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ABSTRACT

The common marmoset (Callithrix jacchus) is an important model in biomedical and
clinical research, particularly for the study of age-related, neurodegenerative, and
neurodevelopmental disorders (due to their biological similarities with humans), infectious disease
(due to their susceptibility to a variety of pathogens), as well as developmental biology (due to
their short gestation period relative to many other primates). Yet, while being one of the most
commonly used non-human primate models for research, the population genomics of the common
marmoset remains relatively poorly characterized, despite the critical importance of this
knowledge in many areas of research including genome-wide association studies, models of
polygenic risk scores, and scans for the targets of selection. This neglect owes, at least in part,
to two biological peculiarities related to the reproductive mode of the species — frequent twinning
and sibling chimerism — which are likely to affect standard population genetic approaches relying
on assumptions underlying the Wright-Fisher model. Using high-quality population genomic data,
we here infer the rates and landscapes of mutation and recombination — two fundamental
processes dictating the levels and patterns of genetic variability — in the presence of these
biological features, and discuss our findings in light of recent work in primates. Our results suggest
that, while the species exhibits relatively low neutral mutation rates, rates of recombination are in
the range of those observed in other anthropoids. Moreover, the recombination landscape of
common marmosets, like that of many vertebrates, is dominated by PRDM9-mediated hotspots,
with artificial intelligence-based models predicting an intricate 3D-structure of the species-specific
PRDM29-DNA binding complex in silico. Apart from providing novel insights into the population
genetics of common marmosets, given the importance of the availability of fine-scale maps of
mutation and recombination for evolutionary inference, this work will also serve as a valuable

resource to aid future genomic research in this widely studied system.
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INTRODUCTION

The introduction of new genetic variation through the process of mutation and its
reorganization through crossover and non-crossover events — the two possible outcomes of
meiotic recombination — are key evolutionary mechanisms that influence genomic diversity. Both
processes are known to be highly variable across species, with rates differing between
populations, individuals, and sites within a genome (see the reviews by Baer et al. 2007; Lynch
2010; Hodgkinson and Eyre-Walker 2011; Pfeifer 2020b for an overview of mutation rate variation
and a discussion of its genetic determinants, and the reviews by Ritz et al. 2017; Stapley et al.
2017; Johnston 2024 for an overview of recombination rate variation). Importantly, the uneven
distribution of mutation and recombination rates across genomes can profoundly influence
interactions amongst other evolutionary processes; for instance, heterogeneity in these
underlying rates may substantially modify the effects of selection at linked sites, and thereby
modify expectations of both levels and patterns of genetic variation (reviewed by Charlesworth
and Jensen 2021, 2022). Additionally, relying on simplified, species-averaged rates of mutation
and recombination — as is common practice in many evolutionary inference applications — has
been shown to potentially lead to mis-inference in downstream analyses, including those
estimating population history and the distribution of fithess effects (Dapper and Payseur 2018;
Samuk and Noor 2022; Ghafoor et al. 2023; Soni et al. 2024; Soni and Jensen 2025). Yet, despite
their crucial importance, both processes remain relatively poorly characterized in many

vertebrates.

There are two primarily classes of approach for estimating both mutation and
recombination rates in primates and other large organisms. Direct approaches utilize genomic
data from parent-offspring trios or multi-generation pedigrees in order to detect de novo mutations

(reviewed by Pfeifer 2020b, and see also Pfeifer 2021), or contemporary crossover and non-
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crossover events occurring between generations (reviewed by Clark et al. 2010). The resolution
of these pedigree-based inference approaches at the genome scale remains relatively coarse
due to the limited number of de novo mutations and meiotic exchanges that can be observed in
the small number of generations characterizing the sample. Hence, given the hundreds to
thousands of pedigreed individuals required to obtain high resolution maps, most studies typically
yield only a genome-wide estimate over the limited generational span studied, rather than
providing detailed information about the finer scale landscapes. Moreover, due to the extensive
sample and sequencing requirements, direct approaches tend to be labor-intensive and costly,
limiting their application, particularly in organisms for which resources remain limited. Indirect
approaches, on the other hand, rely on population genetic theory and information about the
genealogy of the sample over longer evolutionary timescales. Indirect estimates of mutation rate,
for example, rely on species-level divergence data, based on the observation that the neutral
mutation rate is equal to the neutral divergence rate (Kimura 1968). This allows for the inference
of historically averaged mutation rates from phylogenetic sequence data in neutrally-evolving
genomic regions. Although in principle straightforward, this approach is limited by the availability
of high-quality genome annotations necessary to identify neutrally-evolving regions — which are
lacking for many non-model organisms — and is often accompanied by significant uncertainties
related to divergence and generation times, typically resulting in a range of possible mutation
rates (see e.g., Soni et al. 2025c). Indirect recombination rate inference relies on polymorphism
rather than divergence data, analyzing unrelated individuals in order to estimate historical sex-
averaged rates of recombination based on the extent of observed linkage disequilibrium (LD) in
the genome (reviewed by Stumpf and McVean 2003; Pefialba and Wolf 2020). For this reason,
these methods are sensitive to other evolutionary forces shaping LD (Dapper and Payseur 2018;
Samuk and Noor 2022) and it is thus crucial to account for the underlying population history when
performing such analyses (Johri et al. 2020, 2022; Jensen 2023). Yet, despite these caveats,

these approaches are also uniquely capable of providing a fine-scale, genome-wide mapping of
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78  underlying sex-averaged rates over many generations necessary for evolutionary analyses (see
79  the discussion in Johri et al. 2022).
80
81 Within primates specifically, high-quality, fine-scale rate estimation has generally been
82  focused upon humans and their closest relatives, the great apes, as well as a handful of species
83  of biomedical or conservation interest (e.g., Kong et al. 2002; Auton et al. 2012; Stevison et al.
84  2016; Pfeifer 2020a; Xue et al. 2020; Wall et al. 2022; Versoza et al. 2024, 2025a,b; Soni et al.
85  2025c; and see the discussion of Soni et al. 2025d). In the primates studied to date as well as in
86  numerous other organisms, meiotic recombination has been found to be concentrated in hotspots,
87  the location of which is primarily determined by the zinc-finger protein PRDM9 (Baudat et al. 2010;
88  Myers et al. 2010; Parvanov et al. 2010). Notably, PRDM9 has evolved rapidly across primates,
89  showing a high variability in the number of zinc-fingers as well as their nucleotide contact residues,
90 resulting in differences in the predicted nucleotide binding sequence and, consequently, in the
91 hotspot positioning even between closely-related species (reviewed by Stapley et al. 2017; Lorenz
92  and Mpaulo 2022; Johnston 2024; and see Schwartz et al. 2014 for a characterization of the allelic
93  diversity in PRDM9 zinc finger domains of different primate species). As many evolutionary and
94  biomedical studies require knowledge of the fine-scale patterns of recombination across the
95 genome — such as rare disease gene mapping and genome-wide association studies that rely
96 on patterns of LD to detect associations between genetic variants and phenotypic traits — and
97  given the extensive variation in the distribution of recombination observed, it is thus important to
98 obtain detailed maps characterizing the recombination frequency specific to the organism of
99 interest. Yet, deeper in the primate clade, high-quality estimates of fine-scale mutation and
100  recombination rates, or hotspot mapping, remain sparse — particularly across New World
101  monkeys (platyrrhines) and prosimians (strepsirrhines) — limiting both our understanding of
102 primate evolution in general and the accuracy and resolution of clinically-relevant genomic studies

