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Comprehensive maps of functional variation at transcription factor (TF)
binding sites (cis-elements) are crucial for elucidating how genotype

shapes phenotype. Here, we report the construction of a pan-cistrome of
the maize leaf under well-watered and drought conditions. We quantified
haplotype-specific TF footprints across a pan-genome of 25 maize hybrids
and mapped over 200,000 variants, genetic, epigenetic, or both (termed

binding quantitative traitloci (bQTL)), linked to cis-element occupancy.
Threelines of evidence support the functional significance of bQTL:

(1) coincidence with causative loci that regulate traits, including vgt1,
ZmTRE1 and the MITE transposon near ZmNACI11 under drought; (2)

bQTL allelic bias is shared between inbred parents and matches chromatin
immunoprecipitation sequencing results; and (3) partitioning genetic
variation across genomic regions demonstrates that bQTL capture the
majority of heritable trait variation across -72% of 143 phenotypes. Our study
provides an auspicious approach to make functional cis-variation accessible
atscale for genetic studies and targeted engineering of complex traits.

Over the past two decades, genome-wide association studies (GWAS)
have transformed our understanding of the inheritance of many com-
plex traitsinimportant crops such as maize. Several studies have esti-
mated that non-coding variationaccounts for about 50% of the additive
geneticvariance underlying phenotypic diversity in plants'™*. Although
identification of functional non-coding variants is advancing with the
development of new genomics technologies’, it remains challenging to
discern functional variants thatimpact cis-elements efficiently and at
cistrome (defined as the genome-wide set of cis-acting regulatory loci)
scale. Knowing whichlocito target hasbecome one of the obstacles for

traitimprovement by targeted genome editing’”. Scalable methods to
construct comprehensive cis-element maps are essential tounderstand
complex transcriptional networks that underlie development, growth
and disease. The potential of cis-element maps has been demonstrated
by the ENCODE projects that exist for many eukaryotes, including
humans. However, genome-wide, high-resolution maps of functional
variants are currently lacking in plants®. Despite many successes, GWAS
generally suffer frominsufficient resolution, which limits the identifi-
cation of individual causal single-nucleotide polymorphisms (SNPs)
orinsertions or deletions (INDELs) and cannot provide independent

A full list of affiliations appears at the end of the paper.

e-mail: hartwit@hhu.de

Nature Genetics | Volume 57 | September 2025 | 2313-2322

2313


http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-025-02246-7
http://orcid.org/0000-0002-6680-3012
http://orcid.org/0000-0001-9209-6051
http://orcid.org/0009-0009-5930-5232
http://orcid.org/0000-0002-6789-9298
http://orcid.org/0000-0002-6491-8852
http://orcid.org/0000-0003-0184-4486
http://orcid.org/0000-0002-3008-9312
http://orcid.org/0000-0002-7184-0301
http://orcid.org/0009-0001-4738-190X
http://orcid.org/0000-0003-3942-6175
http://orcid.org/0000-0003-0363-4677
http://orcid.org/0000-0001-8775-1541
http://orcid.org/0000-0002-2177-8781
http://orcid.org/0000-0001-6739-5527
http://orcid.org/0000-0003-0522-0881
http://orcid.org/0000-0003-3945-1143
http://orcid.org/0000-0001-6791-8068
http://orcid.org/0000-0001-6465-0115
http://orcid.org/0000-0003-1656-4954
http://orcid.org/0000-0002-2707-2771
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-025-02246-7&domain=pdf
mailto:hartwit@hhu.de

Article

https://doi.org/10.1038/s41588-025-02246-7

molecularinformation on the potential function of variants, requiring
laborious follow-up analyses of numerous individual loci’.

An alternative approach to identify functional polymorphisms
would beto annotate non-coding variants withina GWAS regionbased
on their association with TF binding. This approach has consider-
able potential, as TF activity has an important role in the regulation
of genes, and thereby traits, and the affinity of TF binding is mostly
determined by specific local sequences (cis-elements)®™°. Identifying
cis-elements forindividual TFs through approaches such as chromatin
immunoprecipitation withsequencing (ChIP-seq) is time-consuming,
not strictly quantitative, limited in scope and often provides relatively
low resolution of functional regions. By contrast, MNase-defined cis-
trome occupancy analysis (MOA-seq) identifies putative TF binding
sites globally, in a single experiment with relatively high resolution
and yields footprint regions typically of <100 bp (ref. 11). In maize,
MOA-seq identified ~100,000 TF-occupied loci, including about 70%
of the sequences (bp overlap) identified in more than 100 ChIP-seq
experiments', Notably, many of the MOA footprint regions were
previously uncharacterized, with only 35% identified in previous assay
for transposase-accessible chromatin sequencing (ATAC-seq) data; by
contrast, MOA-seq identified 76% of previous ATAC-seq peaks". Simi-
larly, an analysis of small MNase-defined fragments from Arabidopsis
seedlings revealed more than 15,000 accessible chromatin regions
missed by ATAC-seq or DNase-seq”.

Here, we quantified haplotype-specific TF footprints across the
maize pan-genome with MOA-seq, using F1 hybrids that share a com-
mon reference to minimize biological, technical and trans-effect vari-
ation between the haplotypes. We defined a maize leaf pan-cistrome
andidentified ~210,000 variants that were genetic, epigenetic, or both
linked to haplotype-specific variation in MOA coverage at candidate
cis-elementloci, whichwe term bQTL. The bQTL explained the major-
ity of heritable trait variation in >70% of the tested traits in the nested
association mapping (NAM) panel. Haplotype-specific TF footprints
coincided with causative loci known to affect leaf angle, branching and
flowering time traits, and identified ZmTINY (Zm00001eb120590) and
morethan 3,500 drought-response putative cis-regulatory regions as
candidate loci for future smart breeding.

Results

Quantification of functional cis-variation

Tofocusongenetic differences affecting TF binding in cis, we quantified
TF footprints (defined as the area significantly covered by MOA-seq
reads) specifictoeach haplotypein F1hybrids with a shared reference
parent (B73) (Fig.1a). We applied MOA-seq to nuclei of the inbred lines
B73 (ref. 14) and Mol7—founders of key maize breeding populations
whose hybrid has been extensively studied”"’—and their F1 hybrids.
MOA footprints were determined by mapping sequencing reads to
a concatenated hybrid genome and retaining reads that mapped
uniquely (Supplementary Table 1; for some analyses we used reads
mapping equally well to two locations; Methods). We detected 327,029
MOA footprints or peaks (false discovery rate (FDR) of 5%) with strong
correlation across biological replicates (Pearson’s correlation coef-
ficient > 0.95; Supplementary Fig. 1). A total of 53,220 genesin the F1,
representing 67.9% of B73 and Mo17 annotated genes (5 kb upstream
and1kbdownstream; Supplementary Table 2) were flanked by at least
one MOA footprint. Furthermore, the MOA footprints harbored 325,933
SNPs, which we termed MOA polymorphisms (MPs). Among all MPs, we
identified 48,505 with an allelic ratio that significantly deviated from
the expected 1:1in F1s, which we termed allele-specific MPs (AMPs;
binomial test with 1% FDR, validated with whole-genome sequencing
(WGS) controls; Supplementary Fig. 2).

The vast majority (88% or 194,594 out of 221,187) of all MPs showed
nosignificantdifferenceintheir allelicbias comparing F1(B73 and Mol7
haplotypes) to B73 versus Mol17 inbred alleles (black dots in Fig. 1b),
and about 90% (31,949 out of 35,638) of AMP sites in the B73 x Mo17 F1
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Fig.1| Quantitative cis-element occupancy analysis in F1 hybrids.

a, Haplotype-specific MOA flowchart: 1) Nuclei purified from diverse nested

(B73 common mother) F1s are analyzed by MOA-seq, producing small, non-
nucleosomal, protein-DNA interaction footprints. 2) SNPs in MOA peaks (MPs)
allow the identification, quantification and, in a population, association of
variants coupled to occupancy of putative cis-elements. Allele-specific MOA
footprints can be compared between treatments; for example, well-watered
versus drought. 3) Allele-specific mRNA-seq allows further characterization of
functional variants associated with gene regulation. Created with Biorender.com
b, Correlation of haplotype-specific MOA-seq data at all MPs in nuclei from B73
versus Mol7 inbreds (x axis) versus those from the F1(y axis) (Pearson correlation,
0.78). MPs with significant (red, P< 0.05, expected trans) and without significant
(black, expected cis) differences between F1and parental alleles are marked.

