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ABSTRACT The cyanobacterial genus Microcystis is globally distributed and known for
its ability to produce microcystins, a structurally diverse group of cyanotoxins. However,
the biosynthetic capacity of Microcystis is vast; its diverse genomes contain a variety of
biosynthetic gene clusters (BGCs) encoding the synthesis of metabolites that may be
toxic, have important ecological function, or have applications for biotechnology or drug
discovery. Recent studies illustrate that these BGCs vary significantly across Microcystis
strains, can be highly expressed in environmental conditions, and may play key roles
in cellular physiology, grazer deterrence, and microbial interactions. However, many
of these BGCs and metabolites remain poorly characterized or completely uncharacter-
ized, having been identified only through genome sequencing or mass spectrometry,
respectively, leaving no knowledge of their structure, bioactivity, or physiological or
ecological functions. Here, we synthesize the current body of knowledge regarding
the secondary metabolism of Microcystis in terms of genetic and chemical diversity,
potential drivers of synthesis, and physiological and ecological functions. This review
highlights the need for further research to characterize the largely unexplored genetic
and chemical diversity of Microcystis in communities in the environment and discusses
the challenges and opportunities of integrating high-throughput multiomic approaches
to link uncharacterized gene clusters with their corresponding metabolites. Microcystis
will continue to be a rich source for secondary metabolite research as its genetic and
chemical potential likely plays a critical role in the persistence and observed dynamics of
harmful algal blooms and may harbor uncharacterized toxins and metabolites.

KEYWORDS metagenomics, metabolomics, harmful algal blooms, multi-omics,
secondary metabolites, Microcystis

M icrocystis spp. are among the most common bloom-forming cyanobacteria
responsible for cyanobacterial harmful algal blooms (cyanoHABs) that degrade
freshwater systems around the world (1). These cyanoHABs have been observed on
every continent except Antarctica (2), and the presence of Microcystis in brackish and
coastal waters (3, 4) underscores its widespread distribution. Within blooms, Microcystis
can achieve dominance and persist seasonally (5-8), and it encodes the capacity to
produce a breadth of secondary metabolites that have toxic properties (2, 9-11). These
blooms can lead to several negative consequences including toxin production (2, 10,
12, 13), shifts in community composition (9, 14), and hypoxia (15). Freshwater blooms
dominated by Microcystis threaten access to clean drinking water and recreation through
the production of toxins and taste and odor compounds (11, 14, 16). Similarly, in coastal
and estuarine systems, there have been reports of disruption in fish production in
aquaculture and the accumulation of toxins in surface water, aquatic life, and human
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nasal passages (3, 4, 17, 18). Together, these findings underscore the broad distribution
and impact Microcystis imposes on aquatic ecosystems.

CyanoHABs are primarily driven by eutrophication from anthropogenic sources of
nutrients. Phosphorus (P) loading has been documented to drive bloom biomass and
is the main target of management practices (19, 20). Continued nitrogen (N) loading,
which is not officially managed in most North American freshwater systems, may favor
toxic strains as many secondary metabolites with toxic properties are N-rich (21, 22). As
a result of eutrophication and increased environmental variability since the Industrial
Revolution, the intensity and frequency of cyanobacterial blooms are increasing in
freshwater and marine systems, disproportionately to other taxa of phytoplankton (1).
Models predict that by the year 2090, there will be 18-39 days of intense harmful algal
bloom growth versus the average 7 days currently experienced in temperate systems
(23). Studies aimed at addressing the impacts of climate change on bloom severity
have shown that elevated temperature and carbon dioxide levels will not only increase
Microcystis biomass but also microcystin content per cell (24, 25). Intensifying environ-
mental variability and nutrient loading emphasize the need to better understand the
consequences of persistent cyanobacterial biomass in aquatic systems, especially prolific
toxin producers such as Microcystis.

Studying Microcystis genomes, and their biosynthetic potential, is challenging due
to the high levels of diversity observed among strains. Further challenges arise in
taxonomic identification and species delineation as a result of the complex nature
of Microcystis genomes (2, 26) and their varied cell size and colony morphology (27).
Due to their genetic complexity and lack of clear species and sub-species organization
via phylogenomic approaches (28, 29), Microcystis blooms likely comprise ecologically
distinct strains adapted to variable environments (28). Microcystis genomes have highly
variable gene content across strains and thus have a large pangenome (26, 30), with
a high degree of horizontal gene transfer (26, 29, 31). High levels of plasticity are also
evidenced by extensive regions of repeat sequences within genomes and low synteny
among strains, which may be a strategy used to adapt to shifting environments (26,
28, 30). It has also been suggested that the Microcystis pangenome is truly globally
distributed (30). Such diverse genetic substructure among strains (28, 29) provides even
more potential for biosynthetic diversity.