103 in primate model systems specifically.
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104

105 In order to extend this inference, we here examine the common (or white-tufted-ear)
106  marmoset, Callithrix jacchus, a relatively abundant platyrrhine monkey of the Callitrichidae family.
107  As one of the smallest statured anthropoids, common marmosets have risen in biomedical
108  prominence over the past two decades particularly as a commonly used model for the study of
109  aging, neurodegeneration, and neurodevelopment disorders, as well as autoimmune and
110 infectious disease dynamics (see e.g., the reviews by Miller et al. 2016; Philippens and
111  Langermans 2021; Han et al. 2022), owing largely to their early sexual maturity (~15 to 18 months
112 of age), short gestation period (~145 days), and high fecundity (birthing up to four offspring in a
113 single pregnancy, with pregnancies occurring biannually). Interestingly, a notable peculiarity of
114  marmoset biology, and that of several other callitrichines, is the frequent ovulation of two (or more)
115 ova per cycle (Tardif and Jaquish 1997), resulting in common dizygotic (fraternal) twin births
116  (Ward et al. 2014), and the exchange of hematopoietic stem cells during embryonic development
117  via anastomoses in a single shared placenta, causing sibling chimerism (Hill 1932; Wislocki 1939;
118  Benirschke et al. 1962; Gengozian et al. 1969). As a result, samples of blood and many other
119  tissues obtained from marmosets have been observed to contain a mixture of genetic material
120 originating from both the sampled individual and their unsampled littermate (Ross et al. 2007;
121  Sweeney et al. 2012; del Rosario et al. 2024; and see the commentary by Chiou and Snyder-
122 Mackler 2024). Notably, recent genomic analyses have demonstrated that the high frequency of
123 twinning together with chimeric sampling shape both levels and patterns of observed genetic
124 variation — including LD — in this species, with Soni et al. (2025b) finding that a neglect of these
125  biological factors can result in significant mis-inference of population history. Yet, the impact of
126  these unusual reproductive dynamics on other types of population genomic inference remains
127  unexplored to date.

128


https://doi.org/10.1101/2025.07.01.662565

bioRxiv preprint doi: https://doi.org/10.1101/2025.07.01.662565; this version posted January 10, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

129 Although a direct mutation rate point estimate exists for common marmosets (0.43 x 10
130  per base pair per generation; Yang et al. 2021), this estimate was based on a single trio and,
131  although the sampled tissues (muscle, liver, and spleen) are expected to exhibit lower levels of
132 chimerism than blood, the authors did not correct for the effects of chimerism. In this instance,
133 the potential 'counting' of twin-shared variants in a single individual sampled from a triplet may be
134  expected to confound mutation counts and thus calculated rates. To lower the potential impact of
135  chimerism on their estimate, the authors applied highly stringent filter criteria; however, this in turn
136  may be expected to impact the overall number of genuine de novo mutations identifiable in their
137  study. More recently, Mao et al. (2024) inferred a much-increased human-marmoset neutral
138  divergence relative to the closely-related owl monkey-human divergence. In this case, the long-
139  term neutral divergence rate would not be expected to be impacted by twinning and chimeric
140  sampling (i.e., neutral divergence will be driven by the neutral mutation rate, u). In contrast to
141  these studies of mutation, to the best of our knowledge, no fine-scale genetic map yet exists for
142 the species. Helpfully, utilizing novel population genomic data from individuals sequenced to high-
143 coverage and annotated at the gene-level — and directly accounting for twinning and chimerism
144 — Soni et al. (2025b) recently described a well-fitting population history consisting of a rapid
145  reduction in population size roughly 7,000 years ago, followed by a modest recovery — a
146  necessary prerequisite to interpret patterns of genetic variation and LD. Here, we utilize this
147  modelling framework accounting both for this unique reproductive biology as well as population
148  history, combined with high-quality whole-genome sequencing data, in order to quantify the rates
149  and characterize the landscape of mutation and recombination in the common marmoset. Beyond
150  providing valuable biological insights into the location and frequency of mutation and
151 recombination in this New World monkey, these fine-scale maps will play a crucial role in
152 enhancing future biomedical and evolutionary analyses integrating the significant nuance of
153  accurate patterns of underlying genomic rate heterogeneity, thus improving our ability to study

154  heritable genetic disorders in this widely used model system. In this effort, we have also uniquely
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155 characterized the effects of twinning and chimeric sampling on indirect rate estimation more
156  generally and describe the underlying impact on patterns of LD — insights which will be beneficial

157  to future research focused on organisms characterized by chimerism.
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158 MATERIALS AND METHODS

159  Animal subjects

160 Animals were maintained in accordance with the guidelines of the Harvard Medical School
161  Standing Committee on Animals and the Guide for Care and Use of Laboratory Animals of the
162 Institute of Laboratory Animal Resources, National Research Council. All samples were collected

163  during routine veterinary care under approved protocols.

164

165 Whole genome sequencing

166 Our study was based on genomes of 15 captive common marmosets (C. jacchus) from
167  the colony previously housed at the New England Primate Research Center. Whole genome
168  sequencing data (150 bp paired-end reads) was generated on a DNBseq platform at the Beijing
169  Genomics Institute (BGI Group, Shenzhen, China), targeting a genome-wide average coverage
170  of ~35X. Genetic analysis confirmed that the selected individuals were largely unrelated, sharing

171  no more than 1/16 of their DNA with any other individual from the colony included in this study.

