

Inferring the landscapes of mutation and recombination in the common marmoset (*Callithrix jacchus*) in the presence of twinning and hematopoietic chimerism

Vivak Soni^{1,*}, Cyril J. Versoza^{1,*}, Jeffrey D. Jensen^{1,†}, and Susanne P. Pfeifer^{1,†}

¹ Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, US

* these authors contributed equally to this work

† co-corresponding authors; jointly supervised the project

(jeffrey.d.jensen@asu.edu; susanne@spfeiferlab.org)

keywords: primate; platyrhine; Callitrichidae; neutral divergence; mutation; recombination

1 **ABSTRACT**

2

3 The common marmoset (*Callithrix jacchus*) is an important model in biomedical and
4 clinical research, particularly for the study of age-related, neurodegenerative, and
5 neurodevelopmental disorders (due to their biological similarities with humans), infectious disease
6 (due to their susceptibility to a variety of pathogens), as well as developmental biology (due to
7 their short gestation period relative to many other primates). Yet, while being one of the most
8 commonly used non-human primate models for research, the population genomics of the common
9 marmoset remains relatively poorly characterized, despite the critical importance of this
10 knowledge in many areas of research including genome-wide association studies, models of
11 polygenic risk scores, and scans for the targets of selection. This neglect owes, at least in part,
12 to two biological peculiarities related to the reproductive mode of the species — frequent twinning
13 and sibling chimerism — which are likely to affect standard population genetic approaches relying
14 on assumptions underlying the Wright-Fisher model. Using high-quality population genomic data,
15 we here infer the rates and landscapes of mutation and recombination — two fundamental
16 processes dictating the levels and patterns of genetic variability — in the presence of these
17 biological features, and discuss our findings in light of recent work in primates. Our results suggest
18 that, while the species exhibits relatively low neutral mutation rates, rates of recombination are in
19 the range of those observed in other anthropoids. Moreover, the recombination landscape of
20 common marmosets, like that of many vertebrates, is dominated by PRDM9-mediated hotspots,
21 with artificial intelligence-based models predicting an intricate 3D-structure of the species-specific
22 PRDM9-DNA binding complex *in silico*. Apart from providing novel insights into the population
23 genetics of common marmosets, given the importance of the availability of fine-scale maps of
24 mutation and recombination for evolutionary inference, this work will also serve as a valuable
25 resource to aid future genomic research in this widely studied system.

26 **INTRODUCTION**

27

28 The introduction of new genetic variation through the process of mutation and its
29 reorganization through crossover and non-crossover events — the two possible outcomes of
30 meiotic recombination — are key evolutionary mechanisms that influence genomic diversity. Both
31 processes are known to be highly variable across species, with rates differing between
32 populations, individuals, and sites within a genome (see the reviews by Baer et al. 2007; Lynch
33 2010; Hodgkinson and Eyre-Walker 2011; Pfeifer 2020b for an overview of mutation rate variation
34 and a discussion of its genetic determinants, and the reviews by Ritz et al. 2017; Stapley et al.
35 2017; Johnston 2024 for an overview of recombination rate variation). Importantly, the uneven
36 distribution of mutation and recombination rates across genomes can profoundly influence
37 interactions amongst other evolutionary processes; for instance, heterogeneity in these
38 underlying rates may substantially modify the effects of selection at linked sites, and thereby
39 modify expectations of both levels and patterns of genetic variation (reviewed by Charlesworth
40 and Jensen 2021, 2022). Additionally, relying on simplified, species-averaged rates of mutation
41 and recombination — as is common practice in many evolutionary inference applications — has
42 been shown to potentially lead to mis-inference in downstream analyses, including those
43 estimating population history and the distribution of fitness effects (Dapper and Payseur 2018;
44 Samuk and Noor 2022; Ghafoor et al. 2023; Soni et al. 2024; Soni and Jensen 2025). Yet, despite
45 their crucial importance, both processes remain relatively poorly characterized in many
46 vertebrates.

47

48 There are two primarily classes of approach for estimating both mutation and
49 recombination rates in primates and other large organisms. Direct approaches utilize genomic
50 data from parent-offspring trios or multi-generation pedigrees in order to detect *de novo* mutations
51 (reviewed by Pfeifer 2020b, and see also Pfeifer 2021), or contemporary crossover and non-

52 crossover events occurring between generations (reviewed by Clark et al. 2010). The resolution
53 of these pedigree-based inference approaches at the genome scale remains relatively coarse
54 due to the limited number of *de novo* mutations and meiotic exchanges that can be observed in
55 the small number of generations characterizing the sample. Hence, given the hundreds to
56 thousands of pedigreed individuals required to obtain high resolution maps, most studies typically
57 yield only a genome-wide estimate over the limited generational span studied, rather than
58 providing detailed information about the finer scale landscapes. Moreover, due to the extensive
59 sample and sequencing requirements, direct approaches tend to be labor-intensive and costly,
60 limiting their application, particularly in organisms for which resources remain limited. Indirect
61 approaches, on the other hand, rely on population genetic theory and information about the
62 genealogy of the sample over longer evolutionary timescales. Indirect estimates of mutation rate,
63 for example, rely on species-level divergence data, based on the observation that the neutral
64 mutation rate is equal to the neutral divergence rate (Kimura 1968). This allows for the inference
65 of historically averaged mutation rates from phylogenetic sequence data in neutrally-evolving
66 genomic regions. Although in principle straightforward, this approach is limited by the availability
67 of high-quality genome annotations necessary to identify neutrally-evolving regions — which are
68 lacking for many non-model organisms — and is often accompanied by significant uncertainties
69 related to divergence and generation times, typically resulting in a range of possible mutation
70 rates (see e.g., Soni et al. 2025c). Indirect recombination rate inference relies on polymorphism
71 rather than divergence data, analyzing unrelated individuals in order to estimate historical sex-
72 averaged rates of recombination based on the extent of observed linkage disequilibrium (LD) in
73 the genome (reviewed by Stumpf and McVean 2003; Peñalba and Wolf 2020). For this reason,
74 these methods are sensitive to other evolutionary forces shaping LD (Dapper and Payseur 2018;
75 Samuk and Noor 2022) and it is thus crucial to account for the underlying population history when
76 performing such analyses (Johri et al. 2020, 2022; Jensen 2023). Yet, despite these caveats,
77 these approaches are also uniquely capable of providing a fine-scale, genome-wide mapping of

78 underlying sex-averaged rates over many generations necessary for evolutionary analyses (see
79 the discussion in Johri et al. 2022).

80

81 Within primates specifically, high-quality, fine-scale rate estimation has generally been
82 focused upon humans and their closest relatives, the great apes, as well as a handful of species
83 of biomedical or conservation interest (e.g., Kong et al. 2002; Auton et al. 2012; Stevison et al.
84 2016; Pfeifer 2020a; Xue et al. 2020; Wall et al. 2022; Versoza et al. 2024, 2025a,b; Soni et al.
85 2025c; and see the discussion of Soni et al. 2025d). In the primates studied to date as well as in
86 numerous other organisms, meiotic recombination has been found to be concentrated in hotspots,
87 the location of which is primarily determined by the zinc-finger protein PRDM9 (Baudat et al. 2010;
88 Myers et al. 2010; Parvanov et al. 2010). Notably, PRDM9 has evolved rapidly across primates,
89 showing a high variability in the number of zinc-fingers as well as their nucleotide contact residues,
90 resulting in differences in the predicted nucleotide binding sequence and, consequently, in the
91 hotspot positioning even between closely-related species (reviewed by Stapley et al. 2017; Lorenz
92 and Mpalo 2022; Johnston 2024; and see Schwartz et al. 2014 for a characterization of the allelic
93 diversity in PRDM9 zinc finger domains of different primate species). As many evolutionary and
94 biomedical studies require knowledge of the fine-scale patterns of recombination across the
95 genome — such as rare disease gene mapping and genome-wide association studies that rely
96 on patterns of LD to detect associations between genetic variants and phenotypic traits — and
97 given the extensive variation in the distribution of recombination observed, it is thus important to
98 obtain detailed maps characterizing the recombination frequency specific to the organism of
99 interest. Yet, deeper in the primate clade, high-quality estimates of fine-scale mutation and
100 recombination rates, or hotspot mapping, remain sparse — particularly across New World
101 monkeys (platyrhines) and prosimians (strepsirrhines) — limiting both our understanding of
102 primate evolution in general and the accuracy and resolution of clinically-relevant genomic studies
103 in primate model systems specifically.

104
105 In order to extend this inference, we here examine the common (or white-tufted-eared)
106 marmoset, *Callithrix jacchus*, a relatively abundant platyrhine monkey of the Callitrichidae family.
107 As one of the smallest statured anthropoids, common marmosets have risen in biomedical
108 prominence over the past two decades particularly as a commonly used model for the study of
109 aging, neurodegeneration, and neurodevelopment disorders, as well as autoimmune and
110 infectious disease dynamics (see e.g., the reviews by Miller et al. 2016; Philippens and
111 Langermans 2021; Han et al. 2022), owing largely to their early sexual maturity (~15 to 18 months
112 of age), short gestation period (~145 days), and high fecundity (birthing up to four offspring in a
113 single pregnancy, with pregnancies occurring biannually). Interestingly, a notable peculiarity of
114 marmoset biology, and that of several other callitrichines, is the frequent ovulation of two (or more)
115 ova per cycle (Tardif and Jaquish 1997), resulting in common dizygotic (fraternal) twin births
116 (Ward et al. 2014), and the exchange of hematopoietic stem cells during embryonic development
117 via anastomoses in a single shared placenta, causing sibling chimerism (Hill 1932; Wislocki 1939;
118 Benirschke et al. 1962; Gengozian et al. 1969). As a result, samples of blood and many other
119 tissues obtained from marmosets have been observed to contain a mixture of genetic material
120 originating from both the sampled individual and their unsampled littermate (Ross et al. 2007;
121 Sweeney et al. 2012; del Rosario et al. 2024; and see the commentary by Chiou and Snyder-
122 Mackler 2024). Notably, recent genomic analyses have demonstrated that the high frequency of
123 twinning together with chimeric sampling shape both levels and patterns of observed genetic
124 variation — including LD — in this species, with Soni et al. (2025b) finding that a neglect of these
125 biological factors can result in significant mis-inference of population history. Yet, the impact of
126 these unusual reproductive dynamics on other types of population genomic inference remains
127 unexplored to date.
128