¢, Genome-wide comparison of allelic bias (50-60% to one allele considered no
bias, >60% considered biased) at B73 x Mo17 F1AMPssites to inbred B73 versus
Mo17 data. Only sites that displayed binding in both inbreds and hybrids were
considered. d, Genome-wide directionality analysis, comparing AMPs detected
by MOA-seq to ChIP-seq data of asingle TF BZR1 (ref.17) in the B73 x Mo17 hybrid.
Onlysites that displayed binding in both ChIP and hybrid MOA were considered.
Incand d, MOA occupancy was largely consistent (red circle) between either F1
and parents or compared to ChIP-seq, respectively, in showing bias towards B73
(green) or Mo17 (blue) in both cases, with a smaller fraction of allele-specific F1
MOA sites showing no bias (gray) ininbreds or ChIP-seq, or bias to the opposite
parentorallele (B73in F1and Mol7 ininbred or ChIP, purple or Mol7in Fland B73
ininbred or ChIP, yellow).

showed bias towards the same allele as when comparing the inbred
parents (redlinein Fig. 1c). Fewer than 0.6% (199 out of 35,638) of AMP
sitesshowed bias in the opposite direction. Inthe F1, allele-specific bias
at AMPs should not be affected by trans-factors, biological or technical
variation, as the relative haplotype differences originate from the same
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Fig.2| Construction of amaize leaf pan-cistrome. a, Mapping strategies
comparison showing the density of AMPs (allele-specific occupied sites) over
the percentage of binding to B73. B73 x HP301 F1 MOA data were analyzed
using either only B73 as reference genome (single ref.), a pseudo-genome with
B73/HP301SNPs replaced by Ns (SNP-replaced) or our dual-parent mapping
strategy using a concatenated B73 x HP301 genome (dual ref.). Without
mapping bias, asymmetric distribution is expected (as observed for dual ref.),
while a higher density at higher B73 allelic bias indicates biased mapping to
thereference genome B73 (single ref. and SNP-replaced). For the A619 F1(no
assembled genome available), our ‘reference-guided’ strategy (see Methods
for details) showed similar AMP-balanced haplotypes without reference bias
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(A619 dual ref.). b, Additive percent of B73 MOA peak covered by MPs (brown)
and AMPs (red) relative to the number of F1s analyzed. ¢, Density of mean
MOA binding frequencies over all F1s carrying a SNP at positions where at least
one, two, three or four F1s had AMPs, compared to a control with randomized
binding frequencies. d, Overview of bQTL (red arrows), MOA coverage (blue)
and Hi-C interaction sites (black lines, Hi-C from a previous publication®)
near the classical flowering repressor RAP2.7.bQTL overlap with both known
enhancers, vgtl and vugtl-DMR (green), associated with RAP2.7 expression. An
additional bQTL, termed vgtI-MOA (magenta), also interacts with vgtI and the
RAP2-7 promoter.

Flcells. The high concordance between haplotype-specific biasinthe
Flandinbreds at AMP lociis consistent with this expectation, further
establishes the reproducibility of the assay and indicates that the major-
ity of AMPs are coupled to genotypic differences in cis at the binding
site, rather thanresulting from trans-acting or cis-by-transinteraction
effects. The fact that some differences are observed, however, under-
pins the importance of using F1 hybrids rather than inbred lines, in
which trans-acting and cis-acting effects cannot be easily disentangled.

To independently validate haplotype-specific, MOA-defined,
putative TF footprints in B73 x Mo17, we compared AMPs to recently
published allele-specific ChIP-seq data of the major brassinosteroid
TFZmBZR1inthesameF1(ref.17). More than 70% of AMPs overlapping
withZmBZR1binding sites showed allelic bias in the same directionin
both studies (red line in Fig. 1d). About 22% of AMPs showed no bias
in the ChIP-seq data, probably because of the lower resolution of
haplotype-specific ChIP-seq (-500 bp fragments compared to~65 bp
for MOA-seq). Only 7% of AMPs showed bias for different alleles than
in ChIP-seq, potentially reflecting biological differencesin the tissues
analyzed (meristem and leaf versus leaf) or ectopic BZR1 activity owing
to exogenous brassinosteroid treatment”. Detailed comparison of
MOA-seq occupancy to the ZmBZR1 ChIP-seq data demonstrates the
accuracy and resolution of our approach, accurately predicting expres-
sion of downstream genes and enabling the identification of likely
causal polymorphisms within the TF binding site (Extended Data Fig. 1
and Supplementary Note 1). Together, these examples illustrate the
potential of MOA-seq to annotate candidate cis-regulatory elements
with quantitative chromatin footprint data that connects cis-variation
to biases in cis-element occupancy.

Defining functional sites in a maize pan-cistrome
Todefine aleaf pan-cistrome of maize, we analyzed a population of 25
F1hybrids using haplotype-specific MOA-seq (Fig.1a). The hybrid popu-
lation, created by crossing 25 inbred lines with high-quality genome
assemblies'® ™ to the reference genome line B73, represents a diverse
set of maize including many of the parents of an important mapping
population and several important genetic stocks (Supplementary
Table 3). We analyzed allele-specific TF occupancy and mRNA abun-
danceinleafblades of each F1cross (Supplementary Tables1and 4). By
aligning MOA-seq and RNA-seq reads to concatenated dual-reference
genomes rather than asingle reference, our approach resolves issues
of reference bias that confound most allele-specific analyses* (Fig. 2a;
Methods). We identified an average of 237,000 MOA peaks (FDR, 5%)
per F1, covering approximately 2% (around 80 Mbp) of each hybrid
genome (Supplementary Fig. 4). On average, 19.9% (14-30%) of MPs
showed a significant allelic bias (binomial test, FDR, 1%; Supplemen-
tary Table 5) with an overall even split between the parental alleles
(50.2% B73 and 49.8% diverse parents; Supplementary Fig. 5 and Sup-
plementary Table 5). It is noteworthy that the average rate of AMPs
(19.9%) closely matches allele-specific TF binding sites detected by the
gold standard of ChIP-seq for anindividual TF (18.3%)". In total, AMPs
overlapped with 35.6% of all MOA footprint peaks in B73 (Fig. 2b), and
plots of the identified MOA peaks and cumulative base pairs indicate
that our diverse population is near saturation and has identified the
majority of the B73 leaf cistrome (Supplementary Fig. 6).

We next sought to identify variants, genetic, epigenetic, or both,
associated with differences in MOA-detected TF occupancy between
haplotypes, or bQTL, in our population. We first verified that F1s that
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shared haplotypes at AMP loci also share similar patterns of allelic
bias (Fig. 2¢), indicating that our SNPs were in sufficient linkage dis-
equilibrium with causal differences to perform association analysis.
Differencesin DNA methylation between parental alleles can affect TF
binding affinity'”**. After validating that DNA methylation differences
at AMPs detected between F1 haplotypes were consistent between the
parental lines (Extended DataFig.2a,b), we added previously published
methylation datafor 24 of our parental lines'®%°, We performed linear
modeling to test all positions that are MPs (SNPs or INDELs in MOA
peaks; Methods) in at least two lines for association of MOA signal
variation with either the genotype information, DNA methylation
level or both. We identified a total of 176,613 (147,942 SNP and 28,671
INDEL loci, FDR < 0.05; Supplementary Table 6) significant associa-
tions, termed bQTL, of which 93,682, 51,192 and 31,739 bQTL were a
result of genotype variation alone, DNA methylation variation alone
or both features, respectively (Extended Data Fig. 2¢,d). As expected,
the genome-wide distribution of bQTL was distinct from all SNPs and
more closely matched those of previously published allele-specific TF
binding sites determined by ChIP-seq"” (Supplementary Fig.7). A nota-
blebQTLincludesan8 bp (T/TTAGCGTGT) INDEL in the hypervariable
region of the ZmBIF2(Zm00001eb031760) promoter (Supplementary
Note 1) atasite bound by multiple TF families' (bZIP, EREB,bHLH, MYB
and WRKY; Extended DataFig. 3). Overall, we found that INDEL variants
show patterns very similar to SNPs, with, for example, 63% of INDEL
bQTL overlapping with a SNPbQTL within 65 bp. We thus focused our
further analysis on the SNP bQTL while providing the INDEL bQTL to
increase the resolution of the pan-cistrome map.

