
Molecular Biology and Evolution, 2025, 42, 1–13 
https://doi.org/10.1093/molbev/msaf119
Advance access publication 26 May 2025                                                                                                                                              

MBEDiscoveries

Accounting for Chimerism in Demographic Inference: 
Reconstructing the History of Common Marmosets 
(Callithrix jacchus) from High-Quality, Whole-Genome, 
Population-Level Data
Vivak Soni ,1 Cyril J. Versoza,1 Eric J. Vallender ,2,3 Jeffrey D. Jensen ,1,*,†

Susanne P. Pfeifer 1,*,†

1Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
2Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
3Tulane National Primate Research Center, Covington, LA, USA
†These authors jointly supervised the project.
*Corresponding authors: E-mails: jeffrey.d.jensen@asu.edu; susanne@spfeiferlab.org.
Associate editor: Kelley Harris

Abstract 
As a species of considerable biomedical importance, characterizing the evolutionary genomics of the common marmoset (Callithrix jacchus) is of 
significance across multiple fields of research. However, at least 2 peculiarities of this species potentially preclude commonly utilized population 
genetic modeling and inference approaches: a high frequency of twin births and hematopoietic chimerism. We here investigate these effects 
within the context of demographic inference, demonstrating via simulation that neglecting these biological features results in significant mis- 
inference of the underlying population history. Based upon this result, we develop a novel approximate Bayesian inference approach 
accounting for both common twin births and chimeric sampling. In addition, we newly present population genomic data from 15 individuals 
sequenced to high coverage and utilize gene-level annotations to identify neutrally evolving intergenic regions appropriate for demographic 
inference. Applying our developed methodology, we estimate a well-fitting population history for this species, which suggests robust 
ancestral and current population sizes, as well as a size reduction roughly 7,000 years ago likely associated with a shift from arboreal to 
savanna vegetation in north-eastern Brazil during this period.
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Introduction
Characterized by exudivorous feeding habits and small habitat 
ranges (∼5,000 to 65,000 m2), the common (or white-tufted- 
ear) marmoset (Callithrix jacchus) is a platyrrhine native to 
east-central Brazil (Rylands and Faria 1993; Rylands et al. 
2009; Garber et al. 2019). Due to its diminutive size (∼250 g), 
early sexual maturity (∼15 to 18 months of age), short gestation 
period (∼145 d), and high fecundity (with twin births being the 
norm), this species has risen in biomedical prominence as a com
monly used model for the study of both human neurodevelop
mental disorders (e.g. Miller et al. 2016; Philippens and 
Langermans 2021) and infectious disease dynamics, with the lat
ter partly owing to their seemingly reduced major histocompati
bility complex diversity relative to other mammals (Antunes et al. 
1998; Wu et al. 2000; Carrion and Patterson 2012).

Together with a high frequency of twin births, C. jacchus is 
also noteworthy for the frequent observation of hematopoietic 
chimerism—a rare phenomenon among primates. As a conse
quence, marmoset blood samples have been shown to contain 
genetic material from both the sampled individual and their 
twin sibling (Hill 1932; Wislocki 1939; Benirschke et al. 
1962; Gengozian et al. 1969; Ross et al. 2007). Importantly, 

Ross et al. (2007) found that chimerism in marmosets was 
not only limited to blood samples, but was in fact identified 
in every sampled tissue examined. However, Sweeney et al. 
(2012) subsequently suggested the possibility that blood infil
tration may give rise to such apparent chimerism across tis
sues. This result was largely confirmed by del Rosario et al. 
(2024), who found that chimerism present in liver, kidney, 
and brain tissues was the result of myeloid and lymphoid 
cell lineages derived from hematopoietic stem cells and that 
blood samples contained the greater contribution of sibling 
nuclei relative to other examined tissue types (see Figure 1 in 
del Rosario et al. 2024 and the accompanying commentary 
of Chiou and Snyder-Mackler 2024). Taken together, these re
sults thus do not suggest germline chimerism, but they strongly 
support chimerism of equal contribution in the sampled blood 
and chimerism proportional to hematopoietic infiltration in 
other tissues commonly utilized for sequencing.

Although it may be tempting to try to sidestep the effects 
of chimerism when performing genetic studies in marmosets 
by focusing on single births, it is noteworthy that single 
births are not only rare, but also tend to themselves be chi
meric owing to fetal resorption of a dizygotic twin in utero 
(Jaquish et al. 1996; Windle et al. 1999). It has additionally 
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been proposed that one may better utilize samples from tissues 
potentially less impacted by chimerism (e.g. fingernails, as as
sessed from lower levels of heterozygosity; Yang et al. 2023); 
however, the lower (but non-zero) levels of chimerism in non- 
blood tissue only exacerbate the uncertainty in modeling. 
Hence, in terms of the sample itself, it appears difficult to reli
ably avoid the contribution of genetic material from the un
sampled twin. Moreover, even if it were possible to sample 
genetic material from a true single individual in any given gen
eration, the long-term, multi-generation genetic transmission 
resulting from standard twin births would nonetheless require 
investigation in order to understand population-level allele 
frequency dynamics in this species, given this inherent viola
tion of standard modeling assumptions.