129 Although a direct mutation rate point estimate exists for common marmosets (0.43×10^{-8}
130 per base pair per generation; Yang et al. 2021), this estimate was based on a single trio and,
131 although the sampled tissues (muscle, liver, and spleen) are expected to exhibit lower levels of
132 chimerism than blood, the authors did not correct for the effects of chimerism. In this instance,
133 the potential 'counting' of twin-shared variants in a single individual sampled from a triplet may be
134 expected to confound mutation counts and thus calculated rates. To lower the potential impact of
135 chimerism on their estimate, the authors applied highly stringent filter criteria; however, this in turn
136 may be expected to impact the overall number of genuine *de novo* mutations identifiable in their
137 study. More recently, Mao et al. (2024) inferred a much-increased human-marmoset neutral
138 divergence relative to the closely-related owl monkey-human divergence. In this case, the long-
139 term neutral divergence rate would not be expected to be impacted by twinning and chimeric
140 sampling (i.e., neutral divergence will be driven by the neutral mutation rate, μ). In contrast to
141 these studies of mutation, to the best of our knowledge, no fine-scale genetic map yet exists for
142 the species. Helpfully, utilizing novel population genomic data from individuals sequenced to high-
143 coverage and annotated at the gene-level — and directly accounting for twinning and chimerism
144 — Soni et al. (2025b) recently described a well-fitting population history consisting of a rapid
145 reduction in population size roughly 7,000 years ago, followed by a modest recovery — a
146 necessary prerequisite to interpret patterns of genetic variation and LD. Here, we utilize this
147 modelling framework accounting both for this unique reproductive biology as well as population
148 history, combined with high-quality whole-genome sequencing data, in order to quantify the rates
149 and characterize the landscape of mutation and recombination in the common marmoset. Beyond
150 providing valuable biological insights into the location and frequency of mutation and
151 recombination in this New World monkey, these fine-scale maps will play a crucial role in
152 enhancing future biomedical and evolutionary analyses integrating the significant nuance of
153 accurate patterns of underlying genomic rate heterogeneity, thus improving our ability to study
154 heritable genetic disorders in this widely used model system. In this effort, we have also uniquely

155 characterized the effects of twinning and chimeric sampling on indirect rate estimation more
156 generally and describe the underlying impact on patterns of LD — insights which will be beneficial
157 to future research focused on organisms characterized by chimerism.

158 **MATERIALS AND METHODS**

159 **Animal subjects**

160 Animals were maintained in accordance with the guidelines of the Harvard Medical School
161 Standing Committee on Animals and the Guide for Care and Use of Laboratory Animals of the
162 Institute of Laboratory Animal Resources, National Research Council. All samples were collected
163 during routine veterinary care under approved protocols.

164

165 **Whole genome sequencing**

166 Our study was based on genomes of 15 captive common marmosets (*C. jacchus*) from
167 the colony previously housed at the New England Primate Research Center. Whole genome
168 sequencing data (150 bp paired-end reads) was generated on a DNBseq platform at the Beijing
169 Genomics Institute (BGI Group, Shenzhen, China), targeting a genome-wide average coverage
170 of ~35X. Genetic analysis confirmed that the selected individuals were largely unrelated, sharing
171 no more than 1/16 of their DNA with any other individual from the colony included in this study.

172

173 **Read mapping, variant calling, and filtering**

174 Following best practices in the field (Pfeifer 2017), we trimmed adapters, polyX tails, and
175 low-quality ends from the raw reads using SOAPnuke v.1.5.6 with BGI-recommended parameter
176 settings (i.e., '-n 0.01 -l 20 -q 0.3 -A 0.25 --cutAdaptor -Q 2 -G --polyX --minLen 150'; Chen et al.
177 2018) before mapping them to the species-specific reference genome (mCalJa1.2.pat.X;
178 GenBank accession number: GCA_011100555.2; Yang et al. 2021) using BWA-MEM v.0.7.17 (Li
179 2013). To avoid potential biases during variant calling and genotyping, we marked duplicates in

180 the mapped reads using the Genome Analysis Toolkit (GATK) v.4.2.6.1 *MarkDuplicates* (van der
181 Auwera and O'Connor 2020). From these high-quality, duplicate-marked reads (' *--minimum-*
182 *mapping-quality* 40 '), we called variants for each individual using the GATK *HaplotypeCaller* in
183 the ' *--pcr-indel-model* NONE ' mode as the data was obtained from PCR-free libraries. We then
184 combined individual-level variant call sets and jointly genotyped them using GATK's
185 *CombineGVCFs* and *GenotypeGVCFs*, respectively. In order to obtain information regarding the
186 genomic regions accessible to the study, we emitted reference confidence scores at each locus
187 (' *--emit-ref-confidence* BP_RESOLUTION ') and included genotypes of both variant and invariant
188 loci in the output (' *--include-non-variant-sites* '). Lastly, we separated the jointly-genotyped call
189 set into biallelic single nucleotide polymorphisms (SNPs) and invariant loci with genotype
190 information available in all individuals (' *AN* = 30 '), with downstream analyses focusing on the
191 autosomes (i.e., chromosomes 1-22) only.

192 Due to the lack of a well-curated, experimentally-validated dataset that could be
193 harnessed for filtering variants via a machine-learning framework, we used the GATK
194 *VariantFiltration* tool to quality-control the discovered loci following the developers' hard filtering
195 recommendations (i.e., *QD* < 2.0, *QUAL* < 30.0, *MQ* < 40.0, *FS* > 60.0, *SOR* > 3.0, *MQRankSum*
196 < -12.5, *ReadPosRankSum* < -8.0). As spurious variation can complicate the estimation of
197 recombination rates from patterns of LD observed in population genomic data, we applied several
198 additional stringent filtering criteria to limit the number of false positives in our data set, following
199 the methodologies established in prior research (e.g., Auton et al. 2012; Stevison et al. 2016;
200 Pfeifer 2020a; Soni et al. 2025c). In brief, as a skewed read coverage often results in poorly
201 supported genotypes, we first used GATK's *SelectVariants* to remove loci located within genomic
202 regions exhibiting less than half, or more than twice, the individual's genome-wide average
203 coverage. Second, we excluded variants that were tightly clustered (using GATK's
204 *VariantFiltration* with ' *--cluster-size* 3 ' and ' *--cluster-window-size* 10 ') as well as those exhibiting

205 high levels of heterozygosity (using VCFtools v.0.1.14 to filter out variants that have a Hardy-
206 Weinberg equilibrium exact test P -value < 0.01 ; Danecek et al. 2011), a common indicator of local
207 genome mis-assembly. Lastly, we used BEDTools v.2.30.0 (Quinlan et al. 2010) to eliminate
208 regions blacklisted by the ENCODE Project Consortium due to their poor performance in next-
209 generation sequencing (wgEncodeDacMapabilityConsensusExcludable.bed and
210 wgEncodeDukeMapabilityRegionsExcludable.bed; Amemiya et al. 2019) by converting genomic
211 coordinates between the human (hg38) and the common marmoset genome assemblies using
212 the UCSC liftOver tool (Raney et al. 2024).

213 After filtering, the population-level dataset contained 7,198,428 autosomal biallelic SNPs
214 in the accessible genome (Supplementary Table 1).

215

216 **Phasing**

217 We estimated haplotypes from the population-level genotype data using BEAGLE v.5.5
218 (Browning et al. 2021), a progressive phasing algorithm that has been shown to be highly accurate
219 (Williams et al. 2012). During phasing, a total of 16,701 loci (0.23%) became non-polymorphic
220 due to a change in genotype and were thus excluded from further analyses.

221

222 **Inferring fine-scale rates of neutral divergence and mutation**

223 In order to infer fine-scale rates of neutral divergence and mutation, we first used Cactus
224 v.2.9.2 (Armstrong et al. 2020) to extract the 239 primate genomes (Kuderna et al. 2024) from
225 the 447-way multiple species alignment (Zoonomia Consortium 2020) and update the common
226 marmoset genome with the most recent reference genome for the species utilized in this study.

227 To this end, we removed the common marmoset genome included in the multiple species
228 alignment using the *halRemoveGenome* function and then extracted the alignment block
229 consisting of the ancestral PrimateAnc232 genome and the genome of the closely related Wied's
230 black-tufted-ear marmoset (*C. kuhlii*) using the *hal2fasta* function. We then re-aligned the current
231 reference genome for the common marmoset with the genomes of PrimateAnc232 and *C. kuhlii*
232 using the previously inferred branch lengths and updated the alignment using the
233 *halReplaceGenome* function. With this updated multiple species alignment on hand, we identified
234 fixed single nucleotide differences along the marmoset lineage (i.e., between the common
235 marmoset and the ancestral primate PrimateAnc232 genomes) using the
236 *halSummarizeMutations* function. In contrast to the common marmoset genome, the genome of
237 Wied's marmoset is highly fragmented (293,512 scaffolds with a scaffold N50 of 15.1 kb totalling
238 2.6 Gb compared to 1,233 scaffolds with a scaffold N50 of 137 Mb totalling 2.9 Gb), thus we
239 removed alignments less than 10 kb in length in order to avoid spurious and/or incomplete
240 alignments that might artificially inflate estimates of neutral divergence and mutation. Additionally,
241 in order to obtain fixed differences along the human-marmoset branch, we obtained the sub-
242 alignment consisting of the common marmoset, human, and PrimatesAnc003 genomes from the
243 multi-species alignment using the *cactus-hal2maf* function, converted this alignment back into
244 HAL format (Hickey et al. 2013) using the *maf2hal* function, and then retrieved point mutations
245 along the branch from *C. jacchus* to the ancestral PrimatesAnc003 using the *halBranchMutations*
246 function. In order to obtain neutral substitutions between *C. jacchus* and *C. kuhlii* as well as
247 between *C. jacchus* and humans, we excluded both variants known to segregate in any of the
248 species (based on published population-level polymorphism data available for humans of
249 Yoruban ancestry [1000 Genomes Project Consortium 2015] and common marmosets [Soni et
250 al. 2025b]; note that no such population-level polymorphism data was available for Wied's
251 marmoset) as well as sites within 10 kb of functional regions (based on the protein-coding genes
252 annotated in the common marmoset genome). Using these datasets, we then calculated neutral

253 divergence at both the broad (genome-wide) scale and the fine scale (using 1 kb, 10 kb, 100 kb,
254 and 1 Mb sliding windows with a step size of 500 bp, 5 kb, 50 kb, and 500 kb, respectively) by
255 dividing the number of substitutions by the number of sites accessible to our study. To derive
256 mutation rates, we divided the rates of neutral divergence between *C. jacchus* and *C. kuhlii* by
257 the divergence time in generations. For this, we used three possible divergence time estimates
258 — 0.59 million years ago (mya), 0.82 mya and 1.09 mya (based on the range of divergence times
259 between *C. jacchus* and *C. kuhlii* inferred by Malukiewicz et al. 2021) — and two possible
260 generation time estimates — 1.5 years and 2.0 years (Tardif et al. 2003; Okano et al. 2012;
261 Schultz-Darken et al. 2016; Han et al. 2022).

