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Biofilms: from the cradle of life to life
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Biofilms are intricately associated with life on Earth, enabling functions essential to human and plant
systems, but their susceptibility to spaceflight stressors and functional disruption in space remains
incompletely understood. During spaceflight, biofilms have largely been considered as potential
infrastructure, life support or infection risks. This review focuses on the prevailing beneficial roles of
biofilms in human and plant health, and examines evidence of biofilm adaptability in space
environments.

Biofilms and the emergence of life
The earliest stages of life are thought to have involved the gradual transition
from abiotic synthesis of simple organic molecules into nascent biotic
chemistry at surfaceattached compartments,wherephysical scaffolding and
local chemical exchange may have supported the emergence of primitive
microbial life1.

Mineral-rich environments, such as hydrothermal vents and hot
springs, provide catalytic surfaces and sources of fluctuating energy, such as
thermalfluxes, electrochemical gradients andphotochemical processes, that
could have supported nonadiabatic synthesis pathways to produce organic
compounds without proto-enzymes. These environments may have pro-
moted the aggregation or polymerisation of simple organic molecules
through adsorptive forces and repeated hydration-evaporation cycles2,
which then condensed into structured assemblies or non-membrane bound
“naked” matrices enriched in the basic building blocks of life, including
amino acids, fatty acids, peptides and monosaccharides3–5.

The accumulation of simple and macro amphiphilic molecules may
have enhanced chemical partitioning and retention, supporting exchange
with the environment while maintaining cooperative structure. These sur-
face bound assemblies likely formed interconnected clusters, where spatial
proximity facilitated molecular exchange, cohesion and rudimentary
functional integration. Internal heterogeneity within these surface-bound
and polymer-rich matrices may have supported simple metabolic cycling,
directional transport and division of function, while also providing the
spatial and chemical context for increasingly complex coordination, selec-
tive exchange and surface-level organisation. These emerging features
define true biofilms6–8, the predominant microbial lifestyle across Earth’s
major habitats7.

Ancestral biofilm-embeddedprotocell networkswouldhave supported
cooperative and competitive interactions, aiding persistence in extreme
environments. In extant biofilms, this persistence involves fundamental
functions related to transformation, structure, communication and move-
ment, derived from elemental processes (Fig. 1)9,10 which underpin survival
and proliferation, but also enable the emergence of higher-order behaviour.

Biofilms enable complex life
Early biofilms can be observed in fossilised stromatolites, structures where
sediment has become trapped by microbially produced extracellular poly-
meric substances (EPS)11. Their similarity to modern-day stromatolites
suggests conservation of function in microbial community protection and
survival11,12. Extant stromatolite-producing organisms include Cyano-
bacteria, gram-negative photoautotrophic bacteria that can survive envir-
onmental extremes of UV, temperature, salinity, and desiccation13,14,
conditions analogous to those of early Earth15,16. Their EPS includes UV-
screening pigments that enhance matrix stability17, polysaccharides that
buffer pH18, proteins involved in metal homeostasis, carbon cycling, oxi-
dative stress resistance19–21, enzymes able to modulate matrix density and
organisation22, and a capacity for water and nutrient storage20. Similarly,
fossilised fungal-like structures such as Grypania spiralis and ancient
mycelial networks suggest that surface-attached microbial communities
with biofilm-like traits emerged early in Earth’s history23–25.

Biofilms are not merely microbial aggregates, but typically hetero-
geneous dynamic communities with intricate cell-to-cell communication
systems and characterised by regulation of collective behaviour through
quorum sensing (QS). Microbial QS systems include, but are not limited to,
the LuxI/LuxR system in Vibrio fischeri, the Agr system in Staphylococcus
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Fig. 1 | Biofilms in early life, composition, morphology, benefits and exemplar
functions. a Evolutionary timeline showing early stromatolite biofilms to modern
interkingdom biofilms. b Biofilms provide fundamental benefits over planktonic life
through protection against environmental stressors, efficient resource management
and improved coordination and adaptability in response to spatial and temporal
fluctuations. cModern extracellular polymeric substances (EPS) matrices comprise
water (up to 97% by mass), polysaccharides, proteins, extracellular DNA, lipids,