172

173  Read mapping, variant calling, and filtering

174 Following best practices in the field (Pfeifer 2017), we trimmed adapters, polyX tails, and
175  low-quality ends from the raw reads using SOAPnuke v.1.5.6 with BGI-recommended parameter
176  settings (i.e., ' -n 0.01 -/ 20 -q 0.3 -A 0.25 --cutAdaptor -Q 2 -G --polyX --minLen 150'; Chen et al.
177  2018) before mapping them to the species-specific reference genome (mCalJa1.2.pat.X;
178  GenBank accession number: GCA_011100555.2; Yang et al. 2021) using BWA-MEM v.0.7.17 (Li

179  2013). To avoid potential biases during variant calling and genotyping, we marked duplicates in
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180  the mapped reads using the Genome Analysis Toolkit (GATK) v.4.2.6.1 MarkDuplicates (van der
181  Auwera and O'Connor 2020). From these high-quality, duplicate-marked reads (' --minimum-
182  mapping-quality 40 '), we called variants for each individual using the GATK HaplotypeCaller in
183  the ' --pcr-indel-model NONE ' mode as the data was obtained from PCR-free libraries. We then
184  combined individual-level variant call sets and jointly genotyped them using GATK's
185  CombineGVCFs and GenotypeGVCFs, respectively. In order to obtain information regarding the
186  genomic regions accessible to the study, we emitted reference confidence scores at each locus
187 (' --emit-ref-confidence BP_RESOLUTION ') and included genotypes of both variant and invariant
188  loci in the output (' --include-non-variant-sites '). Lastly, we separated the jointly-genotyped call
189  set into biallelic single nucleotide polymorphisms (SNPs) and invariant loci with genotype
190 information available in all individuals (" AN = 30 '), with downstream analyses focusing on the

191  autosomes (i.e., chromosomes 1-22) only.

192 Due to the lack of a well-curated, experimentally-validated dataset that could be
193  harnessed for filtering variants via a machine-learning framework, we used the GATK
194  VariantFiltration tool to quality-control the discovered loci following the developers' hard filtering
195  recommendations (i.e., QD < 2.0, QUAL < 30.0, MQ < 40.0, FS > 60.0, SOR > 3.0, MQRankSum
196 < -12.5, ReadPosRankSum < -8.0). As spurious variation can complicate the estimation of
197  recombination rates from patterns of LD observed in population genomic data, we applied several
198  additional stringent filtering criteria to limit the number of false positives in our data set, following
199 the methodologies established in prior research (e.g., Auton et al. 2012; Stevison et al. 2016;
200  Pfeifer 2020a; Soni et al. 2025c¢). In brief, as a skewed read coverage often results in poorly
201  supported genotypes, we first used GATK's SelectVariants to remove loci located within genomic
202  regions exhibiting less than half, or more than twice, the individual's genome-wide average
203  coverage. Second, we excluded variants that were tightly clustered (using GATK's

204  VariantFiltration with ' --cluster-size 3 ' and ' --cluster-window-size 10 ') as well as those exhibiting

10
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205  high levels of heterozygosity (using VCFtools v.0.1.14 to filter out variants that have a Hardy-
206  Weinberg equilibrium exact test P-value < 0.01; Danecek et al. 2011), a common indicator of local
207  genome mis-assembly. Lastly, we used BEDTools v.2.30.0 (Quinlan et al. 2010) to eliminate
208  regions blacklisted by the ENCODE Project Consortium due to their poor performance in next-
209  generation sequencing (wgEncodeDacMapabilityConsensusExcludable.bed and
210  wgEncodeDukeMapabilityRegionsExcludable.bed; Amemiya et al. 2019) by converting genomic
211  coordinates between the human (hg38) and the common marmoset genome assemblies using

212 the UCSC liftOver tool (Raney et al. 2024).

213 After filtering, the population-level dataset contained 7,198,428 autosomal biallelic SNPs

214  in the accessible genome (Supplementary Table 1).

215
216 Phasing
217 We estimated haplotypes from the population-level genotype data using BEAGLE v.5.5

218  (Browning etal. 2021), a progressive phasing algorithm that has been shown to be highly accurate
219  (Williams et al. 2012). During phasing, a total of 16,701 loci (0.23%) became non-polymorphic

220  due to a change in genotype and were thus excluded from further analyses.

221

222 Inferring fine-scale rates of neutral divergence and mutation

223 In order to infer fine-scale rates of neutral divergence and mutation, we first used Cactus
224 v.2.9.2 (Armstrong et al. 2020) to extract the 239 primate genomes (Kuderna et al. 2024) from
225  the 447-way multiple species alignment (Zoonomia Consortium 2020) and update the common

226  marmoset genome with the most recent reference genome for the species utilized in this study.

11
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227  To this end, we removed the common marmoset genome included in the multiple species
228  alignment using the halRemoveGenome function and then extracted the alignment block
229  consisting of the ancestral PrimateAnc232 genome and the genome of the closely related Wied's
230  black-tufted-ear marmoset (C. kuhlii) using the hal2fasta function. We then re-aligned the current
231  reference genome for the common marmoset with the genomes of PrimateAnc232 and C. kuhlii
232 using the previously inferred branch lengths and updated the alignment using the
233 halReplace Genome function. With this updated multiple species alignment on hand, we identified
234 fixed single nucleotide differences along the marmoset lineage (i.e., between the common
235 marmoset and the ancestral primate PrimateAnc232 genomes) using the
236  halSummarizeMutations function. In contrast to the common marmoset genome, the genome of
237  Wied's marmoset is highly fragmented (293,512 scaffolds with a scaffold N50 of 15.1 kb totalling
238 2.6 Gb compared to 1,233 scaffolds with a scaffold N50 of 137 Mb totalling 2.9 Gb), thus we
239  removed alignments less than 10 kb in length in order to avoid spurious and/or incomplete
240  alignments that might artificially inflate estimates of neutral divergence and mutation. Additionally,
241  in order to obtain fixed differences along the human-marmoset branch, we obtained the sub-
242 alignment consisting of the common marmoset, human, and PrimatesAnc003 genomes from the
243 multi-species alignment using the cactus-hal2maf function, converted this alignment back into
244  HAL format (Hickey et al. 2013) using the maf2hal function, and then retrieved point mutations
245  along the branch from C. jacchus to the ancestral PrimatesAnc003 using the halBranchMutations
246  function. In order to obtain neutral substitutions between C. jacchus and C. kuhlii as well as
247  between C. jacchus and humans, we excluded both variants known to segregate in any of the
248  species (based on published population-level polymorphism data available for humans of
249  Yoruban ancestry [1000 Genomes Project Consortium 2015] and common marmosets [Soni et
250 al. 2025b]; note that no such population-level polymorphism data was available for Wied's
251  marmoset) as well as sites within 10 kb of functional regions (based on the protein-coding genes