262

263 **Inferring fine-scale rates of recombination**

264 We used two different approaches to infer fine-scale rates of recombination: the
265 demography-unaware estimator LDhat (McVean et al. 2002, 2004; Auton and McVean 2007) and
266 its successor, the demography-aware estimator pyrho (Spence and Song 2019).

267

268 LDhat: We inferred genome-wide fine-scale recombination rates in the common marmoset using
269 LDhat v.2.2 (McVean et al. 2002, 2004; Auton and McVean 2007). To this end, we first generated
270 a lookup table containing the coalescent likelihoods for every two-locus haplotype configuration
271 possible in our sample of 15 diploid individuals (i.e., 30 haploids: ' -n 30 '), using LDhat *complete*
272 with the suggested maximum population-scaled recombination rate ρ of 100
273 (' -rhomax 100 ') and a grid size of 201 (' -n_pts 201 ') to improve accuracy. Next, we obtained
274 region-based population-scaled estimates by running the *interval* function of LDhat with a block
275 penalty of 5 (' -bpen 5 ') for 60 million iterations (' -its 60000000 ') using a sampling scheme of
276 40,000 iterations (' -samp 40000 ') across windows of 4,000 SNPs with a 200 SNP step size. After

277 discarding the burn-in of the Monte Carlo Markov Chain using LDhat's *stat* function ('*-burn 500*'),
278 we then combined the region-based estimates at the midpoint of each overlapping window to
279 obtain estimates at the chromosome-scale. Following standard practices in the field (e.g., Auton
280 et al. 2012; Pfeifer 2020a), we excluded large localized peaks in recombination rate (with $\rho > 100$
281 between adjacent SNPs) to minimize the impact of genome assembly errors leading to artificial
282 breaks in LD. In total, we identified 1,352 such regions and masked them together with the 50
283 SNPs adjacent on each side by setting the recombination rate to 0 (masking a total of 42,348
284 SNPs, or 0.59%). Finally, we used N_e based on the mean θ observed in the empirical data to
285 convert the population-scaled recombination rate to a per-generation recombination rate,
286 assuming a per-site per-generation mutation rate of 0.81×10^{-8} as per Soni et al. 2025b.

287 *pyrho*: We also inferred genome-wide recombination rates using *pyrho* v.0.1.7 (Spence and Song
288 2019). In brief, as recommended by the developers, we first used *pyrho*'s *make_table* function to
289 compute an approximate likelihood lookup table ('*--approx*') for a 50% larger sample size ('*-N*
290 45') under the demographic model previously inferred by Soni et al. 2025b to account for historical
291 population size changes in the species (i.e., a population size reduction approximately 3,500
292 generations ago, followed by an exponential population recovery) and then down-sampled this
293 table to 15 diploid individuals ('*-n 30*') to match our empirical sample size. Next, we used the
294 *hyperparam* function to determine suitable hyperparameter settings for *pyrho* and then ran the
295 *optimize* function with the recommended window size ('*--windowsize 30*') and smoothness
296 penalty ('*--blockpenalty 50*') to estimate genome-wide recombination rates. In all steps, we
297 assumed a per-site per-generation mutation rate of 0.81×10^{-8} ('*--mu 0.81e-8*') as per Soni et al.
298 2025b to internally convert the population-scaled recombination rate to a per-generation
299 recombination rate.

300 To account for the impact of twinning and chimerism (see "Evaluating the impact of twinning and
301 chimerism on recombination rate inference" below), we rescaled the LDhat and pyrho estimates
302 by multiplying the rates by a factor of 0.574 and 0.761, respectively.

303

304 **Evaluating the impact of twinning and chimerism on recombination rate inference**

305 Both LDhat and pyrho rely on coalescent theory and the theoretical foundation provided
306 by the Wright-Fisher model to infer fine-scale recombination rates from population genomic data.
307 To evaluate the impact of twinning and chimerism — two model violations inherent to the biology
308 of marmosets — on the recombination rate inference with these two approaches, we used SLiM
309 4.0.1 (Haller and Messer 2023) to simulate a population of marmoset individuals using the
310 modelling framework recently described in Soni et al. (2025b). Specifically, we simulated 10
311 replicates of a 1 Mb genomic region in a population of marmosets under the demographic model
312 of the species recently inferred by Soni et al. (2025b) — consisting of an ancestral population of
313 61,198 individuals that collapsed to 17,931 individuals 3,513 generations ago before recovering
314 via exponential growth to a current day size of 33,830 individuals — assuming a mutation rate of
315 0.81×10^{-8} per base pair per generation and a recombination rate of 1.0×10^{-8} per base pair per
316 generation (as per the rates used in Soni et al. 2025b). From each replicate, we sampled 15
317 chimeric individuals and estimated recombination rates using LDhat and pyrho (as described in
318 "Inferring fine-scale rates of recombination").

319

320

321

322 **Inferring recombination hotspots**

323 To infer the positions of recombination hotspots in the common marmoset, we used the
324 software package LDhot v.0.4 (Auton et al. 2014). In brief, we first ran the *ldhot* function to identify
325 putative recombination hotspots in 3 kb windows with a step size of 1 kb and a background
326 window of 100 kb centered around the hotspot, using 1,000 simulations as recommended by the
327 developers. Afterward, we combined significant windows to merge adjacent candidates using the
328 *ldhot_summary* function with significance thresholds of 0.001 and 0.01 for calling and merging
329 hotspots, respectively. To limit the number of spurious hotspots, we implemented a three-step
330 filtering approach by combining the recommendations from the Great Ape Recombination Project
331 (Stevison et al. 2016) with those of Brazier and Glémin (2024), filtering out any hotspot candidates
332 with a width longer than 10 kb, an intensity lower than 4 or higher than 200, or a rate less than
333 five times the chromosome-wide average rate.

334

335 ***In silico* prediction of PRDM9 binding motifs**

336 We used the ZOOPS model implemented in MEME v.5.5.7 (Bailey and Elkan 1994) to
337 identify 10-15 bp motifs present not more than once in each of the 1,000 hotspots with the highest
338 intensity (including the flanking 500 bp to ensure that the entire hotspot is captured) while
339 accounting for genomic background using cold spot regions matched for sequence length and
340 GC-content. With these putative motifs on hand, we used FIMO v.5.5.7 to scan the complete set
341 of hotspot windows for any occurrences and compared the frequency of each motif in the hotspot
342 regions with that observed in 25,000 randomly sampled background regions using MOODS
343 v.1.9.4.1 (Korhonen et al. 2009). We assessed the statistical significance by performing a Fisher's
344 exact test in R v.4.2.2 (R Core Team 2022).

345 ***In silico* characterization of PRDM9 binding**

346 We used AlphaFold3 to predict the sequence-specific binding between PRDM9 and the
347 putative PRDM9 binding motifs. To this end, we first retrieved the nucleotide sequence of PRDM9
348 from the common marmoset genome and aligned it against the PRDM9 protein sequence
349 annotated in the human telomere-to-telomere assembly (T2T-CHM13v2.0; Nurk et al. 2022) using
350 GeneWise v.2.4.1 (Birney et al. 2004) to visually inspect the sequence for completeness. Next,
351 we used the ExPASy web server (Duvaud et al. 2021) to translate the nucleotide sequence into
352 an amino acid sequence. We then used this translated amino acid sequence as input for a protein-
353 protein BLAST (Altschul et al. 1990) search against the NCBI non-redundant protein sequences
354 database (Supplementary Figure 1) and visualized the resulting phylogenetic tree using EMBL's
355 interactive Tree of Life (Letunic and Bork 2021), noting a high similarity of the query to PRDM9
356 sequences previously annotated in haplorrhines (Supplementary Figure 2). Next, we used
357 InterPro (Blum et al. 2025) to predict protein domains within this sequence, confirming the
358 presence of a Krueppel-associated box (KRAB) domain, a SSX repressor domain (SSXRD), a
359 PR/SET domain, and a C2H2-type zinc finger array (Supplementary Figure 3). Finally, we ran
360 AlphaFold3 (Abramson et al. 2024) by providing both the marmoset PRDM9 amino acid sequence
361 and the putative PRDM9 binding motifs as input.

362

363 **Assessing the correlation of fine-scale rates of recombination with genomic features**

364 To assess the correlation of fine-scale rates of recombination with different genomic
365 features, we calculated a number of summary statistics across 100 kb windows along the 22
366 autosomes of the common marmoset genome — including nucleotide diversity (based on our
367 marmoset population genomic data), divergence (based on the updated 447-way mammalian

368 multiple species alignment as described in "Inferring fine-scale rates of neutral divergence and
369 mutation"), GC-content and exon-content (both based on the annotations of the common
370 marmoset assembly; Yang et al. 2021) — and calculated partial Kendall's rank correlations across
371 windows in which at least 50% of sites were accessible using R v.4.2.2 (R Core Team 2022).

372 **RESULTS AND DISCUSSION**

373

374 **Population genomic data**

375 Based on the genomes of 15 captive common marmoset (*C. jacchus*) individuals (seven
376 females and eight males) sequenced to an average 35-fold coverage, we inferred fine-scale rates
377 of neutral divergence, mutation, and recombination. In brief, using a mapping-based approach,
378 we first identified 7.2 million SNPs across the autosomal genome with a transition-transversion
379 ratio of 2.2 (Supplementary Table 1). To facilitate rate inference, we then estimated haplotypes
380 from this population-level genotype data analogously to the 1000 Genomes (1000 Genomes
381 Project Consortium 2015), PanMap (Auton et al. 2012), and Great Ape Recombination Maps
382 (Stevison et al. 2016) projects, which previously generated fine-scale genetic maps for humans
383 (*Homo sapiens*), Western and Nigerian chimpanzees (*Pan troglodytes verus* and *P. t. elliotti*),
384 bonobos (*P. paniscus*), and Western gorillas (*Gorilla gorilla gorilla*).

