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ABSTRACT 1 

 2 

 The common marmoset (Callithrix jacchus) is an important model in biomedical and 3 

clinical research, particularly for the study of age-related, neurodegenerative, and 4 

neurodevelopmental disorders (due to their biological similarities with humans), infectious disease 5 

(due to their susceptibility to a variety of pathogens), as well as developmental biology (due to 6 

their short gestation period relative to many other primates). Yet, while being one of the most 7 

commonly used non-human primate models for research, the population genomics of the common 8 

marmoset remains relatively poorly characterized, despite the critical importance of this 9 

knowledge in many areas of research including genome-wide association studies, models of 10 

polygenic risk scores, and scans for the targets of selection. This neglect owes, at least in part, 11 

to two biological peculiarities related to the reproductive mode of the species — frequent twinning 12 

and sibling chimerism — which are likely to affect standard population genetic approaches relying 13 

on assumptions underlying the Wright-Fisher model. Using high-quality population genomic data, 14 

we here infer the rates and landscapes of mutation and recombination — two fundamental 15 

processes dictating the levels and patterns of genetic variability — in the presence of these 16 

biological features, and discuss our findings in light of recent work in primates. Our results suggest 17 

that, while the species exhibits relatively low neutral mutation rates, rates of recombination are in 18 

the range of those observed in other anthropoids. Moreover, the recombination landscape of 19 

common marmosets, like that of many vertebrates, is dominated by PRDM9-mediated hotspots, 20 

with artificial intelligence-based models predicting an intricate 3D-structure of the species-specific 21 

PRDM9-DNA binding complex in silico. Apart from providing novel insights into the population 22 

genetics of common marmosets, given the importance of the availability of fine-scale maps of 23 

mutation and recombination for evolutionary inference, this work will also serve as a valuable 24 

resource to aid future genomic research in this widely studied system.       25 
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 3 

INTRODUCTION 26 

 27 

The introduction of new genetic variation through the process of mutation and its 28 

reorganization through crossover and non-crossover events — the two possible outcomes of 29 

meiotic recombination — are key evolutionary mechanisms that influence genomic diversity. Both 30 

processes are known to be highly variable across species, with rates differing between 31 

populations, individuals, and sites within a genome (see the reviews by Baer et al. 2007; Lynch 32 

2010; Hodgkinson and Eyre-Walker 2011; Pfeifer 2020b for an overview of mutation rate variation 33 

and a discussion of its genetic determinants, and the reviews by Ritz et al. 2017; Stapley et al. 34 

2017; Johnston 2024 for an overview of recombination rate variation). Importantly, the uneven 35 

distribution of mutation and recombination rates across genomes can profoundly influence 36 

interactions amongst other evolutionary processes; for instance, heterogeneity in these 37 

underlying rates may substantially modify the effects of selection at linked sites, and thereby 38 

modify expectations of both levels and patterns of genetic variation (reviewed by Charlesworth 39 

and Jensen 2021, 2022). Additionally, relying on simplified, species-averaged rates of mutation 40 

and recombination — as is common practice in many evolutionary inference applications — has 41 

been shown to potentially lead to mis-inference in downstream analyses, including those 42 

estimating population history and the distribution of fitness effects (Dapper and Payseur 2018; 43 

Samuk and Noor 2022; Ghafoor et al. 2023; Soni et al. 2024; Soni and Jensen 2025). Yet, despite 44 

their crucial importance, both processes remain relatively poorly characterized in many 45 

vertebrates.     46 

 47 

 There are two primarily classes of approach for estimating both mutation and 48 

recombination rates in primates and other large organisms. Direct approaches utilize genomic 49 

data from parent-offspring trios or multi-generation pedigrees in order to detect de novo mutations 50 

(reviewed by Pfeifer 2020b, and see also Pfeifer 2021), or contemporary crossover and non-51 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 10, 2026. ; https://doi.org/10.1101/2025.07.01.662565doi: bioRxiv preprint 

https://doi.org/10.1101/2025.07.01.662565


 4 

crossover events occurring between generations (reviewed by Clark et al. 2010). The resolution 52 

of these pedigree-based inference approaches at the genome scale remains relatively coarse 53 

due to the limited number of de novo mutations and meiotic exchanges that can be observed in 54 

the small number of generations characterizing the sample. Hence, given the hundreds to 55 

thousands of pedigreed individuals required to obtain high resolution maps, most studies typically 56 

yield only a genome-wide estimate over the limited generational span studied, rather than 57 

providing detailed information about the finer scale landscapes. Moreover, due to the extensive 58 

sample and sequencing requirements, direct approaches tend to be labor-intensive and costly, 59 

limiting their application, particularly in organisms for which resources remain limited. Indirect 60 

approaches, on the other hand, rely on population genetic theory and information about the 61 

genealogy of the sample over longer evolutionary timescales. Indirect estimates of mutation rate, 62 

for example, rely on species-level divergence data, based on the observation that the neutral 63 

mutation rate is equal to the neutral divergence rate (Kimura 1968). This allows for the inference 64 

of historically averaged mutation rates from phylogenetic sequence data in neutrally-evolving 65 

genomic regions. Although in principle straightforward, this approach is limited by the availability 66 

of high-quality genome annotations necessary to identify neutrally-evolving regions — which are 67 

lacking for many non-model organisms — and is often accompanied by significant uncertainties 68 

related to divergence and generation times, typically resulting in a range of possible mutation 69 

rates (see e.g., Soni et al. 2025c). Indirect recombination rate inference relies on polymorphism 70 

rather than divergence data, analyzing unrelated individuals in order to estimate historical sex-71 

averaged rates of recombination based on the extent of observed linkage disequilibrium (LD) in 72 

the genome (reviewed by Stumpf and McVean 2003; Peñalba and Wolf 2020). For this reason, 73 

these methods are sensitive to other evolutionary forces shaping LD (Dapper and Payseur 2018; 74 

Samuk and Noor 2022) and it is thus crucial to account for the underlying population history when 75 

performing such analyses (Johri et al. 2020, 2022; Jensen 2023). Yet, despite these caveats, 76 

these approaches are also uniquely capable of providing a fine-scale, genome-wide mapping of 77 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 10, 2026. ; https://doi.org/10.1101/2025.07.01.662565doi: bioRxiv preprint 

https://doi.org/10.1101/2025.07.01.662565


 5 

underlying sex-averaged rates over many generations necessary for evolutionary analyses (see 78 

the discussion in Johri et al. 2022).  79 

 80 

Within primates specifically, high-quality, fine-scale rate estimation has generally been 81 

focused upon humans and their closest relatives, the great apes, as well as a handful of species 82 

of biomedical or conservation interest (e.g., Kong et al. 2002; Auton et al. 2012; Stevison et al. 83 

2016; Pfeifer 2020a; Xue et al. 2020; Wall et al. 2022; Versoza et al. 2024, 2025a,b; Soni et al. 84 