In general, cyanobacteria are a rich source of unique, toxic, and complex secondary
metabolites (5, 8, 32). Several classes of “cyanotoxins” produced by various genera
have been described previously and are monitored in water sources around the world
(33-35). To date, many studies and reviews have focused on secondary metabolites
produced broadly by cyanobacteria, largely based on studies of cultures, or focus solely
on the hepatotoxin microcystin, which currently dominates cyanobacteria secondary
metabolism research and literature (5, 6, 33, 36, 37). Harke et al. (2) reviewed canonical
toxins produced by Microcystis, focusing on microcystins, but they did not address
the many other cyanopeptides produced by Microcystis. While some studies have
addressed the variable genome content of biogenetic clusters (BGCs) within Microcystis
(28, 29, 38, 39), and others have identified and characterized the chemical structures
of specific compounds (40-45), to our knowledge, the field currently lacks a compre-
hensive review of the expansive chemical and genetic diversity that defines Microcys-
tis secondary metabolism. This review synthesizes the state of knowledge regarding
Microcystis-derived metabolites, identifies areas for continued research, and addresses
how improvements in omics technology may advance the field (Fig. 1). We hope that
it will serve as a valuable resource for researchers as Microcystis-dominated cyanoHABs
expand and intensify globally along with climate change.

GENOMIC INSIGHTS INTO DIVERSITY OF SECONDARY METABOLITES

Studies of Microcystis cultures revealed their high diversity of secondary metabolites and
the BGCs encoding their synthesis (5, 38). BGCs make up about 2%-7% of Microcystis
genomes, and they are often distributed genome-wide (Fig. 2A) (38). Horizontal gene
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FIG 1 Schematic overview of workflows used in Microcystis secondary metabolism studies. Lake water collected from visible algal scums can be used for

metagenomic and metabolomic analyses. These methods enable the identification of biosynthetic gene
and characterization.

transfer likely plays a role in BGC acquisition (26, 31, 38), although some clusters, such as
the mcy operon that encodes microcystin, have been shown to have ancient origins, and
their distribution among genera is primarily due to gene loss (46). BGCs are also thought
to be dynamic, with tightly regulated controls on transcription and frequent rearrange-
ments in gene order (38, 39, 47). It is likely that multifaceted combinations of biotic and
abiotic factors have contributed to the evolution of the BGCs observed today in
Microcystis genomes (28, 35), yet much remains unknown about their variation on a
species or subspecies level and why these metabolites are being synthesized from a
functional standpoint. Currently, there are 13 linked BGCs and metabolites deposited on
the Minimum Information about a Biosynthetic Gene Cluster (MiBIG) database (48) that
are known to be produced by Microcystis (accessed July 2025) (Table 1). All entries
describe gene clusters that encode cyanopeptides either synthesized via nonribosomal
peptide synthetase (NRPS), hybrid NRPS/polyketide synthase (PKS), or ribosomal
pathways.

Genomic content of BGCs across strains within Microcystis subclades tends to be
similar but not identical (28, 29, 69). It is likely each strain or species of Microcystis
contains a co-evolved, tailored arsenal of secondary metabolites that are fine-tuned to
the specific conditions of their environment (28). However, the presence of a gene cluster
does not guarantee biosynthesis as these clusters may be transcriptionally regulated and
deactivated through transposition or recombination (38, 39, 47), which are commonly
observed in Microcystis (2, 26). Biosynthesis in natural systems is also likely dependent
on several abiotic and biotic factors such as the availability of substrates, C:N ratios
within water bodies, and interaction with competitors and grazers (70, 71). As a result,
it is important to use genome mining as a blueprint for biosynthetic potential, but
approaches such as metatranscriptomics and chemical profiling (e.g., mass spectrome-
try) are critical to determine which secondary metabolites are being actively biosynthe-
sized.
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FIG 2 Overview of BGCs found in Microcystis spp. genomes. (A) Genomic map of the complete genome from Microcystis aeruginosa PCC 7806 (NCBI accession:

NZ_CP020771.1). Both characterized and uncharacterized BGCs are depicted and labeled in red. Coding DNA sequences (CDSs) are shown in black. The genomic

map was generated with Proksee. (B) Summary of BGCs from Microcystis genomes with finished status (level 6) from IMG (accessed July 2025). The top panel

shows the presence or absence of gene clusters that encode characterized secondary metabolites (black indicates presence). The bottom panel shows the count

and types of both characterized and uncharacterized biosynthetic gene clusters, highlighting vast genetic diversity and the need for continued exploration

in well-characterized isolates. (C) Select examples of common BGCs found in Microcystis. Identified CDSs are labeled for each cluster where available. Gene

schematics were modified from the MiBIG repository (accessed July 2025).

CHARACTERIZED SECONDARY METABOLITES

Microcystis can produce a wide range of secondary metabolites, with varying function,
toxicity, and chemical structure. However, understanding of the biosynthetic processes
underlying Microcystis secondary metabolite production remains limited, beyond a few
well-characterized cyanopeptides (2, 36). The following sections summarize what is
currently understood about Microcystis secondary metabolites, the genes that encode
them, and some of the key knowledge gaps that remain.