385

386 **The landscape of neutral divergence and mutation in the common marmoset genome**

387 We first extracted the 239 primate genomes (Kuderna et al. 2024) from the 447-way
388 multiple species alignment (Zoonomia Consortium 2020) and updated the common marmoset
389 genome to the current reference assembly available for the species (Yang et al. 2021). With this
390 updated whole-genome alignment on hand, we identified fixed single nucleotide differences along
391 the marmoset lineage, i.e., between the genome of the common marmoset and the genome of
392 the closely related Wied's black-tufted-ear marmoset (*C. kuhlii*). In contrast to the common
393 marmoset genome generated by the Vertebrates Genomes Project using a combination of short-
394 read (Illumina) and long-read (PacBio) sequencing data and scaffolded using high-throughput
395 chromosome conformation capture (Hi-C) and Bionano optical data, the genome of Wied's

396 marmoset remains highly fragmented, containing nearly 300,000 scaffolds. In order to avoid
397 spurious and/or incomplete alignments that might artificially inflate estimates of neutral divergence
398 and mutation, we thus removed any alignments shorter than 10 kb in length. In order to obtain
399 neutral substitutions between *C. jacchus* and *C. kuhlii*, we additionally masked both regions within
400 10 kb of known conserved or functional elements — thus, avoiding purifying and background
401 selection effecting our analyses (Charlesworth et al. 1993) — and variants known to segregate in
402 the species. Using this dataset, we then calculated neutral divergence across accessible sites at
403 both the broad (genome-wide) scale and the fine scale (for additional details, see "Materials and
404 Methods").

405 At the 1Mb-scale, we observed a neutral divergence rate of 9.85×10^{-4} along the marmoset
406 lineage relative to the reconstructed ancestor (see Supplementary Figure 4 for the distributions
407 of neutral divergence across a range of window sizes). To calculate the neutral mutation rate, we
408 then drew the point estimate, upper and lower bounds of common marmoset divergence times
409 relative to *C. kuhlii* (0.59 mya, 0.82 mya, and 1.09 mya; Malukiewicz et al. 2021), and generation
410 times of 1.5 and 2.0 years (Tardif et al. 2003; Okano et al. 2012; Schultz-Darken et al. 2016; Han
411 et al. 2022). Depending on the underlying assumptions, the mean neutral mutation rate varied
412 from 0.14×10^{-8} mutations per base pair per generation (under a divergence time of 1.09 mya
413 and a generation time of 1.5 years) to 0.33×10^{-8} mutations per base pair per generation (under
414 a divergence time of 0.59 mya and a generation time of 2.0 years; Table 1 and see Figure 1a for
415 density plots of neutral mutation rate estimates across this range of possible divergence and
416 generation times and Figure 1b for the inferred genome-wide neutral mutation rates). Notably,
417 these indirectly inferred neutral mutation rates are lower than the direct estimate of 0.43×10^{-8}
418 mutations per base pair per generation obtained by Yang et al. (2021) from a single trio. While
419 indirect phylogenetic approaches are naturally unable to observe strongly deleterious / lethal
420 mutations that are purged from the population, the higher pedigree-based estimate observed by

421 Yang et al. (2021) might also partially be attributed to unaccounted for chimerism present in their
422 genomic data (with non-germline tissues sampled from a single individual of a triplet).

423 Given that the divergence time between *C. jacchus* and *C. kuhlii* is relatively short, we
424 also generated fine-scale divergence estimates along the human-marmoset branch to obtain
425 information over longer evolutionary time scales. Notably, comparisons between the mutation rate
426 estimates indirectly obtained from the *C. jacchus*–*C. kuhlii* divergence and the neutral divergence
427 estimates based on *C. jacchus*–*H. sapiens* alignments demonstrated a significant positive
428 correlation at the fine scale ($r = 0.235$, P -value = 1.71E-59; and see Supplementary Figure 5 for
429 the heterogeneity in neutral divergence and mutation rates across each autosome), providing
430 additional confidence in our estimates. Moreover, mutation rates inferred using the divergence
431 along the human-marmoset branch are highly similar to those obtained using *C. jacchus*–*C. kuhlii*
432 divergence, ranging from 0.25×10^{-8} mutations per base pair per generation (under a divergence
433 time of 36 mya and a generation time of 1.5 years) to 0.37×10^{-8} mutations per base pair per
434 generation (under a divergence time of 32 mya and a generation time of 2.0 years; Table 1).
435 Although it is unlikely that the generation time of common marmosets has remained constant over
436 the >30 million years separating the two species (Glazko and Nei 2003), it is nevertheless
437 encouraging that the marmoset-based and human-marmoset-based estimates are in such close
438 correspondence.

439 Taking the opposite approach, we inferred marmoset divergence times based on the mean
440 neutral divergence rate observed in the empirical data and the previously published pedigree-
441 based mutation rate estimates for both common marmosets (0.43×10^{-8} mutations per base pair
442 per generation; Yang et al. 2021) as well as the closely related (but non-chimeric) owl monkeys
443 (0.81×10^{-8} mutations per base pair per generation; Thomas et al. 2018) for which a larger number
444 of trios were available. The estimated divergence times ranged from 0.18 mya (under a per-site

445 per-generation mutation rate of 0.81×10^{-8} and a generation time of 1.5 years) to 0.49 mya (under
446 a per-site per-generation mutation rate of 0.43×10^{-8} and a generation time of 2 years)
447 (Supplementary Table 2). Notably, these whole-genome divergence times based on the
448 marmoset and owl monkey mutation rates are considerably lower than those inferred by
449 Malukiewicz et al. (2021) from mitochondrial DNA, due to the mutation rates being considerably
450 higher than those inferred in this study.

451

452 **The landscape of recombination in the common marmoset genome**

453 We used two different approaches to infer fine-scale rates of recombination — the
454 demography-unaware estimator LDhat (McVean et al. 2002, 2004; Auton and McVean 2007) and
455 its successor, the demography-aware estimator pyrho (Spence and Song 2019) — both of which
456 rely on coalescent theory and the theoretical foundation provided by the Wright-Fisher (WF)
457 model to infer fine-scale recombination rates from population genomic data.

458 Unlike most primates, twinning and chimerism are the norm rather than the exception in
459 marmosets (Hill 1932; Wislocki 1939; Benirschke et al. 1962; Ward et al. 2014). To evaluate the
460 impact of these two violations of the WF model inherent to the biology of marmosets, we first
461 assessed the performance of the two recombination rate estimators on simulated data. Using the
462 framework recently described in Soni et al. (2025b), we modelled twinning and chimerism from
463 hematopoietic stem cells (as observed in blood samples) by first simulating a non-WF model in
464 SLiM (Haller and Messer 2023) in which pairs of marmoset individuals reproduce each generation
465 to give birth to non-identical twins and then combining their genotypes post-simulation to mimic a
466 single chimeric individual (for additional details, see "Materials and Methods"). More specifically,
467 we simulated genomic regions of 1 Mb under the demographic model of the population inferred

468 by Soni et al. (2025b) — consisting of an ancestral population of ~60k individuals that experienced
469 a population decline before recovering to about half of its original size — using a non-WF model
470 with twinning only as well as with both twinning and chimeric sampling, assuming a constant per-
471 site per-generation mutation rate of 0.81×10^{-8} and recombination rate of 1 cM/Mb (as per the
472 rates used in Soni et al. 2025b), and sampling 15 chimeric individuals to match our empirical data.
473 To aid the interpretation of the inference results, we additionally performed simulations under a
474 standard WF model (i.e., without twinning or chimerism) for comparison. We then inferred the
475 genome-wide recombination rates in the simulated data using LDhat and pyrho. In contrast to
476 pyrho, LDhat outputs the population-scaled recombination rate (ρ) and we thus used the effective
477 population size (N_e) based on the mean nucleotide diversity (Θ) observed in each simulation
478 scenario to obtain a per-generation recombination rate.

479 Our simulations highlighted that both LDhat and pyrho tend to underestimate genome-
480 wide recombination rates inferred under the marmoset demographic model (Figure 2a), likely due
481 to the recent population contraction and subsequent exponential expansion having resulted in a
482 ρ at the time of sampling that is substantially different from that during most of the population
483 history. This observation is consistent with the recent findings of a simulation study conducted by
484 Dutheil (2024) which highlighted that classical LD-based approaches tend to underestimate
485 recombination rates in populations characterized by population size declines and recent growth,
486 particularly when sample sizes are moderate as is the case here (see Figures 1 and 2 in Dutheil
487 2024; and see their Figure 4 for the increased mis-inference in the presence of gene conversion).
488 In contrast, both approaches overestimate the per-generation recombination rate when twinning
489 is common, as populations in which non-singleton births are the predominant mode of
490 reproduction are characterized by both an increased LD and decreased N_e relative to the standard
491 expectations. Chimerism, on the other hand, has the opposite effect, with chimeric sampling
492 expected to both break up haplotypes — as evidenced by the reduced mean r^2 (a measure of LD)

493 — and increase haplotype diversity due to the generation of novel haplotypes relative to the
494 standard expectations (Figure 2b).

495 Re-scaling the empirically observed recombination rate estimates to take into account the
496 mis-inference caused by twinning and chimerism yielded an average sex-averaged genome-wide
497 recombination rate of 0.91 ± 0.83 cM/Mb (100 kb windows) in common marmosets (Figure 3a),
498 with sex-averaged crossover rates ranging from 0.65 cM/Mb for one of the longest autosomes
499 (chromosome 4) to 1.29 cM/Mb for one of the shortest autosomes (chromosome 22)
500 (Supplementary Figure 6). Although the rates inferred here for common marmosets are in the
501 same range as those previously reported in the great apes (e.g., 1.32 ± 1.40 cM/Mb in humans
502 [International HapMap Consortium 2007], with an average rate of 0.945 cM/Mb in males and
503 1.518 cM/Mb in females [Halldorsson et al. 2019], and ~ 1.19 cM/Mb in chimpanzees, bonobos
504 and gorillas [Stevison et al. 2016]), rates previously estimated for biomedically-relevant Old World
505 monkeys are substantially lower (e.g., 0.43 ± 0.33 cM/Mb in rhesus macaques [Xue et al. 2016]
506 and 0.43 ± 0.44 cM/Mb in vervet monkeys [Pfeifer 2020a]) — however, it should be noted that
507 many of the earlier studies did not account for the potentially confounding effects of population
508 demography during inference (see discussions of Dapper and Payseur 2018; Johri et al. 2022),
509 thus hindering the interpretation of the biological differences in observed rates.