2025c; and see the discussion of Soni et al. 2025d). In the primates studied to date as well as in 85 

numerous other organisms, meiotic recombination has been found to be concentrated in hotspots, 86 

the location of which is primarily determined by the zinc-finger protein PRDM9 (Baudat et al. 2010; 87 

Myers et al. 2010; Parvanov et al. 2010). Notably, PRDM9 has evolved rapidly across primates, 88 

showing a high variability in the number of zinc-fingers as well as their nucleotide contact residues, 89 

resulting in differences in the predicted nucleotide binding sequence and, consequently, in the 90 

hotspot positioning even between closely-related species (reviewed by Stapley et al. 2017; Lorenz 91 

and Mpaulo 2022; Johnston 2024; and see Schwartz et al. 2014 for a characterization of the allelic 92 

diversity in PRDM9 zinc finger domains of different primate species). As many evolutionary and 93 

biomedical studies require knowledge of the fine-scale patterns of recombination across the 94 

genome — such as rare disease gene mapping and genome-wide association studies that rely 95 

on patterns of LD to detect associations between genetic variants and phenotypic traits — and 96 

given the extensive variation in the distribution of recombination observed, it is thus important to 97 

obtain detailed maps characterizing the recombination frequency specific to the organism of 98 

interest. Yet, deeper in the primate clade, high-quality estimates of fine-scale mutation and 99 

recombination rates, or hotspot mapping, remain sparse — particularly across New World 100 

monkeys (platyrrhines) and prosimians (strepsirrhines) — limiting both our understanding of 101 

primate evolution in general and the accuracy and resolution of clinically-relevant genomic studies 102 

in primate model systems specifically.    103 
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 104 

In order to extend this inference, we here examine the common (or white-tufted-ear) 105 

marmoset, Callithrix jacchus, a relatively abundant platyrrhine monkey of the Callitrichidae family. 106 

As one of the smallest statured anthropoids, common marmosets have risen in biomedical 107 

prominence over the past two decades particularly as a commonly used model for the study of 108 

aging, neurodegeneration, and neurodevelopment disorders, as well as autoimmune and 109 

infectious disease dynamics (see e.g., the reviews by Miller et al. 2016; Philippens and 110 

Langermans 2021; Han et al. 2022), owing largely to their early sexual maturity (~15 to 18 months 111 

of age), short gestation period (~145 days), and high fecundity (birthing up to four offspring in a 112 

single pregnancy, with pregnancies occurring biannually). Interestingly, a notable peculiarity of 113 

marmoset biology, and that of several other callitrichines, is the frequent ovulation of two (or more) 114 

ova per cycle (Tardif and Jaquish 1997), resulting in common dizygotic (fraternal) twin births 115 

(Ward et al. 2014), and the exchange of hematopoietic stem cells during embryonic development 116 

via anastomoses in a single shared placenta, causing sibling chimerism (Hill 1932; Wislocki 1939; 117 

Benirschke et al. 1962; Gengozian et al. 1969). As a result, samples of blood and many other 118 

tissues obtained from marmosets have been observed to contain a mixture of genetic material 119 

originating from both the sampled individual and their unsampled littermate (Ross et al. 2007; 120 

Sweeney et al. 2012; del Rosario et al. 2024; and see the commentary by Chiou and Snyder-121 

Mackler 2024). Notably, recent genomic analyses have demonstrated that the high frequency of 122 

twinning together with chimeric sampling shape both levels and patterns of observed genetic 123 

variation — including LD — in this species, with Soni et al. (2025b) finding that a neglect of these 124 

biological factors can result in significant mis-inference of population history. Yet, the impact of 125 

these unusual reproductive dynamics on other types of population genomic inference remains 126 

unexplored to date. 127 

 128 
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Although a direct mutation rate point estimate exists for common marmosets (0.43 ´ 10-8 129 

per base pair per generation; Yang et al. 2021), this estimate was based on a single trio and, 130 

although the sampled tissues (muscle, liver, and spleen) are expected to exhibit lower levels of 131 

chimerism than blood, the authors did not correct for the effects of chimerism. In this instance, 132 

the potential 'counting' of twin-shared variants in a single individual sampled from a triplet may be 133 

expected to confound mutation counts and thus calculated rates. To lower the potential impact of 134 

chimerism on their estimate, the authors applied highly stringent filter criteria; however, this in turn 135 

may be expected to impact the overall number of genuine de novo mutations identifiable in their 136 

study. More recently, Mao et al. (2024) inferred a much-increased human-marmoset neutral 137 

divergence relative to the closely-related owl monkey-human divergence. In this case, the long-138 

term neutral divergence rate would not be expected to be impacted by twinning and chimeric 139 

sampling (i.e., neutral divergence will be driven by the neutral mutation rate, μ). In contrast to 140 

these studies of mutation, to the best of our knowledge, no fine-scale genetic map yet exists for 141 

the species. Helpfully, utilizing novel population genomic data from individuals sequenced to high-142 

coverage and annotated at the gene-level — and directly accounting for twinning and chimerism 143 

— Soni et al. (2025b) recently described a well-fitting population history consisting of a rapid 144 

reduction in population size roughly 7,000 years ago, followed by a modest recovery — a 145 

necessary prerequisite to interpret patterns of genetic variation and LD. Here, we utilize this 146 

modelling framework accounting both for this unique reproductive biology as well as population 147 

history, combined with high-quality whole-genome sequencing data, in order to quantify the rates 148 

and characterize the landscape of mutation and recombination in the common marmoset. Beyond 149 

providing valuable biological insights into the location and frequency of mutation and 150 

recombination in this New World monkey, these fine-scale maps will play a crucial role in 151 

enhancing future biomedical and evolutionary analyses integrating the significant nuance of 152 

accurate patterns of underlying genomic rate heterogeneity, thus improving our ability to study 153 

heritable genetic disorders in this widely used model system. In this effort, we have also uniquely 154 
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characterized the effects of twinning and chimeric sampling on indirect rate estimation more 155 

generally and describe the underlying impact on patterns of LD — insights which will be beneficial 156 

to future research focused on organisms characterized by chimerism.  157 
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MATERIALS AND METHODS 158 

Animal subjects 159 

 Animals were maintained in accordance with the guidelines of the Harvard Medical School 160 

Standing Committee on Animals and the Guide for Care and Use of Laboratory Animals of the 161 

Institute of Laboratory Animal Resources, National Research Council. All samples were collected 162 

during routine veterinary care under approved protocols. 163 

 164 

Whole genome sequencing 165 

 Our study was based on genomes of 15 captive common marmosets (C. jacchus) from 166 

the colony previously housed at the New England Primate Research Center. Whole genome 167 

sequencing data (150 bp paired-end reads) was generated on a DNBseq platform at the Beijing 168 