The first marmoset genome, assembled from whole-genome 
shotgun plasmid, fosmid, and BAC end sequences, was pub
lished in 2014 (The Marmoset Genome Sequencing and 
Analysis Consortium 2014). Additional studies have since 
continued to improve upon this initial assembly (see the review 
of Vallender 2019), filling in gaps and refining gene annota
tions, with the most recent reference genome now exhibiting 
98.3% completeness (Yang et al. 2021). Population genomic 
inference has thus far been limited to characterizing general 
levels of genetic diversity and divergence in the species 
(Faulkes et al. 2003; Malukiewicz et al. 2014; Yang et al. 
2021, 2023; Mao et al. 2024), as well as performing genomic 
scans, some of which have implicated genes putatively in
volved in twinning as having experienced long-term positive 
selection (Harris et al. 2014). Importantly however, no study 
to date has attempted to model the effects of chimerism on 
population genetic inference, though one may readily hy
pothesize that effectively treating sampled chimeras as a single 
individual (i.e. as though sequenced from a single non- 
chimeric blood/tissue sample) may well have important impli
cations for observed levels and patterns of genetic variation 
and thus on downstream evolutionary inference. For example, 
Mao et al. (2024) found that a non-chimeric closely related 
platyrrhine (owl monkeys, for which the rate of twinning is 
also considered to be extremely low; Huck et al. 2014) was 
characterized by considerably lower divergence to humans 
compared with marmosets, while Harris et al. (2023) found 
that marmosets had a generally reduced relative heterozygos
ity. However, the potential effects of twinning and chimerism 
themselves on these observations were left unexplored, and it 
thus remains unclear whether these unusual reproductive dy
namics, or, for example, fundamental differences in popula
tion size and/or mutation rates, better explain these patterns.

The Importance of Evolutionary Baseline Models
As a focal point of population genetic inference is on quantify
ing the relative roles of neutral and selective processes in gov
erning levels and patterns of genetic variation, and as 
chimerism likely plays an additional role in shaping this vari
ation, it is thus necessary to evaluate expectations associated 
with this inherent “twin-sampling.” However, chimerism 
and twinning aside, disentangling these competing processes 
is already relatively challenging (for a discussion, see the re
views of Charlesworth and Jensen 2022; Jensen 2023). As 
but one example, population growth, background selection 
(BGS; Charlesworth et al. 1993), and recurrent positive selec
tion (Maynard Smith and Haigh 1974) can all result in a similar 
skew toward rare alleles when examining allele frequency distri
butions (i.e. the site frequency spectrum [SFS]; Kim 2006; Jensen 

et al. 2007; Nicolaisen and Desai 2012, 2013; Ewing and Jensen 
2014, 2016; Johri et al. 2021; Soni et al. 2023; and see the re
views of Charlesworth and Jensen 2021, 2024). Apart from nat
ural selection and genetic drift, heterogeneity in underlying 
mutation and recombination rates across the genome can also 
modify these expectations in significant ways (Dapper and 
Payseur 2018; Samuk and Noor 2022; Soni et al. 2024a). For 
these reasons, the case has been made that prior to evaluating ge
nomes for evidence of relatively uncommon evolutionary proc
esses such as positive and balancing selection, one must first 
construct an evolutionarily appropriate baseline model account
ing for these constantly operating evolutionary processes (Bank 
et al. 2014; Johri et al. 2022b).

Importantly, the appropriate approach to take when ac
counting for the potentially confounding effects of, for ex
ample, selection inference with demographic inference will 
depend on the specific details of the genome architecture of 
the species in question. In coding-dense genomes, the large 
genomic fraction of directly selected sites implies that there 
may be few genomic regions that are free from the effects of 
either direct selection or selection at linked sites. As such, 
the majority of genomic regions are likely shaped by both dem
ography and selection (e.g. Irwin et al. 2016; Sackman et al. 
2019; Jensen 2021; Morales-Arce et al. 2022; Terbot et al. 
2023a, 2023b; Howell et al. 2023; Soni et al. 2024b). Under 
this scenario, it is necessary to simultaneously infer population 
history and selection jointly, and approximate Bayesian com
putation (ABC) approaches have been developed for this pur
pose (Johri et al. 2020, 2021, 2023)—though it should be 
noted that, owing to the large number of underlying parame
ters involved, these approaches have remained limited to sim
plified demographic models to date.

By comparison, there are notable advantages to performing 
evolutionary inference in species with coding-sparse genomes 
(including marmosets and other primates). Owing to the 
prevalence of neutral sites at sufficient recombinational distan
ces from functional sites, such that they are unlikely to experi
ence BGS effects (Charlesworth et al. 1993), so-called “2-step” 
inference approaches become viable (see Soni and Jensen 
2025). Here, population history can be inferred from neutral 
intergenic regions, and numerous well-performing neutral 
demographic estimators have been developed for such pur
poses (e.g. Gutenkunst et al. 2009; Excoffier et al. 2013; and 
see the review of Beichman et al. 2018). Conditional on the 
population history inferred in this first step, selective processes 
can then be inferred using functional sites in a second step. 
Crucially, this baseline model accounting for population his
tory, structure, and gene flow, together with the action of puri
fying and background selection in and around functional 
regions, has been found to be important for reducing false- 
positive rates when scanning for the episodic effects of positive 
or balancing selection (e.g. Barton 1998; Przeworski 2002; 
Jensen et al. 2005; Poh et al. 2014; Harris and Jensen 2020; 
Soni and Jensen 2024; and see Johri et al. 2022a). Such multi- 
faceted analyses of the inter-related evolutionary processes of 
mutation and crossover/non-crossover rates, with population 
history and purifying selection, have been executed in a small 
number of non-chimeric primate species, including in both a 
haplorrhine (humans; Kong et al. 2002; DeGiorgio et al. 
2016; Carlson et al. 2018; Johri et al. 2023; Ragsdale et al. 
2023; Soni and Jensen 2025) and a strepsirrhine (aye-ayes; 
Versoza et al. 2024, 2025a, 2025b; Soni et al. 2024c, 2025a, 
2025b; Terbot et al. 2025).
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Incorporating Chimerism into an Evolutionary 
Baseline Model
Given the long-standing and compelling evidence for chimer
ism in marmosets (see the review of Malukiewicz et al. 
2020), together with the high rate of twin births, these features 
will necessarily be an important component of the evolution
ary baseline model for this species in order to fully characterize 
neutral expectations. Notably, accounting for species-specific 
biology is not particularly uncommon in baseline model con
struction. For example, in species characterized by strong re
productive progeny skew (as observed e.g., in both marine 
and terrestrial broadcast spawners, as well as multiple patho
gens), one must similarly account for the impacts of such a 
Wright–Fisher (WF) model violation on downstream infer
ence, owing to related modifications of expected neutral pat
terns of variation (Eldon and Wakeley 2006; Matuszewski 
et al. 2018; Sackman et al. 2019; Sabin et al. 2022; and see 
the reviews of Tellier and Lemaire 2014; Irwin et al. 2016). 
Importantly, a neglect of this biological reality in affected or
ganisms has been demonstrated to result in both a mis- 
inference of population growth and the false detection of 
widespread positive selection (e.g. Durrett and Schweinsberg 
2004; Hallatschek 2018).