510 In addition to the nearly two-fold variation between autosomes, the recombination
511 landscape in common marmosets — like that of many other primates (e.g., Spencer et al. 2006;
512 Auton et al. 2012; Pfeifer and Jensen 2016; Steviston et al. 2016; Pfeifer 2020a; Wall et al. 2022;
513 Versoza et al. 2024; Soni et al. 2025c) — is highly heterogenous, with a pronounced enrichment
514 in the distal (sub)telomeric regions and reduced rates within centromeric and pericentromeric
515 regions (Figure 3a, and see Supplementary Figure 7 for recombination rate heterogeneity across
516 all autosomes). Moreover, genome-wide recombination rates exhibit a strong positive association

517 with nucleotide diversity ($r = 0.49$, P -value = 0) — highlighting the likely importance of selection
518 at linked sites in shaping the landscape of genomic variation in the species (Soni et al. 2025a) —
519 and, to a lesser extent, divergence ($r = 0.06$, P -value = 2.07E-17) and GC-content ($r = 0.03$, P -
520 value = 6.90E-06), as may be expected if recombination in common marmosets exhibits
521 mutagenic effects (Halldorsson et al. 2019; Hinch et al. 2023) and is prone to GC-biased gene
522 conversion (reviewed by Duret and Galtier 2009) (Supplementary Figure 8). In concordance with
523 PRDM9 directing recombination away from functional elements (Brick et al. 2012; Pratto et al.
524 2014), recombination rates significantly decrease within, and around the boundaries of, protein-
525 coding genes ($r = -0.03$, P -value = 1.09E-04) compared to neighboring regions (Supplementary
526 Figure 9). Notably, while these inferred patterns of recombination were highly similar between the
527 two approaches ($r = 0.57$, P -value < 2.2E-16 at the 1kb-scale), the mean inferred rates of pyrho
528 were much lower (0.25 ± 0.27 cM/Mb) as, despite accounting for historical fluctuations in
529 population size, its internal conversion to the per-generation recombination rate does not account
530 for the lower N_e caused by twinning (Supplementary Figure 10).

531

532 **Characterization of recombination hotspots in the common marmoset genome**

533 To gain insights into the landscape of recombination hotspots in the common marmoset
534 genome, we inferred recombination hotspots using LDhot (Auton et al. 2014) — a statistical
535 method implemented to directly process the recombination rate estimates obtained from LDhat.
536 To obtain a high-quality dataset, we implemented a three-step filtering approach by combining
537 the recommendations from the Great Ape Recombination Project (Stevison et al. 2016) with those
538 of Brazier and Glémén (2024). First, as genuine recombination hotspots tend to be narrow (with
539 ~70-80% of recombination occurring in hotspots with a mean width of 2.3 kb in humans; 1000
540 Genomes Project Consortium 2010), we excluded hotspot candidates with a width larger than 10

541 kb. Second, as artificial breaks in LD resulting, for example, from mis-assembly and/or mis-
542 alignment, can lead to localized peaks in recombination rate, we calculated the intensity of each
543 hotspot candidate by dividing the recombination rate at its peak by the rate estimated for the 100
544 kb surrounding region and removed candidates with an intensity higher than 200. Additionally,
545 due to the difficulty of distinguishing genuine low-intensity hotspots from background variation,
546 we also applied a low-intensity filter, retaining only candidates with a minimum intensity of 4. Third,
547 accounting for recombination rate variation across chromosomes to further narrow down the
548 location of recombination hotspots, we split each remaining candidate region into windows of 2
549 kb with a step size of 1 kb, keeping only the hotspot windows exhibiting rates of at least five times
550 the chromosome-wide average rate. This three-step filtering approach yielded 26,831 candidate
551 hotspots — similar to the number of recombination hotspots initially identified in human
552 populations (International HapMap Consortium 2005, 2007; Myers et al. 2005; 1000 Genomes
553 Project Consortium 2010; Kong et al. 2012; though note the larger number of hotspots identified
554 in subsequent, larger-scale studies, e.g., Halldorsson et al. 2019).

555 In order to identify sequences that predict potential PRDM9 binding, we searched the
556 1,000 hotspots with the highest intensity for consistent sequence motifs. To this end, we used the
557 ZOOPS model implemented in MEME (Bailey and Elkan 1994) to identify degenerate motifs
558 present not more than once in each hotspot region, while accounting for genomic background
559 using cold spot regions matched for sequence length and GC-content. As sequence motifs
560 underlying recombination hotspots in other primates tend to be short (e.g., 10-15 bp in humans,
561 chimpanzees, and gorillas; Schwartz et al. 2014; Auton et al. 2012; Stevenson et al. 2016), we
562 limited the search to motifs with a minimum width of 10 bp and maximum width of 15 bp, keeping
563 only motifs below a discovery threshold of 1e-05. Next, we used FIMO to scan the complete set
564 of hotspot windows for occurrences of each of these motifs. As the predicted motifs are highly
565 repetitive, we also performed permutation tests to compare the frequency of each motif in hotspot

566 regions with that observed in 25,000 background regions randomly sampled from the common
567 marmoset genome by matching the position weight matrix of each motif against the genomic
568 sequences of each hotspot and cold spot region using the MOtif Occurrence Detection Suite
569 (MOODS; Korhonen et al. 2009), requiring a *P*-value < 0.01 for a match. To further narrow down
570 the list of candidates, we used AlphaFold3 (Abramson et al. 2024) to predict the sequence-
571 specific binding between the marmoset PRDM9 sequence and the putative PRDM9 binding
572 motifs. Interestingly, for the best candidate DNA binding motifs — the 15-mer
573 GCTGGGATTACAGGC (e-value: 6.80E-54), present in 83.5% of the candidate hotspots and only
574 2.0% of the matching cold spots, and its degenerate generalization, the 15-mer
575 GCTGGGAKYASWGGC (e-value: 5.40E-17) — AlphaFold3's machine-learning guided model
576 predicted a protein-DNA complex with high-confidence (ipTM = 0.94 and 0.96, respectively; with
577 1.0 being the maximum value of the ipTM performance metric), indicating a very well-defined
578 protein-DNA interface and supporting PRDM9-DNA binding *in silico* (see Figure 3b for a
579 visualization of the predicted binding complex). Notably, while this predicted degenerate PRDM9
580 binding motif shares several key features with motifs previously observed in other primates
581 (including the C/G-rich terminal regions and its overall length), there are also species-specific
582 differences (such as the A/T-rich internal region) as might be anticipated from the rapid evolution
583 of the PRDM9 zinc finger array across the primate lineage.

584 **CONCLUSION**

585 By investigating, and ultimately correcting for, the effects of twinning and sibling chimerism
586 on the inference of fine-scale mutation and recombination rate maps, we have here described
587 these landscapes in one of the most commonly used non-human primate models in research, *C.*
588 *jacchus*. Using high-quality population genomic data, we found that the species exhibits relatively
589 low neutral mutation rates, and rates of recombination within the range observed amongst other
590 anthropoids. Moreover, like many vertebrates, the recombination landscape in common
591 marmosets is dominated by PRDM9-mediated hotspots, and we have described a 3D-structure
592 of the species-specific PRDM9-DNA binding complex *in silico*. Apart from providing novel insights
593 into the population genetic processes shaping variation in common marmosets, these maps will
594 also serve as a valuable resource for future studies in this biomedically important species —
595 including in genome-wide association studies, polygenic risk score modelling, and genomic scans
596 for targets of selection — with implications ranging from the improved study of neurodevelopment
597 disorders to infectious disease dynamics.

598 **ACKNOWLEDGEMENTS**

599 We would like to thank Eric J. Vallender for providing the marmoset samples used in this
600 study, and the members of the Jensen and Pfeifer Labs for helpful comments and discussion.
601 Library preparation and sequencing was performed at the Beijing Genomics Institute (BGI Group,
602 Shenzhen, China). Computations were performed on the Sol supercomputer at Arizona State
603 University (Jennewein et al. 2023).

604

605 **FUNDING**

606 VS and JDJ were supported by National Institute of General Medical Sciences of the
607 National Institutes of Health Award Number R35GM139383 to JDJ. CJV was supported by the
608 National Science Foundation CAREER Award DEB-2045343 to SPP. SPP was supported by the
609 National Institute of General Medical Sciences of the National Institutes of Health under Award
610 Number R35GM151008. The content is solely the responsibility of the authors and does not
611 necessarily represent the official views of the National Institutes of Health or the National Science
612 Foundation.

613

614 **CONFLICT OF INTEREST**

615 None declared.

REFERENCES

1000 Genomes Project Consortium. 2010. A map of human genome variation from population-scale sequencing. *Nature*. 467(7319):1061–1073.

1000 Genomes Project Consortium. 2015. A global reference for human genetic variation. *Nature*. 526(7571):68–74.

Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, et al. 2024. Accurate structure prediction of biomolecular interactions with AlphaFold 3. *Nature*. 630(8016):493–500.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. *J Mol Biol*. 215(3):403–410.

Amemiya HM, Kundaje A, Boyle AP. 2019. The ENCODE blacklist: identification of problematic regions of the genome. *Sci Rep*. 9(1):9354.

Armstrong J, Hickey G, Diekhans M, Fiddes IT, Novak AM, Deran A, Fang Q, Xie D, Feng S, Stiller J, et al. 2020. Progressive Cactus is a multiple-genome aligner for the thousand-genome era. *Nature*. 587(7833):246–251.

Auton A, Fledel-Alon A, Pfeifer S, Venn O, Ségurel L, Street T, Leffler EM, Bowden R, Aneas I, Broxholme J, et al. 2012. A fine-scale chimpanzee genetic map from population sequencing. *Science*. 336(6078):193–198.

Auton A, McVean G. 2007. Recombination rate estimation in the presence of hotspots. *Genome Res*. 17(8):1219–1227.

Auton A, Myers S, McVean G. 2014. Identifying recombination hotspots using population genetic data. *arXiv* [Preprint] <https://doi.org/10.48550/arXiv.1403.4264>

Baer CF, Miyamoto MM, Denver DR. 2007. Mutation rate variation in multicellular eukaryotes: causes and consequences. *Nat Rev Genet*. 8(8):619–631.