bQTL coincide with known, causative regulatory loci

Detailed analyses of regulatory variation for anumber of maize genes
provide anopportunity tocompare bQTL to previously identified causal
variation. One bQTL was directly adjacent to the YABBY TF binding
site underlying the leaf architecture QTL upright plant architecture2
(ref. 24) (Zm00001eb073010) (Extended Data Fig. 3). bQTL also iden-
tified haplotype-specific footprints at flowering time loci, including
the causative transposon insertions at ZmCCT79 (Zm00001eb391230)
that was targeted by selection during maize adaptation to higher
latitudes®?®, INDEL-2339 in the promoter of the FT-like ZmZCN8
(ref. 27) (Zm00001eb353250), a 850 bp structural variant in the pro-
moter of ZmPHYB2 (ref. 28) (Zm00001eb396030) as well as multiple
GWAS hits for flowering time (Extended DataFig. 3). Inaddition toiden-
tifyingbQTLinboth of the known distal regulatory regions, vegetative
togenerative transition 1(vgtl) and vgtI-DMR, of the key flowering time
locus ZmRAP2.7 (refs.29-31) (Zm00001eb355240), our bQTL analysis
identified an undescribed, third putative enhancer more than 100 kb
upstream, which we termed vgtI-MOA (Fig.2d). Hi-C long-range interac-
tion data* confirmed that ugt1-MOA physically interacts with both ugt1
and the proximal ZmRAP2.7 promoter (Fig. 2d). However, future func-
tional tests are needed to establish whether ugtI-MOA effects ZmRAP2.7
expression alone or in combination with vgtI and/or ugtI-DMR.

We further observed that bQTL colocalized with the regulatory
variation upstream of ZmG71(Zm00001eb007950), whichis targeted
by ZmTB1 (Zm00001eb054440), with the two forming a regulatory
module involved in bud dormancy and growth repression®. bQTL
coincide with the transposon-associated causal regulatory region for
prolificacy (prol1.1) upstream of ZmGT1, including one bQTL directly
adjacent to the TB1 binding site** (Supplementary Fig. 8).

Our MOA-seq pan-cistrome also provides an opportunity to evalu-
ate how variation at these sites compares to changes in cis-element
occupancy. For example, an INDEL in the TREHALASE1 (ZmTRE1,
Zm00001eb021270) promoter has been associated with both treha-
lose amounts and ZmTREI transcript levels in maize®. We observed
haplotype-specific footprints, bothatapreviously reported 8 bpinser-
tion® and an additional SNP 29 bp upstream, which coincided with a
bQTL (Supplementary Fig. 9). Notably, although the 8 bp insertion

creates a potential ABI motif (TGCCACAC), the ZmTREI-bQTL over-
laps with a DOF binding motif (AAAAGGTG). Previously published
ChIP-seq results confirm that the ZmTREI-bQTL site is targeted by
ZmDOF17 (ref. 12) (Supplementary Fig. 9). Furthermore, all alleles
(6 out of 6) in our F1 population without the 8 bp insertion and with
the non-canonical DOF motif (C instead of G) at the bQTL site showed
concomitant low MOA signal (strong bias towards B73’s G allele) and
ZmTREI mRNA levels (higher B73 mRNA level) (Fig. 3a,b). In another
example, ZmSUBTILISIN11 (ZmSUB11, Zm00001eb152020) has been
associated with cell wall compositions, peduncle vascular traits and
abscisic acid (ABA) levels®*¥. A previously identified cis-expression
QTL lead SNP for ZmSUBII transcript levels®® coincided with a bQTL
in its proximal promoter, and we observed a strong correlation of
haplotype-specific MOA footprints at the bQTL and ZmSUBI1I transcript
levels (Fig.3a,b).

MOA bQTL correlate with transcript levels

If variation in MOA coverage accurately captures TF binding affinity,
we would expect to see associations between haplotype-specific MOA
coverage and transcript abundance in our F1s. Indeed, we find that
the promoters (within 3 kb upstream of the transcription start site
(TSS)) of genes with significant allele-specific expression (ASE, P < 0.05;
Methods) were ~-34% and -74% enriched for the presence of AMPs com-
pared toallexpressed and non-haplotype-specific (non-ASE, P> 0.95)
expressed genes, respectively (Fig. 3c, Supplementary Table 7a-c
and Supplementary Fig. 10). Genotype-associated bQTL were also
substantially more likely to be in high linkage disequilibrium (>0.6)
with nearby cis-expression QTL in a panel of 340 maize genotypes®
than matched background SNPs (bgSNPs) (49.1% more intergenic
bQTL relative to bgSNPs (456/306) and 28.2% more total bQTL versus
bgSNPs (1,775/1,384), respectively) (Fig. 3d). These broad patterns are
reflected at the level of individual genes as well. For example, all of the
NAM parents showing greater MOA occupancy at the bQTL upstream
of PHOSPHOGLYCERATE MUTASEL (ZmPGM1, Zm00001eb196320)
showed significantly increased abundance of the NAM transcript,
whereas F1s with no polymorphism between B73 and NAM in their
promoter or 5’ untranslated region showed no significant difference
inhaplotype-specific transcript levels (Fig. 3e,f). Two NAM parents, Ki3
and CML69, showed muchlower PGMI transcript levels (Fig. 3f), while
nosignificant variationin MOA footprint was detected. Instead, Ki3 and
CML69 harbored a PIF/Harbinger transposoninsertion accompanied
by hypermethylation between the MOA peak and PGMI TSS, not found
inany of the haplotypes (including B73) with higher PGM1 transcript
levels (Fig. 3e,f and Supplementary Fig. 11).

Variation in DNA methylation can predict MOA occupancy

The vast majority of TFs in Arabidopsis have been shown, in vitro, to
have higher binding affinity to hypomethylated DNA*. We explored
thisassociationin our data, focusing on variationin CG and CHG meth-
ylation (mCG/mCHG), as they accounted for >99.8% of methylation
differences at MOA sites. DNA methylation differences (following a
previous publication®, one allele <10% methylated and the other >70%)
overlapped with 14.8% of MPs in the F1s. At AMPs, haplotype-specific
mCG/mCHG overlap increased by 2.6-fold (38.1%) and reached more
than half (51.5%) for AMPs with a strong haplotype-bias (>85% to one
allele) (Fig.4a). We observed avery strong correlation between a higher
footprint occupancy and the hypomethylated allele (Fig. 4b), with
98.2% of AMPs showing higher MOA coverage at the hypomethylated
allele. Furthermore, nearly half of the remaining 1.8% AMPs biased
towards hypermethylation alleles did not display methylation differ-
ence immediately surrounding the AMP (11 bp window), intimating
that there may be no actual methylation difference at the occupied
site despite hypermethylation of the surrounding region (41 bp win-
dow) (Supplementary Fig.12). On average, the vast majority (71.2%) of
F1s that shared differentially methylated alleles at a given locus also
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Fig. 3| bQTL correlate with haplotype-specific transcript variation. a, Allelic
distribution (%B73) of MOA reads at bQTL in either the TREI (Zm00001eb021270,
bQTL: B73-chr1:80,826,022) or SUB11 (Zm00001eb152020, bQTL B73-
chr3:198,733,446) proximal promoters (TREI: 19 F1s with G/G and six F1s with
G/Calleles; SUBII: eight F1s with C/C and 16 F1s with C/T alleles). b, Haplotype-
specific mRNA counts for TREI and SUBII grouped by their respective bQTL
allelesina (TREI: nine F1s with G/G and six F1s carrying G/C alleles; SUBII: six F1s
with C/Cand 15 F1s with C/T alleles). Only lines with polymorphic alleles were
considered. FC, fold change. ¢, Genes with ASE and non-ASE mRNA abundance
are significantly more and less enriched for AMPs in their 3 kb upstream
promoter, respectively (n = 24 F1s, hypergeometric test; Supplementary

Table 7a-c).d, bQTL are more often in linkage disequilibrium with cis-expression
QTL, identified in roots 0of 340 recombinant inbred lines than matched bgSNPs.
e, Average, normalized MOA coverage for B73 and NAM alleles of B73 x Mo18W

and B73 x CML69 upstream of PGM1,Zm00001eb196320. The Mo18W allele
showed significantly higher MOA occupancy (green panel), while the CML69
allele showed similar MOA coverage to B73, yet peaks were shifted ~300 bp
because of a MITE transposon (red triangle) insertion (purple panel). f, Allele-
specific mRNA counts (n = 3 biological replicates) of PGMI in the different F1
hybrids. Colors indicate MOA ratios at bQTL: NAM > B73 (green, >60% bias to
NAM, non-B73 allele for at least one bQTL), B73 = NAM (yellow, %B73 occupancy
between 40% and 60%, sharing B73 genotype) and transposon insertion
haplotype (purple). All F1s within the NAM > B73 and transposon category
displayed significantly higher or lower mRNA levels in the NAM allele compared
to B73, respectively (detected by DESeq2; Methods), while none of the B73 = NAM
category were significantly different. Boxplotsina, b, cand fdenote the range
from the first to the third quartile, lines within boxes indicate the median and
whiskers represent 1.5-fold of the interquartile range.

shared haplotype-specific MOA footprints at that site, compared to only
42.9% of the F1s with shared equally methylated alleles at that same site
(Fig.4c). The observed strong correlations between differential CGand
CHG methylation and haplotype-specific MOA occupancy confirman
important role for DNA methylation in determining TF binding in maize.