secondary metabolites, nutrients, and exoenzymes, each contributing to hydration,
cohesion, signalling, metabolism, structural integrity, and chemical defence. EPS
composition is shaped by both microbial community structure and environmental
conditions. d Biofilm structure varies by environmental gradients, containing solid,
liquid, and gas phases, with flexible morphology and mechanical properties. e)
Representative biofilm functions grouped by transformation, structure, movement,
and communication, with example mechanisms.
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aureus, and farnesol-mediated signalling in Candida albicans. These
modulate gene expression for processes such as bioluminescence, virulence,
morphogenesis, and biofilm maturation26–28. Coordinated communication
underpins a functional division of labourwithin biofilms. InBacillus subtilis,
subpopulations differentiate into EPS producers, motile cells, or spore-
forming cells, governed by complex regulatory networks involving theTasA
amyloid protein and the master regulator SinR29. Such differentiation
mirrors the division of labour seen in multicellular life forms and provides
adaptive advantages under environmental stress.

Recent studies have identified intercellular structures that support
material and signal exchange within microbial communities. For instance,
bacterial nanotubes and membrane-derived vesicles enable the transfer of
nutrients, proteins, and even DNAbetween neighbouring cells in a biofilm,
revealing a rudimentary formof intercellular communication similar to gap
junctions in eukaryotes30. The evolution of these cooperative as well as
competitive traits within biofilms likely set the stage for the transition from
unicellularity to multicellularity31. Biofilm-associated resource sharing,
collective defence, and spatial organisation provide a scaffold upon which
multicellular complexity can evolve. These findings support the hypothesis
that biofilms served as evolutionary incubators for early multicellular traits
in both prokaryotic and early eukaryotic lineages32. As metazoan life
evolved, the role of biofilms shifted from initial incubators to facilitators of
multicellular life. Today, biofilms are intrinsically linkedwith the health and
well-being of all organisms on Earth.

Biofilms enable human health on Earth
Biofilms are fundamental in maintaining human health, especially in the
skin, gut, genitourinary tract, and oral cavity, wheremicrobiomesmodulate
immunity, nutrient absorption and pathogen defence (Fig. 2). Biofilms train
the host-immune system to distinguish between beneficial and harmful
microbes, critical for the prevention of chronic inflammation and auto-
immune disorders33. Human microbial biofilms act not only as physical
barriers to block pathogen access via their extracellular matrix, but also by
competing for resources34, synthesising antimicrobial agents, and prevent-
ing pathogen establishment35. In the gut, for example, biofilms perform
important digestive function by breaking down complex carbohydrates and
producing importantmetabolites36,37, and provide physical protection to the
gut lining38,39.

Multispecies biofilm community diversity and dynamics are crucial to
human health outcomes9,40–43. However, the role of interkingdom intra-
community biofilmdynamics in health support is poorly understood.Host-
associated biofilms span domains of life, including Eukarya (e.g., Fungi),
Archaea, Bacteria and Viruses44–46, but there is notable lack of detail in the
literature regarding how the combined synergistic, antagonistic and
mutualistic interplay of this complex, multi-kingdom biofilm community
may promote health at the system level.

For healthmaintenance, a delicate balancemust exist between biofilms
and the host. For acute and chronic infections, underlying health conditions
such as immunodeficiencies, diabetes and cystic fibrosis can lead to com-
mensal biofilm organisms becoming opportunistic pathogens, often man-
ifesting as polymicrobial biofilm infections of the lungs, foot ulcers, bone
and deep tissues, and indwelling medical devices47–51. These infections are
refractory to treatment due to species diversity, variability of the infectious
microenvironment52 and the upregulation of virulence and resistance
pathways via quorum sensing and metabolic interaction52–54. Furthermore,
antimicrobial resistance is promoted through limiting drug penetration, the
presence of dormant “persister” cells, and enhancement of horizontal gene
transfer55. These result in either chronic, recurring disease or systemic life-
threatening infection56,57.

Biofilm-associated disease extends beyond direct infection. For
example, amyloid curli fibers of E.coli and Salmonella enterica gut biofilms
confer structural integrity, but their structural similarity to human amyloids
can trigger immune responses linked to chronic conditions such as
inflammatory bowel disease and even neurodegenerative diseases58. These
findings highlight that biofilms are not incidental to pathogenesis but

become central to the persistence, resistance, and systemic risk posed by
microbial disease when their normal role in host resistance is disrupted.