Genomics Institute (BGI Group, Shenzhen, China), targeting a genome-wide average coverage 169 

of ~35X. Genetic analysis confirmed that the selected individuals were largely unrelated, sharing 170 

no more than 1/16 of their DNA with any other individual from the colony included in this study. 171 

  172 

Read mapping, variant calling, and filtering 173 

 Following best practices in the field (Pfeifer 2017), we trimmed adapters, polyX tails, and 174 

low-quality ends from the raw reads using SOAPnuke v.1.5.6 with BGI-recommended parameter 175 

settings (i.e., ' -n 0.01 -l 20 -q 0.3 -A 0.25 --cutAdaptor -Q 2 -G --polyX --minLen 150'; Chen et al. 176 

2018) before mapping them to the species-specific reference genome (mCalJa1.2.pat.X; 177 

GenBank accession number: GCA_011100555.2; Yang et al. 2021) using BWA-MEM v.0.7.17 (Li 178 

2013). To avoid potential biases during variant calling and genotyping, we marked duplicates in 179 
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the mapped reads using the Genome Analysis Toolkit (GATK) v.4.2.6.1 MarkDuplicates (van der 180 

Auwera and O'Connor 2020). From these high-quality, duplicate-marked reads (' --minimum-181 

mapping-quality 40 '), we called variants for each individual using the GATK HaplotypeCaller in 182 

the ' --pcr-indel-model NONE ' mode as the data was obtained from PCR-free libraries. We then 183 

combined individual-level variant call sets and jointly genotyped them using GATK's 184 

CombineGVCFs and GenotypeGVCFs, respectively. In order to obtain information regarding the 185 

genomic regions accessible to the study, we emitted reference confidence scores at each locus 186 

(' --emit-ref-confidence BP_RESOLUTION ') and included genotypes of both variant and invariant 187 

loci in the output (' --include-non-variant-sites '). Lastly, we separated the jointly-genotyped call 188 

set into biallelic single nucleotide polymorphisms (SNPs) and invariant loci with genotype 189 

information available in all individuals (' AN = 30 '), with downstream analyses focusing on the 190 

autosomes (i.e., chromosomes 1-22) only.  191 

 Due to the lack of a well-curated, experimentally-validated dataset that could be 192 

harnessed for filtering variants via a machine-learning framework, we used the GATK 193 

VariantFiltration tool to quality-control the discovered loci following the developers' hard filtering 194 

recommendations (i.e., QD < 2.0, QUAL < 30.0, MQ < 40.0, FS > 60.0, SOR > 3.0, MQRankSum 195 

< -12.5, ReadPosRankSum < -8.0). As spurious variation can complicate the estimation of 196 

recombination rates from patterns of LD observed in population genomic data, we applied several 197 

additional stringent filtering criteria to limit the number of false positives in our data set, following 198 

the methodologies established in prior research (e.g., Auton et al. 2012; Stevison et al. 2016; 199 

Pfeifer 2020a; Soni et al. 2025c). In brief, as a skewed read coverage often results in poorly 200 

supported genotypes, we first used GATK's SelectVariants to remove loci located within genomic 201 

regions exhibiting less than half, or more than twice, the individual's genome-wide average 202 

coverage. Second, we excluded variants that were tightly clustered (using GATK's 203 

VariantFiltration with ' --cluster-size 3 ' and ' --cluster-window-size 10 ') as well as those exhibiting 204 
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high levels of heterozygosity (using VCFtools v.0.1.14 to filter out variants that have a Hardy-205 

Weinberg equilibrium exact test P-value < 0.01; Danecek et al. 2011), a common indicator of local 206 

genome mis-assembly. Lastly, we used BEDTools v.2.30.0 (Quinlan et al. 2010) to eliminate 207 

regions blacklisted by the ENCODE Project Consortium due to their poor performance in next-208 

generation sequencing (wgEncodeDacMapabilityConsensusExcludable.bed and 209 

wgEncodeDukeMapabilityRegionsExcludable.bed; Amemiya et al. 2019) by converting genomic 210 

coordinates between the human (hg38) and the common marmoset genome assemblies using 211 

the UCSC liftOver tool (Raney et al. 2024).  212 

 After filtering, the population-level dataset contained 7,198,428 autosomal biallelic SNPs 213 

in the accessible genome (Supplementary Table 1). 214 

 215 

Phasing 216 

 We estimated haplotypes from the population-level genotype data using BEAGLE v.5.5 217 

(Browning et al. 2021), a progressive phasing algorithm that has been shown to be highly accurate 218 

(Williams et al. 2012). During phasing, a total of 16,701 loci (0.23%) became non-polymorphic 219 

due to a change in genotype and were thus excluded from further analyses.  220 

 221 

Inferring fine-scale rates of neutral divergence and mutation  222 

 In order to infer fine-scale rates of neutral divergence and mutation, we first used Cactus 223 

v.2.9.2 (Armstrong et al. 2020) to extract the 239 primate genomes (Kuderna et al. 2024) from 224 

the 447-way multiple species alignment (Zoonomia Consortium 2020) and update the common 225 

marmoset genome with the most recent reference genome for the species utilized in this study. 226 
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To this end, we removed the common marmoset genome included in the multiple species 227 

alignment using the halRemoveGenome function and then extracted the alignment block 228 

consisting of the ancestral PrimateAnc232 genome and the genome of the closely related Wied's 229 

black-tufted-ear marmoset (C. kuhlii) using the hal2fasta function. We then re-aligned the current 230 

reference genome for the common marmoset with the genomes of PrimateAnc232 and C. kuhlii 231 

using the previously inferred branch lengths and updated the alignment using the 232 

halReplaceGenome function. With this updated multiple species alignment on hand, we identified 233 

fixed single nucleotide differences along the marmoset lineage (i.e., between the common 234 

marmoset and the ancestral primate PrimateAnc232 genomes) using the 235 

halSummarizeMutations function. In contrast to the common marmoset genome, the genome of 236 

Wied's marmoset is highly fragmented (293,512 scaffolds with a scaffold N50 of 15.1 kb totalling 237 

2.6 Gb compared to 1,233 scaffolds with a scaffold N50 of 137 Mb totalling 2.9 Gb), thus we 238 

removed alignments less than 10 kb in length in order to avoid spurious and/or incomplete 239 

alignments that might artificially inflate estimates of neutral divergence and mutation. Additionally, 240 

in order to obtain fixed differences along the human-marmoset branch, we obtained the sub-241 

alignment consisting of the common marmoset, human, and PrimatesAnc003 genomes from the 242 

multi-species alignment using the cactus-hal2maf function, converted this alignment back into 243 

HAL format (Hickey et al. 2013) using the maf2hal function, and then retrieved point mutations 244 

along the branch from C. jacchus to the ancestral PrimatesAnc003 using the halBranchMutations 245 

function. In order to obtain neutral substitutions between C. jacchus and C. kuhlii as well as 246 

between C. jacchus and humans, we excluded both variants known to segregate in any of the 247 

species (based on published population-level polymorphism data available for humans of 248 