252 annotated in the common marmoset genome). Using these datasets, we then calculated neutral

12
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253  divergence at both the broad (genome-wide) scale and the fine scale (using 1 kb, 10 kb, 100 kb,
254  and 1 Mb sliding windows with a step size of 500 bp, 5 kb, 50 kb, and 500 kb, respectively) by
255  dividing the number of substitutions by the number of sites accessible to our study. To derive
256  mutation rates, we divided the rates of neutral divergence between C. jacchus and C. kuhlii by
257  the divergence time in generations. For this, we used three possible divergence time estimates
258  — 0.59 million years ago (mya), 0.82 mya and 1.09 mya (based on the range of divergence times
259  between C. jacchus and C. kuhlii inferred by Malukiewicz et al. 2021) — and two possible
260  generation time estimates — 1.5 years and 2.0 years (Tardif et al. 2003; Okano et al. 2012;

261  Schultz-Darken et al. 2016; Han et al. 2022).

262

263 Inferring fine-scale rates of recombination

264 We used two different approaches to infer fine-scale rates of recombination: the
265  demography-unaware estimator LDhat (McVean et al. 2002, 2004; Auton and McVean 2007) and
266 its successor, the demography-aware estimator pyrho (Spence and Song 2019).

267

268  LDhat: We inferred genome-wide fine-scale recombination rates in the common marmoset using
269 LDhatv.2.2 (McVean et al. 2002, 2004; Auton and McVean 2007). To this end, we first generated
270  a lookup table containing the coalescent likelihoods for every two-locus haplotype configuration
271  possible in our sample of 15 diploid individuals (i.e., 30 haploids: ' -n 30 '), using LDhat complete
272  with the suggested maximum population-scaled recombination rate p of 100
273 (' -rhomax 100 ') and a grid size of 201 (' -n_pts 201 ') to improve accuracy. Next, we obtained
274  region-based population-scaled estimates by running the interval function of LDhat with a block
275  penalty of 5 (' -bpen 5 ') for 60 million iterations (' -its 60000000 ') using a sampling scheme of

276 40,000 iterations (' -samp 40000 ') across windows of 4,000 SNPs with a 200 SNP step size. After

13
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277  discarding the burn-in of the Monte Carlo Markov Chain using LDhat's stat function (' -burn 500'"),
278  we then combined the region-based estimates at the midpoint of each overlapping window to
279  obtain estimates at the chromosome-scale. Following standard practices in the field (e.g., Auton
280  etal. 2012; Pfeifer 2020a), we excluded large localized peaks in recombination rate (with p > 100
281  between adjacent SNPs) to minimize the impact of genome assembly errors leading to artificial
282  breaks in LD. In total, we identified 1,352 such regions and masked them together with the 50
283  SNPs adjacent on each side by setting the recombination rate to 0 (masking a total of 42,348
284  SNPs, or 0.59%). Finally, we used N. based on the mean & observed in the empirical data to
285 convert the population-scaled recombination rate to a per-generation recombination rate,

286  assuming a per-site per-generation mutation rate of 0.81 x10® as per Soni et al. 2025b.

287  pyrho: We also inferred genome-wide recombination rates using pyrho v.0.1.7 (Spence and Song
288  2019). In brief, as recommended by the developers, we first used pyrho's make_table function to
289  compute an approximate likelihood lookup table (' --approx ') for a 50% larger sample size (' -N
290  45")under the demographic model previously inferred by Soni et al. 2025b to account for historical
291  population size changes in the species (i.e., a population size reduction approximately 3,500
292  generations ago, followed by an exponential population recovery) and then down-sampled this
293  table to 15 diploid individuals (' -n 30 ') to match our empirical sample size. Next, we used the
294 hyperparam function to determine suitable hyperparameter settings for pyrho and then ran the
295  optimize function with the recommended window size (' --windowsize 30 ') and smoothness
296  penalty (' --blockpenalty 50 ') to estimate genome-wide recombination rates. In all steps, we
297  assumed a per-site per-generation mutation rate of 0.81 x10® (' --mu 0.81e-8 ') as per Soni et al.
298  2025b to internally convert the population-scaled recombination rate to a per-generation

299  recombination rate.

14
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300 To account for the impact of twinning and chimerism (see "Evaluating the impact of twinning and
301  chimerism on recombination rate inference" below), we rescaled the LDhat and pyrho estimates

302 by multiplying the rates by a factor of 0.574 and 0.761, respectively.

303

304 Evaluating the impact of twinning and chimerism on recombination rate inference

305 Both LDhat and pyrho rely on coalescent theory and the theoretical foundation provided
306 by the Wright-Fisher model to infer fine-scale recombination rates from population genomic data.
307  To evaluate the impact of twinning and chimerism — two model violations inherent to the biology
308 of marmosets — on the recombination rate inference with these two approaches, we used SLiM
309 4.0.1 (Haller and Messer 2023) to simulate a population of marmoset individuals using the
310  modelling framework recently described in Soni et al. (2025b). Specifically, we simulated 10
311  replicates of a 1 Mb genomic region in a population of marmosets under the demographic model
312  of the species recently inferred by Soni et al. (2025b) — consisting of an ancestral population of
313 61,198 individuals that collapsed to 17,931 individuals 3,513 generations ago before recovering
314  via exponential growth to a current day size of 33,830 individuals — assuming a mutation rate of
315 0.81 x 107 per base pair per generation and a recombination rate of 1.0 x 10 per base pair per
316  generation (as per the rates used in Soni et al. 2025b). From each replicate, we sampled 15
317  chimeric individuals and estimated recombination rates using LDhat and pyrho (as described in

318  ‘"Inferring fine-scale rates of recombination").

319

320

321
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322  Inferring recombination hotpots

323 To infer the positions of recombination hotspots in the common marmoset, we used the
324  software package LDhot v.0.4 (Auton et al. 2014). In brief, we first ran the Idhot function to identify
325  putative recombination hotspots in 3 kb windows with a step size of 1 kb and a background
326  window of 100 kb centered around the hotspot, using 1,000 simulations as recommended by the
327  developers. Afterward, we combined significant windows to merge adjacent candidates using the
328  Idhot_summary function with significance thresholds of 0.001 and 0.01 for calling and merging
329  hotspots, respectively. To limit the number of spurious hotspots, we implemented a three-step
330 filtering approach by combining the recommendations from the Great Ape Recombination Project
331  (Stevison et al. 2016) with those of Brazier and Glémin (2024), filtering out any hotspot candidates
332 with a width longer than 10 kb, an intensity lower than 4 or higher than 200, or a rate less than

333  five times the chromosome-wide average rate.