In this study, we thus uniquely construct an appropriate 
population genomic baseline model for C. jacchus and firstly 
examine the effects of twinning and hematopoietic chimerism 
on equilibrium expectations of levels (e.g. θ̂w; Watterson 
1975) and patterns (e.g. the SFS) of genetic diversity. 
Secondly, based on these observed deviations, we quantify 
the extent to which common demographic inference ap
proaches may be biased by the unaccounted for presence of 
these effects. Thirdly, we develop a novel ABC framework 
for inferring population history in the presence of both twin 
births and chimerism, and present a simulation study evaluat
ing the performance of this approach. Finally, we present nov
el population genomic data from 15 common marmoset 
individuals sequenced to high coverage and, utilizing gene- 
level annotations to identify genetic variation in intergenic re
gions appropriate for demographic inference, we apply our 
ABC approach to estimate a well-fitting population history 
for the species. Taken together, these results demonstrate the 
importance of accounting for these biological peculiarities 
when performing demographic inference in this species, with 
the resulting demographic model suggesting a population 
bottleneck in C. jacchus roughly 7,000 years ago, followed 
by a partial recovery. Paleoclimatic and palynological studies 
indicate a shift from arboreal to savanna vegetation in north- 
eastern Brazil during the timeframe of this bottleneck—an 
event that would be anticipated to impact a species that relies 
on arboreal locomotion.

Results and Discussion
Whole-Genome, Population-Level Data
In order to infer the population history of common marmosets 
(C. jacchus), we whole-genome sequenced 15 individuals pre
viously housed at the New England Primate Research Center 
to mean depths of 35× per individual (supplementary table 
S1, Supplementary Material online). Following best practices 
in the field (Pfeifer 2017), we mapped individual reads to the 
current marmoset reference genome and subsequently called, 
genotyped, and filtered variants using the Genome Analysis 
Toolkit workflow (van der Auwera and O’Connor 2020). 

Additionally, to account for the effects of both direct and 
background selection—2 evolutionary processes previously 
shown to bias demographic inference (e.g. Johri et al. 2021; 
and see the reviews of Charlesworth and Jensen 2021, 
2024)—we excluded any sites within, or sufficiently close to, 
functional regions prior to downstream analyses (see 
Materials and Methods for further details). The final data 
set of putatively neutral regions consisted of 1.4 million auto
somal, biallelic single nucleotide polymorphisms (SNPs) with 
a transition–transversion ratio (Ts/Tv) of 2.11 in the accessible 
genome (supplementary table S2, Supplementary Material on
line). Table 1 provides the means and standard deviations 
(SDs) of θW (Watterson 1975), Tajima’s D (Tajima 1989), 
and the number of singletons across these putatively neutral 
regions.

Evaluating the Impact of Chimerism and Twinning 
on the Performance of Common SFS-Based 
Estimators of Population History
As marmoset blood samples have been shown to contain gen
etic material from both the sampled individual and their dizyg
otic (fraternal) twin (Hill 1932; Wislocki 1939; Benirschke 
et al. 1962; Gengozian et al. 1969; Ross et al. 2007), we mod
eled chimerism by simulating a non-WF model in SLiM4 
(Haller and Messer 2023) in which monogamous mating pairs 
produce non-identical twin offspring. The genotypes of these 
twins were combined post-simulation to create a chimeric in
dividual (Fig. 1; and see Materials and Methods for further de
tails). To evaluate the performance of commonly used 
SFS-based demographic inference methods, we simulated a 
single neutrally evolving population under 4 demographic 
scenarios: (i) population equilibrium (with a single parameter 
Ncurrent, the population size at the time of sampling), as well as 
3 instantaneous population size change scenarios (with 3 pa
rameters each: Nancestral, the population size prior to the size 
change; T, the time of the size change in Nancestral generations; 
and Ncurrent)—namely, (ii) population expansion (population 
size doubling), (iii) population contraction (population size 
halving), and (iv) severe population contraction (population 
size reduced to 0.1Nancestral). These scenarios were simulated 
under both our chimeric model and a standard WF model in 
order to compare demographic inference power with and 
without chimerism. We performed demographic inference 
with the coalescent-based estimator fastsimcoal2 (Excoffier 
et al. 2013) and the diffusion approximation of δaδi 
(Gutenkunst et al. 2009), both of which are commonly used 
neutral estimators that fit a demographic model to the ob
served SFS.