Microcystin

First identified in 1959 as the “fast death factor” (72), microcystin (MC) and the related
hazards surrounding this toxin have been at the forefront of Microcystis secondary
metabolism research (36). Several reviews focus on MCs (37, 73, 74); here, we briefly
summarize key aspects, recent advances, and remaining questions. MCs are efficient
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TABLE 1 Summary of identified metabolites and BGCs encoded in Microcystis genomes and deposited on the MiBIG database (accessed July 2025)°

Strain(s) Secondary metabolite(s) Biosynthetic mechanism Biosynthetic genes  Bioactivity Reference
identified
PCC 7806 Microcyclamide Ribosomal mcaA-mcaG Moderate cytotoxicity against (49, 50)

P388 murine leukemia cells,
cardiotoxicity and lethality of
zebrafish (LC50 = 43 pg/mL), and
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TABLE 1 Summary of identified metabolites and BGCs encoded in Microcystis genomes and deposited on the MiBIG database (accessed July 2025)° (Continued)

Strain(s) Secondary metabolite(s) Biosynthetic mechanism Biosynthetic genes  Bioactivity Reference
identified
NIES-298 Aerucyclamide Ribosomal mcaA-mcG Antiparasitic activity against P. (49, 63)
falciparum and T. brucei and
u%(( potential grazer deterrent
N
ég NH
T 1
H
o
Aerucyclamide C
PCC 9432 Aeruginosamide Ribosomal MICCA_2630 Cytotoxicity against human breast (64, 65)
a [ 002- cancer cells and mild inhibitory
0
MICCA_2630 activity against human cytochrome
i 007 P450
Gl 1)
[+]
5N
H
Aeruginosimide B
PCC 7005 Piricyclamide Ribosomal PpirA-pirG Potential grazer deterrent (47)
E - X
%5, Y
I
HyN ‘0
Piricyclamide 7005E3
NIES-87 Kasumigamide NRPS-PKS makasAmakasD Growth inhibition of C. neglecta (66)
(MIC =2 pg/mL)
Kasumigamide
LEGE 91341 Microginin NRPS-PKS 1Q234_09865- Angiotensin-converting enzyme (67)
1Q234_09895 inhibition and aminopeptidase
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TABLE 1 Summary of identified metabolites and BGCs encoded in Microcystis genomes and deposited on the MiBIG database (accessed July 2025)° (Continued)

Strain(s) Secondary metabolite(s) Biosynthetic mechanism Biosynthetic genes  Bioactivity Reference
identified
Western Lake Erie Anabaenopeptin NRPS apnA-E Protease inhibition including (68)
Culture Collection serine proteases and protein

Isolates phosphatases

Anabaenopeptin B

“Due to emerging detection in Microcystis genomes and blooms, anabaenopeptins are also included. For each secondary metabolite discussed, a congener is also displayed.
Chemical structures were obtained from PubChem (https://pubchem.ncbi.nim.nih.gov/).

eukaryotic protein phosphatase 1 and 2A inhibitors that can lead to illness including liver
damage, and in extreme cases, death (75, 76). Within the last 30 years, MC intoxication
has been reported in humans (76, 77), sheep (78), and other mammals and birds (79).
MCs have been responsible for drinking water crises in the United States (14) and China
(11), when levels of microcystin exceed the World Health Organization (WHO) guidelines
for maximum concentration in drinking water (1 pg/L).

Structurally, MCs are cyclic heptapeptides (Table 1) that contain the unusual
(2S,35,8S,95)—3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid (Adda)
domain (74, 80), which has become an essential marker in detection assays (81).
The structure was first determined in 1984 (80), and 279 congeners have since been
characterized (74). MCs contain highly variable X and Z amino acid positions that can
contain leucine, arginine, tyrosine, and other amino acids (73, 74), which can greatly
impact the toxicity of the congener produced (73, 82). For example, MC-LR, one of the
most common forms of MCs, is over 100 times more toxic than MC-RR (83). Continued
MC research aims to discover new congeners, understand their chemical ecology (36, 74),
and uncover the determinants and roles of congener diversity. While the gene sequence
influences which MC congeners are synthesized (84, 85), amino acid availability (86),
relaxed substrate binding specificity (84), the availability and type of nitrogen (71), as
well as carbon: nitrogen (C:N) ratios (87) can also influence the final chemical structure.