MOA bQTL explain a large portion of heritable variation

Regulatory variation is thought to underlie a significant proportion
of phenotypic variation in maize*’. To assess the relationship between
bQTL and complex trait variation, we first quantified the enrichment of
genotype-associated bQTL surrounding GWAS hits (lead SNP + 100 bp)
across two curated datasets of 41 and 279 traits*®*.. Given that bQTLs
showed agenome-wide distribution distinct fromall SNPs (Supplemen-
tary Fig. 7), with bQTL located closer to genes, we generated a back-
ground dataset to match this distribution (similar allele frequency and
distance tothe nearest gene, 100 permutations; Methods) to avoid any
bias caused by locationinthe genome. For both GWAS datasets tested,
bQTL were approximately twofold (1.75-fold and 2.17-fold, respectively)
enriched for co-localization with GWAS hits compared to the matched

bgSNPs (Supplementary Fig.13). This enrichment remained stable asa
functionof distance to the nearest gene, indicating comparable efficacy
of bQTL to mark functionally significant loci genome-wide (Fig. 5a). To
explore the degree towhichbQTL canmore broadly capture the genetic
variationunderlying phenotypic diversity, we partitioned heritable trait
variance for 143 traits in the NAM population (Methods and previous
publications®"). We modeled additive genetic variation for traitsas a
function of three genomic relatedness matrices. Variances estimated
this way for several trait datasets simulated from matrices highly simi-
lar to our observed matrices accurately reflected the proportional
contributions of each SNP set (Supplementary Fig. 14). Across alarge
majority of phenotypes in the NAM panel (103 of 143 or ~72%), bQTL
associated with genotype alone (thatis, excluding methylation, 78,398
bQTL) explained the majority of the total additive genetic variance
captured by SNPs (Fig. 5b, Supplementary Fig. 15 and Supplementary
Table 8). Consistent with previous findings that open chromatinand TF
binding, found at a higher frequency close to genes, have akey rolein
trait variation””, our matched bgSNPs (matched allele frequency and
distance to the nearest gene compared to bQTL) often accounted for
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Fig.4|bQTL are linked to variation in DNA methylation. a, Genome-wide
overlap of differentially methylated (CG and/or CHG) DNA regions with MPs,
AMPs and AMPs with strong (>85%) allelic bias, across the 24 F1s. b, Correlation of
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versus NAM hypomethylated (B-hyper N-hypo) or B73 hypomethylated versus
NAM hypermethylated (B-hypo N-hyper). ¢, Correlation between MOA footprint
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bias and differential methylation at loci that varied both in allele-specific footprint
occupancy (=1F1s with AMP) and CG methylation (=2 F1s with and without allele-
specific methylation difference) between the 24 F1s. At each position, F1s were
partitioned into those with either differential allelic CG methylation (red) or equal
CG methylation (blue). Box and violin plots were drawn for the two categories,
showing the distribution of percentages of F1s with haplotype-specific binding
(AMPs). n=24Fl1sina,band c; boxplots were generated as in Fig. 3.
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Fig. 5| Alarge fraction of heritability is explained by bQTL. a, Association of
~42,000 curated GWAS hits* (+100 bp) with bQTL (only those associated with
genotype alone), or n =100 bootstraps of matched bgSNPs (same bgSNP sets
used as for VCAP; Methods) at distances ranging from intragenic to >20 kb

tothe nearest gene. b, Estimated additive genetic variance organized by 143
traits. Colored ridges show the estimated additive genetic variance across 100
permutations for either bQTL, bgSNPs or remaining genome SNPs. Black symbols
represent the mean estimated value across permutations. Traits are arranged

by bQTL mean variance estimates and color-coded according to general trait
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groupings: vitamin E metabolites, navy blue; metabolites, purple; stalk strength,
light blue; flowering time, gold; plant architecture, red; disease, green; tassel
architecture, pink; ear architecture, orange; miscellaneous, gray. ¢, A subset of
traits (y axis) and their estimated percent additive genetic variance (x axis) shown
as colored box plotsinstead of ridges. PH, plant height™*; LeafL, leaf length®;
DTA, days to anthesis’*%; DTS, days to silking’'; SLB, southern leaf blight****; and
delta-tocopherol concentration, vitamin E biosynthesis*’; n =100 permutations.
Boxplotsinaand c were generated as described in Fig. 3; data outside the whisker
range are considered outliers.
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d, Haplotype-specific mRNA counts, normalized to the B73 WW allele, grouped
by the ZmSO bQTL alleles shown in ¢. Haplotype-specific read counts (reads per
million (RPM), also adjusted for differences in SNP counts between F1s) relative
to the B73 allele WW level to allow count comparisons between F1s (n = 21 F1s
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with gene polymorphism to permit haplotype-specific analysis, 5 C/C and 16 C/A
alleles). e, Allelic distribution of MOA reads at abQTL (B73-chr2:28,118,442) in the
ZmTIP3d promoter. The 12 F1s sharing the B73 allele (C/C) were compared to

13 F1s carrying C/G alleles. f, Haplotype-specific mRNA abundance grouped by
the ZmTIP3d bQTL alleles shown in e. RPM values per haplotype are normalized
to the B73 DS mRNA level (n = 23 F1s that permitted haplotype-specific MOA/RNA
analysis: DS, 10 C/C,13 C/G; WW:5C/C, 5 C/G).n.d., not detected. Boxplotsinc,d,
eand fwere generated as described in Fig. 3.

more additive genetic variation than SNPs from therest of the genome
(thatis non-bQTL, non-matched bgSNPs; 121 out of 143 traits), but bQTL
also outperformed bgSNPs for most traits (81.1%, 116 traits; Fig. 5b).
The inclusion of bQTL with additional significantly associated differ-
ential methylation (105,398 bQTL) slightly decreased the variation
explained (Supplementary Fig.16). This is consistent with theoretical
arguments that epigenetic variation, which is highly labile on an evolu-
tionary timescale, cannot explain much heritability for phenotypes*.
Traits for which bQTL explained the largest portion of genetic variance
included plant height, leaf size or shape and disease resistance, whereas
almostall traits related to, for example, vitamin E production were best
explained by the bQTL-matched bgSNPs or the remaining SNPs from
the rest of the genome (Fig. 5c), probably because of the oligogenic
nature of the vitamin E traits and that bQTL identified in leaf tissue
may not be representative of regulatory patternsin genes specifically
expressed in kernels*.

Characterization of a drought-responsive cistrome

To evaluate differencesin cis-element regulation induced by changes
in environmental conditions, we compared the morphological and
molecular response of our F1 population under well-watered (WW)
and drought-stress (DS) conditions. We observed diverse drought
responses, with reductions of relative leaf water content of 3-30%
and remaining soil water contents of 6.3-25.6%, depending on the
F1 (Fig. 6a,b, Supplementary Fig. 17 and Extended Data Fig. 4).
Haplotype-specific MOA-seq and RNA-seq of WW and DS samples for
all 25 F1s revealed on average 287,844 MPs and 56,863 AMPs under