Bailey TL, Elkan C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. *Proc Int Conf Intell Syst Mol Biol*. 2:28–36.

Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B. 2010. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. *Science*. 327(5967):836–840.

Benirschke K, Anderson JM, Brownhill LE. 1962. Marrow chimerism in marmosets. *Science*. 138(3539):513–515.

Blum M, Andreeva A, Florentino LC, Chuguransky SR, Grego T, Hobbs E, Pinto BL, Orr A, Paysan-Lafosse T, Ponamareva I, et al. 2025. InterPro: the protein sequence classification resource in 2025. *Nucleic Acids Res*. 53(D1):D444–D456.

Birney E, Clamp M, Durbin R. 2004. GeneWise and Genomewise. *Genome Res*. 14(5):988–995.

Brazier T, Glémin S. 2024. Diversity in recombination hotspot characteristics and gene structure shape fine-scale recombination patterns in plant genomes. *Mol Biol Evol.* 41(9):msae183.

Brick K, Smagulova F, Khil P, Camerini-Otero RD, Petukhova GV. 2012. Genetic recombination is directed away from functional genomic elements in mice. *Nature.* 485(7400):642–645.

Browning BL, Tian X, Zhou Y, Browning SR. 2021. Fast two-stage phasing of large-scale sequence data. *Am J Hum Genet.* 108(10):1880–1890.

Charlesworth B, Jensen JD. 2021. Effects of selection at linked sites on patterns of genetic variability. *Annu Rev Ecol Evol Syst.* 52:177–197.

Charlesworth B, Jensen JD. 2022. How can we resolve Lewontin's Paradox? *Gen Biol Evol.* 14(7):evac096.

Charlesworth B, Morgan MT, Charlesworth D. 1993. The effect of deleterious mutations on neutral molecular variation. *Genetics.* 134(4):1289–1303.

Chen Y, Chen Y, Shi C, Huang Z, Zhang Y, Li S, Li Y, Ye J, Yu C, Li Z, et al. 2018. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. *GigaScience.* 7(1):1–6.

Chiou K, Snyder-Mackler N. 2024. Marmosets contain multitudes. *eLife* 13:e97866.

Clark AG, Wang X, Matise T. 2010. Contrasting methods of quantifying fine structure of human recombination. *Annu Rev Genomics Hum Genet.* 11:45–64.

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, et al. 2011. The variant call format and VCFtools. *Bioinformatics.* 27(15):2156–2158.

Dapper AL, Payseur BA. 2018. Effects of demographic history on the detection of recombination hotspots from linkage disequilibrium. *Mol Biol Evol.* 35(2):335–353.

del Rosario RCH, Krienen FM, Zhang Q, Goldman M, Mello C, Lutservitz A, Ichihara K, Wysoker A, Nemesh J, Feng G, et al. 2024. Sibling chimerism among microglia in marmosets. *eLife* 13:RP93640.

Duret L, Galtier N. 2009. Biased gene conversion and the evolution of mammalian genomic landscapes. *Annu Rev Genomics Hum Genet.* 10:285–311.

Dutheil JY. 2024. On the estimation of genome-average recombination rates. *Genetics.* 227(2):iyae051.

Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C. 2021. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. *Nucleic Acids Res.* 49(W1):W216–W227.

Ghafoor S, Santos J, Versoza CJ, Jensen JD, Pfeifer SP. 2023. The impact of sample size and population history on observed mutational spectra: a case study in human and chimpanzee populations. *Gen Biol Evol.* 15(3):evad019.

Glazko GV, Nei M. 2003. Estimation of divergence times for major lineages of primate species. *Mol Biol Evol.* 20(3):424–434.

Gengozian N, Batson JS, Greene CT, Gosslee DG. 1969. Hemopoietic chimerism in imported and laboratory-bred marmosets. *Transplantation.* 8(5):633–652.

Halldorsson BV, Palsson G, Stefansson OA, Jonsson H, Hardarson MT, Eggertsson HP, Gunnarsson B, Oddsson A, Halldorsson GH, Zink F, et al. 2019. Characterizing mutagenic effects of recombination through a sequence-level genetic map. *Science.* 363(6425):eaau1043.

Haller BC, Messer PW. 2023. SLiM 4: multispecies eco-evolutionary modeling. *Am Nat.* 201:E127–E139.

Han HJ, Powers SJ, Gabrielson KL. 2022. The common marmoset – biomedical research animal model applications and common spontaneous diseases. *Toxicol Pathol.* 50(5):628–637.

Hickey G, Paten B, Earl D, Zerbino D, Haussler D. 2013. HAL: a hierarchical format for storing and analyzing multiple genome alignments. *Bioinformatics.* 29(10):1341–1342.

Hill JP. 1932. II. Croonian lecture - The developmental history of the primates. *Phil Trans R Soc Lond B.* 221(474–482):45–178.

Hinch R, Donnelly P, Hinch AG. 2023. Meiotic DNA breaks drive multifaceted mutagenesis in the human germ line. *Science.* 382(6674):eadh2531.

Hodgkinson A, Eyre-Walker A. 2011. Variation in the mutation rate across mammalian genomes. *Nat Rev Genet.* 12(11):756–766.

International HapMap Consortium. 2005. A haplotype map of the human genome. *Nature.* 437(7063):1299–1320.

International HapMap Consortium. 2007. A second generation human haplotype map of over 3.1 million SNPs. *Nature.* 449(7164):851–861.

Jennewein DM, Lee J, Kurtz C, Dizon W, Shaeffer I, Chapman A, Chiquete A, Burks J, Carlson A, Mason N, et al. 2023. The Sol supercomputer at Arizona State University. In *Practice and Experience in Advanced Research Computing 2023: Computing for the Common Good (PEARC '23)*. Association for Computing Machinery, New York, NY, USA, 296–301.

Jensen JD. 2023. Population genetic concerns related to the interpretation of empirical outliers and the neglect of common evolutionary processes. *Heredity (Edinb).* 130(3):109–110.

Johnston SE. 2024. Understanding the genetic basis of variation in meiotic recombination: past, present, and future. *Mol Biol Evol.* 41(7):msae112.

Johri P, Aquadro CF, Beaumont M, Charlesworth B, Excoffier L, Eyre-Walker A, Keightley PD, Lynch M, McVean G, Payseur BA, et al. 2022. Recommendations for improving statistical inference in population genomics. *PLoS Biol.* 20(5):e3001669.

Johri P, Charlesworth B, Jensen JD. 2020. Toward an evolutionarily appropriate null model: jointly inferring demography and purifying selection. *Genetics*. 215(1):173–192.

Kimura M. 1968. Evolutionary rate at the molecular level. *Nature*. 217(5129):624–626.

Kong A, Gudbjartsson DF, Sainz J, Jónsdóttir GM, Gudjonsson SA, Richardsson B, Sigurdardóttir S, Barnard J, Hallbeck B, Masson G, et al. 2002. A high-resolution recombination map of the human genome. *Nat Genet*. 31(3):241–247.

Korhonen J, Martinmäki P, Pizzi C, Rastas P, Ukkonen E. 2009. MOODS: fast search for position weight matrix matches in DNA sequences. *Bioinformatics*. 25(23):3181–3182.

Kuderna LFK, Ulirsch JC, Rashid S, Ameen M, Sundaram L, Hickey G, Cox AJ, Gao H, Kumar A, Aguet F, et al. 2024. Identification of constrained sequence elements across 239 primate genomes. *Nature*. 625(7996):735–742.

Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. *Nucleic Acids Res.* 49(W1):W293–W296.

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv [Preprint] DOI: [10.48550/arXiv.1303.3997](https://doi.org/10.48550/arXiv.1303.3997)

Lorenz A, Mpalo SJ. 2022. Gene conversion: a non-Mendelian process integral to meiotic recombination. *Heredity (Edinb)*. 129(1):56–63.

Lynch M. 2010. Evolution of the mutation rate. *Trends Genet.* 26(8):345–352.

Malukiewicz J, Cartwright RA, Curi NHA, Dergam JA, Igayara CS, Moreira SB, Molina CV, Nicola PA, Noll A, Passamani M, et al. 2021. Mitogenomic phylogeny of Callithrix with special focus on human transferred taxa. *BMC Genomics*. 22(1):239.

Mao Y, Harvey WT, Porubsky D, Munson KM, Hoekzema K, Lewis AP, Audano PA, Rozanski A, Yang X, Zhang S, et al. 2024. Structurally divergent and recurrently mutated regions of primate genomes. *Cell*. 187(6):1547–1562.e13.

McVean G, Awadalla P, Fearnhead P. 2002. A coalescent-based method for detecting and estimating recombination from gene sequences. *Genetics*. 160(3):1231–1241.

McVean GAT, Myers SR, Hunt S, Deloukas P, Bentley DR, Donnelly P. 2004. The fine-scale structure of recombination rate variation in the human genome. *Science*. 304(5670):581–584.

Miller CT, Freiwald WA, Leopold DA, Mitchell JF, Silva AC, Wang X. 2016. Marmosets: a neuroscientific model of human social behavior. *Neuron*. 90(2):219233.

Myers S, Bottolo L, Freeman C, McVean G, Donnelly P. 2005. A fine-scale map of recombination rates and hotspots across the human genome. *Science*. 310(5746):321–314.

Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, MacFie TS, McVean G, Donnelly P. 2010. Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. *Science*. 327(5967):876–879.

Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger MR, Altemose N, Uralsky L, Gershman A, et al. 2022. The complete sequence of a human genome. *Science*. 376(6588):44–53.

Okano H, Hikishima K, Iriki A, Sasaki E. 2012. The common marmoset as a novel animal model system for biomedical and neuroscience research applications. *Semin Fetal Neonatal Med*. 17(6):336–340.

Parvanov ED, Petkov PM, Paigen K. 2010. PRDM9 controls activation of mammalian recombination hotspots. *Science*. 327(5967):835.

Peñalba JV, Wolf JBW. 2020. From molecules to populations: appreciating and estimating recombination rate variation. *Nat Rev Genet*. 21(8):476–492.

Pfeifer SP. 2017. From next-generation resequencing reads to a high-quality variant data set. *Heredity (Edinb)*. 118(2):111–124.

Pfeifer SP. 2020a. A fine-scale genetic map for velvet monkeys. *Mol Biol Evol*. 37(7):1855–1865.