Generally, chimerism resulted in mis-inference of demo
graphic parameters across all 4 population histories (see 
Fig. 2 for the results of the demographic inference of the equi
librium population, and see supplementary figs. S1 to S3, 
Supplementary Material online for the 3 population size 
change scenarios). Notably, the variance on parameter 

Table 1 Means and SDs of θW (Watterson 1975), Tajima’s D (Tajima 
1989), and the number of singletons across putatively neutral regions in 
the empirical data, calculated across 10 kb windows

θW Tajima’s D No. of singletons

Mean 0.0010 0.2548 0.0007
SD 0.0009 1.1484 0.0013
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estimates was greatly increased under chimerism relative to the 
WF population, with the direction of mis-inference depending 
on the underlying population history. For example, the time of 
size change, T, was underestimated by both demographic esti
mators for the expanding population (supplementary fig. S1, 
Supplementary Material online) but overestimated in the con
tracting populations (supplementary figs. S2 and S3, 
Supplementary Material online). This likely owes to the fact 
that both chimerism and population growth are acting to re
duce the correlation between underlying genealogies across 
the genome, and thus chimerism results in a mis-inference to
ward more recent growth, whereas chimerism and population 
decline are acting in opposite directions with regard to these ge
nealogical correlations, and thus chimerism results in a mis- 
inference toward a more ancient decline. As a general trend, 
θW (Watterson 1975) was reduced under chimerism relative 
to the WF model. This pattern is likely driven by monogamous 
non-identical twin births reducing the effective population 
size, while the increase in Tajima’s D (Tajima 1989) relative 
to the WF model is the result of fewer singletons in the chimeric 
genome (due to the combining of twin genomes) and thus a 
skew toward higher frequency alleles in the SFS (see 
supplementary fig. S4, Supplementary Material online). 

Combined with the increased variance in inferred parameters, 
these results suggest that standard neutral demographic esti
mators are not particularly well suited for inferring the popu
lation histories of chimeric species; thus, we have here 
developed a novel ABC approach for this purpose.

Inferring the Population History of Common 
Marmosets Using a Tailored ABC Approach
The first step in demographic inference is to infer the number 
of populations implied by the empirical data. Based on cross- 
validation errors (CVE) produced by ADMIXTURE 
(Alexander et al. 2009), a single population was found to be 
most likely (k = 1, CVE = 0.57035; k = 2, CVE = 0.74668; 
k = 3, CVE = 0.97710; k = 4, CVE = 1.21181; k = 5, CVE = 
1.28517, with k being the number of demes), as may be 
expected given that our samples were obtained from a single 
captive colony. Moreover, this result may be viewed as 
consistent with the current understanding of the natural geo
graphic range of the species being relatively localized, bounded 
by major river systems, and without obvious fragmentation 
(e.g. see Figure 3 of Malukiewicz et al. 2020). We therefore in
ferred parameters for a single population demographic model in 

Fig. 1. Modeling of chimerism. Marmoset blood samples contain genetic material from both the sampled individual and their dizygotic (fraternal) twin (at a 
1:1 ratio on average). To model chimerism, we thus combined the genotypes from an individual and its non-identical twin in a manner reflecting 
“haplotype-aware” and “haplotype-unaware” calling strategies, with the former identifying and resolving variants in the context of haplotypes (that is, 
distinguishing between maternal and paternal alleles) and the latter analyzing each locus either independently or with minimal local context. Marmoset 
cartoons were adapted from a picture taken by Eric Kilby and shared under the CC BY-SA 2.0 license; the blood vile and sequencer cartoons were taken 
from NIAID Visual & Medical Arts (07/10/2024). Cryo Blood Vial and Next Gen Sequencer. NIAID NIH BIOART Source: bioart.niaid.nih.gov/bioart/87 and 
bioart.niaid.nih.gov/bioart/386.
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which the population may potentially experience both con
traction and/or growth. The model contained 4 parameters: 
Nancestral (the ancestral diploid population size), Nchange (the 
proportionate instantaneous change in population size from 
Nancestral), Tchange (the time since the instantaneous size change 
in Nancestral generations), and Ncurrent (the population size at 
the time of sampling, with the size change between the instant
aneous size change event and the population size at time of 
sampling occurring via exponential growth or decline). 
Parameters were initially drawn from a uniform distribution 
with ranges: 1,000 ≤ Nancestral ≤ 50,000; 0.01 ≤ Nchange ≤ 2; 
0.01 ≤ Tchange ≤ 5; and 1,000 ≤ Ncurrent ≤ 50,000, with the 
upper limit of Nancestral and Ncurrent increased to 80,000 fol
lowing the first round of inference based on 1,000 draws 
from these priors. Given these parameter ranges, this model 
also allowed for no population size change (i.e. Nchange = 1 
and Ncurrent = Nancestral), a single step-size change, and exclu
sive population growth or decline. Simulations for the ABC in
ference were performed in SLiM4 (Haller and Messer 2023), 
with 100 replicates for each parameter combination. 
Although any number of summary statistics might be used 
for inference with ABC, we found that θW , Tajima’s D, and 
the number of singletons were the most informative summar
ies (further details of the ABC inference procedure are pro
vided in the Materials and Methods section).