Yoruban ancestry [1000 Genomes Project Consortium 2015] and common marmosets [Soni et 249 

al. 2025b]; note that no such population-level polymorphism data was available for Wied's 250 

marmoset) as well as sites within 10 kb of functional regions (based on the protein-coding genes 251 

annotated in the common marmoset genome). Using these datasets, we then calculated neutral 252 
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divergence at both the broad (genome-wide) scale and the fine scale (using 1 kb, 10 kb, 100 kb, 253 

and 1 Mb sliding windows with a step size of 500 bp, 5 kb, 50 kb, and 500 kb, respectively) by 254 

dividing the number of substitutions by the number of sites accessible to our study. To derive 255 

mutation rates, we divided the rates of neutral divergence between C. jacchus and C. kuhlii by 256 

the divergence time in generations. For this, we used three possible divergence time estimates 257 

— 0.59 million years ago (mya), 0.82 mya and 1.09 mya (based on the range of divergence times 258 

between C. jacchus and C. kuhlii inferred by Malukiewicz et al. 2021) — and two possible 259 

generation time estimates — 1.5 years and 2.0 years (Tardif et al. 2003; Okano et al. 2012; 260 

Schultz-Darken et al. 2016; Han et al. 2022).  261 

 262 

Inferring fine-scale rates of recombination  263 

 We used two different approaches to infer fine-scale rates of recombination: the 264 

demography-unaware estimator LDhat (McVean et al. 2002, 2004; Auton and McVean 2007) and 265 

its successor, the demography-aware estimator pyrho (Spence and Song 2019). 266 

 267 

LDhat: We inferred genome-wide fine-scale recombination rates in the common marmoset using 268 

LDhat v.2.2 (McVean et al. 2002, 2004; Auton and McVean 2007). To this end, we first generated 269 

a lookup table containing the coalescent likelihoods for every two-locus haplotype configuration 270 

possible in our sample of 15 diploid individuals (i.e., 30 haploids: ' -n 30 '), using LDhat complete 271 

with the suggested maximum population-scaled recombination rate r of 100  272 

(' -rhomax 100 ') and a grid size of 201 (' -n_pts 201 ') to improve accuracy. Next, we obtained 273 

region-based population-scaled estimates by running the interval function of LDhat with a block 274 

penalty of 5 (' -bpen 5 ') for 60 million iterations (' -its 60000000 ') using a sampling scheme of 275 

40,000 iterations (' -samp 40000 ') across windows of 4,000 SNPs with a 200 SNP step size. After 276 
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discarding the burn-in of the Monte Carlo Markov Chain using LDhat's stat function (' -burn 500'), 277 

we then combined the region-based estimates at the midpoint of each overlapping window to 278 

obtain estimates at the chromosome-scale. Following standard practices in the field (e.g., Auton 279 

et al. 2012; Pfeifer 2020a), we excluded large localized peaks in recombination rate (with r > 100 280 

between adjacent SNPs) to minimize the impact of genome assembly errors leading to artificial 281 

breaks in LD. In total, we identified 1,352 such regions and masked them together with the 50 282 

SNPs adjacent on each side by setting the recombination rate to 0 (masking a total of 42,348 283 

SNPs, or 0.59%). Finally, we used Ne based on the mean Q observed in the empirical data to 284 

convert the population-scaled recombination rate to a per-generation recombination rate, 285 

assuming a per-site per-generation mutation rate of 0.81 ´10-8 as per Soni et al. 2025b. 286 

pyrho: We also inferred genome-wide recombination rates using pyrho v.0.1.7 (Spence and Song 287 

2019). In brief, as recommended by the developers, we first used pyrho's make_table function to 288 

compute an approximate likelihood lookup table (' --approx ') for a 50% larger sample size (' -N 289 

45 ') under the demographic model previously inferred by Soni et al. 2025b to account for historical 290 

population size changes in the species (i.e., a population size reduction approximately 3,500 291 

generations ago, followed by an exponential population recovery) and then down-sampled this 292 

table to 15 diploid individuals (' -n 30 ') to match our empirical sample size. Next, we used the 293 

hyperparam function to determine suitable hyperparameter settings for pyrho and then ran the 294 

optimize function with the recommended window size (' --windowsize 30 ') and smoothness 295 

penalty (' --blockpenalty 50 ') to estimate genome-wide recombination rates. In all steps, we 296 

assumed a per-site per-generation mutation rate of 0.81 ´10-8 (' --mu 0.81e-8 ') as per Soni et al. 297 

2025b to internally convert the population-scaled recombination rate to a per-generation 298 

recombination rate. 299 
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To account for the impact of twinning and chimerism (see "Evaluating the impact of twinning and 300 

chimerism on recombination rate inference" below), we rescaled the LDhat and pyrho estimates 301 

by multiplying the rates by a factor of 0.574 and 0.761, respectively. 302 

 303 

Evaluating the impact of twinning and chimerism on recombination rate inference 304 

 Both LDhat and pyrho rely on coalescent theory and the theoretical foundation provided 305 

by the Wright-Fisher model to infer fine-scale recombination rates from population genomic data. 306 

To evaluate the impact of twinning and chimerism — two model violations inherent to the biology 307 

of marmosets — on the recombination rate inference with these two approaches, we used SLiM 308 

4.0.1 (Haller and Messer 2023) to simulate a population of marmoset individuals using the 309 

modelling framework recently described in Soni et al. (2025b). Specifically, we simulated 10 310 

replicates of a 1 Mb genomic region in a population of marmosets under the demographic model 311 

of the species recently inferred by Soni et al. (2025b) — consisting of an ancestral population of 312 

61,198 individuals that collapsed to 17,931 individuals 3,513 generations ago before recovering 313 

via exponential growth to a current day size of 33,830 individuals — assuming a mutation rate of 314 

0.81 x 10-8 per base pair per generation and a recombination rate of 1.0 ´ 10-8 per base pair per 315 

generation (as per the rates used in Soni et al. 2025b). From each replicate, we sampled 15 316 

chimeric individuals and estimated recombination rates using LDhat and pyrho (as described in 317 

"Inferring fine-scale rates of recombination"). 318 

 319 

 320 

 321 
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Inferring recombination hotpots 322 

 To infer the positions of recombination hotspots in the common marmoset, we used the 323 

software package LDhot v.0.4 (Auton et al. 2014). In brief, we first ran the ldhot function to identify 324 

putative recombination hotspots in 3 kb windows with a step size of 1 kb and a background 325 

window of 100 kb centered around the hotspot, using 1,000 simulations as recommended by the 326 

developers. Afterward, we combined significant windows to merge adjacent candidates using the 327 

ldhot_summary function with significance thresholds of 0.001 and 0.01 for calling and merging 328 

hotspots, respectively. To limit the number of spurious hotspots, we implemented a three-step 329 

filtering approach by combining the recommendations from the Great Ape Recombination Project 330 