334

335 Insilico prediction of PRDM9 binding motifs

336 We used the ZOOPS model implemented in MEME v.5.5.7 (Bailey and Elkan 1994) to
337 identify 10-15 bp motifs present not more than once in each of the 1,000 hotspots with the highest
338 intensity (including the flanking 500 bp to ensure that the entire hotspot is captured) while
339  accounting for genomic background using cold spot regions matched for sequence length and
340  GC-content. With these putative motifs on hand, we used FIMO v.5.5.7 to scan the complete set
341  of hotspot windows for any occurrences and compared the frequency of each motif in the hotspot
342 regions with that observed in 25,000 randomly sampled background regions using MOODS
343  v.1.9.4.1 (Korhonen et al. 2009). We assessed the statistical significance by performing a Fisher's

344  exacttestin Rv.4.2.2 (R Core Team 2022).
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345  In silico characterization of PRDM9 binding

346 We used AlphaFold3 to predict the sequence-specific binding between PRDM9 and the
347  putative PRDM9 binding motifs. To this end, we first retrieved the nucleotide sequence of PRDM9
348  from the common marmoset genome and aligned it against the PRDM9 protein sequence
349  annotated in the human telomere-to-telomere assembly (T2T-CHM13v2.0; Nurk et al. 2022) using
350 GeneWise v.2.4.1 (Birney et al. 2004) to visually inspect the sequence for completeness. Next,
351 we used the ExXPASy web server (Duvaud et al. 2021) to translate the nucleotide sequence into
352 anamino acid sequence. We then used this translated amino acid sequence as input for a protein-
353  protein BLAST (Altschul et al. 1990) search against the NCBI non-redundant protein sequences
354  database (Supplementary Figure 1) and visualized the resulting phylogenetic tree using EMBL's
355 interactive Tree of Life (Letunic and Bork 2021), noting a high similarity of the query to PRDM9
356 sequences previously annotated in haplorrhines (Supplementary Figure 2). Next, we used
357 InterPro (Blum et al. 2025) to predict protein domains within this sequence, confirming the
358  presence of a Krueppel-associated box (KRAB) domain, a SSX repressor domain (SSXRD), a
359  PR/SET domain, and a C2H2-type zinc finger array (Supplementary Figure 3). Finally, we ran
360  AlphaFold3 (Abramson et al. 2024) by providing both the marmoset PRDM9 amino acid sequence

361  and the putative PRDM9 binding motifs as input.

362

363  Assessing the correlation of fine-scale rates of recombination with genomic features

364 To assess the correlation of fine-scale rates of recombination with different genomic
365 features, we calculated a number of summary statistics across 100 kb windows along the 22
366 autosomes of the common marmoset genome — including nucleotide diversity (based on our

367 marmoset population genomic data), divergence (based on the updated 447-way mammalian
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368  multiple species alignment as described in "Inferring fine-scale rates of neutral divergence and
369 mutation"), GC-content and exon-content (both based on the annotations of the common
370  marmoset assembly; Yang et al. 2021) — and calculated partial Kendall's rank correlations across

371  windows in which at least 50% of sites were accessible using R v.4.2.2 (R Core Team 2022).
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372 RESULTS AND DISCUSSION

373

374  Population genomic data

375 Based on the genomes of 15 captive common marmoset (C. jacchus) individuals (seven
376 females and eight males) sequenced to an average 35-fold coverage, we inferred fine-scale rates
377  of neutral divergence, mutation, and recombination. In brief, using a mapping-based approach,
378  we first identified 7.2 million SNPs across the autosomal genome with a transition-transversion
379  ratio of 2.2 (Supplementary Table 1). To facilitate rate inference, we then estimated haplotypes
380  from this population-level genotype data analogously to the 1000 Genomes (1000 Genomes
381  Project Consortium 2015), PanMap (Auton et al. 2012), and Great Ape Recombination Maps
382  (Stevison et al. 2016) projects, which previously generated fine-scale genetic maps for humans
383 (Homo sapiens), Western and Nigerian chimpanzees (Pan troglodytes verus and P. t. ellioti),

384  bonobos (P. paniscus), and Western gorillas (Gorilla gorilla gorilla).

385

386  The landscape of neutral divergence and mutation in the common marmoset genome

387 We first extracted the 239 primate genomes (Kuderna et al. 2024) from the 447-way
388  multiple species alignment (Zoonomia Consortium 2020) and updated the common marmoset
389  genome to the current reference assembly available for the species (Yang et al. 2021). With this
390 updated whole-genome alignment on hand, we identified fixed single nucleotide differences along
391 the marmoset lineage, i.e., between the genome of the common marmoset and the genome of
392  the closely related Wied's black-tufted-ear marmoset (C. kuhlii). In contrast to the common
393  marmoset genome generated by the Vertebrates Genomes Project using a combination of short-
394  read (lllumina) and long-read (PacBio) sequencing data and scaffolded using high-throughput

395  chromosome conformation capture (Hi-C) and Bionano optical data, the genome of Wied's
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396 marmoset remains highly fragmented, containing nearly 300,000 scaffolds. In order to avoid
397  spurious and/or incomplete alignments that might artificially inflate estimates of neutral divergence
398  and mutation, we thus removed any alignments shorter than 10 kb in length. In order to obtain
399  neutral substitutions between C. jacchus and C. kuhlii, we additionally masked both regions within
400 10 kb of known conserved or functional elements — thus, avoiding purifying and background
401  selection effecting our analyses (Charlesworth et al. 1993) — and variants known to segregate in
402  the species. Using this dataset, we then calculated neutral divergence across accessible sites at
403  both the broad (genome-wide) scale and the fine scale (for additional details, see "Materials and

404  Methods").

405 Atthe 1Mb-scale, we observed a neutral divergence rate of 9.85 x 10 along the marmoset
406 lineage relative to the reconstructed ancestor (see Supplementary Figure 4 for the distributions
407  of neutral divergence across a range of window sizes). To calculate the neutral mutation rate, we
408 then drew the point estimate, upper and lower bounds of common marmoset divergence times
409  relative to C. kuhlii (0.59 mya, 0.82 mya, and 1.09 mya; Malukiewicz et al. 2021), and generation
410 times of 1.5 and 2.0 years (Tardif et al. 2003; Okano et al. 2012; Schultz-Darken et al. 2016; Han
411 et al. 2022). Depending on the underlying assumptions, the mean neutral mutation rate varied
412  from 0.14 x 10® mutations per base pair per generation (under a divergence time of 1.09 mya
413 and a generation time of 1.5 years) to 0.33 x 10® mutations per base pair per generation (under
414  adivergence time of 0.59 mya and a generation time of 2.0 years; Table 1 and see Figure 1a for
415  density plots of neutral mutation rate estimates across this range of possible divergence and
416  generation times and Figure 1b for the inferred genome-wide neutral mutation rates). Notably,
417  these indirectly inferred neutral mutation rates are lower than the direct estimate of 0.43 x 10®
418  mutations per base pair per generation obtained by Yang et al. (2021) from a single trio. While
419 indirect phylogenetic approaches are naturally unable to observe strongly deleterious / lethal

420  mutations that are purged from the population, the higher pedigree-based estimate observed by
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421  Yang et al. (2021) might also partially be attributed to unaccounted for chimerism present in their

422 genomic data (with non-germline tissues sampled from a single individual of a triplet).