Biofilms enable plant production on Earth
Soil defines terrestrial plant productivity, with the rhizosphere representing
a dynamic interface where interkingdom biofilm communities govern
nutrient cycling and plant health. The most well-known contributors are
plant growth promoting bacteria (PGPB)59,60, whose biofilms aid germina-
tion and plant growth through enhanced nutrient uptake, water retention,
and suppression of root pathogens. Biofilms enhance soil fertility through
multiplemechanisms (Fig. 2), such asfixing atmosphericN2, and enhancing
the bioavailability of existing nutrients, including phosphorus, iron, potas-
sium and zinc61,62. Furthermore, biofilms modify key soil properties,
increasing aggregate stability, erosion resistance, and hydrophobicity63,64,
while reducing reliance on chemical inputs and improving both crop yields
and soil health. These key soil alterations are evident in pioneer biofilm
consortia that form biological soil crusts (biocrusts)65, reducing erosion and
establishing conditions that facilitate primary succession in degraded
landscapes66,67. While studied less, biocrusts for farming in potentially
challenging substrates,may reduce reliance on chemical inputs and improve
both crop yields and soil health.

Intra-community dynamics within biofilms are potential targets to
enhance agriculture. Arbuscular mycorrhizal fungi (AMF) associate with
most plant species, providing nitrogen and phosphate in exchange for plant
sugars. Associated mycorrhizal helper bacteria (MHB) further alter fungal
behaviour to enhance nutrient access68. Biofilms also help plant hosts resist
stress throughmultifactorial dynamics. For example,microbial recruitment
and formation of beneficial root-associated biofilms are mediated by root
exudates9,62,69–72. Biofilms can help hosts resist diseases by modulating the
plant immune system, notably via the induced systemic resistance pathway
(ISR)73. Biofilm EPS can also act as a reservoir of both microbial and host-
derived factors, including quorum-sensing disruptors and antimicrobial
compounds, that further outcompete and inhibit the activity of pathogenic
microorganisms73.Othermetabolic resources captured and concentrated by
the EPS can promote plant growth and stress tolerance, including anti-
oxidants, phytohormones, osmoprotectants, and signalling molecules74,75.

Biofilms, however, can also pose important challenges. Listeria
monocytogenes76 and Salmonella sp77. biofilms on processing surfaces, for
example78, are difficult to eradicate and are significant sources of foodborne
outbreaks. Taking these potential benefits and risks into account, manip-
ulation of these complex interkingdom relationships could drive profound
changes in sustainable agricultural practices.

Spaceflight perturbs biofilm structure and function
The extent to which the biofilms that enable plant and human health are
disrupted in space remains unclear, but studies under simulated and
spaceflight conditions reveal critical changes79–81. Findings include altered
quorum sensing activity, modulation of EPS production, changes in adhe-
sion and antibiotic resistance, and restructuring of biofilm architecture
(Table 1). Niallia tiangongensis, for example, is a novel spore-forming
species recently isolated from the Tiangong Space Station, with potentially
altered biofilm genetics82. Interestingly, Staphylococcus aureus exhibited
both suppression and activation of the Agr quorum sensing system under
different spaceflight conditions26,27, while Pseudomonas aeruginosa formed
distinct canopy-like biofilms with elevated EPS and altered virulence factor
expression83–85. In fungi, Aspergillus niger exhibited thicker biofilms and
increased sporulation under simulated microgravity86, while C. albicans
cultured on the ISS formed larger aggregates with transcriptional signatures
of biofilm growth87, and Penicillium rubens developed biofilms on diverse
spacecraft materials on the ISS, varying in surface coverage, biomass, and
thickness88.

Spaceflight exposes biota to Galactic Cosmic Radiation (GCR) from
the interstellar medium, consisting of high energy protons, alpha particles
and heavy ions, and Solar Energetic Particles (SEP), mostly comprising
protons ejected from the Sun89. There are limited studies on biofilm
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response to sourcesof high-radiation. InCryptococcusneoformans,melanin,
a biofilmmatrix component, was associatedwith higher post-flight viability,
suggesting adaptation to spaceflight stressors, including ionising radiation90.
OnEarth, Bratkic et al.91 isolatedBacillusflexus frommixed-species biofilms
developed on nuclear reactor pool walls (2m from the core) that could
tolerate 15kGy from combined gamma and neutron radiation,

demonstrating ionising radiation (IR) resistance comparable to extremo-
philes, such as D. radiodurans92. Similar tolerance was observed in biofilms
formed in a spent nuclear fuel pool93, accumulating radionuclides, and on
spent nuclear fuel rod cladding, surviving doses 2.1 Gy/h for 64 days94.
Additional studies reported increased abundance of UV- and desiccation-
adaptedmicrobes in the Chernobyl exclusion zone95, and increased biofilm

