20020093>

66. Nakashima Y, Egami Y, Kimura M, Wakimoto T, Abe I. 2016. Metagenomic analysis of the sponge *Discoderma* reveals the production of the cyanobacterial natural product kasumigamide by "Entotheonella". *PLoS ONE* 11:e0164468. <https://doi.org/10.1371/journal.pone.0164468>

67. Eusébio N, Castelo-Branco R, Sousa D, Preto M, D'Agostino P, Gulder T, Leão P. 2022. Discovery and heterologous expression of microgins from *Microcystis aeruginosa* LEGE 91341. *Chemistry*. <https://doi.org/10.26434/chemrxiv-2022-7bsz1>

68. Monteiro PR, do Amaral SC, Siqueira AS, Xavier LP, Santos AV. 2021. Anabaenopeptins: what we know so far. *Toxins (Basel)* 13:522. <https://doi.org/10.3390/toxins13080522>

69. Yancey CE, Hart L, Hefferan S, Mohamed OG, Newmister SA, Tripathi A, Sherman DH, Dick GJ. 2024. Metabologenomics reveals strain-level genetic and chemical diversity of *Microcystis* secondary metabolism. *mSystems* 9:e0033424. <https://doi.org/10.1128/mSystems.00334-24>

70. Sadler T, von Elert E. 2014. Physiological interaction of *Daphnia* and *Microcystis* with regard to cyanobacterial secondary metabolites. *Aquat Toxicol* 156:96–105. <https://doi.org/10.1016/j.aquatox.2014.08.003>

71. Puddick J, Prinsep MR, Wood SA, Kaufononga SAF, Cary SC, Hamilton DP. 2014. High levels of structural diversity observed in microcystins from *Microcystis* CAWBG11 and characterization of six new microcystin congeners. *Mar Drugs* 12:5372–5395. <https://doi.org/10.3390/MD12115372>

72. Bishop CT, Anet EF, Gorham PR. 1959. Isolation and identification of the fast-death factor in *Microcystis aeruginosa* NRC-1. *Can J Biochem Physiol* 37:453–471. <https://doi.org/10.1139/y59-047>

73. Díez-Quijada L, Prieto Al, Guzmán-Guillén R, Jos A, Cameán AM. 2019. Occurrence and toxicity of microcystin congeners other than MC-LR and MC-RR: a review. *Food Chem Toxicol* 125:106–132. <https://doi.org/10.1016/j.fct.2018.12.042>

74. Bouaicha N, Miles CO, Beach DG, Labidi Z, Djabri A, Benayache NY, Nguyen-Quang T. 2019. Structural diversity, characterization and toxicology of microcystins. *Toxins (Basel)* 11:714. <https://doi.org/10.3390/toxins11120714>

75. Dawson RM. 1998. The toxicology of microcystins. *Toxicon* 36:953–962. [https://doi.org/10.1016/s0041-0101\(97\)00102-5](https://doi.org/10.1016/s0041-0101(97)00102-5)

76. Pouria S, de Andrade A, Barbosa J, Cavalcanti RL, Barreto VT, Ward CJ, Preiser W, Poon GK, Neild GH, Codd GA. 1998. Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. *Lancet* 352:21–26. [https://doi.org/10.1016/s0140-6736\(97\)12285-1](https://doi.org/10.1016/s0140-6736(97)12285-1)

77. Jochimsen EM, Carmichael WW, An JS, Cardo DM, Cookson ST, Holmes CE, Antunes MB, de Melo Filho DA, Lyra TM, Barreto VS, Azevedo SM, Jarvis WR. 1998. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. *N Engl J Med* 338:873–878. <https://doi.org/10.1056/NEJM199803263381304>

78. Carbis CR, Simons JA, Mitchell GF, Anderson JW, McCauley I. 1994. A biochemical profile for predicting the chronic exposure of sheep to *Microcystis aeruginosa*, an hepatotoxic species of blue-green alga. *Res Vet Sci* 57:310–316. [https://doi.org/10.1016/0034-5288\(94\)90123-6](https://doi.org/10.1016/0034-5288(94)90123-6)

79. Stewart I, Seawright AA, Shaw GR. 2008. Cyanobacterial poisoning in livestock, wild mammals and birds—an overview. *Adv Exp Med Biol* 619:613–637. https://doi.org/10.1007/978-0-387-75865-7_28

80. Botes DP, Tuinman AA, Wessels PL, Viljoen CC, Kruger H, Williams DH, Santikarn S, Smith RJ, Hammond SJ. 1984. The structure of cyanoginosin-LA, a cyclic heptapeptide toxin from the cyanobacterium *Microcystis aeruginosa*. *J Chem Soc, Perkin Trans 1* 1:2311. <https://doi.org/10.1039/p19840002311>