(Stevison et al. 2016) with those of Brazier and Glémin (2024), filtering out any hotspot candidates 331 

with a width longer than 10 kb, an intensity lower than 4 or higher than 200, or a rate less than 332 

five times the chromosome-wide average rate. 333 

 334 

In silico prediction of PRDM9 binding motifs 335 

 We used the ZOOPS model implemented in MEME v.5.5.7 (Bailey and Elkan 1994) to 336 

identify 10-15 bp motifs present not more than once in each of the 1,000 hotspots with the highest 337 

intensity (including the flanking 500 bp to ensure that the entire hotspot is captured) while 338 

accounting for genomic background using cold spot regions matched for sequence length and 339 

GC-content. With these putative motifs on hand, we used FIMO v.5.5.7 to scan the complete set 340 

of hotspot windows for any occurrences and compared the frequency of each motif in the hotspot 341 

regions with that observed in 25,000 randomly sampled background regions using MOODS 342 

v.1.9.4.1 (Korhonen et al. 2009). We assessed the statistical significance by performing a Fisher's 343 

exact test in R v.4.2.2 (R Core Team 2022). 344 
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In silico characterization of PRDM9 binding 345 

 We used AlphaFold3 to predict the sequence-specific binding between PRDM9 and the 346 

putative PRDM9 binding motifs. To this end, we first retrieved the nucleotide sequence of PRDM9 347 

from the common marmoset genome and aligned it against the PRDM9 protein sequence 348 

annotated in the human telomere-to-telomere assembly (T2T-CHM13v2.0; Nurk et al. 2022) using 349 

GeneWise v.2.4.1 (Birney et al. 2004) to visually inspect the sequence for completeness. Next, 350 

we used the ExPASy web server (Duvaud et al. 2021) to translate the nucleotide sequence into 351 

an amino acid sequence. We then used this translated amino acid sequence as input for a protein-352 

protein BLAST (Altschul et al. 1990) search against the NCBI non-redundant protein sequences 353 

database (Supplementary Figure 1) and visualized the resulting phylogenetic tree using EMBL's 354 

interactive Tree of Life (Letunic and Bork 2021), noting a high similarity of the query to PRDM9 355 

sequences previously annotated in haplorrhines (Supplementary Figure 2). Next, we used 356 

InterPro (Blum et al. 2025) to predict protein domains within this sequence, confirming the 357 

presence of a Krueppel-associated box (KRAB) domain, a SSX repressor domain (SSXRD), a 358 

PR/SET domain, and a C2H2-type zinc finger array (Supplementary Figure 3). Finally, we ran 359 

AlphaFold3 (Abramson et al. 2024) by providing both the marmoset PRDM9 amino acid sequence 360 

and the putative PRDM9 binding motifs as input. 361 

 362 

Assessing the correlation of fine-scale rates of recombination with genomic features 363 

 To assess the correlation of fine-scale rates of recombination with different genomic 364 

features, we calculated a number of summary statistics across 100 kb windows along the 22 365 

autosomes of the common marmoset genome — including nucleotide diversity (based on our 366 

marmoset population genomic data), divergence (based on the updated 447-way mammalian 367 
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multiple species alignment as described in "Inferring fine-scale rates of neutral divergence and 368 

mutation"), GC-content and exon-content (both based on the annotations of the common 369 

marmoset assembly; Yang et al. 2021) — and calculated partial Kendall's rank correlations across 370 

windows in which at least 50% of sites were accessible using R v.4.2.2 (R Core Team 2022).  371 
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RESULTS AND DISCUSSION 372 

 373 

Population genomic data 374 

 Based on the genomes of 15 captive common marmoset (C. jacchus) individuals (seven 375 

females and eight males) sequenced to an average 35-fold coverage, we inferred fine-scale rates 376 

of neutral divergence, mutation, and recombination. In brief, using a mapping-based approach, 377 

we first identified 7.2 million SNPs across the autosomal genome with a transition-transversion 378 

ratio of 2.2 (Supplementary Table 1). To facilitate rate inference, we then estimated haplotypes 379 

from this population-level genotype data analogously to the 1000 Genomes (1000 Genomes 380 

Project Consortium 2015), PanMap (Auton et al. 2012), and Great Ape Recombination Maps 381 

(Stevison et al. 2016) projects, which previously generated fine-scale genetic maps for humans 382 

(Homo sapiens), Western and Nigerian chimpanzees (Pan troglodytes verus and P. t. ellioti), 383 

bonobos (P. paniscus), and Western gorillas (Gorilla gorilla gorilla).  384 

 385 

The landscape of neutral divergence and mutation in the common marmoset genome  386 

We first extracted the 239 primate genomes (Kuderna et al. 2024) from the 447-way 387 

multiple species alignment (Zoonomia Consortium 2020) and updated the common marmoset 388 

genome to the current reference assembly available for the species (Yang et al. 2021). With this 389 

updated whole-genome alignment on hand, we identified fixed single nucleotide differences along 390 

the marmoset lineage, i.e., between the genome of the common marmoset and the genome of 391 

the closely related Wied's black-tufted-ear marmoset (C. kuhlii). In contrast to the common 392 

marmoset genome generated by the Vertebrates Genomes Project using a combination of short-393 

read (Illumina) and long-read (PacBio) sequencing data and scaffolded using high-throughput 394 

chromosome conformation capture (Hi-C) and Bionano optical data, the genome of Wied's 395 
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marmoset remains highly fragmented, containing nearly 300,000 scaffolds. In order to avoid 396 

spurious and/or incomplete alignments that might artificially inflate estimates of neutral divergence 397 

and mutation, we thus removed any alignments shorter than 10 kb in length. In order to obtain 398 

neutral substitutions between C. jacchus and C. kuhlii, we additionally masked both regions within 399 

10 kb of known conserved or functional elements — thus, avoiding purifying and background 400 

selection effecting our analyses (Charlesworth et al. 1993) — and variants known to segregate in 401 

the species. Using this dataset, we then calculated neutral divergence across accessible sites at 402 

both the broad (genome-wide) scale and the fine scale (for additional details, see "Materials and 403 