Figure 3 depicts the posterior distributions for the 4 inferred 
parameters, the fit of the summary statistics for simulations 
across 50 ABC inference runs, and the inferred demographic 
model itself. The simulated demographic model utilizing the 
point estimates was found to fit the empirical data well, with 

the mean across simulation replicates capturing the mode of 
the empirical distribution. The values for these point estimates 
were Nancestral = 61,198, Nchange = 0.293, Tchange = 0.0287, 
and Ncurrent = 33,830, suggesting that the common marmoset 
underwent a major reduction in population size roughly 3,500 
generations ago, before recovering to roughly half of its ances
tral size. Notably, these parameter estimates are based on a 
mean mutation rate of 0.81 × 10−8 per base pair per gener
ation inferred in a closely related platyrrhine, owl monkeys 
(Thomas et al. 2018). Although a direct mutation rate estimate 
exists for common marmosets (0.43 × 10−8 per base pair per 
generation; Yang et al. 2021), this estimate was based on a sin
gle trio and the authors did not correct for the effects of chi
merism. Thus, while the shape of the inferred demographic 
model would remain well fitting, the parameter values them
selves would vary depending on the mutation rate scaling 
(e.g. the inferred population sizes would be close to twice as 
large under the mutation rate estimated by Yang et al. [2021]).

Inferring the Population History of Common 
Marmosets Using δaδi
We ran demographic inference across a range of 1D models 
with δaδi (Gutenkunst et al. 2009) in order to understand 
the extent of mis-inference when chimerism is unaccounted 
for (see Materials and Methods). The best-fitting model— 
based on the Akaike information criterion—was δaδi’s growth 
model, with inferred parameters of Nu = 0.402 and T = 0.270, 
where Nu is the ratio of ancient to contemporary population 
size and T is the time in the past at which growth began. 

Fig. 2. Demographic inference and summary statistics for simulations of an equilibrium, neutrally evolving population, across 100 simulation replicates, 
comparing WF and chimeric models. a) Demographic inference results from δaδi (Gutenkunst et al. 2009) and fastsimcoal2 (Excoffier et al. 2013). The y 
axis represents the inferred value of the single parameter, the population size (N ), relative to the true value of this parameter (Ninferred/Ntrue, with a value of 
1 indicating that the inferred and true values are in agreement). The orange line represents the mean inference value across 100 simulation replicates, with 
boxes representing the 25 and 75 percentiles and whiskers representing minimum and maximum values. b–d) Summary statistics including Watterson’s 
θ (θW ; Watterson 1975) per site, Tajima’s D (Tajima 1989) calculated in 10 kb windows, and the number of singletons per site. Points represent the mean 
values, while confidence intervals represent the variance.
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Thus, these parameters represent an ancestral population size 
of 69,189, with the population undergoing an exponential de
cline that began 37,397 generations ago, reaching a current 
day population size of 27,832 diploid individuals (see 
supplementary fig. S5, Supplementary Material online for a 
schematic of the best-fitting δaδi model and supplementary 
fig. S6, Supplementary Material online for the fit of the SFS be
tween the inferred model and the empirical data). Although 
δaδi inferred similar ancestral and current day population sizes 
as our tailored ABC approach, the demographic models are 
different in shape, with no bottleneck event inferred by δaδi. 
Moreover, the ABC-inferred model includes a recovery post- 
bottleneck—albeit to a much-reduced size relative to the an
cestral population size—whereas δaδi inferred a declining 
population. Crucially, δaδi inferred the decline as beginning 
over 10-fold generations earlier than the timing of our inferred 
bottleneck event. Our evaluation of neutral demographic esti
mators (see Evaluating the Impact of Chimerism and 
Twinning on the Performance of Common SFS-Based 
Estimators of Population History) demonstrated that the 
time of size change tends to be inflated by chimerism under 
models of population contraction (supplementary figs. S2
and S3, Supplementary Material online), which likely explains 
the substantially older timing of the size change inferred by 
δaδi compared with the ABC model. Indeed, the posterior 
probability of such an old size change event is extremely low 

once accounting for chimerism (Fig. 3g). Notably, and as 
shown in supplementary fig. S6, Supplementary Material on
line, there is nonetheless an appropriate fit between the SFS in
ferred by δaδi and that observed in the empirical data. These 
results therefore suggest that neglecting chimerism may result 
in a potentially mis-inferred but well-fitting demographic 
model.

Conclusions
Although C. jacchus has been designated with the conserva
tion status of least concern by the International Union for 
Conservation of Nature (Valença-Montenegro et al. 2021)— 
consistent with the relatively substantial population sizes 
here inferred—the species is of particular interest due to its fre
quent use in biomedical research (Vallender 2019) and be
cause of the biologically peculiar phenomenon of chimerism. 
Assuming generation times in the common marmoset to be 
around 2 years (Tardif et al. 2003; Park et al. 2016; 
Schultz-Darken et al. 2016), the demographic model would 
place the inferred population collapse ∼7,000 years ago. 
This timing corresponds to a period during the Holocene 
epoch when forest habitats were eroded both by the expansion 
of human agriculture in north-eastern Brazil and the expan
sion of savanna vegetation at the expense of arboreal vegeta
tion likely owing to a less humid climate, as evidenced in the 

Fig. 3. Results of the ABC demographic inference on the empirical marmoset data. a–c) Distribution of empirical summary statistics (the number of 
singletons per site, Tajima’s D [Tajima 1989] calculated in 10 kb windows, and Watterson’s θ [θW ; Watterson 1975] per site, shown in green) and the mean 
values from simulations of mean parameter values from the posterior distributions using a haplotype-aware modeling framework (blue dashed line) and a 
haplotype-unaware modeling framework (pink dashed line). d) Schematic of the demographic model with mean parameter values from the posterior 
distributions. e–h) Posterior distributions for 4 demographic model parameters: Nancestral (the ancestral diploid population size), Nchange (the proportionate 
instantaneous change in population size from Nancestral), Tchange (the time since the instantaneous size change, in Nancestral generations), and Ncurrent (the 
population size at time of sampling). Note that the differences in y axis scaling owes to the differences in parameter range sizes.
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carbon isotope record (Pessenda et al. 2004, 2010). Given that 
C. jacchus rely upon arboreal locomotion (Schiel and Souto 
2017), this erosion of arboreal vegetation in that period stands 
as a potential hypothesis for explaining the population reduc
tion inferred in this study. Moreover, this trend was reversed 
with a more humid phase that has continued to the modern 
day, which has been postulated to be associated with arboreal 
re-expansion (Pessenda et al. 2010). This re-expansion may 
explain the subsequent population recovery here estimated.