81. Zeck A, Weller MG, Bursill D, Niessner R. 2001. Generic microcystin immunoassay based on monoclonal antibodies against Adda. *Analyst* 126:2002–2007. <https://doi.org/10.1039/b105064h>

82. Chernoff N, Hill D, Lang J, Schmid J, Le T, Farthing A, Huang H. 2020. The comparative toxicity of 10 microcystin congeners administered orally to mice: clinical effects and organ toxicity. *Toxins (Basel)* 12:403. <https://doi.org/10.3390/toxins12060403>

83. Ikebara T, Imamura S, Sano T, Nakashima J, Kuniyoshi K, Oshiro N, Yoshimoto M, Yasumoto T. 2009. The effect of structural variation in 21 microcystins on their inhibition of PP2A and the effect of replacing cys269 with glycine. *Toxicon* 54:539–544. <https://doi.org/10.1016/j.toxicon.2009.05.028>

84. Tooming-Klunderud A, Mikalsen B, Kristensen T, Jakobsen KS. 2008. The mosaic structure of the mcyABC operon in *Microcystis*. *Microbiology (Reading, Engl)* 154:1886–1899. https://doi.org/10.1099/mic.0.2007/015875_0

85. Mikalsen B, Boison G, Skulberg OM, Fastner J, Davies W, Gabrielsen TM, Rudi K, Jakobsen KS. 2003. Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in *Microcystis* strains. *J Bacteriol* 185:2774–2785. <https://doi.org/10.1128/JB.185.9.2774-2785.2003>

86. Tonk L, van de Waal DB, Slot P, Huisman J, Matthijs HCP, Visser PM. 2008. Amino acid availability determines the ratio of microcystin variants in the cyanobacterium *Planktothrix agardhii*. *FEMS Microbiol Ecol* 65:383–390. <https://doi.org/10.1111/j.1574-6941.2008.00541.x>

87. Liu J, Van Oosterhout E, Faassen EJ, Lürling M, Helmsing NR, Van de Waal DB. 2016. Elevated pCO₂ causes a shift towards more toxic microcystin variants in nitrogen-limited *Microcystis aeruginosa*. *FEMS Microbiol Ecol* 92:1–8. <https://doi.org/10.1093/femsec/fiv159>

88. Pearson LA, Hisbergues M, Börner T, Dittmann E, Neilan BA. 2004. Inactivation of an ABC transporter gene, *mcyH*, results in loss of microcystin production in the cyanobacterium *Microcystis aeruginosa* PCC 7806. *Appl Environ Microbiol* 70:6370–6378. <https://doi.org/10.1128/AEM.70.11.6370-6378.2004>

89. Yancey CE, Smith DJ, Den Uyl PA, Mohamed OG, Yu F, Ruberg SA, Chaffin JD, Goodwin KD, Tripathi A, Sherman DH, Dick GJ. 2022. Metagenomic and metatranscriptomic insights into population diversity of *Microcystis* blooms: spatial and temporal dynamics of *mcy* genotypes, including a partial operon that can be abundant and expressed. *Appl Environ Microbiol* 88:e0246421. <https://doi.org/10.1128/aem.02464-21>

90. Synthesis of a truncated microcystin tetrapeptide molecule from a partial *mcy* gene cluster in microcystis cultures and blooms. *Environmental Science & Technology*. Available from: <https://pubs.acs.org/doi/abs/10.1021/acs.est.4C00039>. Retrieved 15 Jan 2025.

91. Wei N, Hu C, Dittmann E, Song L, Gan N. 2024. The biological functions of microcystins. *Water Res* 262:122119. <https://doi.org/10.1016/j.watres.2024.122119>

92. Schampera C, Hellweger FL. 2024. Nitrogen availability controls response of microcystin concentration to phosphorus reduction: evidence from model application to multiple lakes. *Harmful Algae* 139:102711. <https://doi.org/10.1016/j.hal.2024.102711>

93. Rohrlack T, Christoffersen K, Kaebernick M, Neilan BA. 2004. Cyanobacterial protease inhibitor microviridin J causes a lethal molting disruption in *Daphnia pulicaria*. *Appl Environ Microbiol* 70:5047–5050. <https://doi.org/10.1128/AEM.70.8.5047-5050.2004>

94. Briand E, Bormans M, Gugger M, Dorrestein PC, Gerwick WH. 2016. Changes in secondary metabolic profiles of *Microcystis aeruginosa* strains in response to intraspecific interactions. *Environ Microbiol* 18:384–400. <https://doi.org/10.1111/1462-2920.12904>