Methods"). 404 

At the 1Mb-scale, we observed a neutral divergence rate of 9.85 ́  10-4 along the marmoset 405 

lineage relative to the reconstructed ancestor (see Supplementary Figure 4 for the distributions 406 

of neutral divergence across a range of window sizes). To calculate the neutral mutation rate, we 407 

then drew the point estimate, upper and lower bounds of common marmoset divergence times 408 

relative to C. kuhlii (0.59 mya, 0.82 mya, and 1.09 mya; Malukiewicz et al. 2021), and generation 409 

times of 1.5 and 2.0 years (Tardif et al. 2003; Okano et al. 2012; Schultz-Darken et al. 2016; Han 410 

et al. 2022). Depending on the underlying assumptions, the mean neutral mutation rate varied 411 

from 0.14 ´ 10-8 mutations per base pair per generation (under a divergence time of 1.09 mya 412 

and a generation time of 1.5 years) to 0.33 ´ 10-8 mutations per base pair per generation (under 413 

a divergence time of 0.59 mya and a generation time of 2.0 years; Table 1 and see Figure 1a for 414 

density plots of neutral mutation rate estimates across this range of possible divergence and 415 

generation times and Figure 1b for the inferred genome-wide neutral mutation rates). Notably, 416 

these indirectly inferred neutral mutation rates are lower than the direct estimate of 0.43 ´ 10-8 417 

mutations per base pair per generation obtained by Yang et al. (2021) from a single trio. While 418 

indirect phylogenetic approaches are naturally unable to observe strongly deleterious / lethal 419 

mutations that are purged from the population, the higher pedigree-based estimate observed by 420 
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Yang et al. (2021) might also partially be attributed to unaccounted for chimerism present in their 421 

genomic data (with non-germline tissues sampled from a single individual of a triplet).  422 

Given that the divergence time between C. jacchus and C. kuhlii is relatively short, we 423 

also generated fine-scale divergence estimates along the human-marmoset branch to obtain 424 

information over longer evolutionary time scales. Notably, comparisons between the mutation rate 425 

estimates indirectly obtained from the C. jacchus–C. kuhlii divergence and the neutral divergence 426 

estimates based on C. jacchus–H. sapiens alignments demonstrated a significant positive 427 

correlation at the fine scale (r = 0.235, P-value = 1.71E-59; and see Supplementary Figure 5 for 428 

the heterogeneity in neutral divergence and mutation rates across each autosome), providing 429 

additional confidence in our estimates. Moreover, mutation rates inferred using the divergence 430 

along the human-marmoset branch are highly similar to those obtained using C. jacchus–C. kuhlii 431 

divergence, ranging from 0.25 ´ 10-8 mutations per base pair per generation (under a divergence 432 

time of 36 mya and a generation time of 1.5 years) to 0.37 ´ 10-8 mutations per base pair per 433 

generation (under a divergence time of 32 mya and a generation time of 2.0 years; Table 1).  434 

Although it is unlikely that the generation time of common marmosets has remained constant over 435 

the >30 million years separating the two species (Glazko and Nei 2003), it is nevertheless 436 

encouraging that the marmoset-based and human-marmoset-based estimates are in such close 437 

correspondence. 438 

Taking the opposite approach, we inferred marmoset divergence times based on the mean 439 

neutral divergence rate observed in the empirical data and the previously published pedigree-440 

based mutation rate estimates for both common marmosets (0.43 ´ 10-8 mutations per base pair 441 

per generation; Yang et al. 2021) as well as the closely related (but non-chimeric) owl monkeys 442 

(0.81 ́  10-8 mutations per base pair per generation; Thomas et al. 2018) for which a larger number 443 

of trios were available. The estimated divergence times ranged from 0.18 mya (under a per-site 444 
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per-generation mutation rate of 0.81 ́  10-8 and a generation time of 1.5 years) to 0.49 mya (under 445 

a per-site per-generation mutation rate of 0.43 ´ 10-8 and a generation time of 2 years) 446 

(Supplementary Table 2). Notably, these whole-genome divergence times based on the 447 

marmoset and owl monkey mutation rates are considerably lower than those inferred by 448 

Malukiewicz et al. (2021) from mitochondrial DNA, due to the mutation rates being considerably 449 

higher than those inferred in this study. 450 

 451 

The landscape of recombination in the common marmoset genome  452 

 We used two different approaches to infer fine-scale rates of recombination — the 453 

demography-unaware estimator LDhat (McVean et al. 2002, 2004; Auton and McVean 2007) and 454 

its successor, the demography-aware estimator pyrho (Spence and Song 2019) — both of which 455 

rely on coalescent theory and the theoretical foundation provided by the Wright-Fisher (WF) 456 

model to infer fine-scale recombination rates from population genomic data. 457 

 Unlike most primates, twinning and chimerism are the norm rather than the exception in 458 

marmosets (Hill 1932; Wislocki 1939; Benirschke et al. 1962; Ward et al. 2014). To evaluate the 459 

impact of these two violations of the WF model inherent to the biology of marmosets, we first 460 

assessed the performance of the two recombination rate estimators on simulated data. Using the 461 

framework recently described in Soni et al. (2025b), we modelled twinning and chimerism from 462 

hematopoietic stem cells (as observed in blood samples) by first simulating a non-WF model in 463 

SLiM (Haller and Messer 2023) in which pairs of marmoset individuals reproduce each generation 464 

to give birth to non-identical twins and then combining their genotypes post-simulation to mimic a 465 

single chimeric individual (for additional details, see "Materials and Methods"). More specifically, 466 

we simulated genomic regions of 1 Mb under the demographic model of the population inferred 467 
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by Soni et al. (2025b) — consisting of an ancestral population of ~60k individuals that experienced 468 

a population decline before recovering to about half of its original size — using a non-WF model 469 

with twinning only as well as with both twinning and chimeric sampling, assuming a constant per-470 

site per-generation mutation rate of 0.81 x 10-8 and recombination rate of 1 cM/Mb (as per the 471 

rates used in Soni et al. 2025b), and sampling 15 chimeric individuals to match our empirical data. 472 

To aid the interpretation of the inference results, we additionally performed simulations under a 473 

standard WF model (i.e., without twinning or chimerism) for comparison. We then inferred the 474 

genome-wide recombination rates in the simulated data using LDhat and pyrho. In contrast to 475 

pyrho, LDhat outputs the population-scaled recombination rate (r) and we thus used the effective 476 

population size (Ne) based on the mean nucleotide diversity (Q) observed in each simulation 477 

scenario to obtain a per-generation recombination rate. 478 

Our simulations highlighted that both LDhat and pyrho tend to underestimate genome-479 

wide recombination rates inferred under the marmoset demographic model (Figure 2a), likely due 480 

to the recent population contraction and subsequent exponential expansion having resulted in a 481 

r at the time of sampling that is substantially different from that during most of the population 482 

history. This observation is consistent with the recent findings of a simulation study conducted by 483 

Dutheil (2024) which highlighted that classical LD-based approaches tend to underestimate 484 

recombination rates in populations characterized by population size declines and recent growth, 485 

particularly when sample sizes are moderate as is the case here (see Figures 1 and 2 in Dutheil 486 

2024; and see their Figure 4 for the increased mis-inference in the presence of gene conversion). 487 