MCs are synthesized nonribosomally via a multienzyme complex that contains NRPS,
PKS, and hybrid PKS-NRPS enzymes. In Microcystis, the cluster contains 10 mcy genes
encoding biosynthesis and putative tailoring and transport enzymes and is controlled by
a bidirectional promoter between mcyA and D (Fig. 2C) (51). The mcy BGC is dynamic,
with frequent recombination and point mutations, and these shifts in genetic substruc-
ture can impact congener production (84, 85, 88, 89). The mcy genes A, B, and C are the
most hypervariable in sequence structure (84). Recently, a novel partial mcy genotype, in
which only mcyB and C and a truncated mcyA are present, and mcy genes D-J are absent,
was detected in western Lake Erie and found to be abundant and transcriptionally
active (89). Further work suggested that this partial operon encodes a tetrapeptide that
shows signs of bioactivity, eliciting mild elevation of some markers of hepatotoxicity and
inflammation in human liver epithelial cell lines (90). Although more work is needed to
assess the toxicity of this molecule, these findings highlight the capacity for genetic
rearrangement of mcy genes to generate novel metabolites, as well as our limited
understanding of diversity and depth of Microcystis secondary metabolite biosynthesis
despite intensive study of MCs for over 50 years.

Despite the well-recognized global importance and impacts on human and
environmental health of MCs, their functional role(s) in Microcystis physiology and in
natural communities remains elusive. Proposed roles of MCs include benthic survival and
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recruitment, iron acquisition, nutrient metabolism and storage, grazer defense, colony
formation, allelopathy, quorum sensing, oxidative stress protection, and photosynthesis
(Fig. 3) and are summarized in Section 5 and elsewhere (37, 91). Given that many of
these hypotheses have experimental support, it seems likely that MCs have a multifac-
eted functionality. Understanding this functionality would be valuable from a basic
scientific perspective, and it could also inform predictive models, strategies, and policies
to mitigate bloom toxicity as it relates to MC production (21, 92).

Characterized secondary metabolites beyond microcystin

While over 90% of research on cyanobacterial secondary metabolites has been focused
on MCs (36, 98), many other metabolites with diverse chemical structures are produced
and may contribute to bloom toxicity and/or affect food web dynamics and remain
understudied (99-101). Multiple cyanopeptides are often present in cyanoHABs, and
recent studies show that these cocktails may have synergistic toxicological effects on
aquatic organisms and humans (102, 103).

Aeruginosins

Aeruginosins are linear tetrapeptides (Table 1) that inhibit trypsin activity and are
encoded in NRPS BGCs (Fig. 2C) (59, 60, 104). Like many classes of Microcystis secondary
metabolites, aeruginosins contain unusual moieties including 4-hydroxyphenyllactic acid
(Hpla) and 2-carboxy-6-hydroxyoctahydroindole (Choi) (59, 104). Multiple congeners of
this metabolite have been identified (40, 105, 106), including those that are brominated
or chlorinated (107). While the Hpla and Choi moieties tend to be conserved, there
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FIG 3 Proposed ecological functions of synthesized Microcystis secondary metabolites. Secondary metabolites produced by Microcystis likely have multifaceted

functionality and may support (clockwise from top left) the following: defense from grazers, photosynthetic function, colony formation and phycosphere

recruitment, photosynthetic machinery, competition, nitrogen storage and metabolism, protection from ROS, and/or recruitment and selection of the

phycosphere microbiome. For example, cyanopeptides such as cyclamides (CY) and microviridins (MV) may deter grazers and inhibit Daphnia molting (70,

93). Microcystins (MC) and other cyanopeptides are involved in photosynthesis and carbon assimilation (91) (reviewed in (91), allelopathy (94), nitrogen storage

and metabolism (95), binding proteins to protect from ROS (96), and shaping the phycosphere microbiome (97). N-rich Anabaenapeptins (bottom right) may also

play a role in N storage and metabolism.
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is flexibility within amino acids at the second position, which may contribute to the
observed chemical variation (104, 108, 109).

Some of the diversity observed in aeruginosin congeners may be due to the highly
varied and dynamic nature of the aeruginosin biosynthesis genes in the aer operon (60,
61). Core genes responsible for the bulk of NRPS synthesis are conserved in most aer
operons, but accessory or tailoring genes are more varied in both sequence structure
and presence or absence (38, 109). For example, the presence and sequence variation of
genes aerJ, aerG2, and aerM may be responsible for the synthesis of chlorinated isoforms
(38), while aerK appears to be essential for biosynthesis by Microcystis, but not Plankto-
thrix spp (109). Aeruginosin class-related secondary metabolites including aeruginoside
are also produced by Microcystis (64), while others, such as spumigin and pseudospumi-
gin, are produced by other cyanobacterial taxa (109-111). It remains unclear whether
Microcystis can produce these related metabolites as well. While this class of secondary
metabolites is highly diverse and has strong inhibitory properties against trypsin and
thrombin (62), the functional role of aeruginosins in natural communities is not well
understood (53,103, 112, 113).