Overall, the well-fitting history inferred here based on a de
veloped framework for modeling both twin births and chimer
ism via forward-in-time simulation in an ABC framework, 
together with newly generated, high-quality, whole-genome, 
population-level genomic data, will prove valuable in future 
population genomic studies in this species. Moreover, numer
ous other organisms in addition to callitrichids have been ob
served to experience varying degrees of chimerism, ranging 
from tunicates (Casso et al. 2019), cnidarians and sponges 
(Little 1966; Maier et al. 2012), to particular fungi (Peabody 
et al. 2000). Within other vertebrates, microchimerism has 
been reported in cattle (Owen 1945), dogs (Axiak-Bechtel 
et al. 2013), and horses (Vandeplassche et al. 1970; and see 
the summary of Kapsetaki et al. 2023). While the biological 
details of these systems will require direct and individual mod
eling to account for different levels of chimerism, the frame
work presented here as well as the justification for 
incorporating chimerism into evolutionary inference schemes 
will thus prove valuable across multiple taxa. In addition, 
the neutral baseline model presented here for C. jacchus stands 
as a necessary prerequisite for further inference of both select
ive (e.g. the detection of positive and balancing selection) and 
neutral (e.g. the quantification of population-level recombin
ation maps) processes (Johri et al. 2022a). As our results 
have demonstrated the important impact of both twinning 
and chimerism in shaping observed levels and patterns of gen
omic variation—data summaries on which methods for infer
ring selective effects, for example, also depend—it is further 
anticipated that the simulation scheme described here will 
prove valuable for the construction of future evolutionary gen
omic analyses.

Materials and Methods
Empirical Data

Samples and Sequencing
Genomic DNA (gDNA) from 15 common marmosets (C. jac
chus) previously housed at the New England Primate 
Research Center was whole-genome sequenced to a target 
coverage of 35× per individual (supplementary table S1, 
Supplementary Material online). Individuals were genetically 
determined to be either unrelated or related to no more than 
the fourth degree (supplementary table S3, Supplementary 
Material online). All animals were maintained in accordance 
with the guidelines of the Harvard Medical School Standing 
Committee on Animals and the Guide for Care and Use of 
Laboratory Animals of the Institute of Laboratory Animal 
Resources, National Research Council. In brief, blood samples 
were collected during routine veterinary care under approved 
protocols. DNA was extracted using the FlexiGene kit 
(Qiagen, Valencia, CA) following manufacturer protocols. 
Prior to sequencing, the integrity of each gDNA sample was as
sessed using Agarose gel electrophoresis and the purity and 
concentration of samples were quantified using a NanoDrop 

Spectrophotometer and Qubit Fluorometer (Thermo Fisher 
Scientific, Waltham, MA, USA), respectively. Afterward, a 
PCR-free library was prepared for each sample and paired-end 
sequenced (2 × 150 bp) on the DNBseq platform at the Beijing 
Genomics Institute (BGI Group, Shenzhen, China). Sample 
information and coverage statistics are provided in 
supplementary table S1, Supplementary Material online.

Read Mapping
Raw sequencing data was preprocessed using SOAPnuke 
v.1.5.6 (Chen et al. 2018) to remove adaptor sequences, con
tamination, and low-quality reads (using the following com
mand line options: “-n 0.01 -l 20 -q 0.3 -A 0.25 --cutAdaptor 
-Q 2 -G --polyX --minLen 150”). Potentially remaining adapt
er sequences were marked using the Genome Analysis Toolkit 
(GATK) MarkIlluminaAdapters tool v.4.1.8.1 (van der 
Auwera and O’Connor 2020). Next, reads were mapped to 
the C. jacchus genome assembly of the Vertebrate Genomes 
Project (consisting of the maternal assembly for all autosomes 
and chromosome X and the paternal assembly for the Y 
chromosome; GenBank accession numbers: GCA_ 
011078405.1 and GCA_011100535.1; Yang et al. 2021) using 
the Burrows–Wheeler Aligner (BWA-MEM) v.0.7.17 (Li and 
Durbin 2009). To improve alignments, duplicates were 
marked using GATK MarkDuplicates v.4.2.6.1 prior to vari
ant calling.

Variant Calling, Genotyping, and Filtering
For each individual, germline variants were called from high- 
quality mappings (“--minimum-mapping-quality 40”) using 
the GATK HaplotypeCaller v.4.2.6.1 in base-pair resolution 
mode (“-ERC BP_RESOLUTION”) to obtain calling informa
tion at each site of the genome. Thereby, the 
“--pcr-indel-model” was set to “NONE” as a PCR-free library 
protocol was followed during sequencing. Individual call sets 
were combined using GATK’s CombineGVCFs v.4.2.6.1 and 
jointly genotyped at all sites (“-all-sites”) using GATK’s 
GenotypeGVCFs v.4.2.6.1. Next, the data set was separated 
into autosomal, biallelic SNPs and monomorphic (i.e. invari
ant) sites genotyped in all individuals (AN = 30).