In contrast, both approaches overestimate the per-generation recombination rate when twinning 488 

is common, as populations in which non-singleton births are the predominant mode of 489 

reproduction are characterized by both an increased LD and decreased Ne relative to the standard 490 

expectations. Chimerism, on the other hand, has the opposite effect, with chimeric sampling 491 

expected to both break up haplotypes — as evidenced by the reduced mean r2 (a measure of LD) 492 
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— and increase haplotype diversity due to the generation of novel haplotypes relative to the 493 

standard expectations (Figure 2b).  494 

Re-scaling the empirically observed recombination rate estimates to take into account the 495 

mis-inference caused by twinning and chimerism yielded an average sex-averaged genome-wide 496 

recombination rate of 0.91 ± 0.83 cM/Mb (100 kb windows) in common marmosets (Figure 3a), 497 

with sex-averaged crossover rates ranging from 0.65 cM/Mb for one of the longest autosomes 498 

(chromosome 4) to 1.29 cM/Mb for one of the shortest autosomes (chromosome 22) 499 

(Supplementary Figure 6). Although the rates inferred here for common marmosets are in the 500 

same range as those previously reported in the great apes (e.g., 1.32 ± 1.40 cM/Mb in humans 501 

[International HapMap Consortium 2007], with an average rate of 0.945 cM/Mb in males and 502 

1.518 cM/Mb in females [Halldorsson et al. 2019], and ~1.19 cM/Mb in chimpanzees, bonobos 503 

and gorillas [Stevison et al. 2016]), rates previously estimated for biomedically-relevant Old World 504 

monkeys are substantially lower (e.g., 0.43 ± 0.33 cM/Mb in rhesus macaques [Xue et al. 2016] 505 

and 0.43 ± 0.44 cM/Mb in vervet monkeys [Pfeifer 2020a]) — however, it should be noted that 506 

many of the earlier studies did not account for the potentially confounding effects of population 507 

demography during inference (see discussions of Dapper and Payseur 2018; Johri et al. 2022), 508 

thus hindering the interpretation of the biological differences in observed rates.  509 

In addition to the nearly two-fold variation between autosomes, the recombination 510 

landscape in common marmosets — like that of many other primates (e.g., Spencer et al. 2006; 511 

Auton et al. 2012; Pfeifer and Jensen 2016; Stevison et al. 2016; Pfeifer 2020a; Wall et al. 2022; 512 

Versoza et al. 2024; Soni et al. 2025c) — is highly heterogenous, with a pronounced enrichment 513 

in the distal (sub)telomeric regions and reduced rates within centromeric and pericentromeric 514 

regions (Figure 3a, and see Supplementary Figure 7 for recombination rate heterogeneity across 515 

all autosomes). Moreover, genome-wide recombination rates exhibit a strong positive association 516 
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with nucleotide diversity (r = 0.49, P-value = 0) — highlighting the likely importance of selection 517 

at linked sites in shaping the landscape of genomic variation in the species (Soni et al. 2025a) — 518 

and, to a lesser extent, divergence (r = 0.06, P-value = 2.07E-17) and GC-content (r = 0.03, P-519 

value = 6.90E-06), as may be expected if recombination in common marmosets exhibits 520 

mutagenic effects (Halldorsson et al. 2019; Hinch et al. 2023) and is prone to GC-biased gene 521 

conversion (reviewed by Duret and Galtier 2009) (Supplementary Figure 8). In concordance with 522 

PRDM9 directing recombination away from functional elements (Brick et al. 2012; Pratto et al. 523 

2014), recombination rates significantly decrease within, and around the boundaries of, protein-524 

coding genes (r = -0.03, P-value = 1.09E-04) compared to neighboring regions (Supplementary 525 

Figure 9). Notably, while these inferred patterns of recombination were highly similar between the 526 

two approaches (r = 0.57, P-value < 2.2E-16 at the 1kb-scale), the mean inferred rates of pyrho 527 

were much lower (0.25 ± 0.27 cM/Mb) as, despite accounting for historical fluctuations in 528 

population size, its internal conversion to the per-generation recombination rate does not account 529 

for the lower Ne caused by twinning (Supplementary Figure 10). 530 

 531 

Characterization of recombination hotspots in the common marmoset genome  532 

To gain insights into the landscape of recombination hotspots in the common marmoset 533 

genome, we inferred recombination hotspots using LDhot (Auton et al. 2014) — a statistical 534 

method implemented to directly process the recombination rate estimates obtained from LDhat. 535 

To obtain a high-quality dataset, we implemented a three-step filtering approach by combining 536 

the recommendations from the Great Ape Recombination Project (Stevison et al. 2016) with those 537 

of Brazier and Glémin (2024). First, as genuine recombination hotspots tend to be narrow (with 538 

~70-80% of recombination occurring in hotspots with a mean width of 2.3 kb in humans; 1000 539 

Genomes Project Consortium 2010), we excluded hotspot candidates with a width larger than 10 540 
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kb. Second, as artificial breaks in LD resulting, for example, from mis-assembly and/or mis-541 

alignment, can lead to localized peaks in recombination rate, we calculated the intensity of each 542 

hotspot candidate by dividing the recombination rate at its peak by the rate estimated for the 100 543 

kb surrounding region and removed candidates with an intensity higher than 200. Additionally, 544 

due to the difficulty of distinguishing genuine low-intensity hotspots from background variation, 545 

we also applied a low-intensity filter, retaining only candidates with a minimum intensity of 4. Third, 546 

accounting for recombination rate variation across chromosomes to further narrow down the 547 

location of recombination hotspots, we split each remaining candidate region into windows of 2 548 

kb with a step size of 1 kb, keeping only the hotspot windows exhibiting rates of at least five times 549 

the chromosome-wide average rate. This three-step filtering approach yielded 26,831 candidate 550 

hotspots — similar to the number of recombination hotspots initially identified in human 551 

populations (International HapMap Consortium 2005, 2007; Myers et al. 2005; 1000 Genomes 552 

Project Consortium 2010; Kong et al. 2012; though note the larger number of hotspots identified 553 

in subsequent, larger-scale studies, e.g., Halldorsson et al. 2019).  554 

In order to identify sequences that predict potential PRDM9 binding, we searched the 555 

1,000 hotspots with the highest intensity for consistent sequence motifs. To this end, we used the 556 

ZOOPS model implemented in MEME (Bailey and Elkan 1994) to identify degenerate motifs 557 

present not more than once in each hotspot region, while accounting for genomic background 558 

using cold spot regions matched for sequence length and GC-content. As sequence motifs 559 

underlying recombination hotspots in other primates tend to be short (e.g., 10-15 bp in humans, 560 

chimpanzees, and gorillas; Schwartz et al. 2014; Auton et al. 2012; Stevison et al. 2016), we 561 

limited the search to motifs with a minimum width of 10 bp and maximum width of 15 bp, keeping 562 

only motifs below a discovery threshold of 1e-05. Next, we used FIMO to scan the complete set 563 

of hotspot windows for occurrences of each of these motifs. As the predicted motifs are highly 564 

repetitive, we also performed permutation tests to compare the frequency of each motif in hotspot 565 
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regions with that observed in 25,000 background regions randomly sampled from the common 566 

marmoset genome by matching the position weight matrix of each motif against the genomic 567 

sequences of each hotspot and cold spot region using the MOtif Occurrence Detection Suite 568 