Cyanopeptolins

Cyanopeptolins are peptide lactones that were first characterized in the Microcystis
aeruginosa isolate PCC 7806 (114). These depsipeptides contain lactone rings, a 3-
amino-6-hydroxy-2-piperidone (Ahp) residue, and n-hexanoic acid moieties (Table 1)
(114, 115). Cyanopeptolins can occur in similar concentrations (nanomolar) as MCs in
surface freshwater and can cause inhibitory effects on eukaryotic organisms via trypsin
inhibition (36, 115). Micropeptins, such as micropeptin K139, are structurally related
to cyanopeptolins and can be synthesized by Microcystis as well (116, 117). Several
congeners inhibit crustacean activity in concentrations as low as the picomolar range
(56), raising questions regarding their threats to organism and ecosystem health.

The NRPS biosynthetic gene cluster that encodes for cyanopeptolins is highly varied,
even within the same genus (35, 54, 55). Flexibility in the mcn gene cluster (Fig. 2C)
is so great that operons may lack entire genes and still synthesize complete cyano-
peptolin congeners (38). Cyanopeptolins are synthesized by multiple cyanobacteria
genera including Microcystis, Planktothrix, and Anabaena, which may contribute to its
chemical diversity. Phylogenetic analysis has revealed the gene cluster that encodes this
metabolite has independently evolved in these three taxa and that mcnA-F encodes its
production in Microcystis (54, 116). The halogenase gene mcnD is sporadically distributed
across mcn BGCs and has been linked to the production of chlorinated cyanopeptolin
variants (60). While gene clusters, structural characteristics, and inhibitory properties
have been studied from cultured isolates, cyanopeptolins are largely understudied but
increasingly detected in natural communities (39, 99).

Cyclamides: Piricyclamides, Aerucyclamides, Microcyclamides, and Aeruginosa-
mides

Another common and diverse group of secondary metabolites produced by Microcystis
are the “cyclamides,” which are ribosomally synthesized macrocyclic molecules within
the cyanobactin class (8, 118). Being one of the largest groups of secondary metabo-
lites found in Microcystis and other cyanobacteria, cyclamides are classified together
based on their ribosomal and post-translationally modified biosynthetic pathways
(RiPPs) (119). Characterized cyclamides produced by Microcystis include piricyclamides,
aerucylcamides, microcyclamides, and aeruginosamides (Table 1) (47, 49, 63, 64). These
metabolites may have various functional groups in their chemical structures: prenyla-
tions, grenylations, and disulfide bridges, which are observed in piricyclamides (47);
cyclic hexapeptide structures as seen in microcyclamides (120); and oxazole and thiazole
rings observed in the side chains of aerucyclamide compounds (63).
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The gene clusters that encode for cyclamide metabolites (Fig. 2C) are also highly
varied and can be inactivated in culture by insertion elements (47). Some evidence
suggests that synthesized products are used in grazer defense as their concentration
was observed to increase in Microcystis cells consumed by Daphnia in grazer experi-
ments. Cells containing cyclamides were actively exported out of the Daphnia body,
without any further degradation, suggesting these compounds may be a filter feeding
deterrent (70). Additional studies have demonstrated selective antiparasitic activity of
aerucyclamides (63). These metabolites have been detected simultaneously in culture in
combination with other known cyanopeptides (94), highlighting the need to investi-
gate the synergistic effects of co-occurring Microcystis secondary metabolites in natural
bodies of water. This highly diverse class has high potential for drug discovery due to its
potential versatility in biotechnology.

Microviridins

Microviridins are also ribosomally synthesized metabolites (Fig. 2C), but they are unique
as they contain unusual tricyclic structures and several ester bonds (Table 1) (41, 121).
These metabolites are believed to be the first tricyclic compounds isolated from nature
and have tyrosinase inhibitory effects (41). After ribosomal synthesis, microviridins
are tailored by ATP-grasp ligases and transporter peptidases to finalize their chemical
structure (122). Chemical variation observed in microviridins may be in part due to
gene variation (8, 38). Precursor peptide genes such as mdnA lack conservation across
Microcystis strains and may contribute to the chemical diversity of this class (123).
Absence of mdnD (Fig. 2C) could account for microviridins lacking N-acetylation (38).
Microviridin congeners have a range of cytotoxic effects from highly lethal to undetecta-
ble (8). For example, microviridin J is a strong inhibitor against Daphnia molting (93),
while microviridin B (Table 1), which demonstrates weaker protease inhibition, may be
more suitable for biomedical application (122).

Microginins

Microcystis also produces microginins, which are linear peptides that inhibit a variety of
peptidases (Table 1) (124, 125). The BGC encoding for microginins is a hybrid NRPS/PKS
cluster (Fig. 2C) (126) and was recently confirmed to be present in Microcystis along
with the production of 12 novel congeners (67). These peptides can range greatly in
size from three to six amino acids long and tend to derive from decanoic acid (125-
127). Microginins are highly diverse, with as many as 50 congeners existing in a single
bloom (127). Microginin congeners may be produced in tandem with microcystin (128).
Recently, microginins have received more attention due to their angiotensin-converting
enzyme (ACE) inhibitory activity and potential application in pharmaceuticals (129). This
cluster or class of metabolites remains poorly understood, but should be considered in
future studies and screenings due to its bioactivity and recent identification in natural
Microcystis blooms and culture (39, 67, 127).