95. Alexova R, Dang TC, Fujii M, Raftery MJ, Waite TD, Ferrari BC, Neilan BA. 2016. Specific global responses to N and Fe nutrition in toxic and non-toxic *Microcystis aeruginosa*. *Environ Microbiol* 18:401–413. <https://doi.org/10.1111/1462-2920.12958>

96. Zilliges Y, Kehr JC, Meissner S, Ishida K, Mikkat S, Hagemann M, Kaplan A, Börner T, Dittmann E. 2011. The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of microcystis under oxidative stress conditions. *PLoS One* 6:e17615. <https://doi.org/10.1371/journal.pone.0017615>

97. Große R, Heuser M, Teikari JE, Ramakrishnan DK, Abdelfattah A, Dittmann E. 2025. Microcystin shapes the *Microcystis* phycosphere through community filtering and by influencing cross-feeding interactions. *ISME Commun* 5:ycae170. <https://doi.org/10.1093/ismeco/ycae170>

98. Stringer BB, Szlag Silva RG, Kodanko JJ, Westrick JA. 2025. Structure, toxicity, prevalence, and degradation of six understudied freshwater cyanopeptides. *Toxins (Basel)* 17:233. <https://doi.org/10.3390/toxins17050233>

99. Kust A, Řeháková K, Vrba J, Maicher V, Mareš J, Hrouzek P, Chiriac M-C, Benedová Z, Tesařová B, Saurav K. 2020. Insight into unprecedented diversity of cyanopeptides in eutrophic ponds using an MS/MS networking approach. *Toxins (Basel)* 12:561. <https://doi.org/10.3390/toxins12090561>

100. Le Manach S, Duval C, Marie A, Djediat C, Catherine A, Edery M, Bernard C, Marie B. 2019. Global metabolomic characterizations of *Microcystis* spp. highlights clonal diversity in natural bloom-forming populations and expands metabolite structural diversity. *Front Microbiol* 10:791. <https://doi.org/10.3389/fmicb.2019.00791>

101. Bownik A, Pawlik-Skowrońska B, Włodkowic D, Mieczan T. 2024. Interactive effects of cyanobacterial metabolites aeruginosin-98B, anabaenopeptin-B and cylindrospermopsin on physiological parameters and novel *in vivo* fluorescent indicators in *Chironomus riparius* larvae. *Sci Total Environ* 914:169846. <https://doi.org/10.1016/j.scitotenv.2023.169846>

102. Pawlik-Skowrońska B, Bownik A. 2022. Synergistic toxicity of some cyanobacterial oligopeptides to physiological activities of *Daphnia magna* (Crustacea). *Toxicon* 206:74–84. <https://doi.org/10.1016/j.toxicon.2021.12.013>

103. Bownik A, Adamczuk M, Pawlik-Skowrońska B, Mieczan T. 2023. Cyanobacterial metabolites: aeruginosin 98A, microcadin-FR1, anabaenopeptin-A, cylindrospermopsin and their mixtures affect behavioral and physiological responses of *Daphnia magna*. *Environ Toxicol Pharmacol* 100:104161. <https://doi.org/10.1016/j.etap.2023.104161>

104. Ishida K, Okita Y, Matsuda H, Okino T, Murakami M. 1999. Aeruginosins, protease inhibitors from the cyanobacterium *Microcystis aeruginosa*. *Tetrahedron* 55:10971–10988. [https://doi.org/10.1016/S0040-4020\(99\)0621-3](https://doi.org/10.1016/S0040-4020(99)0621-3)

105. Fewer DP, Jokela J, Paukku E, Österholm J, Wahlsten M, Permi P, Aitio O, Rouhiainen L, Gomez-Saez GV, Sivonen K. 2013. New structural variants of aeruginosins produced by the toxic bloom forming cyanobacterium *Nodularia spumigena*. *PLOS One* 8:e73618. <https://doi.org/10.1371/journal.pone.0073618>

106. Kodani S, Ishida K, Murakami M. 1998. Aeruginosin 103-A, a thrombin inhibitor from the cyanobacterium *Microcystis viridis*. *J Nat Prod* 61:1046–1048. <https://doi.org/10.1021/np980106w>

107. Elkobi-Peer S, Faigenbaum R, Carmeli S. 2012. Bromine- and chlorine-containing aeruginosins from *Microcystis aeruginosa* bloom material collected in Kibbutz Geva, Israel. *J Nat Prod* 75:2144–2151. <https://doi.org/10.1021/np3005612>

108. Elkobi-Peer S, Carmeli S. 2015. New prenylated aeruginosin, microphyacin, anabaenopeptin and micropeptin analogues from a *Microcystis* bloom material collected in Kibbutz Kfar Blum, Israel. *Mar Drugs* 13:2347–2375. <https://doi.org/10.3390/MD13042347>