Fig. 2 | Biofilm adaptations to spaceflight stress in living systems. The human gut
and plant rhizosphere both support microbial biofilms embedded in hydrated
polymer matrices, mucin in the gut and mucilage in the rhizosphere, that provide
functionally analogous environments which mediate eukaryote-microbial interac-
tions. These matrices enable common resource management functions, including
conversion, solubilisation, chelation, decomposition, and water retention, and

support pathogen control through barrier function, direct competition, and immune
modulation. Spaceflight stressors (including microgravity and increased radiation)
may disrupt biofilm host interactions, altering human immunity and the gut
microbiome, and weakening plant immunity and disrupting gravitropism and
development. However, the sensitivity of these essential biofilm-host functions to
space stressors is still largely unknown.
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growth in root canal dentine after repeated IR exposure, with doses of 55 Gy
and 70 Gy96. While these terrestrial radiation sources differ from GCR and
SEP exposure experienced in long-duration spaceflight, they provide initial
insights into biofilm radiation resistance capabilities and underlying
mechanisms.

Most taxa explored in vitro in space to date have been opportunistic
pathogens or generalist lab strains97. This in vitro research provided
mechanistic insight into microbial adaptations to space environments,
helping to interpret the observed microbial shifts within host-associated
biofilms under spaceflight stressors such as microgravity, radiation, and
confinement. However, relevance of findings to healthy human or plant

biofilm functions is often limited. Essential short-chain fatty acid producers,
bile acid-modifying, PGPBs, or mycorrhizal partners remain, as yet,
underexplored.

Does spaceflight influence gut–biofilm interactions?
Microbiome studies in human and murine hosts have revealed changes
under spaceflight, including the analog Mars500 mission98,99, Rodent
Research-1100, Rodent research-5101, a 1-year ISS mission102, Inspiration4103,
and the NASA Twin study104. In the Rodent Research-6 (RR-6) mission,
multiomics combining colon and liver transcriptomics and metagenomic
profiling of faecal samples capture coordinated host-microbiome

Table 1 | In vitro biofilm studies under spaceflight-related stressors

Space stressor Microorganism Impacted gene expression and significance

LSMMG (24 h) Escherichia coli ↑ Biofilm thickness; ↑ Resistance to salt, ethanol, penicillin and chloramphenicol187

LSMMG (192 h) Escherichia coli ↑Biofilm formation, curli and lipid biosynthesis, starvation relatedmetabolism and stress genes188

LSMMG Escherichia coli Adhesion and surface interaction gene mutations (fimH, surA, betA) - after 1000 generations; No
variation in antibiotics resistance189

LSMMG Escherichia coli ↑ Biofilm formation190

LSMMG (24 h) Pseudomonas aeruginosa ↑Cell aggregation and biofilm clustering; ↓Pyocyanin production, related to virulence andQS for
extracellular DNA and H2O2 secretion

191

LSMMG (6 d) Pseudomonas aeruginosa ↓ Biofilm formation; ↓ Pyocyanin production; Importance of surface attachment genes (flgK,
pelA)192

LSMMG (24 h) Staphylococcus aureus ↓ AIP production; ↓ Cytotoxicity; ↑ Fibronectin binding26

LSMMG Bacillus cereus ↑ EPS; ↑ Cell aggregation; ↑ MIC damage on aluminium alloy surfaces193

LSMMG Candida albicans ↑ Biofilm formation; ↑ Filamentous form; Wrinkled morphology194

Simulated µG Micrococcus luteus ↑ EPS amount related to attachment; ↑ Growth rate and biomass; ↓ EPS colloidal components
related to thickness and stability195

Simulated µG (20 d) Synechocystis sp. PCC6803 ↑ EPS synthesis and secretion, via glgP (glycogen catabolism), exoD (extracellular synthesis) and
epsB (transportation) expression196

Simulated µG (12 d) Stenotrophomonas maltophilia ↑ Growth rate and biofilm formation; ↑Motility and adhesion197

Simulated µG Enterococcus faecium Trends based on 42 vancomycin-resistant strains: ↑ and ↓ Antibiotics susceptibility; ↑ Biofilm
production; ↑ Desiccation tolerance198