Anabaenopeptins

Along with many other cyanobacterial genera, Microcystis can produce anabaenopep-
tins (Table 1), cyclic hexapeptides with nanomolar inhibitory effects on mammalian
carboxypeptidases, via the NRPS BGC apn (130-132). This class of cyanopeptides is
the second-most studied after microcystins, with a rapidly growing body of literature
covering the chemical diversity and ecology of the metabolites within it (98). This BGC is
not verified in the MIBIG database, although many studies have confirmed the presence
of anabaenopeptin BGC and its synthesis product in unialgal Microcystis cultures (69,
133), with over 124 congeners verified from this metabolite class across cyanobacterial
genera (68). This BGC was likely acquired from a horizontal gene cluster from Planktothrix
spp. and may contribute to bloom dynamics in multialgal communities (134). A recent
report showing that anabaenapeptins are often present at concentrations higher than
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microcystins in the western basin of Lake Erie (135) highlights the need for a better
understanding of their impacts on human and ecosystem health.

UNCHARACTERIZED SECONDARY METABOLITES

Genomes of Microcystis display an overwhelming number of BGCs that have not yet
been linked with a known metabolite, potentially signaling a vast array of undiscov-
ered biosynthetic diversity (Fig. 2A and B) (69). This was identified as a challenge as
far back as 2013, with the identification of “orphan BGCs"—those without a known
biosynthetic product - in sequenced Microcystis genomes (26). The enormity of this
knowledge gap has come into view more clearly over the years with accumulation
of more (meta)genomic data. The challenge of linking already characterized or newly
discovered compounds with their corresponding BGCs in a high-throughput manner can
be facilitated with integrated analysis of paired genomic and metabolomic data (136).

A total of 58 high-quality genomes belonging to the genus Microcystis are depos-
ited in the Joint Genome Institute (JGI) supported Integrated Microbial Genomes
and Microbiomes (IMG/MER) database (https://img.jgi.doe.gov/, accessed July 2025).
While most of these genomes come from well-studied culture isolates, their biosyn-
thetic repertoire remains coarsely resolved. From these genomes, 13 BGCs have been
characterized and deposited onto the MiBIG database (Table 1, accessed July 2025;
Fig. 2). Gene annotation may provide hints about metabolites of interest; however,
pairing both metabolomic and genomic data is essential to understand the synthesis
and structure of these secondary metabolites. Since Microcystis genomes tend to have
about 10 to 15 BGCs per genome, and many of these have not been linked to a product
(Fig. 2A and C), continued research is needed to directly link strains, BGCs, and chemical
structures.

While exploring the extent and diversity of “cyanopeptides” is important (8, 34),
the expansive wealth of BGCs encoding various PKS, terpene, and ribosomal pathways
should not be ignored. Compounds synthesized via PKS pathways in Microcystis remain
largely uncharacterized. Several novel PKS-BGCs identified from western Lake Erie
metagenomes are transcriptionally active (39), suggesting the synthesis of molecules
with polyketide properties. Other works have shown that Microcystis may be a rich
source for type Ill PKSs, which are highly understudied in cyanobacteria (69, 133, 137).
In Lake Erie cyanoHABs, these same BGCs can be among the most abundant and highly
expressed (39), underscoring the need to understand their physiological and ecological
functions.

ENVIRONMENTAL DRIVERS

Anthropogenic eutrophication and environmental variability contribute to the persis-
tence, intensification, and spread of cyanoHAB events globally (1, 12, 138, 139).
Phosphorus (P) inputs have long been identified as a driving force contributing to
cyanoHAB formation (20). However, nitrogen (N) has also been identified as a limiting
or co-limiting nutrient, ultimately altering cyanoHAB composition, intensity, and toxicity
(10, 12, 140), suggesting that dual nutrient management would be beneficial in many
systems (141, 142). Other factors that must be considered in predicting future cyano-
HABs include increasing temperatures and atmospheric carbon dioxide concentrations,
as well as decreases in dissolved oxygen within the water column (138). However,
growing evidence suggests that nutrient availability, specifically the building blocks of
secondary metabolites, which tend to be N-rich compounds (Table 2), may have the
greatest impact on Microcystis secondary metabolism.

The contribution of N to Microcystis-dominated cyanoHABs has recently received
greater attention. Elevated concentrations of N, which is not currently restricted by
either the United States or Canada within the Great Lakes, but is managed in waters
in the European Union (143), can not only alter the species composition but may also
favor “toxic” strains. N availability, and its stoichiometric relationship to carbon (C) and
P, affects both the amount of microcystins produced and the relative abundance of
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congeners (22, 144, 145). Some modeling efforts also suggest that planned P reduc-
tions will not only decrease biomass but also alleviate N-limitation, thus enhancing the
production of N-rich secondary metabolites such as microcystins (21, 92). It is possible
that similar trends may be observed for other N-rich secondary metabolites such as
aeruginosins and microginins (Table 2), although current models focus solely on MCs.