(MOODS; Korhonen et al. 2009), requiring a P-value < 0.01 for a match. To further narrow down 569 

the list of candidates, we used AlphaFold3 (Abramson et al. 2024) to predict the sequence-570 

specific binding between the marmoset PRDM9 sequence and the putative PRDM9 binding 571 

motifs. Interestingly, for the best candidate DNA binding motifs — the 15-mer 572 

GCTGGGATTACAGGC (e-value: 6.80E-54), present in 83.5% of the candidate hotspots and only 573 

2.0% of the matching cold spots, and its degenerate generalization, the 15-mer 574 

GCTGGGAKYASWGGC (e-value: 5.40E-17) — AlphaFold3's machine-learning guided model 575 

predicted a protein-DNA complex with high-confidence (ipTM = 0.94 and 0.96, respectively; with 576 

1.0 being the maximum value of the ipTM performance metric), indicating a very well-defined 577 

protein-DNA interface and supporting PRDM9-DNA binding in silico (see Figure 3b for a 578 

visualization of the predicted binding complex). Notably, while this predicted degenerate PRDM9 579 

binding motif shares several key features with motifs previously observed in other primates 580 

(including the C/G-rich terminal regions and its overall length), there are also species-specific 581 

differences (such as the A/T-rich internal region) as might be anticipated from the rapid evolution 582 

of the PRDM9 zinc finger array across the primate lineage.  583 
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CONCLUSION  584 

 By investigating, and ultimately correcting for, the effects of twinning and sibling chimerism 585 

on the inference of fine-scale mutation and recombination rate maps, we have here described 586 

these landscapes in one of the most commonly used non-human primate models in research, C. 587 

jacchus. Using high-quality population genomic data, we found that the species exhibits relatively 588 

low neutral mutation rates, and rates of recombination within the range observed amongst other 589 

anthropoids. Moreover, like many vertebrates, the recombination landscape in common 590 

marmosets is dominated by PRDM9-mediated hotspots, and we have described a 3D-structure 591 

of the species-specific PRDM9-DNA binding complex in silico. Apart from providing novel insights 592 

into the population genetic processes shaping variation in common marmosets, these maps will 593 

also serve as a valuable resource for future studies in this biomedically important species — 594 

including in genome-wide association studies, polygenic risk score modelling, and genomic scans 595 

for targets of selection — with implications ranging from the improved study of neurodevelopment 596 

disorders to infectious disease dynamics.  597 
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 divergence time generation time 
 1.5 years 2.0 years 

C. jacchus – C. kuhlii 
0.59 mya 2.50E-09 3.34E-09 
0.82 mya 1.80E-09 2.40E-09 
1.09 mya 1.36E-09 1.81E-09 

C. jacchus – H. sapiens 
   32 mya 2.80E-09 3.74E-09 
   33 mya 2.72E-09 3.62E-09 
   36 mya 2.49E-09 3.32E-09 

 
Table 1. Inferred rates of neutral mutation. Comparison of indirectly inferred mean neutral 
mutation rate estimates based on C. jacchus–C. kuhlii divergence (mean neutral divergence rate: 
0.0029) and C. jacchus–H. sapiens divergence (0.06) for three possible divergence times (0.59 
million years ago [mya], 0.82 mya, and 1.09 mya for C. jacchus–C. kuhlii [Malukiewicz et al. 2021]; 
32 mya, 33 mya, and 36 mya for C. jacchus–H. sapiens [Glazko and Nei 2003]) and two possible 
generation times (1.5 years and 2.0 years; Tardif et al. 2003; Okano et al. 2012; Schultz-Darken 
et al. 2016; Han et al. 2022). 
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Figure 1 
 

 
 
Figure 1. Fine-scale rates of neutral mutation. (a) Density plots of the per-site per-generation 
mutation rate implied by the neutral divergence for two possible generation times (1.5 years and 
2.0 years; Tardif et al. 2003; Okano et al. 2012; Schultz-Darken et al. 2016; Han et al. 2022) and 
three possible divergence times between the common marmoset (C. jacchus) and the closely 
related Wied's black-tufted-ear marmoset (C. kuhlii) (0.59 million years ago [mya], 0.82 mya, and 
1.09 mya; Malukiewicz et al. 2021). (b) Genome-wide per-site per-generation neutral mutation 
rates for genomic windows of size 1 Mb, with a 500 kb step size (and see Supplementary Figure 
5 for the heterogeneity in neutral mutation rates across all autosomes). Neutral mutation rates 
were estimated from the rates of neutral divergence observed in >10kb-long alignments between 
C. jacchus and C. kuhlii (note that due to the limited number of such alignments on chromosomes 
14 and 22, neutral mutation rate estimates for these two autosomes are relatively coarse).   
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Figure 2 
 

 
 
Figure 2: Performance of recombination rate estimators under twinning and chimerism. (a) 
Performance of the demography-unaware recombination rate estimator LDhat (shown in blues) 
and the demography-aware recombination rate estimator pyrho (shown in browns) under the 
demographic history inferred for the population by Soni et al. (2025b) using a Wright-Fisher (WF) 
model and a non-WF framework that models twinning and chimerism — two model violations 
inherent to the biology of marmosets. The dashed line depicts the recombination rate that was 
used in the simulations (1 cM/Mb). (b) Mean r2 (shown in black; left y-axis) and haplotype diversity 
(gray; right y-axis) calculated over 10 kb windows (with a 5 kb step size) across 10 simulation 
replicates under the demographic history inferred for the population by Soni et al. (2025b) using 
a WF model and a non-WF framework that models twinning and chimerism. Data points represent 
the mean value, whilst confidence intervals represent the standard deviation. 
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Figure 3 
 

 
 
Figure 3: Fine-scale rates of recombination. (a) Genome-wide per-site per-generation 
recombination rates as inferred by LDhat for genomic windows of size 1Mb, with a 500kb step 
size (and see Supplementary Figure 7 for recombination rate heterogeneity across all autosomes 
and Supplementary Figure 10 for the genome-wide recombination rates inferred by pyrho). (b) In 
silico binding prediction between PRDM9 and the putative binding sites. Predictions were 
performed using AlphaFold3 (predictions are provided for non-commercial use only, under and 
subject to AlphaFold Server Output Terms of Use found under alphafoldserver.com/output-
terms). Per-atom confidence scores are color-coded with very high confidence predicted 
structures shown in dark blue (pLDDT > 90), confidently predicted structures in turquoise (90 > 
pLDTT > 70), low confidence predicted structures in yellow (70 > pLDTT > 50), and very low 
confidence predicted structures in orange (pLDTT < 50). 
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