Simulated µG (24 h) Bacillus cereus ↑ Growth rate and biofilm production; ↑ Cell aggregation; ↑Membrane FA unsaturation; ↑
Antibiotic resistance199

Simulated µG (3-5 d) Aspergillus niger ↑Surface colonisation; ↑Biofilm thickness; ↑ Vegetativemycelium growth (racA-mediated, actin-
based polarity); ↑ Spore production86

Spaceflight (STS-95,1-8 d) Pseudomonas aeruginosa (PAO-1) ↑Biofilm formationwith strong adhesion undermicrogravity; Nomajor morphological differences
detected200

Spaceflight (STS-132,135) Pseudomonas aeruginosa (PA14) ↑Biofilmbiomass and thickness; Space-specific column-and-canopy architecture using flagella-
driven motility83

Spaceflight (ISS, 1-3 d) Pseudomonas aeruginosa (PA14) ↓ Biofilm biomass and thickness; ↑ Pyochelin gene expression; Minimal transcriptional changes
overall201

Spaceflight Staphylococcus aureus ↑ QS (RNAIII, Agr); Altered virulence factors27

Spaceflight Niallia tiangongensis ↑ Gelatinase activity; ↑ Biofilm formation; ↑ Oxidative stress response; ↑ Radiation damage
repair82

Spaceflight (STS-115) Candida albicans ↑ Cell aggregation; ↑ Random budding; ↑ Oxidative stress resistance genes; No variation in
virulence87

Spaceflight (STS-115) Salmonella typhimurium ↑ Cell aggregation and extracellular matrix production; ↑ Virulence202

Spaceflight (ISS, 10–20 d) Penicillium rubens Biofilm formation varied by surface material and time; No variation in biofilm coverage or
morphology (thickness, shape)88

Simulated µG +
Radiation (~1mGy)

Mixed biofilm ↑Penicillin resistancewith radiation only but notwithmicrogravity or combined stressors; Altered
community structure203

Radiation (15kGy) Bacillus flexus Evidence of microbial succession; B. flexus tolerated high IR91

Radiation (2.1 Gy/h, 64 d) Mixed biofilm Viable biofilms formed on spent fuel cladding; chronic IR exposure; MIC implications94

Radiation Mixed biofilm Evidence of biofilm growth; Radionuclides retained in EPS matrix93

Radiation (Chernobyl) Mixed biofilm ↑ ITS mutations rate induced by radiation; Stable biofilm diversity including UV/desiccation-
adapted taxa95

AIP autoinducing peptide, d days, EPS extracellular polymeric substances, FA fatty acid, h hours, IR ionising radiation, ISS International space Station, ITS internal transcribed spacer, LSMMG low-shear
modelled microgravity,MIC minimal inhibitory concentration, QS quorum sensing, STS space transportation system, µGMicrogravity, UV ultra-violet.
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responses105. Modifications were observed in butyrate-associated taxa,
includingDysosmobacterwelbionis, implicated in host lipidmetabolismand
mitochondrial function106, as well as bile acid modifying species, such as
Extibactermuris, Eisenbergiellamassiliensis, andBlautia pseudococcoides. E.
muris, in particular, was significantly enriched and possesses full bai operon
clusters (BaiBCDEFGI, BaiJKL, and BaiA) able to alter the host bile acid
pool107. These changes coincidedwith depletion ofClostridium scindens and
Ligilactobacillus murinus, species associated with biofilm-mediated epi-
thelial support, bile detoxification, and suppression of pathogen
colonisation108–111.

These microbial changes aligned with repression of hepatic bile acid
synthesis (Cyp7a1) and altered intestinal transport, including Slc10a2,
Ugt1a1, Slc51a/b, Abcg5/8, andAbcc2, suggesting bile retention and FGF15-
FGFR4 feedback inhibition105. Enrichment of extracellular matrix, tight
junction, andO-glycan biosynthesis pathways, alongside bacterial invasion,
indicates progressive disruption of the host-biofilm boundary likely to
impact immune containment and nutrient cycling.