423 Given that the divergence time between C. jacchus and C. kuhlii is relatively short, we
424  also generated fine-scale divergence estimates along the human-marmoset branch to obtain
425  information over longer evolutionary time scales. Notably, comparisons between the mutation rate
426  estimates indirectly obtained from the C. jacchus—C. kuhlii divergence and the neutral divergence
427  estimates based on C. jacchus—H. sapiens alignments demonstrated a significant positive
428  correlation at the fine scale (r = 0.235, P-value = 1.71E-59; and see Supplementary Figure 5 for
429 the heterogeneity in neutral divergence and mutation rates across each autosome), providing
430  additional confidence in our estimates. Moreover, mutation rates inferred using the divergence
431  along the human-marmoset branch are highly similar to those obtained using C. jacchus—C. kuhlii
432 divergence, ranging from 0.25 x 10® mutations per base pair per generation (under a divergence
433 time of 36 mya and a generation time of 1.5 years) to 0.37 x 10® mutations per base pair per
434  generation (under a divergence time of 32 mya and a generation time of 2.0 years; Table 1).
435  Although it is unlikely that the generation time of common marmosets has remained constant over
436  the >30 million years separating the two species (Glazko and Nei 2003), it is nevertheless
437  encouraging that the marmoset-based and human-marmoset-based estimates are in such close

438  correspondence.

439 Taking the opposite approach, we inferred marmoset divergence times based on the mean
440  neutral divergence rate observed in the empirical data and the previously published pedigree-
441  based mutation rate estimates for both common marmosets (0.43 x 10 mutations per base pair
442  per generation; Yang et al. 2021) as well as the closely related (but non-chimeric) owl monkeys
443 (0.81 x 10 mutations per base pair per generation; Thomas et al. 2018) for which a larger number

444  of trios were available. The estimated divergence times ranged from 0.18 mya (under a per-site
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445  per-generation mutation rate of 0.81 x 10 and a generation time of 1.5 years) to 0.49 mya (under
446  a per-site per-generation mutation rate of 0.43 x 10® and a generation time of 2 years)
447  (Supplementary Table 2). Notably, these whole-genome divergence times based on the
448 marmoset and owl monkey mutation rates are considerably lower than those inferred by
449  Malukiewicz et al. (2021) from mitochondrial DNA, due to the mutation rates being considerably

450  higher than those inferred in this study.

451

452  The landscape of recombination in the common marmoset genome

453 We used two different approaches to infer fine-scale rates of recombination — the
454  demography-unaware estimator LDhat (McVean et al. 2002, 2004; Auton and McVean 2007) and
455  its successor, the demography-aware estimator pyrho (Spence and Song 2019) — both of which
456 rely on coalescent theory and the theoretical foundation provided by the Wright-Fisher (WF)

457  model to infer fine-scale recombination rates from population genomic data.

458 Unlike most primates, twinning and chimerism are the norm rather than the exception in
459  marmosets (Hill 1932; Wislocki 1939; Benirschke et al. 1962; Ward et al. 2014). To evaluate the
460  impact of these two violations of the WF model inherent to the biology of marmosets, we first
461  assessed the performance of the two recombination rate estimators on simulated data. Using the
462  framework recently described in Soni et al. (2025b), we modelled twinning and chimerism from
463  hematopoietic stem cells (as observed in blood samples) by first simulating a non-WF model in
464  SLiM (Haller and Messer 2023) in which pairs of marmoset individuals reproduce each generation
465  to give birth to non-identical twins and then combining their genotypes post-simulation to mimic a
466  single chimeric individual (for additional details, see "Materials and Methods"). More specifically,

467  we simulated genomic regions of 1 Mb under the demographic model of the population inferred
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468 by Soni et al. (2025b) — consisting of an ancestral population of ~60k individuals that experienced
469  a population decline before recovering to about half of its original size — using a non-WF model
470  with twinning only as well as with both twinning and chimeric sampling, assuming a constant per-
471  site per-generation mutation rate of 0.81 x 10® and recombination rate of 1 cM/Mb (as per the
472  rates used in Soni et al. 2025b), and sampling 15 chimeric individuals to match our empirical data.
473  To aid the interpretation of the inference results, we additionally performed simulations under a
474  standard WF model (i.e., without twinning or chimerism) for comparison. We then inferred the
475  genome-wide recombination rates in the simulated data using LDhat and pyrho. In contrast to
476  pyrho, LDhat outputs the population-scaled recombination rate (o) and we thus used the effective
477  population size (N¢) based on the mean nucleotide diversity (©) observed in each simulation

478  scenario to obtain a per-generation recombination rate.

479 Our simulations highlighted that both LDhat and pyrho tend to underestimate genome-
480  wide recombination rates inferred under the marmoset demographic model (Figure 2a), likely due
481  to the recent population contraction and subsequent exponential expansion having resulted in a
482  p at the time of sampling that is substantially different from that during most of the population
483  history. This observation is consistent with the recent findings of a simulation study conducted by
484  Dutheil (2024) which highlighted that classical LD-based approaches tend to underestimate
485  recombination rates in populations characterized by population size declines and recent growth,
486  particularly when sample sizes are moderate as is the case here (see Figures 1 and 2 in Dutheil
487  2024; and see their Figure 4 for the increased mis-inference in the presence of gene conversion).
488 In contrast, both approaches overestimate the per-generation recombination rate when twinning
489 is common, as populations in which non-singleton births are the predominant mode of
490  reproduction are characterized by both an increased LD and decreased N. relative to the standard
491  expectations. Chimerism, on the other hand, has the opposite effect, with chimeric sampling

492  expected to both break up haplotypes — as evidenced by the reduced mean r? (a measure of LD)
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493 — and increase haplotype diversity due to the generation of novel haplotypes relative to the

494  standard expectations (Figure 2b).