In the absence of a high-quality set of experimentally con
firmed variants to train GATK’s Variant Quality Score 
Recalibration algorithm, variant sites were “hard” filtered us
ing GATK’s SelectVariants and VariantFiltration tools 
v.4.2.6.1 following the developers’ recommendations, using 
only those filter criteria not expected to be impacted by chimer
ism (i.e. QD < 2.0, SOR > 3.0, FS > 60.0, RMSMapping 
Quality < 40.0, MappingQualityRankSumTest < −12.5, 
ReadPosRankSumTest < −8.0; for details, see GATK 
tutorials—[How to] filter variants by hard filtering). In add
ition, as repetitive regions are prone to alignment errors and 
as extremely low or high read coverage is a frequent sign of se
quencing and/or assembly issues (see discussion in Pfeifer 
2017), SNPs located within repetitive elements as well as those 
supported by reads with less than half, or more than twice, the 
average individual autosomal depth of coverage were excluded 
from further analysis. To obtain information about the num
ber of sites accessible to the study, invariant sites were, when 
applicable, subjected to the same filter criteria as variant sites. 
The Ts/Tv—a commonly utilized quality measurement for var
iants obtained from population genomic data—of the final 
variant data set was 2.11 (supplementary table S2, 
Supplementary Material online) which compares well to the 
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Ts/Tv reported in other primates (e.g., see Wang et al. 2015 and 
references therein), providing support for the high quality of 
the final, filtered data set.

Putatively Neutral Regions
To prevent biases in demographic inference due to positive se
lection, purifying selection, and/or background selection ef
fects, variant and invariant sites were restricted to putatively 
neutral regions. Specifically, sites within 10 kb of exons (based 
on 22,355 protein-coding genes annotated in the C. jacchus 
genome; Yang et al. 2021) as well as genomic regions con
served across the primate clade (Kuderna et al. 2024 ) were 
masked, resulting in a data set of 1.4 million autosomal, bial
lelic SNPs with a Ts/Tv of 2.11 in the accessible genome 
(supplementary table S2, Supplementary Material online). 
The masking of 10 kb around exons has been shown both ana
lytically and via simulation to be conservative for eliminating 
likely background selection effects in primate-like genomes, 
accounting for different DFE shapes, exon lengths, and recom
bination environments (Johri et al. 2020, 2023). Summary sta
tistics were calculated across 10 kb windows with a 5 kb step 
size using the Python implementation of libsequence v.1.8.3 
(Thornton 2003), with means and SDs of the following statis
tics: the number of segregating sites (S), the number of single
tons, θW (Watterson 1975 ), and Tajima’s D (Tajima 1989).

Evaluating the Impact of Chimerism on 
Demographic Inference

Simulations of Chimerism in a Non-WF Framework
The non-WF framework in SLiM v.4.3 (Haller and Messer 
2023) was used to simulate chimerism in dizygotic (fraternal) 
twins. In each generation, a random pair of individuals was 
joined as a monogamous breeding pair, with each subsequent 
reproductive event exclusively generating pairs of non- 
identical twins. This step thus models the biology of twinning. 
At the end of each simulation, all individuals were sampled 
along with their pedigree IDs. For downstream inference, the 
genomes of chimeric twins were subsampled post-simulation 
and their genotypes combined in a manner reflecting 
“haplotype-aware” and “haplotype-unaware” calling strat
egies, with the former identifying and resolving variants in 
the context of haplotypes as implemented, for example, in 
the GATK HaplotypeCaller used in this study (which assem
bles reads into haplotypes using de Bruijn graphs) and 
DeepVariant used in several large-scale genomics projects 
such as the UK Biobank and the 1,000 Genomes Project 
(which uses a deep-learning model informed by haplotypes; 
Yun et al. 2021) and the latter analyzing each locus either in
dependently or with minimal local context as implemented, 
for example, in other popular software such as SAMtools mpi
leup (Danecek et al. 2021). This choice of chimeric sampling 
was motived by the fact that in a haplotype-unaware frame
work, the caller focuses by and large on the allele balance 
(i.e. the proportion of reads supporting the reference allele 
and those supporting the alternative allele) at any given site, 
and hence, many chimeric genotypes would appear as hetero
zygous (Fig. 1). In contrast, in a more sophisticated 
haplotype-aware framework as focused upon in this study, 
callers distinguish between maternal and paternal alleles. 
Thereby, many variant callers, including GATK, are “de
signed to be very lenient in order to achieve a high degree of 
sensitivity”—in other words, GATK is inclined to call a 

mutation if a mismatch to the reference genome exists in the 
sequencing reads in order to “minimize the chance of missing 
real variants” (for additional details, see the GATK Best 
Practices Workflows—Germline Short Variant Discovery). 
As such, if a mutation is present in the unsampled twin, it 
will nonetheless be detected in the sequencing reads and thus 
interpreted as a variant in the sampled chimeric individual. 
Practically speaking, this means that sequencing reads from 
blood samples are being interpreted as containing genetic ma
terial from both twins (i.e. sequencing one individual is effect
ively the same as sequencing 2 individuals and combining their 
variant calls)—though it should be noted that the proportion 
of reads needed to support a variant in empirical data will nat
urally depend on several additional biological and technical 
factors (such as sequencing depth, per-base confidence scores, 
mapping qualities, sequence context, e.g. GC-content or prox
imity to repeats or structural variants, and hematopoietic pro
portion of sample source) and the statistical details of how a 
given calling model weighs this evidence to compute genotype 
probabilities. This step thus models chimeric sampling.