DS, slightly less than for WW conditions (Supplementary Table 5),
and a similar correlation with allele-specific transcript abundance
(Supplementary Fig. 10). MOA peaks showing significant (P < 0.05)
drought-inducedincreases or decreases in occupancy varied substan-
tiallyamongF1s, ranging from~9,000t0 40,000 and 16,000 to 90,000,
respectively (Supplementary Table 9). Local association mappingiden-
tified 124,504 DS-bQTL for SNPs and 23,554 for small INDELs under
drought conditions (Supplementary Table 10), for a combined total
0f 206,368 unique SNP bQTL in DS and/or WW. To identify candidate
drought-responseloci, weselected bQTL with drought-responsive occu-
pancy near genes (5 kb upstream or 1 kb downstream) that displayed
both haplotype-specific and drought-responsive transcript accumula-
tion, resulting in 1,025 (655 genes) and 2,604 (1,548 genes) bQTL with
increased and decreased occupancy, respectively. Further integra-
tion with drought-response GWAS and cis-expression QTL hits***¢
resulted in high-confidence candidates (Supplementary Table 11). Nota-
bly, the candidate listincluded known drought-tolerance-related genes,
such as ZmNACI111 (Zm00001eb405590). Haplotype-specific MOA
footprintingidentified multiple DS-bQTL upstream and downstream of
ZmNACI11,including adjacent to the causative 84 bp MITE transposon
insertion site, which reduces both ZmNAC111 expression and drought
tolerance in maize seedlings, probably through RNA-directed DNA
methylation* (Supplementary Fig.18). Another interesting DS-bQTL
was located within the previously discovered 119 bp proximal pro-
moter fragment required for the drought-response of SULFITE OXI-
DASE1(ZmS0O,Zm00001eb036560), agene linked to the ABAresponse
and drought tolerance of maize seedlings*®. Although none of our
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(P<0.05; Methods) are displayed for B73 x Oh43. Color scale ranging from green
(100% bias towards B73) to blue (100% bias towards Oh43); gray represents
MOA signal below the detection limit (MACS3; Methods). Clusters represent

(I) allele-specific occupancy in one condition and below detection limitin the
other, (I1) allele-specific occupancy with consistent bias under both conditions,
(111) allele-specific occupancy with bias in the opposite direction under the two
conditions and (IV) occupancy with a significant allele-specific bias under only
one condition. Only sites with significant allele-specific bias (binomial testing,
FDR, 1%; for details see Methods) in at least one condition were considered. To
avoid additional statistical cut-off effects for the second condition, 60% or more
occupancy bias towards one allele was considered allele-specific. Boxplotsinb
and d were generated as described in Fig. 3.

haplotypes contained the putative Myb-binding site (CAGTTG) pre-
viously linked to drought-response in the 119 bp ZmSO promoter*®,
we nonetheless found a strong correlation between increased MOA
occupancy for the Callele at the bQTL and elevated ZmSO®” transcript
levels, bothunder WW and DS conditions (Fig. 6¢,d). We also observed
astrong correlation between MOA occupancy and drought-induced
transcript levels at DS-bQTL in the proximal promoter of the maize
homolog of aquaporin BETA-TONOPLAST INTRINSIC PROTEIN 3
(ZmTIP3d, Zm00001eb076690; Fig. 6¢,f), which has been linked to
drought-response in various plants*,

Tofurthertest the correlation of DS-bQTL and drought-responsive
promoter activity, we analyzed the maize homolog of the Arabidop-
sis drought-inducible AP2/ERF TF AtTINY independently in a tran-
sient expression assay. Over-expression of AtTINY increases drought
tolerance at the cost of severely stunted growth, a limitation often
observed with drought-related TFs*. The maize homolog of ZmTINY
(Zm00001eb120590) is a candidate gene for drought response and
leaf size variation®. We found DS-bQTL in multiple MOA footprints sur-
rounding ZmTINY, which showed significantly higher occupancy in, for
example, CML333 and Oh43 compared to B73 under drought (ranging
from 1.4-fold to 5.5-fold higher; Fig. 7a and Extended Data Fig. 5). Simi-
larly, higher MOA occupancy under DS for CML333 and Oh43 compared
toB73wasalso observed downstream of ZmTINY (Extended Data Fig. 5).
These variations in MOA footprints were correlated with allele-specific
transcript levels of ZmTINY. In F1s under DS conditions, mRNA tran-
scripts of the CML333 and Oh43 alleles were 84-fold and 18-fold more

abundant than B73 transcripts, respectively (Fig. 7b and Extended Data
Fig.5). MOA signalsin the B73 and CML333 upstream promoter showed
the highest correlation to ZmTINY mRNA levels (Extended Data Fig. 5).
We tested these sequences in a dual-luciferase expression assay with
and without ABA treatment to simulate DS. Both promoter fragments
exhibited significantly higher LUC/REN ratios than the vector control.
Consistent with trends observed for MOA and mRNA levels (Fig. 7b,c),
prom:ZmTINY™-*showed a higher LUC/RENratio than prom::ZmTINY®”
under WW conditions, and exogenous application of 1uM and 10 uM
ABA further increased the LUC/REN ratio significantly for protoplasts
harboring the prom::ZmTINY ¥ but not prom::ZmTINY * fragment by
41.4%and 60.3%, respectively. Together, the results support previous find-
ings of ZmTINY as a drought candidate gene and indicate that bQTL can
identify cis-regulatory regions thatact condition-dependently. That said,
the drought-responsive regulation of ZmTINY may include additional
regulatory sequences, suchasthe drought-responsive locidownstream.

Differencesin MOA-seq coverage between WW and DS conditions at
allele-specificsites could be caused by changes in occupancy level, the
direction of allelic bias or acombination thereof. To better understand
which scenario is more common, we clustered drought-responsive
AMPsinthe B73 x Oh43F1(11,970 AMPs located in drought-responsive
footprints). The results showed that 83% of drought-responsive AMPs
changed MOA occupancy between WW and DS conditions, either from
nodetectable MOA signal to haplotype-specificbinding (-45%, groupl),
or in the amount of MOA coverage between WW and DS conditions
while maintaining their allelic bias (-38%, groupIl) (Fig. 7d). By contrast,
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only about17% of AMPs showed bias changes, either from no significant
bias in one condition to a significant bias in the other (-15%, group IV)
or changing the direction of the allelic bias (-2%, group IlI) (Fig. 7d).
Although groupslandIV are somewhat dependent on statistical cut-offs
(peak calling and thus AMP definition and/or calling allelic bias), groups
Il and Il show an allele-specific bias under both conditions. Focusing
on groups Il and I1I, it becomes evident that changes in allelic bias are
~20-fold less frequent compared to the constant binding bias accom-
panied by overall changesin MOA signal. Similar clusters between WW
and DS conditions were observed for AMPs in all 25F1s (Supplementary
Fig.19). We therefore propose that the majority of DS-induced TF occu-
pancy dynamics at sites of functional genetic variation results from
condition-specific TF abundance changes rather than changesinallelic
bias between WW and DS conditions.

Discussion

The gene regulatory landscape involves primary sequence, chromatin
accessibility and DNA and protein modifications'. Although our ability
toassemble complex genomes has made great progress, decoding gene
regulation, population-wide, high-resolution maps of the regulatory loci
and efficient pinpointing of functional variation remain elusive in plants’.

We present a robust, high-throughput method for identifying
functional variants, genetic, epigenetic, or both, linked to trait vari-
ation in plants. By integrating haplotype-specific TF footprints and
transcript abundance, F1 hybrids and local association mapping at
putative cis-element loci, we defined a pan-cistrome of the maize leaf
under WW and DS conditions. Use of concatenated dual-reference
genomes and F1 hybrid analysis resolved issues of reference bias,
trans-effects and technical variation that commonly compromise
haplotype-specific quantitation. Although MOA-seq footprints with
their high-resolution (-100 bp) and comprehensive cistrome-wide
analysis are well suited for this method, similar results may be obtained
by, forexample, allele-specific ATAC-seq (with putatively alower frac-
tion of the genome covered owing to the large size of the Tn5 dimer™")
or for single TFs using allele-specific ChIP-seq, as we demonstrated
previously in one F1hybrid".

Our analysis demonstrates a high level of variationin cis-regulatory
networks among 25 diverse maize genotypes and provides a
high-resolution map of regulatory elements underpinning the func-
tion of over 200,000 putative cis-element lociin the maize leaf. We note
that the high genetic diversity between maize inbred lines allowed us
todetect variantsin 25 F1lines. For species with lower diversity, more
F1s or the inclusion of more distant interspecies hybrids might be
necessary. Finally, we highlight the relevance of genotype-associated
bQTL for understanding phenotypic diversity in maize, demonstrat-
ing that haplotype-specific MOA-seq in leaves allowed us to capture
the majority of additive genetic variation for most tested phenotypes.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
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Methods

Statistics and reproducibility

Experiments were conducted with three biological replicates unless
otherwise stated. Pan-cistrome analysis was performed on 26 genomes
(25 paternal and one maternal genome). Data collection and analysis
were not performed blind to the conditions of the experiments. For
randomization of plant positions of drought-treated plants, see the
plant materials section. No data were excluded from the analyses. Data
distribution was assumed to be normal, but this was not formally tested.