Colon transcriptomics of RR-6 further showed broad suppression of
mucosal immune networks, notably IgA production, chemokines (Ccl3,
Ccl5, Ccl22), receptors (Ccr4, Ccr7, Ccr9), and co-stimulatory ligands (Cd2,
Cd80, Icoslg)105. While Muc2 was upregulated, Muc3 and Mptx1 were
suppressed, suggesting altered mucus layering and spatial disturbance of
biofilms. This widespread downregulation likely impairs IgA-mediated
tolerance, which would compromise the host capacity to recognise com-
mensal microbes within the gut biofilm, preventing “Friend or Foe”
discrimination112,113. Comparable host-microbiome effects occurred during
Inspiration4, where oral enrichment of Fusobacterium and Actinomyces
coincided with immune transcriptomic shifts114. Occurrence of reduced
antigen presentation, systemic immune suppression, and cortisol elevation
may drive impaired barrier immunity and increased infection risk for
astronauts during long-duration missions.

The causal links between spaceflight-induced changes in mucin
inhabiting microbiome community and the crew health outcomes are lar-
gely speculative. How microbial metabolites, immune mediators or com-
promise of microbiome-mediated host metabolic functions might
contribute to known spaceflight pathologies, including Spaceflight Asso-
ciated Neuro-ocular Syndrome (SANS), cardiovascular dysfunction, bone
loss and muscle atrophy, remains to be established (Fig. 2).

Does spaceflight alter rhizosphere–biofilm exchange?
To support plant adaptation in microgravity or high-radiation environ-
ments, beneficial symbiosis with bacterial or fungal biofilms may enhance
stress resistance and enable growth in nutrient-poor substrates, as observed
on Earth. Differential gene expression analysis studying Arabidopsis thali-
ana exposed to spaceflight stressors115, using GeneLab data OSD-7, OSD-
120, OSD-37, OSD-38, and OSD-46, showed common upregulation of
genes associated with genomic and transcriptional stability (PARP1,
BRCA1, RS31A and TSO2), suggesting that spaceflight imposes persistent
genomic and transcriptional stress, potentially constraining growth and the
formation or maintenance of beneficial biofilms.

Microgravity alters the biophysics of surrounding pore spaces around
roots in substrate-grown plants and affects rootwettability in hydroponic or
aeroponic systems116. Biofilms coating the root and fungal hyphae extending
into the rhizosphere will alter solute contact angles in ways that may dictate
local hypoxia, nutrient delivery, and overall plant health.On the leaf surface,
particularly around stomata, biofilms may mediate gas exchange and oxy-
gen buildup in microgravity. A. thaliana and Brassica nigra can germinate
and grow in sealed, minimal habitats suitable for robotic lunar landers,
supporting future studies into plant adaptation to partial gravity and
radiation environments117. Such closed systems lack the structure and
microbial diversity of soil ecosystems, making stable rhizosphere and
phyllosphere biofilms particularly important for nutrient cycling, stress
mitigation, andmicrobial signalling. Future work building on this potential
role of biofilms in enhancing or ameliorating biophysical limitations is
essential.

Few studies have explored plant-microbe interactions directly during
spaceflight in detail, Rhizobium leguminosarum bv. trifolii had enhanced
binding to succinate and acetylsalicylic acid under simulated microgravity,
suggesting increased adhesive capacity and altered EPS-mediated
interactions118. InMedicago truncatula, the growth suppression associated
with microgravity and inoculation with Sinorhizobium meliloti alone was
mitigated by arbuscular mycorrhizal colonisation with Rhizophagus irre-
gularis, suggesting that dense hyphal networks in the mucilage-rich matrix
of the rhizosphere may support nutrient uptake and protect against space
stressors119.

The role of biofilm-associated microbiota in spaceflight-induced
changes toplant immunity anddevelopment,much likewithmammalhost-
gut microbiome interactions, is poorly understood. While microgravity
alters immune signalling, nodulation, and mycorrhizal interactions119–121, it
is unclear how ISR and pathogen recognition are affected, and the detection
of opportunistic plant pathogens such as Fusarium oxysporum on the ISS122

raises concerns about plant immunity. Similarly, developmental changes
under disrupted gravitropism may reshape plant-microbe signalling and
exudation, yet changes to plant-microbe architecture, hormone signalling,
and microbial function remain to be elucidated (Fig. 2).

Space as a new frontier of biofilm discoveries
Complex environments such as the human gut, plant rhizosphere, human-
built habitats, and extraterrestrial surfaces provide an incredibly wide range
of environmental factors influencing biofilm formation. However, effective
capture and interpretation of these combined factors to identify their
influence on biofilm formation is a challenge using traditional biofilm
analyses. The field is moving towards greater understanding of biofilm
dynamics, with recent advances in multiomics, microscopy and synthetic
biology (Fig. 3) providing a pathway for biofilm discoveries.