Demographic Model Testing
In order to evaluate the impact of chimerism on demographic 
inference, simulations were performed under 4 population his
tories: (i) population equilibrium, (ii) population expansion 
(instantaneous population size doubling), (iii) population con
traction (instantaneous population halving), and (iv) severe 
population contraction (instantaneous population size reduc
tion to 0.1N ). For each population history, 100 replicates of a 
1 Mb region were simulated in a single population of 10,000 
diploid individuals, with recombination rate of 1.0 × 10−8 

per base pair per generation (Dumont and Payseur 2008) 
and a mutation rate of 2.5 × 10−8 per base pair per generation 
(Nachman and Crowell 2000) for testing purposes. After a 
burn-in of 14Nancestral generations (where Nancestral is the ini
tial population size of 10,000), a size change occurred (when 
applicable) and samples were taken after an additional 
0.01N generations. Afterward, 10 chimeric and 10 non- 
chimeric individuals were constructed as described in 
Simulations of Chimerism in a Non-WF Framework.

Demographic inference was performed separately on chi
meric and non-chimeric individuals using 2 commonly used 
demographic estimators: fastsimcoal2 (version fsc27; 
Excoffier et al. 2013) and δaδi (version 2.0.5; Gutenkunst 
et al. 2009). In the equilibrium model, a single population 
size parameter—the current population size (Ncurrent)—was 
inferred using fastsimcoal2 whereas in δaδi, θ was first esti
mated from the SFS and Ncurrent calculated from θ. In the 
population size change models, simulated spectra were fitted 
to the instantaneous size change (growth/decline) model in 
fastsimcoal2, which fits 3 parameters: the ancestral popula
tion size (Nancestral), the current population size (Ncurrent), 
and the time of change (τ). The parameter search ranges for 
Nancestral and Ncurrent were specified to be uniformly distrib
uted between 10 and 100,000 individuals, while the range 
for τ was specified to be uniform between 10 and 10,000 gen
erations. For size change inference in δaδi, the two_epoch 
model was used to fit 2 parameters: the current population 
size relative to the ancestral population size (Nuopt) and the 
time of change relative to the ancestral population size (τopt), 
with Ncurrent once more calculated from θ. For each simulation 
replicate, 15 starting values between −2 and 2 were drawn for 
Nu and 8 starting values between −2 and 2 were drawn for τ, 
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both evenly distributed in log space, creating a total of 120 dif
ferent starting parameterizations.

In fastsimcoal2, inference was conducted 100 times per 
simulation replicate, with 100 optimization cycles per run, 
and 500,000 coalescent simulations to approximate the ex
pected SFS in each cycle. The best fit was that with the smallest 
difference between the maximum observed and the maximum 
estimated likelihood. In δaδi, the maximum number of itera
tions for the optimizer was set to 100 to facilitate convergence. 
The best fit for each simulation replicate was that with the 
lowest log-likelihood score.

Inferring the Population History of Common 
Marmosets
As the initial step in estimating the demographic history of the 
common marmoset, the extent of population structure was de
termined by ADMIXTURE v.1.3.0 (Alexander et al. 2009), 
using a range of k values from 1 to 5, where k is the number 
of demes. The number of demes and deme assignment of indi
viduals was based on the value of k with the lowest CVE.

Demographic Inference Using ABC on Empirical Data
Following the approach described in Simulations of 
Chimerism in a Non-WF Framework, 100 replicates of a 
1 Mb region were simulated in SLiM v.4.3 (Haller and 
Messer 2023). Thereby, mutation and recombination rate het
erogeneity were modeled by sampling rates from a normal dis
tribution with a mean of 0.81 × 10−8 per base pair per 
generation (the mutation rate inferred in a closely-related 
platyrrhine, owl monkeys; Thomas et al. 2018) and 1.0 × 10−8 

per base pair per generation (the recombination rate observed 
in humans; Kong et al. 2002), respectively, and a SD of a quar
ter of the mean.

For the ABC, parameters were drawn from a uniform distri
bution with ranges: 1,000 ≤ Nancestral ≤ 80,000; 0.01 ≤ Nchange 

≤ 2; 0.01 ≤ Tchange ≤ 5; and 1,000 ≤ Ncurrent ≤ 80,000, with the 
upper limit of Nancestral and Ncurrent increased to 80,000 fol
lowing the first round of inference based on 1,000 draws 
from these priors. A further 100 draws were generated based 
on the posterior distribution generated using the “neural 
net” regression method with the default parameters provided 
by the R package “abc” (Csilléry et al. 2012). A 100-fold 
cross-validation analysis was performed in order to determine 
the performance and accuracy of inference for tolerance values 
of 0.05, 0.08, and 0.1, with a tolerance of 0.08 identified as the 
most accurate. This value was employed for inference of final 
parameter values, meaning that 8% of all simulations were ac
cepted by the ABC to estimate the posterior probability of par
ameter estimates. Inference was performed 50 times, with the 
mean of the weighted medians of the posterior estimates taken 
to determine point estimates of the inferred parameters. 
Finally, the demographic model was simulated in SLiM v.4.3 
under these parameter values and plotted against the empirical 
distribution (Fig. 3).

Demographic Inference Using δaδi on Empirical Data
For comparison with the ABC results, demographic inference 
on the empirical data was also performed using δaδi 
(Gutenkunst et al. 2009). Specifically, inference was per
formed on 5 1D demographic models, supplied as part of 
the δaδi package: the standard neutral model (SNM), as well 
as two_epoch, three_epoch, growth, and bottlegrowth models 

(see δaδi documentation for further details). Inference was per
formed 100 times, with 300 maximum iterations per run. 
Supplementary table S4, Supplementary Material online lists 
the parameter ranges for each demographic model. The best- 
fitting model was determined by calculating the Akaike infor
mation criterion (Akaike 1974), which weights the likelihood 
of the model by the number of model parameters.

Supplementary Material
Supplementary material is available at Molecular Biology and 
Evolution online.
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