495 Re-scaling the empirically observed recombination rate estimates to take into account the
496  mis-inference caused by twinning and chimerism yielded an average sex-averaged genome-wide
497  recombination rate of 0.91 + 0.83 cM/Mb (100 kb windows) in common marmosets (Figure 3a),
498  with sex-averaged crossover rates ranging from 0.65 cM/Mb for one of the longest autosomes
499  (chromosome 4) to 1.29 cM/Mb for one of the shortest autosomes (chromosome 22)
500  (Supplementary Figure 6). Although the rates inferred here for common marmosets are in the
501  same range as those previously reported in the great apes (e.g., 1.32 + 1.40 cM/Mb in humans
502  [International HapMap Consortium 2007], with an average rate of 0.945 cM/Mb in males and
503  1.518 cM/Mb in females [Halldorsson et al. 2019], and ~1.19 cM/Mb in chimpanzees, bonobos
504  and gorillas [Stevison et al. 2016]), rates previously estimated for biomedically-relevant Old World
505  monkeys are substantially lower (e.g., 0.43 + 0.33 cM/Mb in rhesus macaques [Xue et al. 2016]
506 and 0.43 + 0.44 cM/Mb in vervet monkeys [Pfeifer 2020a]) — however, it should be noted that
507  many of the earlier studies did not account for the potentially confounding effects of population
508  demography during inference (see discussions of Dapper and Payseur 2018; Johri et al. 2022),

509  thus hindering the interpretation of the biological differences in observed rates.

510 In addition to the nearly two-fold variation between autosomes, the recombination
511 landscape in common marmosets — like that of many other primates (e.g., Spencer et al. 2006;
512  Auton et al. 2012; Pfeifer and Jensen 2016; Stevison et al. 2016; Pfeifer 2020a; Wall et al. 2022;
513  Versoza et al. 2024; Soni et al. 2025¢c) — is highly heterogenous, with a pronounced enrichment
514 in the distal (sub)telomeric regions and reduced rates within centromeric and pericentromeric
515  regions (Figure 3a, and see Supplementary Figure 7 for recombination rate heterogeneity across

516  all autosomes). Moreover, genome-wide recombination rates exhibit a strong positive association
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517  with nucleotide diversity (r = 0.49, P-value = 0) — highlighting the likely importance of selection
518 atlinked sites in shaping the landscape of genomic variation in the species (Soni et al. 2025a) —
519 and, to a lesser extent, divergence (r = 0.06, P-value = 2.07E-17) and GC-content (r = 0.03, P-
520 value = 6.90E-06), as may be expected if recombination in common marmosets exhibits
521  mutagenic effects (Halldorsson et al. 2019; Hinch et al. 2023) and is prone to GC-biased gene
522 conversion (reviewed by Duret and Galtier 2009) (Supplementary Figure 8). In concordance with
523  PRDM9 directing recombination away from functional elements (Brick et al. 2012; Pratto et al.
524  2014), recombination rates significantly decrease within, and around the boundaries of, protein-
525  coding genes (r = -0.03, P-value = 1.09E-04) compared to neighboring regions (Supplementary
526  Figure 9). Notably, while these inferred patterns of recombination were highly similar between the
527  two approaches (r = 0.57, P-value < 2.2E-16 at the 1kb-scale), the mean inferred rates of pyrho
528  were much lower (0.25 + 0.27 cM/Mb) as, despite accounting for historical fluctuations in
529  population size, its internal conversion to the per-generation recombination rate does not account

530  for the lower Ne caused by twinning (Supplementary Figure 10).

531

532  Characterization of recombination hotspots in the common marmoset genome

533 To gain insights into the landscape of recombination hotspots in the common marmoset
534  genome, we inferred recombination hotspots using LDhot (Auton et al. 2014) — a statistical
535 method implemented to directly process the recombination rate estimates obtained from LDhat.
536  To obtain a high-quality dataset, we implemented a three-step filtering approach by combining
537  the recommendations from the Great Ape Recombination Project (Stevison et al. 2016) with those
538  of Brazier and Glémin (2024). First, as genuine recombination hotspots tend to be narrow (with
539  ~70-80% of recombination occurring in hotspots with a mean width of 2.3 kb in humans; 1000

540  Genomes Project Consortium 2010), we excluded hotspot candidates with a width larger than 10
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541  kb. Second, as artificial breaks in LD resulting, for example, from mis-assembly and/or mis-
542 alignment, can lead to localized peaks in recombination rate, we calculated the intensity of each
543  hotspot candidate by dividing the recombination rate at its peak by the rate estimated for the 100
544 kb surrounding region and removed candidates with an intensity higher than 200. Additionally,
545  due to the difficulty of distinguishing genuine low-intensity hotspots from background variation,
546  we also applied a low-intensity filter, retaining only candidates with a minimum intensity of 4. Third,
547  accounting for recombination rate variation across chromosomes to further narrow down the
548  location of recombination hotspots, we split each remaining candidate region into windows of 2
549 kb with a step size of 1 kb, keeping only the hotspot windows exhibiting rates of at least five times
550 the chromosome-wide average rate. This three-step filtering approach yielded 26,831 candidate
551  hotspots — similar to the number of recombination hotspots initially identified in human
552 populations (International HapMap Consortium 2005, 2007; Myers et al. 2005; 1000 Genomes
553  Project Consortium 2010; Kong et al. 2012; though note the larger number of hotspots identified

554  in subsequent, larger-scale studies, e.g., Halldorsson et al. 2019).