Plant materials

The GRIN National Agricultural Library supplied B73, Mo17, A619,
W22, A188 and US-NAM seeds. Seeds were pre-germinated for 48 h
at 28-30 °C. Each pot contained soil equalized by volume and four
seedlings (Einheitserde VMV800/D373 soil). Plants were grown in a
greenhouse using arandomized block design, under long-day condi-
tions (16 h day, 8 h night, 28-30 °C) for approximately 26 days until
75% of the plants per genotype showed the formation of the leaf four
auricle. Plants were then randomized, and 12 plants (three pots) per
treatmentand replicate were grown with or without periodic watering
throughabottom drench system for 86 h. Plants were then harvested,
andtheleafblades of the oldest leaf without a yet-formed auricle were
immediately frozeninliquid nitrogen. Additionally, the relative water
contentand soil water content were measured (Supplementary Note 2).
No statistical methods were used to pre-determine sample sizes, but
our sample sizes are similar to those reportedin previous publications”.

MOA-seq and RNA-seq sample preparation and sequencing
MOA-seq and RNA-seq sample and library preparation were performed
as previously described™"; for details, see Supplementary Note 3.

MOA-seq data analysis
Reads were filtered using SeqPurge® (v.2022-07-15) with parameters
“min_len20-qcut 0. Owingto the short fragmentlengthin MOA, read
pairs almost completely overlapped. MOA-seq paired-end reads were
merged into single-end reads, including base quality score correction,
using NGmerge>® (v.0.3) with parameters -p 0.2-m15-d -e 30 -z -V".
Diploid genomes were created by concatenating the B73 v5 genome
with the respective paternal genome (NAM v1/2 genomes'®, Mo17 CAU
v1, W22v2 (ref.20), A188 vl (ref.19) and A619, with accession ID added as
aprefix tothe chromosome name; Supplementary Note 4). Reads were
mapped to the diploid genome (or the separate genomes for inbred
data) using STARY (v.2.7.7a). STAR was designed to map RNA; therefore,
we used the flag-alignintronMax1for DNA (nointrons allowed) as well
as parameters ‘~outSAMmultNmax 2,-winAnchorMultimapNmax 100’
and ‘-outBAMsortingBinsN 5. We generated two datasets: onein which
reads were only allowed to map oncein the diploid genome (mapping
quality 255, used to generate MPs and AMPs data) and one in which
reads mapped exactly twice, with double mapping reads being ran-
domly assigned to one of the two positions (used for visualization and
overall peak coverage data). Format conversion and calculation of the
average mapped fragment length (AMFL) were done using SAMtools™
(v.1.9). The effective genome size was calculated using unique-kmers.py
(https://github.com/dib-lab/khmer, commit fb65d21), with AFML and
respective genome fasta as inputs. The deeptools™ (v.3.5.0) function
bamCoverage was used to generate normalized (reads per genome
coverage (RPGC)) bedgraph files of full-length read data.
Fragment-center tracks were generated as previously described®’:
bam files were converted to bed format using bamToBed of Bedtools
(v.2.29.0)%, and each mapped read was shortened to 20 bp centered
around the middle of the read using awk; reads withan uneven number
of bases were extended 10 bp to each site from the middle of the read.
One of the two middle bases was chosen at random for reads witheven
number of bases, and reads were extended 10 bp to each site. The func-
tion genomeCoverageBed of Bedtools was then used to convert the

bed files to bedgraph, scaled by the quotient of the effective genome
size and the number of uniquely mapped reads (similar to RPGC of
deeptoolsbamCoverage). BigWigfiles for visualization were generated
using bedGraphToBigWig (v.4)%.

MP and AMP identification

Toenable translation between coordinates of the B73 genome and the
paternal genomes, hal files were generated using the cactus function of
progressive cactus® (v.1.0.0, 2020-04-19) with standard parameters.
SNPs between B73 and the paternal lines were determined with the
halSnps function of cactus, using parameters ‘unique’and ‘noDupes’.
Fromtheresulting SNP lists, we selected all SNPs that carried either the
B73 or one other baseinallanalyzed lines (biallelic SNPs, 117,898,189).
Of the remaining SNPs, only those occurring in at least two of the 25
parental lines were retained (60,432,443; minor allele frequency, 0.08).
For allele-specific analysis, B73 coordinates of the filtered, biallelic
SNPs were translated back to paternal coordinates using halLiftover
(hal-release-V2.1), and all SNPs with ambiguous corresponding posi-
tionsin one of the two parental genomes were removed (de-duplicated
biallelic SNPs in at least two lines, 58,823,746). At each of these SNP
positions, we counted RPGC values for both alleles using bedtools map
(bedtools v.2.29.0) and calculated the read numbers corresponding
to the RPGC numbers for further calculation (for example, binomial
testing was performed on read numbers, not normalized values).
Binding frequencies at SNP positions were determined as RPGC-B73 /
(RPGC-B73 + RPGC-Pat). We defined MPs as SNPs that were located
within MOA peaks and had more than seven RPGC (approximately >25
reads) for atleast one allele and at least one read in the corresponding
allele. Allele-specific binding at MPs (significant deviation from the
expected 0.5 binding frequency) was determined by binomial testing
inR(v.4.1.1). SNP positions with an FDR-corrected P value of <0.01 were
considered AMPs. Additionally, we determined the allelic ratio of WGS
controlreads (Supplementary Note 5) ina 65 bp window at allMPs, and
excluded all AMPs with a WGS ratio above or below the upper and lower
fifth percentile value of all MPs, respectively.

Peak calling

For peak calling, MOA bam files were used with MACS3 (v.3.0.1, https://
github.com/macs3-project/MACS) using the following parameters:
-s and-min-length ‘AMFL’,-max-gap ‘2x AMFL’, -nomodel, -extsize
‘AMFL,-keep-dup all, -g ‘effective genome size’, where AMFL represents
average MOA fragment length, calculated with SAMtools stats using
default parameters.

Treatment-specific peak calling

MOA-alignment bam files were converted to bed format using bedtools
bamToBed (v.2.29.0). The genomeCoverage function of bedtools was
used to convert pooled replicated bed files to bedgraph with the reads
per millionscaling factor. The reads-per-million-normalized coverage
difference between treatments was calculated using the intersect and
subtract functions of bedtools. The resulting differences in coverage
counts for WW and DS treatments were used to create an unbinned
(1bpbin) bed fileto produce abigwig coverage track, whichwas used as
input for MACS3 (v.3.0.1) peak calling, using parameters: -min-length
30,-max-gap 60, -nomodel, —extsize 1,-keep-dup all, -g ‘effective
genomesize’,-q 0.01. Significant differences between WW and DS peaks
were determined by a two-sided Welch ¢-test using the individual bio
replicate coverages, and peaks with P< 0.05 were retained.

Transient luciferase assay

Protoplasts wereisolated and transformed by electroporationas pre-
viously described®* (Supplementary Note 6) using 10 pg of a plas-
mid encoding firefly luciferase downstream of the respective B73 or
CML333 prom::TINY alleles (B73 fragment +570 bp upstream of ATG or
CML333 + 451 bp upstream of ATP; primers in Supplementary Table 12),
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along with 5 pg of a plasmid containing 35S-renilla luciferase. For
ABA treatments, a 20 mM stock solution of (+)-Cis, Trans-Abscisic
Acid (Duchefa Biochemie, cat. no. AO941) in ethanol was prepared.
Round-bottom 2 ml microcentrifuge tubes were pre-loaded with 50 pl
of ABA solutionin protoplast buffer® (Supplementary Note 6), achiev-
ing the required ABA concentration upon the addition of 950 pl of
electroporated protoplasts. After transformation, the protoplasts
were incubated for 18-22 h in the dark for recovery. The cells were
sedimented for 2 min at 260g at room temperature and resuspended
in 80 pl of 1x Passive Lysis Buffer (Promega, cat. no. E1941). Cells were
disrupted by vortexing for 10 min, and cell lysates were cleared by
centrifugation for10 minat12,000gat4 °C.

The dual-luciferase assay was performed as previously described®
(Supplementary Note 7). All experiments were conducted with three
biological and three technical replications. Values were calculated by
dividing the activity of firefly by that of renilla luciferase.