109. Ishida K, Welker M, Christiansen G, Cadel-Six S, Bouchier C, Dittmann E, Hertweck C, Tandeau de Marsac N. 2009. Plasticity and evolution of aeruginosins biosynthesis in cyanobacteria. *Appl Environ Microbiol* 75:2017–2026. <https://doi.org/10.1128/AEM.02258-08>

110. Fewer DP, Jokela J, Rouhiainen L, Wahlsten M, Koskenniemi K, Stal LJ, Sivonen K. 2009. The non-ribosomal assembly and frequent occurrence of the protease inhibitors spongins in the bloom-forming cyanobacterium *Nodularia spumigena*. *Mol Microbiol* 73:924–937. <https://doi.org/10.1111/j.1365-2958.2009.06816.x>

111. Jokela J, Heinilä LMP, Shishido TK, Wahlsten M, Fewer DP, Fiore MF, Wang H, Haapaniemi E, Permi P, Sivonen K. 2017. Production of high amounts of hepatotoxin nodularin and new protease inhibitors pseudospingins by the benthic *Nostoc* sp. CENA543. *Front Microbiol* 8:1963. <https://doi.org/10.3389/fmicb.2017.01963>

112. Pawlik-Skowrońska B, Bownik A, Pogorzelec M, Kulczycka J, Sumińska A. 2023. First report on adverse effects of cyanobacterial anabaenopeptins, aeruginosins, microcadin and their mixtures with microcystin and cylindrospermopsin on aquatic plant physiology: an experimental approach. *Toxicon* 236:107333. <https://doi.org/10.1016/j.toxicon.2023.107333>

113. Médice RV, Arruda RS, Yoon J, Borges RM, Noyma NP, Lürling M, Crnkovic CM, Marinho MM, Pinto E. 2024. Unlocking biological activity and metabolomics insights: primary screening of cyanobacterial biomass from a tropical reservoir. *Environ Toxicol Chem* 43:2222–2231. <https://doi.org/10.1002/etc.5962>

114. Martin C, Oberer L, Ino T, König WA, Busch M, Weckesser J. 1993. Cyanopeptolins, new depsipeptides from the cyanobacterium *Microcystis* sp. pcc 7806. *J Antibiot* 46:1550–1556. <https://doi.org/10.7146/antibiotics.46.1550>

115. Bister B, Keller S, Baumann HI, Nicholson G, Weist S, Jung G, Süßmuth RD, Jüttner F. 2004. Cyanopeptolin 963A, a chymotrypsin inhibitor of *Microcystis* PCC 7806. *J Nat Prod* 67:1755–1757. <https://doi.org/10.1021/np049828f>

116. Köcher S, Resch S, Kessenbrock T, Schrapp L, Ehrmann M, Kaiser M. 2020. From dolastatin 13 to cyanopeptolins, micropeptins, and lyngbyastatins: the chemical biology of Ahp-cyclodepsipeptides. *Nat Prod Rep* 37:163–174. <https://doi.org/10.1039/C9NP00033J>

117. Nishizawa T, Ueda A, Nakano T, Nishizawa A, Miura T, Asayama M, Fujii K, Harada K, Shirai M. 2011. Characterization of the locus of genes encoding enzymes producing heptadepsipeptide micropeptin in the unicellular cyanobacterium *Microcystis*. *J Biochem* 149:475–485. <https://doi.org/10.1093/jb/mvq150>

118. Czekster CM, Ge Y, Naismith JH. 2016. Mechanisms of cyanobactin biosynthesis. *Curr Opin Chem Biol* 35:80–88. <https://doi.org/10.1016/j.cobi.2016.08.029>

119. Sivonen K, Leikoski N, Fewer DP, Jokela J. 2010. Cyanobactins-ribosomal cyclic peptides produced by cyanobacteria. *Appl Microbiol Biotechnol* 86:1213–1225. <https://doi.org/10.1007/s00253-010-2482-x>

120. Zafrir-Ilan E, Carmeli S. 2010. Two new microcyclamides from a water bloom of the cyanobacterium *Microcystis* sp. *Tetrahedron Lett* 51:6602–6604. <https://doi.org/10.1016/j.tetlet.2010.10.051>

121. Zhang Y, Li K, Yang G, McBride JL, Bruner SD, Ding Y. 2018. A distributive peptide cyclase processes multiple microviridin core peptides within a single polypeptide substrate. *Nat Commun* 9:1–10. <https://doi.org/10.1038/s41467-018-04154-3>

122. Ziemert N, Ishida K, Laihmer A, Hertweck C, Dittmann E. 2008. Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria. *Angew Chem Weinheim Bergstr Ger* 120:7870–7873. <https://doi.org/10.1002/ange.200802730>