Pfeifer SP. 2020b. Spontaneous mutation rates. In Ho SYW (ed) The Molecular Evolutionary Clock. Theory and Practice. Springer Nature, pp. 35–44.

Pfeifer SP. 2021. Studying mutation rate evolution in primates—the effects of computational pipelines and parameter choices. *GigaScience*. 10(10):giab069.

Pfeifer SP, Jensen JD. 2016. The impact of linked selection in chimpanzees: a comparative study. *Genome Biol Evol*. 8(10):3202–3208.

Philippens IHCHM, Langermans JAM. 2021. Preclinical marmoset model for targeting chronic inflammation as a strategy to prevent Alzheimer's disease. *Vaccines (Basel)*. 9(4):388.

Pratto F, Brick K, Khil P, Smagulova F, Petukhova GV, Camerini-Otero RD. 2014. Recombination initiation maps of individual human genomes. *Science*. 346(6211):1256442.

Quinlan AR. 2014. BEDTools: the Swiss-army tool for genome feature analysis. *Curr Protoc Bioinformatics*. 47:11.12.1–34.

R Core Team. 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>

Raney BJ, Barber GP, Benet-Pagès A, Casper J, Clawson H, Cline MS, Diekhans M, Fischer C, Navarro Gonzalez J, Hickey G, et al. 2024. The UCSC Genome Browser database: 2024 update. *Nucleic Acids Res*. 52(D1):D1082–D1088.

Ritz RR, Noor MAF, Singh ND. 2017. Variation in recombination rate: adaptive or not? *Trends Genet*. 33(5):364–374.

Ross CN, French JA, Ortí G. 2007. Germ-line chimerism and paternal care in marmosets (*Callithrix kuhlii*). *Proc Natl Acad Sci USA*. 104(15):6278–6282.

Samuk K, Noor MAF. 2022. Gene flow biases population genetic inference of recombination rate. *G3 (Bethesda)*. 12(11):jkac236.

Schultz-Darken N, Braun KM, Emborg ME. 2016. Neurobehavioral development of common marmoset monkeys. *Dev Psychobiol*. 58(2):141–158.

Schwartz JJ, Roach DJ, Thomas JH, Shendure J. 2014. Primate evolution of the recombination regulator PRDM9. *Nat Commun*. 5:4370.

Soni V, Jensen JD. 2025. Inferring demographic and selective histories from population genomic data using a two-step approach in species with coding-sparse genomes: an application to human data. *G3 (Bethesda)*. 15:jkaf019.

Soni V, Pfeifer SP, Jensen JD. 2024. The effect of mutation and recombination rate heterogeneity on the inference of demography and the distribution of fitness effects. *Genome Biol Evol*. 16(2):evae004.

Soni V, Pfeifer SP, Jensen JD. 2025d. Recent insights into the evolutionary genomics of the critically endangered aye-aye (*Daubentonia madagascariensis*). *Am J Primatol*. 87(12):e70105.

Soni V, Versoza CJ, Pfeifer SP, Jensen JD. 2025a. Investigating the effects of chimerism on the inference of selection: quantifying genomic targets of purifying, positive, and balancing selection in common marmosets (*Callithrix jacchus*). *Heredity (Edinb)*. 134(10-11):645–657.

Soni V, Versoza CJ, Terbot JW, Jensen JD, Pfeifer SP. 2025c. Inferring fine-scale mutation and recombination rate maps in aye-ayes (*Daubentonia madagascariensis*). *Ecol. Evol*. 15(11):e72314.

Soni V, Versoza CJ, Vallender EJ, Jensen JD, Pfeifer SP. 2025b. Accounting for chimerism in demographic inference: reconstructing the history of common marmosets (*Callithrix jacchus*) from high-quality, whole-genome, population-level data. *Mol Biol Evol*. 42(6):msaf119.

Spence JP, Song YS. 2019. Inference and analysis of population-specific fine-scale recombination maps across 26 diverse human populations. *Sci Adv*. 5(10):eaaw9206.

Spencer CC, Deloukas P, Hunt S, Mullikin J, Myers S, Silverman B, Donnelly P, Bentley D, McVean G. 2006. The influence of recombination on human genetic diversity. *PLoS Genet*. 2(9):e148.

Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. 2017. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. *Philos Trans R Soc Lond B Biol Sci*. 372(1736):20160455.

Stevison LS, Woerner AE, Kidd JM, Kelley JL, Veeramah KR, McManus KF, Great Ape Genome Project, Bustamante CD, Hammer MF, Wall JD. 2016. The time scale of recombination rate evolution in great apes. *Mol Biol Evol*. 33(4):928–945.

Stumpf MPH, McVean GAT. 2003. Estimating recombination rates from population-genetic data. *Nat Rev Genet.* 4(12):959–968.

Sweeney CG, Curran E, Westmoreland SV, Mansfield KG, Vallender EJ. 2012. Quantitative molecular assessment of chimerism across tissues in marmosets and tamarins. *BMC Genomics.* 13:98.

Tardif SD, Jaquish CE. 1997. Number of ovulations in the marmoset monkey (*Callithrix jacchus*): relation to body weight, age and repeatability. *Am J Primatol.* 42(4):323–329.

Tardif SD, Smucny DA, Abbott DH, Mansfield K, Schultz-Darken N, Yamamoto ME. 2003. Reproduction in captive common marmosets (*Callithrix jacchus*). *Comp Med.* 53(4):364–368.

Thomas GWC, Wang RJ, Puri A, Harris RA, Raveendran M, Hughes DST, Murali SC, Williams LE, Doddapaneni H, Muzny DM, et al. 2018. Reproductive longevity predicts mutation rates in primates. *Curr Biol.* 28(19):3193–3197.

van der Auwera G, O'Connor B. 2020. Genomics in the Cloud. 1st edition. O'Reilly Media.

Versoza CJ, Ehmke EE, Jensen JD, Pfeifer SP. 2025a. Characterizing the rates and patterns of *de novo* germline mutations in the aye-aye (*Daubentonia madagascariensis*). *Mol Biol Evol.* 42(3):msaf034.

Versoza CJ, Lloret-Villas A, Jensen JD, Pfeifer SP. 2025b. A pedigree-based map of crossovers and non-crossovers in aye-ayes (*Daubentonia madagascariensis*). *Genome Biol Evol.* 17(5):evaf072.

Versoza C, Weiss S, Johal R, La Rosa B, Jensen JD, Pfeifer SP. 2024. Novel insights into the landscape of crossover and non-crossover events in rhesus macaques (*Macaca mulatta*). *Genome Biol Evol.* 16(1):evad223.

Wall JD, Robinson JA, Cox LA. 2022. High-resolution estimates of crossover and noncrossover recombination from a captive baboon colony. *Genome Biol Evol.* 14(4): evac040.

Ward JM, Buslov AM, Vallender EJ. 2014. Twinning and survivorship of captive common marmosets (*Callithrix jacchus*) and cotton-top tamarins (*Saguinus oedipus*). *J Am Assoc Lab Anim Sci.* 53(1):7–11.

Williams AL, Patterson N, Glessner J, Hakonarson H, Reich D. 2012. Phasing of many thousands of genotyped samples. *Am J Hum Genet.* 91(2):238–251.

Wislocki GB. 1939. Observations on twinning in marmosets. *Am J Anat.* 64:445–483.

Xue C, Raveendran M, Harris RA, Fawcett GL, Liu X, White S, Dahdouli M, Rio Deiros D, Below JE, Salerno W, et al. 2016. The population genomics of rhesus macaques (*Macaca mulatta*) based on whole-genome sequences. *Genome Res.* 26(12):1651–1662.

Xue C, Rustagi N, Liu X, Raveendran M, Harris RA, Venkata MG, Rogers J, Yu F. 2020. Reduced meiotic recombination in rhesus macaques and the origin of the human recombination landscape. *PLoS One.* 15(8):e0236285.

Yang C, Zhou Y, Marcus S, Formenti G, Bergeron LA, Song Z, Bi X, Bergman J, Rousselle MMC, Zhou C, et al. 2021. Evolutionary and biomedical insights from a marmoset diploid genome assembly. *Nature*. 594(7862):227–233.

Zoonomia Consortium. 2020. A comparative genomics multitool for scientific discovery and conservation. *Nature*. 587(7833):240–245.

	divergence time	generation time	
		1.5 years	2.0 years
<i>C. jacchus – C. kuhlii</i>	0.59 mya	2.50E-09	3.34E-09
	0.82 mya	1.80E-09	2.40E-09
	1.09 mya	1.36E-09	1.81E-09
<i>C. jacchus – H. sapiens</i>	32 mya	2.80E-09	3.74E-09
	33 mya	2.72E-09	3.62E-09
	36 mya	2.49E-09	3.32E-09

Table 1. Inferred rates of neutral mutation. Comparison of indirectly inferred mean neutral mutation rate estimates based on *C. jacchus*–*C. kuhlii* divergence (mean neutral divergence rate: 0.0029) and *C. jacchus*–*H. sapiens* divergence (0.06) for three possible divergence times (0.59 million years ago [mya], 0.82 mya, and 1.09 mya for *C. jacchus*–*C. kuhlii* [Malukiewicz et al. 2021]; 32 mya, 33 mya, and 36 mya for *C. jacchus*–*H. sapiens* [Glazko and Nei 2003]) and two possible generation times (1.5 years and 2.0 years; Tardif et al. 2003; Okano et al. 2012; Schultz-Darken et al. 2016; Han et al. 2022).