DNA methylation analysis

Parental DNA methylation data of the NAM lines™ were obtained from
iPlant (/iplant/home/maizegdb/maizegdb/NAM_PROJECT_JBROWSE_
AND_ANALYSES). Methylation data for non-NAM lines'**° were obtained
as SRA archives (Bioprojects PRINA657677 and PRJNA635654) and pro-
cessed as previously described” (Supplementary Note 8). B73 x Mol7
hybrid methylation datawere previously published” and showed strong
correlation with parental methylation at B73 x Mo17 AMPs (Extended
Data Fig. 2a-d). Context-specific methylation around AMPs and MPs
was determined separately for the B73 and paternal alleles in the
three sequence contexts (CG, CHG or CH) as the averaged methyla-
tion levels within awindow of +20 bp around the position as previously
described". Significant differences in DNA methylation were determined
following a previous publication® (one allele <10% methylated and the
other >70%). Sites for testing the consistency of DNA methylation or
haplotype-specificbinding relationsamong the F1hybrids were selected
based on having at least two F1 lines differentially methylated, at least
two F1lines equally methylated and at least one F1line AMP at the given
site. Inthis analysis (Fig. 4c),amore stringent definition of equal methyla-
tion (as opposed to not being differentially methylated) was used: equal
methylation was defined asbothalleles <10% or both >70% methylated.

Local association mapping to map bQTL

Thebindingratio of the MOA peaks, as well as methylation ratio infor-
mation for mCG, mCHG and mCHH, were collected separately for all
hybrids for the WW and DS conditions. The binding frequency at loci
with noreads was set to ‘NA’. Genotypinginformation (GT;) at sequence
variants and the methylation ratio information were used to conduct
local association studies using five different linear models for each
MP. All MPs with the respective haplotype-specific MOA coverage
(binding frequency) and average surrounding (20 bp) methylation
ratios were considered:

MP = mCHH
MP = mCG

MP = mCHG
MP = GT;

MP = GT; + mCG + mCHG + mCHH

Theanalyses were performedin]ulia (v.1.8.1) and R (v.4.4.1). Associ-
ated MPs at a FDR of 5% were selected (R v.4.1.2). bQTL located within
65bases were combined into linkage groups (the lowest P value deter-
mined thelead bQTL).

Analysis of MPs at INDELs
A list of candidate INDELs was generated through pairwise
whole-genome alignment of each of the 25 inbred parental genomes
tothe commonmother’s, B73, genome. Alignments were created using
Anchorwave’s (v.1.2.2) proali function®, with anchor regions deter-
mined with minimap2 (ref. 68) (v.2.27-r1193). Variants were called from
thealignment using wgatools’ (v.0.1.0%°) call function using the -sand I
1parametersto call variants of any size. For later ease of handling, vari-
ants were extracted from the created variant call format file and written
into BED (browser extensible data) file format. Liftover of coordinates
from B73 to each of the other 25 parental genomes was facilitated
with CrossMap’® (v.0.7.0), using chain files created with wgatools
maf2chain®. The following steps were performed using custom code
aswellas the bedtools suite® (v.2.30). From the list of variants, a set of
INDELs between 2 and 50 bp in length and biallelic in the population
was extracted. In addition, this set wasfiltered so that thenon-B73 allele
occurs at least twice in the population. Synteny analysis of INDELs by
whole-genome alignment across genomes is challenging; hence, we
tried to minimize ambiguously mapped INDELs with additional filters”.
RPGC values for B73 and NAM INDEL regions were determined
using bedtools intersect (-wao parameter; bedtools v.2.29.0) on bed-
graphs containing the normalized read counts determined as described
above and the bed file containing the INDEL positions. The -wao func-
tion returns, for each bed entry, the overlapping bedgraph entries,
including the length of the overlap, even if the entry count is zero.
From this result, custom awk commands were used to calculate the
average RPGC (sum over all bases/length of region, including bases
with zero count) for the B73 and parental allele. For each deletion allele,
average RPGCvalues were calculated over awindow of 3 bp before and
3 bp after the deletion. For eachinsertion allele, average RPGC values
were calculated over the whole insertion itself. After this step, counts
were treated in the same way as SNP counts. The same methylation
data and analysis steps were used for INDELs as for SNPs (see above),
with methylation being calculated in a window from 20 bp upstream
oftheinsertion or deletion start to 20 bp downstream of the insertion
or deletion end coordinate. Methylation and count data were then
used to perform bQTL analysis in the same way as described for SNPs.

RNA-seq analysis

RNA-seq data were mapped to the concatenated diploid genomes
using STAR (v.2.7.7a), with options —outSAMmultNmax 1, -outFilter-
MultimapNmax 1, ~-winAnchorMultimapNmax 100, -twopassMode
Basic, —outFilterIntronMotifs RemoveNoncanonical, -outFilterType
BySJout, —~quantMode GeneCounts, using a concatenated gff3 file con-
taining gene models from both parents. To determine allele-specific
transcript abundance, for each line, B73 and corresponding paternal
positions for all SNPs determined by halSnps were generated by hal-
Liftover. Of the resulting position pairs, ambiguous ones (mapping to
more than one position in one of the genomes) were removed. Each
SNP was then assigned the B73 genes it overlaps. The respective NAM
geneinfowas added using a Pan-genefile (downloaded from MaizGDB),
retaining strand informationin both cases. Mapped read information
was converted into read bed files using bamToBed, and each SNP was
assigned all reads overlapping withitin B73 and at the parental genome
coordinates (strand-specific, separately for the three replicates). Only
SNPs carrying reads in both alleles were retained to ensure that the
SNPwas truly located withinthe geneinboth alleles. Afterwards, reads
for each gene were counted per replicate (reads that had two or more
SNPswere counted only once) and allele (Supplementary Table13a,b).
For A188, for which no Pan-gene entries were available, SNPs were also
mapped onto the A188 gff3, and gene pairs were generated based on
shared SNP positions. In this way, B73 reads and paternal reads could
be compared for differential transcript abundance analysis in DEseq2
(ref.72)inR(v.4.1.1). Genes with an FDR-corrected P value of <0.05 were
considered to have ASE in their transcript abundance.
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Variance component analysis pipeline

To runthe variance component analysis pipeline (VCAP), we required
three datasets: genome-wide markers across the NAM population
recombinantinbred lines (RILs); trait values across NAMRILs for each
trait analyzed; and coordinates for MOA peaks or bQTL SNPs across
founder lines to partition each component. For the genome-wide
markers, we used publicly available resequencing SNPs from the NAM
founders™ that had been projected onto the NAMRILs (/iplant/home/
shared/NAM/Misc/NAM-SV-projected-V8). Trait data collected from
the NAMRILs (n =143) were curated from previous publications” (Sup-
plementary Table 14). We used two sampling schemes to create our
MOA partitions. First, only the bQTL SNPs with significant association
tothegenotype, not methylation, were used to represent MOA. Second,
bQTL associated with genotype and methylation at the same time were
included. Any SNP outside of the bQTL SNPs created the non-MOA pool
from which the bgSNPs were drawn. Given the non-random distribu-
tion of bQTLs throughout the genome, we also included a matched
background component: each bQTL SNP was matched to arandom
non-bQTL SNP by allele frequency (number of lines containing the alt
allele / total lines without missing data at that position, 0.1 bin size)
and distance from the nearest gene (TSS or transcription termination
site as calculated by bedtools® closest -d).

This matched set of MOA and bgSNPs, equal in number to SNPs
with similar genomic contexts, was used for asingle VCAP run. Kinship
matrices were created for the bQTL SNPs, bgSNPs and the rest of the
genome (remaining non-bQTL and non-bgSNPs) using Tassel (v.5)™.
To calculate the heritabilities of all 143 traits, the set of three kinship
matrices and traits was run through a REML model using LDAK (v.5.2)".
We sampled 100 times, creating 100 permutations of kinship matrix
sets. Thus, the permutations gave us a range of heritability estimates
that could result from these particular components, traits and the
population (Fig. 5b). The same bQTL SNPs were used in every permuta-
tion, whereas the bgSNPs differed across permutations.

To evaluate the reliability of our heritability estimation method,
we simulated traits with defined contributions from specific sets of
kinship matrices and compared estimates of the heritabilities gen-
erated by the above VCAP protocol. We used one of our previously
generated kinship matrix sets (one SNP per peak sampling) to simulate
traits assigned certain heritabilities for each component (four sets of
heritabilities, ten traits per set). We simulated traits as the sum of four
normally distributed random vectors, each withzero mean and covari-
ance equal to one of the three kinship matrices or the identity matrix
(for residual variation) multiplied by a specific heritability value. The
simulated traits and kinship matrices were used in the REML modeling
step to estimate heritabilities. Estimated heritabilities were then com-
pared to known heritabilities. All scripts written for the analysesin the
study were deposited at https://github.com/Snodgras/MOA_Analysis.