123. Gatte-Picchi D, Weiz A, Ishida K, Hertweck C, Dittmann E. 2014. Functional analysis of environmental DNA-derived microviridins provides new insights into the diversity of the tricyclic peptide family. *Appl Environ Microbiol* 80:1380–1387. <https://doi.org/10.1128/AEM.03502-13>

124. Kraft M, Schleberger C, Weckesser J, Schulz GE. 2006. Binding structure of the leucine aminopeptidase inhibitor microcadin FR1. *FEBS Lett* 580:6943–6947. <https://doi.org/10.1016/j.febslet.2006.11.060>

125. Okino T, Matsuda H, Murakami M, Yamaguchi K. 1993. Microcadin, an angiotensin-converting enzyme inhibitor from the blue-green alga *Microcystis aeruginosa*. *Tetrahedron Lett* 34:501–504. [https://doi.org/10.1016/0040-4039\(93\)85112-A](https://doi.org/10.1016/0040-4039(93)85112-A)

126. Rounge TB, Rohrlack T, Nederbragt AJ, Kristensen T, Jakobsen KS. 2009. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a *Planktothrix rubescens* strain. *BMC Genomics* 10:396. <https://doi.org/10.1186/1471-2164-10-396>

127. Zervou SK, Gkelis S, Kaloudis T, Hiskia A, Mazur-Marzec H. 2020. New microgiginins from cyanobacteria of Greek freshwaters. *Chemosphere* 248:125961. <https://doi.org/10.1016/j.chemosphere.2020.125961>

128. Carneiro RL, Dörr FA, Dörr F, Bortoli S, Delherbe N, Vásquez M, Pinto E. 2012. Co-occurrence of microcystin and microgiginin congeners in Brazilian strains of *Microcystis* sp. *FEMS Microbiol Ecol* 82:692–702. <https://doi.org/10.1111/j.1574-6941.2012.01439.x>

129. da Silva Pinto Neto J, Serra GM, Xavier LP, Santos AV. 2025. Chemodiversity and biotechnological potential of microgiginins. *Int J Mol Sci* 26:6117. <https://doi.org/10.3390/ijms26136117>

130. Williams DE, Craig M, Holmes CFB, Andersen RJ. 1996. Ferintoic acids A and B, new cyclic hexapeptides from the freshwater cyanobacterium *Microcystis aeruginosa*. *J Nat Prod* 59:570–575. <https://doi.org/10.1021/np960108l>

131. Halland N, Brönstrup M, Czech J, Czechtizky W, Evers A, Follmann M, Kohlmann M, Schiell M, Kurz M, Schreuder HA, Kallus C. 2015. Novel small molecule inhibitors of activated thrombin activatable fibrinolysis inhibitor (TAFIa) from natural product anabaenopeptin. *J Med Chem* 58:4839–4844. <https://doi.org/10.1021/jm501840b>

132. Christiansen G, Philmus B, Hemscheidt T, Kurmayer R. 2011. Genetic variation of adenylation domains of the anabaenopeptin synthesis operon and evolution of substrate promiscuity. *J Bacteriol* 193:3822–3831. <https://doi.org/10.1128/JB.00360-11>

133. Yancey CE, Kiledal EA, Denef VJ, Errera RM, Evans JT, Hart L, Isailovic D, James W, Kharbush JK, Kimbrel JA, Li W, Mayali X, Nitschky H, Polik C, Powers MA, Premathilaka SH, Rappuhn N, Reitz LA, Rivera SR, Zwiers CC, Dick GJ. 2022. The Western Lake Erie Culture Collection: a promising resource for evaluating the physiological and genetic diversity of *Microcystis* and its associated microbiome. *bioRxiv*. <https://doi.org/10.1101/2022.10.21.513177>

134. Entfellner E, Frei M, Christiansen G, Deng L, Blom J, Kurmayer R. 2017. Evolution of anabaenopeptin peptide structural variability in the cyanobacterium *Planktothrix*. *Front Microbiol* 8:219. <https://doi.org/10.3389/fmicb.2017.00219>

135. Zastepa A, Westrick JA, Miller TR, Liang A, Szlag DC, Chaffin JD. 2024. The Lake Erie Harmful Algal Blooms Grab: high-resolution mapping of toxic and bioactive metabolites (cyanotoxins/cyanopeptides) in cyanobacterial harmful algal blooms within the western basin. *aehm* 27:46–63.