Differential congener production may also be influenced by amino acid availability,
intracellular C:N ratios, and substrate availability resulting from metabolic exchange with
other microorganisms (71, 86, 87, 146). These controls on metabolite production are
imperative to understand as different congeners have varying potency and toxicity, and
unmanaged N may alter abiotic conditions that select for more N-rich metabolites. While
many studies focus on microcystin production, N is also required to synthesize other
N-rich cyanopeptides, and exogenous N availability is expected to influence their cellular
quotas as well (142). Thus, future work should be expanded to include a greater range of
N-rich secondary metabolites produced by Microcystis (Table 2). Another emerging area
of research is understanding how the Microcystis microbiome contributes to nitrogen
processing and uptake, which can influence cyanotoxin production (147).

PROPOSED FUNCTIONAL ROLES OF SYNTHESIZED SECONDARY METABOLITES

Limited evidence speaks to the functional roles of Microcystis-derived metabolites in
situ. Most hypotheses are derived from culture experiments, and most work on this
topic has focused on MCs, for which there is still no consensus (37). Several competing
hypotheses exist regarding drivers of production (Fig. 3), and it is possible that secondary
metabolites may have multifunctional roles, especially concerning microbial interactions.
In vitro studies have suggested Microcystis-derived metabolites are allelopathic in nature
and aid in achieving dominance through inter- and intra-species competition (94, 148).
Some studies suggest Microcystis secondary metabolites may be used in grazer defense
against multiple organisms including Daphnia (70) and copepods (149), although other
work suggests increased grazing does not stimulate the upregulation of putative grazer
defense metabolite synthesis (150). Conversely, it has been suggested these metab-
olites are not antagonistic in nature, but rather serve as an aid in recruitment of
“helper” bacteria within the phycosphere (97, 151). More targeted studies are needed
to definitively ascertain how Microcystis's secondary metabolites mediate microbial
interactions.

A growing body of work also suggests that Microcystis secondary metabolites are
produced to aid in intracellular processes rather than communication or allelopathy
within natural community assemblages. MCs bind proteins, including RubisCO, providing
protection from reactive oxygen species during rapid growth or high light conditions
(Fig. 3) (152-155). MCs may also serve as protective agents from ROS during cold
temperature acclimatization (156). Since several Microcystis secondary metabolites are
N-rich (Table 2), they may play a role in metabolism and storage of vital nutrients. For
example, the production of MCs is dependent on the N concentration (140) and may be

TABLE 2 C:N ratios for various known Microcystis secondary metabolites, highlighting that several are
considered N-rich?

Compound Molecular formula C count N count C:N
Aeruginosin C36H55N609 36 6 6
Anabaenopeptin 908 C45H68N10010 45 10 4.5
Anacyclamide A10 C49H72N12014 49 12 4.08
Cyanopeptolin C40He3N901451 40 9 444
Microcyclamide Cy6H30Ng04S, 26 8 3.25
Microcystin LR Ca9H74N10012 49 10 49
Microginin C32H52N407 32 4 8
Microviridin B C84H1 06N'I6024 84 16 5.25
Piricyclamide C56H78N10016S 56 10 5.6

9Chemical formulas were obtained from the Minimum Information about a Biosynthetic Gene Cluster (MiBiG)
repository (https://mibig.secondarymetabolites.org/).
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regulated by ntcA, a global nitrogen regulator, which binds the mcy operon promoter
and inhibits transcription during N-depleted conditions (157). Non-MC-producing strains
of Microcystis require a greater accumulation of proteins involved in N metabolism,
suggesting MCs play an important role in N storage in MC-producing strains (95). This
research on intracellular roles of MCs should be expanded to explore the intracellular
functions of other Microcystis secondary metabolites, especially given evidence for
linkages and interchangeability between Microcystis secondary metabolites (94) and if
these compounds may be functionally redundant but more favorable under different
environmental conditions.