EPS synthesis, secondary metabolite production, cellular morpholo-
gical switches andROSprotection are coordinated by quorum sensing123–125.
However, multifaceted biofilm formation (Fig. 1) is also directed by gra-
dients of nutrients, oxygen, metabolic activity, the hydrodynamic envir-
onment and shear forces126–129, adhesive properties conferred by initial
attachment mechanisms of individual species130–132, and the subsequent
synthesis of extracellular matrix components133,134. Together, these inputs
orchestrate a biofilm output to a given environmental scenario, a
multifactorial-driven event which we cannot yet predict in precise, accurate
detail. Emerging technologies such as advanced biofilm microscopy135–137,
biofilm-based biosensors138 and improved biofilm models139 now offer the
opportunity to determine how these processes, fundamental to biofilm-host
dialogue, interact with space stressors (Fig. 3). As missions extend beyond
low Earth orbit, with exposure to partial gravity and increased radiation,
these technological innovations should be applied to explore major
knowledge gaps in the behaviour of fungal, archaeal and interkingdom
biofilm communities under spaceflight constraints140.

Development of biofilm-specific medical diagnostics and therapeutics
includes the leveraging of interspecies and host signalling systems to
encourage immune clearance or augmentation of antimicrobial
treatment141,142, the disturbance of quorum sensing or biofilm signalling
pathways by inhibitors143,144 and quorumquenching peptides145, and the use
of nanoparticles to mitigate pathogenic biofilm formation and
virulence146,147. Other pharmaceutical and device applications include
extracellular vesicles for vaccine development148 and as biofilm-targeting
systems149. In addition, pathogenic biofilms canbephysically removedusing
magnetic nanoparticles150,151. Such precision biofilm-based approaches are
emerging to meet the long-duration spaceflight challenges of aerospace
medicine and food security.

Precision and regenerative medicines utilising biofilms may protect
against spaceflight-associated microbiome shifts, with strain-based bio-
sensors detecting changes in biofilm-host dialog during early disease
development and activating appropriate drug or nutrient delivery
responses152–156. Probiotic microorganisms, such as some Lactobacillus sp.,
Bifidobacterium sp. and Escherichia coli Nissle 1917152–154, could promote
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biofilm formation and act as drug delivery systems157, along with nano-
particles to augment or reseed biofilms155,156, and applications including
microbially-doped implant surfaces158 and probiotics for osteoporosis159.
Biofilm dressings for wounds, bone and deep tissue trauma may also scaf-
fold tissue regrowth and deliver immunotherapy and growth factors to halt
disease progression and improve recovery time158,159.

Considering plant health, engineering of plant-associated biofilm
communities to support immunity and nutrient exchange should enhance
crop growth, resilience, and yieldwith reduced chemical inputs or pesticides
required in closed-systemoff-Earth environments29,75,160,161. Development of
plant-associated biofilm interventions, which could harness natural plant
microbiome-modulating exudates162, for nutrition-enriched fresh
foods163,164 and plant-derived medical provisions165,166 must be prioritised to
support human health in long-duration spaceflight.

Programmable livingmaterials are being developed, either through EPS
matrix-derived delivery technologies167 or encapsulation of microorganisms
in hydrogel-based synthetic matrix for specific body sites168,169 and biofilm-
directed wound healing170. Programmable biofilm communities would
enable on-demand pharmaceutical production, alleviating drug stockpiling
and degradation concerns171 through strategic off-Earth resource utilisation.
The divided labour and cross-feeding characteristics of biofilm communities
may be exploited for 3D-printed biofilms, layered with microbes engineered
to catalyse specific steps in drug biosynthesis172. A biobank of strains with
defined enzymatic functions could one day enable a ‘plug and play’ 3D
printing system to produce mission-specific pharmaceuticals.

Space provides an unprecedented opportunity to explore biofilm as a
functional structure in its own right, as a component of healthy humans and
plants, and as a biological technology. Clear scientific prioritiesmust bemet
to coordinate research that reduces these knowledge gaps (Fig. 4).

Data-driven Open Science to accelerate biofilm
discovery
TheNASAOpen ScienceDataRepository (OSDR) curates accessible space-
flown and ground-based analogue data for use by the global research
community173. OSDR is an exemplary Open Science model (Fig. 4) that
promotes inclusive, cutting-edge research and maximises the scientific
productivity of low sample size experiments and costly space missions.