136. Dinglasan JLN, Otani H, Doering DT, Udwyar D, Mouncey NJ. 2025. Microbial secondary metabolites: advancements to accelerate discovery towards application. *Nat Rev Microbiol* 23:338–354. <https://doi.org/10.1038/s41579-024-01141-y>

137. Larsen JS, Pearson LA, Neilan BA. 2021. Genome mining and evolutionary analysis reveal diverse type III polyketide synthase pathways in cyanobacteria. *Genome Biol Evol* 13:evab056. <https://doi.org/10.1093/gbe/evab056>

138. Griffith AW, Gobler CJ. 2020. Harmful algal blooms: a climate change co-stressor in marine and freshwater ecosystems. *Harmful Algae* 91:101590. <https://doi.org/10.1016/j.hal.2019.03.008>

139. Heisler J, Glibert P, Burkholder J, Anderson D, Cochlan W, Dennison W, Gobler C, Dortch Q, Heil C, Humphries E, Lewitus A, Magnien R, Marshall H, Sellner K, Stockwell D, Stoecker D, Suddleson M. 2008. Eutrophication and harmful algal blooms: a scientific consensus. *Harmful Algae* 8:3–13. <https://doi.org/10.1016/j.hal.2008.08.006>

140. Harke MJ, Gobler CJ. 2013. Global transcriptional responses of the toxic cyanobacterium, *Microcystis aeruginosa*, to nitrogen stress, phosphorus stress, and growth on organic matter. *PLoS One* 8:e69834. <https://doi.org/10.1371/journal.pone.0069834>

141. Paerl HW, Scott JT, McCarthy MJ, Newell SE, Gardner WS, Havens KE, Hoffman DK, Wilhelm SW, Wurtsbaugh WA. 2016. It takes two to tango: when and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems. *Environ Sci Technol* 50:10805–10813. <https://doi.org/10.1021/acs.est.6b02575>

142. Gobler CJ, Burkholder JM, Davis TW, Harke MJ, Johengen T, Stow CA, Van de Waal DB. 2016. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. *Harmful Algae* 54:87–97. <https://doi.org/10.1016/j.hal.2016.01.010>

143. Kaika M. 2003. The water framework directive: a new directive for a changing social, political and economic European framework. *European Planning Studies* 11:299–316. <https://doi.org/10.1080/09654310303640>

144. Van de Waal DB, Verspagen JMH, Lürling M, Van Donk E, Visser PM, Huisman J. 2009. The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis. *Ecol Lett* 12:1326–1335. <https://doi.org/10.1111/j.1461-0248.2009.01383.x>

145. Chaffin JD, Westrick JA, Reitz LA, Bridgeman TB. 2023. Microcystin congeners in Lake Erie follow the seasonal pattern of nitrogen availability. *Harmful Algae* 127:102466. <https://doi.org/10.1016/j.hal.2023.102466>

146. Baran R, Brodie EL, Mayberry-Lewis J, Hummel E, Da Rocha UN, Chakraborty R, Bowen BP, Karaoz U, Cadillo-Quiroz H, Garcia-Pichel F, Northen TR. 2015. Exometabolite niche partitioning among sympatric soil bacteria. *Nat Commun* 6:1–9. <https://doi.org/10.1038/ncomms9289>

147. Li W, Baliau-Rodriguez D, Premathilaka SH, Thenuwara SI, Kimbrel JA, Samo TJ, Ramon C, Kiledal EA, Rivera SR, Kharbush J, Isailovic D, Weber PK, Dick GJ, Mayali X. 2024. Microbiome processing of organic nitrogen input supports growth and cyanotoxin production of *Microcystis aeruginosa* cultures. *ISME J* 18:wrae082. <https://doi.org/10.1093/ismej/wrae082>

148. Briand E, Reubrecht S, Mondegger F, Sibat M, Hess P, Amzil Z, Bormans M. 2019. Chemically mediated interactions between *Microcystis* and *Planktothrix*: impact on their growth, morphology and metabolic profiles. *Environ Microbiol* 21:1552–1566. <https://doi.org/10.1111/1462-2920.14490>

149. Ger KA, Faassen EJ, Pennino MG, Lürling M. 2016. Effect of the toxin (microcystin) content of *Microcystis* on copepod grazing. *Harmful Algae* 52:34–45. <https://doi.org/10.1016/j.hal.2015.12.008>

150. Harke MJ, Jankowiak JG, Morrell BK, Gobler CJ. 2017. Transcriptomic responses in the bloom-forming cyanobacterium *Microcystis* induced during exposure to zooplankton. *Appl Environ Microbiol* 83. <https://doi.org/10.1128/AEM.02832-16>

151. Paerl HW, Millie DF. 1996. Physiological ecology of toxic aquatic cyanobacteria. *Phycologia* 35:160–167. <https://doi.org/10.2216/i0031-884-35-6S-160.1>