MOA bQTL and eQTL linkage analysis

Linkage disequilibrium was calculated between the binding QTL
reported in this study and a set 0f 10,618 cis-eQTL identified based
on expression data of the roots of 340 maize genotypes™. Genomic
coordinates of the 78,398 binding QTL on the B73_RefGen_V5 maize
genome were converted to B73_RefGen_V4 positions using CrossMap
(v.0.6.4) asimplemented in EnsemblPlants’®’¢. A total 0f99.4% of bQTL
positions could be successfully converted to B73_RefGen_V4 positions,
and of these, 38,291 were presentinaset 0f 12,191,984 genetic markers
segregatingin the population of 340 maize lines used to conduct eQTL
analysis withaminor allele frequency of >0.05 and less than 2% of geno-
types exhibiting heterozygous genotype calls. Linkage disequilibrium
was calculated between bQTL markers and cis-eQTL markersinall cases
inwhichacis-eQTLand abQTL werelocated within10 kbp of each other,
using genotype calls from the 340 maize varieties®®””. To assemble a
control set of genetic markers with the same properties as the bQTL,
bQTLthat were successfully converted to B73_RefGen_v4 and matched

toSunetal.* markers were divided into ten bins based on their distance
fromthe closest annotated TSS (0-1kbp,1-2 kbp and so on), plus two
additional categories for intragenic SNPs and SNPs > 10 kbp from the
nearestannotated gene. A random subset of two million B73_RefGen_v5
SNPs used to detect bQTL were also converted to B73_RefGen_v4 and
matched to segregating markers from Sun et al.*®, as described above.
These markers were subsampled to create asecond set of 38,291 control
markers with representation in each of the 12 bins equal to the levels
observed for the real bQTL.

Further data processing

To obtainthe high-confidence list of drought-responsive MOA regions,
all MOA bQTL (unclumped WW or DS) were filtered for overlap with
AMPs located in regions with significantly (P < 0.05) increased or
reduced MOA occupancy between DS and WW conditions in atleast two
Fl1s (overlap within 65 bp). A total of 3,198 and 11,060 drought-induced
and repressed loci, respectively, were retained.

Comparisons and calculations of lists were either performed in
bedtools intersect or with custom awk and bash scripts. Hypergeo-
metric tests for over-representation or under-representation, ANOVA
and datavisualization were performed inR. Pearson correlation coef-
ficients of bigwig file format MOA-seq data were calculated and visual-
ized using the multiBigwigSummary and plotCorrelation functions of
deepTools*® with awindow size 0f 1,000 bases.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All raw MOA-seq and RNA-seq data discussed in this publication have
been deposited at NCBISRA under accession number PRJNA1101486.
MOA coverage tracks and peak files have been deposited to the
Gene Expression Omnibus under accession number GSE294039.
Coordinates in processed data files are based on the concatenated
genomes (chromosome names: LinelD-chr), which, for convenience,
were deposited at Zenodo (https://doi.org/10.5281/zenodo0.15177272
(ref. 78)). Coverage and binding frequency data for all bQTL is acces-
sible at maizegdb (https://jbrowse.maizegdb.org), atacustom browser
(https://www.plabipd.de/ceplas/?config=maize_hartwig_config.json)
and at Zenodo (https://doi.org/10.5281/zenodo0.15177272 (ref. 78)).
Previously published datasets usedin this study include /iplant/home/
maizegdb/maizegdb/NAM_PROJECT_JBROWSE_AND_ANALYSES
ref.18,SRA accession numbers PRINA961163 (ref.14), PRINA657677 (ref.
66), PRINA635654 (ref.19), PRJNA311133 (ref. 20), PRJEB31061 (ref.18),
PRJNA10769 (ref. 79), PRINA540700, PRJNA565870, PRJNA531553,
PRJNA399729, PRJNA389800 (ref. 80) and SRP0O11907 (ref. 1). Source
dataare provided with this paper.

Code availability

Custom scripts have been deposited to Github repositories
(https://github.com/Snodgras/MOA_Analysis, https://github.
com/corn2code/bQTL, https://github.com/jengelhorn/AS-MOA,
https://github.com/jengelhorn/AS-RNAseq, https://github.com/
Ako31415/FIND-CIS-analysis) and Zenodo (https://doi.org/10.5281/
zeno0do.15098013 (ref. 81), https://doi.org/10.5281/zenod0.15225769
(ref. 82), https://doi.org/10.5281/zenod0.15097609 (ref. 83), https://
doi.org/10.5281/zen0do.15097644 (ref. 84), https://doi.org/10.5281/
zenodo.15212007 (ref. 71)) under the GNU General Public License v3.0.
Other software used in this study are included in the Methods.
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Extended Data Fig. 1| Examples of allele-specific B73xMo17 MOA-seq and
comparison to allele-specific ChIP-seq. a) Average, normalized, allele-specific

ChlIP-seq of the ZmBZR1 TF (top two rows, black) and MOA-seq (bottom two rows,

B73 green, Mol7 blue; fragment center data, see methods) shown upstream of
ZmPGIP2. c) Average, normalized, allele-specific differences in MOA coverage
upstream of ZmBIF2 overlap with aknown, ‘hypervariable’ (Hv, purple box)

cis-regulatory region. b, d) Normalized, average MOA coverage of three biological
replicas at orange dashed boxes ina (P = 0.015, two-sided t-test) and ¢ (P = 0.003,
two-sided t-test). RPGC =number of reads per 1bp/scaling factor (total number
of mapped reads multiplied by fragment length/ effective genome size). Boxes in
plots denote the range from the first to the third quartile, and lines within boxes
indicate the median. Whiskers represent 1.5-fold of the interquartile range.
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Extended Data Fig. 2| Correlation of methylation differences between Blueline indicates x =y for orientation. PCC: Pearson Correlation Coefficient.
the alleles in the B73xMo17 hybrid and the respective inbred parents and cand d) Numbers of clumbed bQTL (SNP approach ¢, INDEL approachd) in WW
additional MOA-seq variation explained by methylation. a and b) Methylation conditions that display either a significant correlation of MOA-seq signal and the
differences at AMP loci are expressed as Mo17 methylation values subtracted genotype (Genotype only), of MOA-seq signal and the methylation status within
from B73 methylation values ininbred and hybrid comparisons (a: CG, b: CHG). +/-20 bp of the position (Meth. only) or both.
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Extended Data Fig. 3 | Distributions of bQTL, GWAS hits, and selective sweep GWAS Atlas lead SNPs*; and 4. -log10 p-values of bQTL (SNP and INDEL)
genomic features across ten maize chromosomes. Frominner to outer circle, associated with variation in MOA coverage in the pan-cistrome. Red markers
the tracks are: 1. chromosome names; 2. XP-CLR scores of selective sweeps™ denote selected examples of bQTL that coincide with natural variation of
detected between modern maize and teosinte, 3. -logl0 p-values of the maize classical domestication and flowering time genes.
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Extended Data Fig. 4| Assessment of relative water content of the 25 F1 hybrids under well-watered and drought conditions. * indicate significant difference
between WW and DS based on ANOVA followed by Tukey HSD test, p < 0.01 (exact p-values provided in source data). n = 9 pots with 4 plants each.
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Extended Data Fig. 5| See next page for caption.
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Extended DataFig. 5| Overview of the ZmTINY locus with allele-specific
mRNA abundance and TF-binding. a) Genome browser view of the upstream
and downstream region of ZmTINY in the hybrid of B73xCML333. Green arrows
mark DS-bQTL positions. Yellow blocks mark regions analyzed in (c). The black
transposable elements (TE) block marks a TE that is present in B73, A188, Ki3,
and Mo18W. The scale bar applies to both tracks. b) Fold change (FC) in mRNA
abundance between the NAM allele and the B73 allele under DS conditions.

¢) FCin MOA occupancy between the NAM allele and the B73 allele under DS
conditions. Average MOA occupancy per base was calculated in the three yellow

regions marked in (a). To ensure comparison of homologous regions, regions
between two homologous SNPs determined by whole-genome alignment were
chosen. Note that the W22 promoter contains a TEin the (A) region, adding

-5 kb compared to the syntenic W22 region. Two additional regions in W22 were
compared to the B73 (A) region: the region up to the TE (FC 0.36) and aregion

of similar length to the B73 (A) region (FC 0.21). The downstream regions of
A188 and Mo18W do not differ from B73, and thus, no FC could be detected.

d: CGmethylationin 40 bp surrounding SNP B73-chr3:4729798 (just after the TE
sequence downstream of ZmTINY).
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