555 In order to identify sequences that predict potential PRDM9 binding, we searched the
556 1,000 hotspots with the highest intensity for consistent sequence motifs. To this end, we used the
557 ZOOPS model implemented in MEME (Bailey and Elkan 1994) to identify degenerate motifs
558  present not more than once in each hotspot region, while accounting for genomic background
559  using cold spot regions matched for sequence length and GC-content. As sequence motifs
560 underlying recombination hotspots in other primates tend to be short (e.g., 10-15 bp in humans,
561  chimpanzees, and gorillas; Schwartz et al. 2014; Auton et al. 2012; Stevison et al. 2016), we
562 limited the search to motifs with a minimum width of 10 bp and maximum width of 15 bp, keeping
563  only motifs below a discovery threshold of 1e-05. Next, we used FIMO to scan the complete set
564  of hotspot windows for occurrences of each of these motifs. As the predicted motifs are highly

565  repetitive, we also performed permutation tests to compare the frequency of each motif in hotspot
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566  regions with that observed in 25,000 background regions randomly sampled from the common
567 marmoset genome by matching the position weight matrix of each motif against the genomic
568  sequences of each hotspot and cold spot region using the MOtif Occurrence Detection Suite
569  (MOODS; Korhonen et al. 2009), requiring a P-value < 0.01 for a match. To further narrow down
570  the list of candidates, we used AlphaFold3 (Abramson et al. 2024) to predict the sequence-
571  specific binding between the marmoset PRDM9 sequence and the putative PRDM9 binding
572  motifs. Interestingly, for the best candidate DNA binding motifs — the 15-mer
573 GCTGGGATTACAGGC (e-value: 6.80E-54), present in 83.5% of the candidate hotspots and only
574 2.0% of the matching cold spots, and its degenerate generalization, the 15-mer
575 GCTGGGAKYASWGGC (e-value: 5.40E-17) — AlphaFold3's machine-learning guided model
576  predicted a protein-DNA complex with high-confidence (ipTM = 0.94 and 0.96, respectively; with
577 1.0 being the maximum value of the ipTM performance metric), indicating a very well-defined
578  protein-DNA interface and supporting PRDM9-DNA binding in silico (see Figure 3b for a
579  visualization of the predicted binding complex). Notably, while this predicted degenerate PRDM9
580  binding motif shares several key features with motifs previously observed in other primates
581  (including the C/G-rich terminal regions and its overall length), there are also species-specific
582  differences (such as the A/T-rich internal region) as might be anticipated from the rapid evolution

583  of the PRDM9 zinc finger array across the primate lineage.
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584 CONCLUSION

585 By investigating, and ultimately correcting for, the effects of twinning and sibling chimerism
586  on the inference of fine-scale mutation and recombination rate maps, we have here described
587  these landscapes in one of the most commonly used non-human primate models in research, C.
588  jacchus. Using high-quality population genomic data, we found that the species exhibits relatively
589  low neutral mutation rates, and rates of recombination within the range observed amongst other
590 anthropoids. Moreover, like many vertebrates, the recombination landscape in common
591  marmosets is dominated by PRDM9-mediated hotspots, and we have described a 3D-structure
592  of the species-specific PRDM9-DNA binding complex in silico. Apart from providing novel insights
593 into the population genetic processes shaping variation in common marmosets, these maps will
594  also serve as a valuable resource for future studies in this biomedically important species —
595 including in genome-wide association studies, polygenic risk score modelling, and genomic scans
596  for targets of selection — with implications ranging from the improved study of neurodevelopment

597  disorders to infectious disease dynamics.
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divergence time generation time
1.5 years 2.0 years
0.59 mya 2.50E-09 3.34E-09
C. jacchus — C. kuhlii 0.82 mya 1.80E-09 2.40E-09
1.09 mya 1.36E-09 1.81E-09
32 mya 2.80E-09 3.74E-09
C. jacchus — H. sapiens 33 mya 2.72E-09 3.62E-09
36 mya 2.49E-09 3.32E-09

Table 1. Inferred rates of neutral mutation. Comparison of indirectly inferred mean neutral
mutation rate estimates based on C. jacchus—C. kuhlii divergence (mean neutral divergence rate:
0.0029) and C. jacchus—H. sapiens divergence (0.06) for three possible divergence times (0.59
million years ago [mya], 0.82 mya, and 1.09 mya for C. jacchus—C. kuhlii [Malukiewicz et al. 2021];
32 mya, 33 mya, and 36 mya for C. jacchus—H. sapiens [Glazko and Nei 2003]) and two possible
generation times (1.5 years and 2.0 years; Tardif et al. 2003; Okano et al. 2012; Schultz-Darken
et al. 2016; Han et al. 2022).
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Figure 1. Fine-scale rates of neutral mutation. (a) Density plots of the per-site per-generation
mutation rate implied by the neutral divergence for two possible generation times (1.5 years and
2.0 years; Tardif et al. 2003; Okano et al. 2012; Schultz-Darken et al. 2016; Han et al. 2022) and
three possible divergence times between the common marmoset (C. jacchus) and the closely
related Wied's black-tufted-ear marmoset (C. kuhlii) (0.59 million years ago [mya], 0.82 mya, and
1.09 mya; Malukiewicz et al. 2021). (b) Genome-wide per-site per-generation neutral mutation
rates for genomic windows of size 1 Mb, with a 500 kb step size (and see Supplementary Figure
5 for the heterogeneity in neutral mutation rates across all autosomes). Neutral mutation rates
were estimated from the rates of neutral divergence observed in >10kb-long alignments between
C. jacchus and C. kuhlii (note that due to the limited number of such alignments on chromosomes
14 and 22, neutral mutation rate estimates for these two autosomes are relatively coarse).
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Figure 2: Performance of recombination rate estimators under twinning and chimerism. (a)
Performance of the demography-unaware recombination rate estimator LDhat (shown in blues)
and the demography-aware recombination rate estimator pyrho (shown in browns) under the
demographic history inferred for the population by Soni et al. (2025b) using a Wright-Fisher (WF)
model and a non-WF framework that models twinning and chimerism — two model violations
inherent to the biology of marmosets. The dashed line depicts the recombination rate that was
used in the simulations (1 cM/Mb). (b) Mean r? (shown in black; left y-axis) and haplotype diversity
(gray; right y-axis) calculated over 10 kb windows (with a 5 kb step size) across 10 simulation
replicates under the demographic history inferred for the population by Soni et al. (2025b) using
a WF model and a non-WF framework that models twinning and chimerism. Data points represent
the mean value, whilst confidence intervals represent the standard deviation.
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Figure 3: Fine-scale rates of recombination. (a) Genome-wide per-site per-generation
recombination rates as inferred by LDhat for genomic windows of size 1Mb, with a 500kb step
size (and see Supplementary Figure 7 for recombination rate heterogeneity across all autosomes
and Supplementary Figure 10 for the genome-wide recombination rates inferred by pyrho). (b) In
silico binding prediction between PRDM9 and the putative binding sites. Predictions were
performed using AlphaFold3 (predictions are provided for non-commercial use only, under and
subject to AlphaFold Server Output Terms of Use found under alphafoldserver.com/output-
terms). Per-atom confidence scores are color-coded with very high confidence predicted
structures shown in dark blue (pLDDT > 90), confidently predicted structures in turquoise (90 >
pLDTT > 70), low confidence predicted structures in yellow (70 > pLDTT > 50), and very low
confidence predicted structures in orange (pLDTT < 50).
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