152. Guljamow A, Barchewitz T, Große R, Timm S, Hagemann M, Dittmann E. 2021. Diel variations of extracellular microcystin influence the subcellular dynamics of Rubisco in *Microcystis aeruginosa* PCC 7806. *Microorganisms* 9:1265. <https://doi.org/10.3390/microorganisms9061265>

153. Meissner S, Fastner J, Dittmann E. 2013. Microcystin production revisited: conjugate formation makes a major contribution. *Environ Microbiol* 15:1810–1820. <https://doi.org/10.1111/1462-2920.12072>

154. Vela L, Sevilla E, Gonzalez C, Bes MT, Fillat MF, Peleato ML. 2008. Exploring the interaction of microcystin-LR with proteins and DNA. *Toxicol In Vitro* 22:1714–1718. <https://doi.org/10.1016/j.tiv.2008.07.008>

155. Wei N, Hu L, Song LR, Gan NQ. 2016. Microcystin-bound protein patterns in different cultures of *Microcystis aeruginosa* and field samples. *Toxins (Basel)* 8:293. <https://doi.org/10.3390/toxins8100293>

156. Stark GF, Martin RM, Smith LE, Wei B, Hellweger FL, Bullerjahn GS, McKay RML, Boyer GL, Wilhelm SW. 2023. Microcystin aids in cold temperature acclimation: differences between a toxic *Microcystis* wildtype and non-toxic mutant. *Harmful Algae* 129:102531. <https://doi.org/10.1016/j.hal.2023.102531>

157. Kuniyoshi TM, Gonzalez A, Lopez-Gomollon S, Valladares A, Bes MT, Fillat MF, Peleato ML. 2011. 2-oxoglutarate enhances NtcA binding activity to promoter regions of the microcystin synthesis gene cluster. *FEBS Lett* 585:3921–3926. <https://doi.org/10.1016/j.febslet.2011.10.034>

158. Rhoads A, Au KF. 2015. PacBio sequencing and its applications. *Genomics Proteomics Bioinformatics* 13:278–289. <https://doi.org/10.1016/j.gpb.2015.08.002>

159. Jain M, Olsen HE, Paten B, Akeson M. 2016. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. *Genome Biol* 17:239. <https://doi.org/10.1186/s13059-016-1103-0>

160. Dreher TW, Davis EW, Mueller RS, Otten TG. 2021. Comparative genomics of the ADA clade within the Nostocales. *Harmful Algae* 104:102037. <https://doi.org/10.1016/j.hal.2021.102037>

161. Bickhart DM, Kolmogorov M, Tseng E, Portik DM, Korobeynikov A, Tolstoganov I, Uritskiy G, Liachko I, Sullivan ST, Shin SB, Zorea A, Andreu VP, Panke-Buisse K, Medema MH, Mizrahi I, Pevzner PA, Smith TPL. 2022. Generating lineage-resolved, complete metagenome-assembled genomes from complex microbial communities. *Nat Biotechnol* 40:711–719. <https://doi.org/10.1038/s41587-021-01130-z>

162. Cox DG, Oh J, Keasling A, Colson KL, Hamann MT. 2014. The utility of metabolomics in natural product and biomarker characterization. *Biochimica et Biophysica Acta (BBA) - General Subjects* 1840:3460–3474. <https://doi.org/10.1016/j.bbagen.2014.08.007>

163. Kind T, Tsugawa H, Cajka T, Ma Y, Lai Z, Mehta SS, Wohlgemuth G, Barupal DK, Showalter MR, Arita M, Fiehn O. 2018. Identification of small molecules using accurate mass MS/MS search. *Mass Spectrom Rev* 37:513–532. <https://doi.org/10.1002/mas.21535>

164. McLafferty FW. 1981. Tandem mass spectrometry. *Science* 214:280–287. <https://doi.org/10.1126/science.7280693>

165. Birbeck JA, Westrick JA, O'Neill GM, Spies B, Szlag DC. 2019. Comparative analysis of microcystin prevalence in Michigan lakes by online concentration LC/MS/MS and ELISA. *Toxins (Basel)* 11:13. <https://doi.org/10.3390/toxins11010013>

166. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T. 2021. antiSMASH 6.0: improving cluster detection and comparison capabilities. *Nucleic Acids Res* 49:W29–W35. <https://doi.org/10.1093/nar/gkab335>

167. Skinnider MA, Johnston CW, Gunabalasingam M, Merwin NJ, Kieliszek AM, MacLellan RJ, Li H, Ranieri MRM, Webster ALH, Cao MPT, Pfeifle A, Spencer N, To QH, Wallace DP, DeJong CA, Magarvey NA. 2020. Comprehensive prediction of secondary metabolite structure and biological activity from microbial genome sequences. *Nat Commun* 11:6058. <https://doi.org/10.1038/s41467-020-19986-1>

168. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, et al. 2016. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. *Nat Biotechnol* 34:828–837. <https://doi.org/10.1038/nbt.3597>

169. van Santen JA, Jacob G, Singh AL, Aniebok V, Balunas MJ, Bunsko D, Neto FC, Castaño-Espriu L, Chang C, Clark TN, et al. 2019. The natural products atlas: an open access knowledge base for microbial natural products discovery. *ACS Cent Sci* 5:1824–1833. <https://doi.org/10.1021/acscentsci.9b00806>

170. Dick GJ. 2017. Embracing the mantra of modellers and synthesizing omics, experiments and models. *Environ Microbiol Rep* 9:18–20. <https://doi.org/10.1111/1758-2229.12491>

171. Haas R, Zelezniak A, Iacovacci J, Kamrad S, Townsend SJ, Ralser M. 2017. Designing and interpreting “multi-omic” experiments that may change our understanding of biology. *Curr Opin Syst Biol* 6:37–45. <https://doi.org/10.1016/j.coisb.2017.08.009>

172. Schloss PD, Handelsman J. 2005. Metagenomics for studying uncultivable microorganisms: cutting the Gordian knot. *Genome Biol* 6:1–4. <https://doi.org/10.1186/gb-2005-6-8-229>

173. Hart LN, Zepernick BN, Natwora KE, Brown KM, Obuya JA, Lomeo D, Barnard MA, Okech EO, Kiledal EA, Den Uyl PA, et al. 2025. Metagenomics reveals spatial variation in cyanobacterial composition, function, and biosynthetic potential in the Winam Gulf, Lake Victoria, Kenya. *Appl Environ Microbiol* 91:e01507–24. <https://doi.org/10.1128/aem.01507-24>

174. Fastner J, Erhard M, von Döhren H. 2001. Determination of oligopeptide diversity within a natural population of *Microcystis* spp. (cyanobacteria) by typing single colonies by matrix-assisted laser desorption ionization-time of flight mass spectrometry. *Appl Environ Microbiol* 67:5069–5076. <https://doi.org/10.1128/AEM.67.11.5069-5076.2001>

175. Lifshits M, Carmeli S. 2012. Metabolites of *Microcystis aeruginosa* bloom material from Lake Kinneret, Israel. *J Nat Prod* 75:209–219. <https://doi.org/10.1021/np200909x>

AUTHOR BIOS

Colleen E. Yancey has over 8 years of experience in the fields of Microbial Ecology and Applied Microbiology. She received a BS in Biological Sciences from the University of Vermont and a PhD in Earth and Environmental Sciences at the University of Michigan. Colleen is currently a Postdoctoral Scientist at New England Biolabs, Inc. Her research interests include using multi-omic and statistical approaches for enzyme and small molecule discovery and characterization from environmental microbial communities. She is also interested in developing new sequencing approaches for environmental application. Her work has implications in public and environmental health as well as application in biotechnology. Colleen has extensive experience working with microbial communities from aquatic systems including harmful algal blooms and estuarine sediments, resulting in the discovery of novel and potentially toxic secondary metabolites and polymer degrading enzymes.

Lauren N. Hart received her PhD in Chemical Biology from the University of Michigan. Over the past 5 years, she has conducted interdisciplinary research investigating the environmental and human health risks posed by cyanobacterial harmful algal blooms (cyanHABs) in vital freshwater systems, including Lake Erie (USA) and Lake Victoria (Kenya). Her interest in chemical ecology began as an undergraduate at the University of Texas at Austin, where she studied the genetic and chemical potential of plants from around the world. This work sparked a lasting interest in the diversity of natural compounds and the use of tools such as metagenomics and metabolomics to study them. Her work focuses on linking microbial chemistry to environmental change to improve bloom prediction and freshwater management. She now works as a Data and Solutions Strategist at Texan by Nature, partnering with scientists, conservation organizations, and industry to turn environmental data into actionable conservation strategies across Texas.

Gregory J. Dick is a Professor at the University of Michigan. He received his PhD from the Scripps Institution of Oceanography at the University of California, San Diego (2006) under the supervision of Brad Tebo and completed a postdoc at the University of California, Berkeley with Jill Banfield. He joined the faculty at the University of Michigan in 2008 and for most of his career has focused on geomicrobiology, especially the microbial biogeochemistry of deep-sea hydrothermal vents and cyanobacterial mats. For the past 10 years he has turned his focus towards cyanobacterial blooms with the aim of informing environmental policy and addressing threats to human health in freshwater ecosystems. He is now the Director of the Cooperative Institute for Great Lakes Research and the Great Lakes Center for Freshwaters and Human Health.