ADVANCES IN OMICS TECHNOLOGIES ENABLE A NEW ERA OF SECONDARY
METABOLITE RESEARCH

Advancements

The significant reduction in cost of DNA sequencing has been essential to uncover the
extensive intraspecies diversity of Microcystis both from cultured isolates and natural
populations (28, 89). Third-generation sequencing platforms such as PacBio (158) and
Oxford Nanopore (159) are steadily improving the quality of microbial genomes. For
example, long-read sequencing recently aided in the completion of closed cyanobacte-
ria genomes belonging to the Aphanizomenon, Dolichospermum, and Anabaena (ADA)
clade, which are cyanobacteria with complex genomes similar to Microcystis, from
environmental sources (160). On the IMG/MER database (accessed July 2025), only nine
Microcystis genomes are denoted as “Finished” Of these nine genomes, seven were
completed using PacBio sequencing, and all nine were completed on cultured isolates
(Fig. 2B), reflecting the challenge of assembling complete genomes with short-read
sequencing due to the repeat-rich and heterogeneous nature of Microcystis genomes.
Future sequencing efforts of Microcystis genomes should continue to implement
long-read or proximity ligation sequencing (161) within environmental samples to
identify cryptic BGCs that may encode novel compounds not observed in culture.

The field of metabolomics is also rapidly expanding due to improvements and
accessibility in data processing and analysis tools. The most common method used, due
to the ability to sensitively detect large varieties of metabolites, is liquid chromatography
mass spectrometry (LC-MS) (162). Tandem mass spectrometry (MS/MS), which is widely
applied to environmental samples, has made it possible to identify and distinguish more
compounds with secondary fragmentation and feature analysis (163, 164). While these
approaches are suitable for novel compound discovery and initial feature characteriza-
tion, they have also been used to detect known Microcystis secondary metabolites with
the aid of standards, achieving detection and quantification in less than 24 hours (165).

Recent efforts in developing tools and repositories for collaborative and accessible
research have opened new avenues for secondary metabolite research (136). BGC mining
software such as antiSMASH (166) and PRISM (167) have rapidly improved over the years
and are continually refined and updated through expansive collaborative efforts and
machine learning approaches. Data repositories such as the Minimum Information about
a Biosynthetic Gene Cluster (MiBiG) (48), the Global Natural Products Social Molecular
Networking (GNPS) (168), and the Natural Products Atlas (NPAtlas) (169) provide a wealth
of genomic and metabolite data—both of novel and known compounds.

Opportunities

A major opportunity for secondary metabolite research is the integration of in situ
‘omic data sets, i.e., metagenomic, metatranscriptomic, and metabolomic data, into a
comprehensive picture of what Microcystis is producing and why in natural systems.
Many publicly available ‘omics data sets currently contain only a single ‘omic approach
and lack metadata of environmental or experimental conditions, making determination
of drivers and mechanisms of production challenging. Integrated multiomic data and
paired ancillary environmental data are necessary to identify and determine functions
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of secondary metabolites but are challenging and may require multiple modeling and
networking approaches (170, 171). Employing “multi-omic” data set integration with
basic modeling approaches is essential to better understand the secondary metabolite
diversity and functionality of Microcystis. Training in and advancement of “multi-omic”
approaches and modeling will be critical to fully harness these large and complicated
data sets.

Field-based studies of diverse and novel Microcystis populations that employ de novo
genome assembly and untargeted MS approaches offer high potential for discovery
of novel Microcystis secondary metabolites and understanding of the dynamics of
Microcystis secondary metabolites in real communities as they occur in situ. While
isolated laboratory cultures are valuable for various analyses, they often fail to represent
the breadth and diversity of environmental microbes (172). Efforts to improve this gap,
such as the cultivation of over 20 Microcystis isolates from a single body of water (133),
still suffer from isolation biases and fail to capture the complete diversity of secon-
dary metabolites that Microcystis can produce in natural communities. As “meta-omic”
studies become more widespread, we see an abundance of previously undescribed and
putatively identified BGCs (38, 39, 133, 173) and several new secondary metabolites and
congeners (107, 127, 174, 175). Discovery is also highly dependent on de novo assembly
and untargeted MS approaches as relying on references or standards limits the ability
to detect BGCs or metabolites not previously characterized. As we continue to improve
analysis pipelines capable of linking genes to compounds, we will need to consider how
best to enhance predictive models and machine learning to integrate newly discovered
BGCs and metabolites.

CONCLUSIONS

The extent and diversity of Microcystis secondary metabolism is vast and still poorly
characterized. Although several Microcystis secondary metabolites have been linked to
BGCs, the congener diversity, ecological and physiological function, and mechanisms
of synthesis remain unresolved for the majority of Microcystis secondary metabolites.
Future studies should prioritize linking orphan BGCs and metabolites as well as focusing
on natural communities as a source for understanding chemical diversity and drivers of
synthesis, especially given the diversity of microbial communities and growing evidence
that many secondary metabolites are involved in interspecies interactions. This review,
like other studies, highlights the need to shift our focus toward other Microcystis
secondary metabolites besides microcystin as several are abundant in the environment
and have toxic properties that may impact food webs or pose threats to public health.
Furthermore, the abundance of novel Microcystis BGCs and metabolites from both
cultured isolates and environmental samples may be sources of novel biotechnological
applications or drug discovery. Regardless of motives, the genus Microcystis will continue
to be a rich source for secondary metabolite research as we are just beginning to
understand the range of its biosynthetic potential.
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