Several key papers furthering our understanding of spaceflight on organism
health have been enabled by NASA OSDR105,174–177, demonstrating how the
integration ofmultiomics, physiological and imaging data can uncover new
insights into biofilm biology. OSDR data analysis pipelines can be used as a
foundation to help drive artificial intelligence (AI) and machine learning
(ML) based biofilm research, as is already occurring in other fields115,178.

Computational architectures and models integrating data could
predict biofilm formation, growth dynamics and interactions with
host organisms under spaceflight conditions, or for specific terrestrial
scenarios, generating risk profiles and informing tailored interven-
tions. AI/ML approaches have been used to explore biofilms,
including for deep learning segmentation of dense bacterial com-
munities (e.g. MiSiC, U-Net and StarDist frameworks)179,180, ML and
network analysis of S. aureus transcriptomic data to identify biofilm-
associated modules181, and interpretable classifiers predicting bac-
terial attachment to material surfaces182.

Transparency of AI/ML modelling continues to be a significant issue
for trustworthy analysis and collaborative interpretation across life scien-
tists, clinicians, engineers andmission operations teams. Depending on the
structure and dimensionality of the data, analysis can involve models with
intrinsically interpretable structure, such as linear or generalised models182,
or moderately flexible approaches that retain interpretability, such as
additivemodels or penalised regression183. In reasingmodel complexitymay
be preferred when more interpretable models fail to capture key non-
linearities in the data. Deep learning or ensemblemodels184, includingmore
computationally tractable graph neural networks185, allow enhanced com-
plexity with satisfactory explainability. For highly flexible, or black box
models, model-agnostic explanation tools have the potential to help
interpretability186 by estimating the contribution of specific taxa,
analytes, environmental conditions, or material interfaces to biofilm
behaviour. By introducing model complexity incrementally, pre-
dictive accuracy may be improved with greater confidence and lead
to effective decision-making and more meaningful collaboration.
However, next-generation foundational models with high perfor-
mance and interpretability require more biofilm data than is cur-
rently available, highlighting the need for greater cooperation across
the international space-based biofilm research community.

Fig. 3 | Innovative methodologies and future
applications for studying biofilm. Addressing
biofilm knowledge gaps relevant to spaceflight and
terrestrial contexts requires targeted research. There
is a need to determine how signalling inputs from
environmental cues of shear stress,microgravity and
oxidative stress are integrated with the spatio-
temporal dynamics of quorum-sensing (QS) mole-
cules and nutrient, oxygen and metabolite gradients
to modulate specific microbial behaviour. Similarly,
understanding the mechanistic links between sig-
nalling and metabolic systems, microbial commu-
nity population dynamics, and the biofilm life-cycle
in spaceflight, clinical or agricultural contexts is also
essential. The emerging technologies listed can
capture signalling system dynamics, metabolomic
processes and biofilm architecture in space-
analogue and Low Earth orbit environments. This
will generate the data required for the predictive
modelling and AI methods to drive forward inno-
vation in biofilm technology platforms for both
medicine and agriculture.
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Fig. 4 | Biofilm research priorities and open science accelerated discovery. Four
proposed research priorities could realise biofilm-based innovations. These should
aim to move beyond multispecies prokaryote biofilms to characterise interkingdom
assembly, to better understand the functions of biofilm host-associations, to engi-
neer biofilms for life in space and to translate discoveries from space to applications
on Earth. Transparent, inclusive, accessible and reproducible Open Science can
accelerate these discoveries to provide solutions for both future medicine and

agriculture in space. A rigorous, systematic programme of Open Science biofilm
spaceflight and ground-based experiments designed to answer these research
priorities will generate comprehensive insight into biofilm structure, formation and
biofilm-host dynamics. Coupled with emerging methodologies, these experiments
could provide the discoveries required to build biofilm-based platforms for health
support on missions, but also on Earth.
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Concluding statement
Biofilms have supported life since primordial Earth. Embedded in multi-
cellular life, biofilms should be understood not only as risk agents to be
eliminated but also as complex and adaptive biological tools to be harnessed.
Space-based biofilm inquiry, built on Open Science principles, offers an
opportunity to develop innovative biofilm-based technologies. These novel
technologies will both enable deep-space exploration ambitions and gen-
erate sustainable, meaningful impacts on Earth.
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