Figure 1

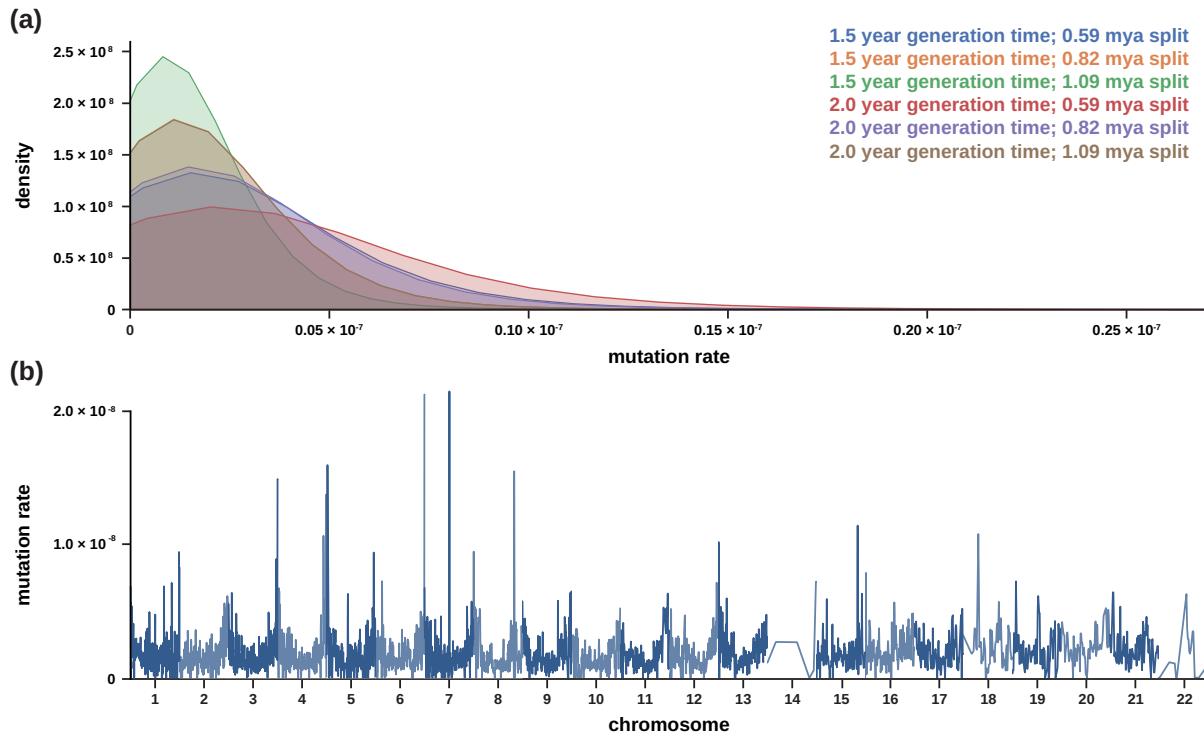


Figure 1. Fine-scale rates of neutral mutation. (a) Density plots of the per-site per-generation mutation rate implied by the neutral divergence for two possible generation times (1.5 years and 2.0 years; Tardif et al. 2003; Okano et al. 2012; Schultz-Darken et al. 2016; Han et al. 2022) and three possible divergence times between the common marmoset (*C. jacchus*) and the closely related Wied's black-tufted-ear marmoset (*C. kuhlii*) (0.59 million years ago [mya], 0.82 mya, and 1.09 mya; Malukiewicz et al. 2021). (b) Genome-wide per-site per-generation neutral mutation rates for genomic windows of size 1 Mb, with a 500 kb step size (and see Supplementary Figure 5 for the heterogeneity in neutral mutation rates across all autosomes). Neutral mutation rates were estimated from the rates of neutral divergence observed in >10kb-long alignments between *C. jacchus* and *C. kuhlii* (note that due to the limited number of such alignments on chromosomes 14 and 22, neutral mutation rate estimates for these two autosomes are relatively coarse).

Figure 2

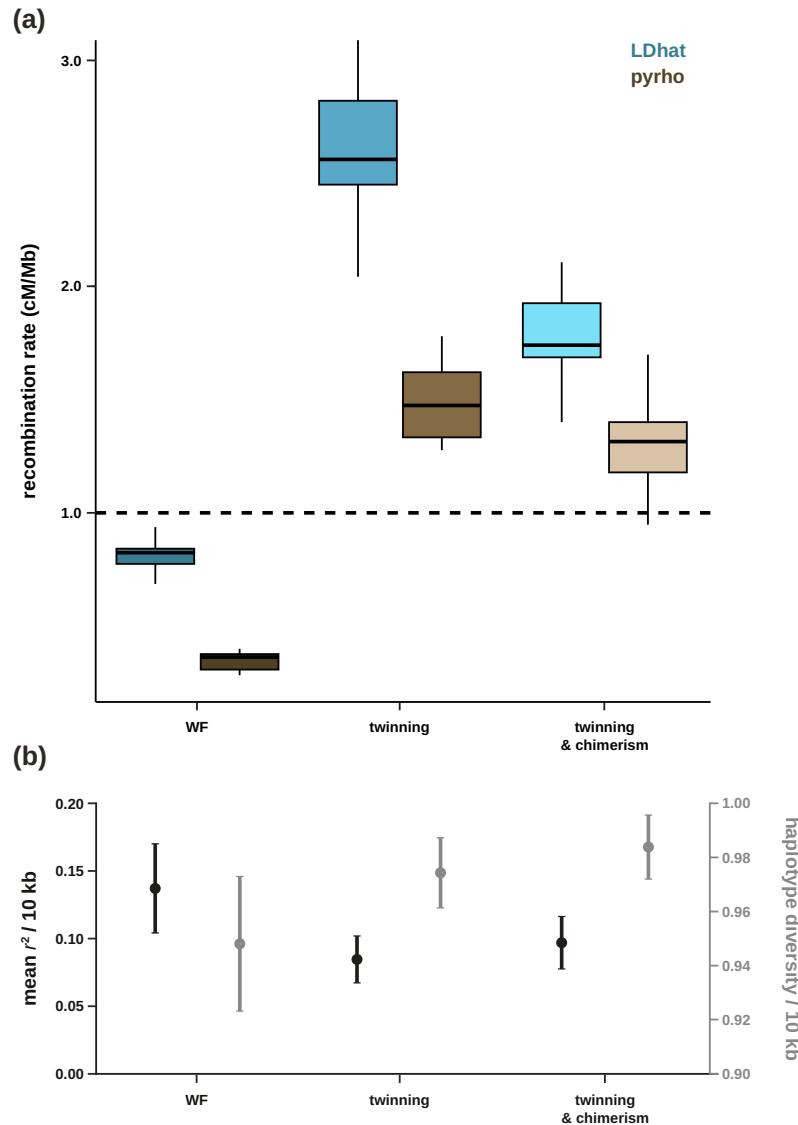


Figure 2: Performance of recombination rate estimators under twinning and chimerism. (a) Performance of the demography-unaware recombination rate estimator LDhat (shown in blues) and the demography-aware recombination rate estimator pyrho (shown in browns) under the demographic history inferred for the population by Soni et al. (2025b) using a Wright-Fisher (WF) model and a non-WF framework that models twinning and chimerism — two model violations inherent to the biology of marmosets. The dashed line depicts the recombination rate that was used in the simulations (1 cM/Mb). (b) Mean r^2 (shown in black; left y-axis) and haplotype diversity (gray; right y-axis) calculated over 10 kb windows (with a 5 kb step size) across 10 simulation replicates under the demographic history inferred for the population by Soni et al. (2025b) using a WF model and a non-WF framework that models twinning and chimerism. Data points represent the mean value, whilst confidence intervals represent the standard deviation.

Figure 3

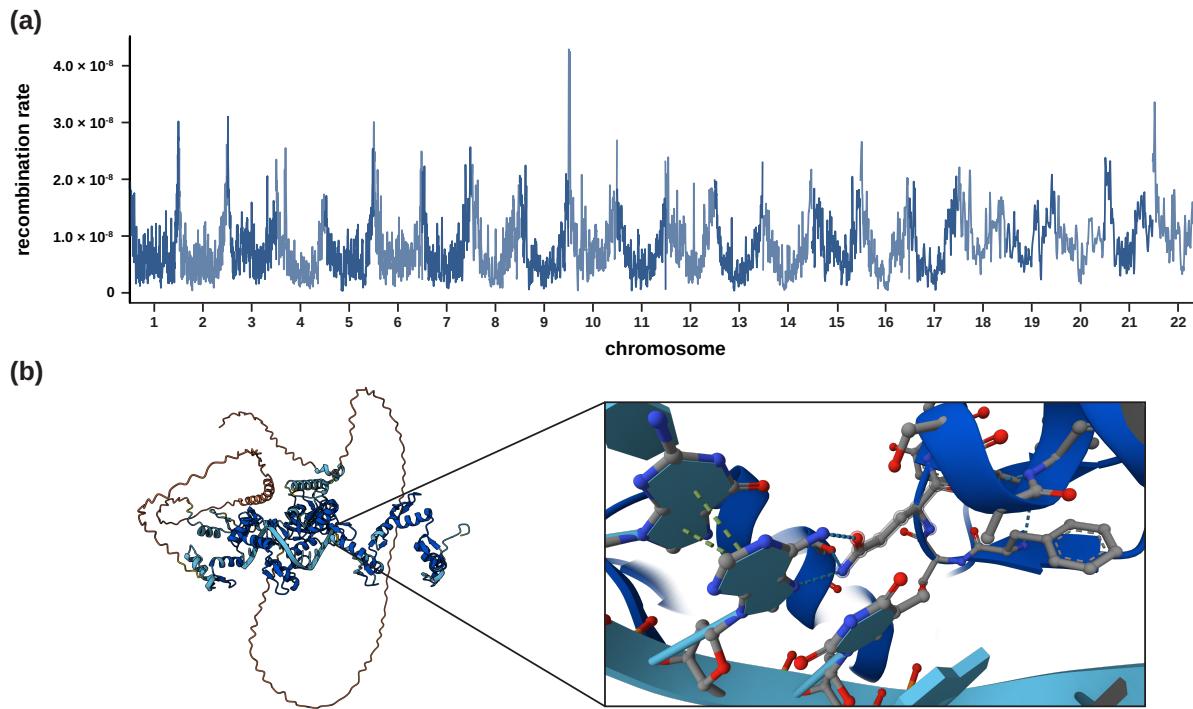


Figure 3: Fine-scale rates of recombination. (a) Genome-wide per-site per-generation recombination rates as inferred by LDhat for genomic windows of size 1Mb, with a 500kb step size (and see Supplementary Figure 7 for recombination rate heterogeneity across all autosomes and Supplementary Figure 10 for the genome-wide recombination rates inferred by pyrho). (b) *In silico* binding prediction between PRDM9 and the putative binding sites. Predictions were performed using AlphaFold3 (predictions are provided for non-commercial use only, under and subject to AlphaFold Server Output Terms of Use found under alphafoldserver.com/output-terms). Per-atom confidence scores are color-coded with very high confidence predicted structures shown in dark blue ($p\text{LDDT} > 90$), confidently predicted structures in turquoise ($90 > p\text{LDDT} > 70$), low confidence predicted structures in yellow ($70 > p\text{LDDT} > 50$), and very low confidence predicted structures in orange ($p\text{LDDT} < 50$).