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Abstract

Despite being an important biomedical model species for social behavior, the natural population
history of the coppery titi monkey (Plecturocebus cupreus) remains largely uncharacterized, in
part due to the scarcity of genomic resources available for the species. Apart from the inherent
interest in the demographic dynamics of this abundant platyrrhine native to the Amazon forest
of Brazil and Peru, this quantification will also serve as a central component of future genotype-
to-phenotype studies, given the ability of historical population size change and structure to
generate genetic associations. In this study, we deep-sequenced the genomes of six unrelated
individuals and inferred a baseline demographic model based on observed levels and patterns of
variation in the non-coding regions of the genome. In characterizing these demographic
dynamics, we found that estimated population size changes correspond well to previously
described speciation times as well as to large-scale climatic changes relating to glaciation

patterns.
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Introduction

The coppery titi monkey (Plecturocebus cupreus) is a relatively abundant and diminutive
platyrrhine species primarily found in Western Brazil and Eastern Peru (Heymann et al. 2021).
Within this area, they are mainly restricted to habitats of lowland forests subject to periodic
seasonal flooding, their home ranges are generally non-overlapping, and offspring leave their
family units around 2 to 3 years of age (Mason 1966; Dolotovskaya et al. 2020; Conley et al. 2022).
With a lifespan of over 20 years (Zablocki-Thomas et al. 2023), P. cupreus is notable for being
characterized by a monogamous, pair-bonded mating system. Given that social monogamy is a
relatively rare social system in mammals, and pair-bonding is rarer still, this species has become
an important model to study the neurobiology of social behavior (e.g., Bales et al. 2007; Lau et
al. 2024; and see Bales et al. 2021). For example, in species characterized by this social system,
visually-associated brain regions have been found to contain a high density of receptors for the
social hormone oxytocin (Freeman et al. 2014), suggesting a key role of vision in governing this
behavior (Baldwin and Krubitzer 2018). This primate is thus also of great interest in a comparative
framework for the study of complex human social behavior and attachment, and considerable
work has focused on the systems of dopamine, oxytocin, and arginine vasopressin in the
hypothalamus, globus pallidum, and other limbic and cortical regions in this regard (Feldman

2017; Fischer et al. 2019).

P. cupreus is a member of the Western Amazon clade of the moloch group alongside P.
moloch, P. brunneus, P. dubius, and P. caligatus. The moloch group is believed to have diverged
around 3.78 million years ago (mya) during the drying of the Pebas system (a large lake and

floodplain covering much of what is now the Western Amazon) in the late Neogene period (Byrne
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et al. 2018). Further changes to the landscape during the early Pleistocene are thought to have
led to the additional split in this group between Western and Eastern Amazonian clades around
1.95 to 3.44 mya. This was followed by multiple proposed speciation events including a split
between the clade containing P. cupreus and the clade containing P. caligatus around 1.44 to 1.95
mya, as well as subsequent subspecific divisions in P. cupreus (Byrne et al. 2016, 2018; Byrne

2017).

To complement these previous genus-level estimates, and given the biomedical
importance of P. cupreus, we here present a detailed demographic analysis of the species based
on novel, whole-genome, high-quality sequencing data from six unrelated individuals. In order to
perform this estimation, we implemented two of the most commonly used inference approaches
— 6adbi (Gutenkunst et al. 2009) and fastsimcoal2 (Excoffier et al. 2013) — both of which rely on
fitting models, and parameters underlying those models, to the empirically observed site
frequency spectrum (SFS). By utilizing patterns of genetic diversity at putatively neutral, intergenic
sites of the genome sufficiently distant from functional regions to avoid the confounding effects
of background selection (Soni and Jensen 2025; Soni, Versoza et al. 2025a; Terbot et al. 20253,
Terbot et al. 2025b), the well-fitting demographic model described here provides new insights
into the population history of this species. Furthermore, this demographic inference will also
serve as a necessary neutral baseline model for future genomic scans of episodic positive or
balancing selection (Poh et al. 2014; Johri et al. 2022; Jensen 2023; Soni and Jensen 2024; Soni,
Terbot et al. 2025; Soni et al. 2025), related to, for example, the underlying genetic modifications
governing their social behavior, as well as to future association studies seeking to connect

genotypes to well-studied phenotypes. Our results suggest that the sample of this study was
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derived from a single sub-population, and we found evidence of a size change history correlated
with past speciation events as well as glaciation / interglacial climatic patterns. As these climatic
shifts were associated with dryer and cooler weather, it is likely that these fluctuations were
related to the abundance of dry or temporarily flooded forest habitats of the sort preferred by

the species to this day.

Materials and Methods

Ethics statement

This study was performed in compliance with all regulations regarding the care and use of captive
primates, including the NIH Guidelines for the Care and Use of Animals and the American Society
of Primatologists’ Guidelines for the Ethical Treatment of Nonhuman Primates. Procedures were

approved by the UC-Davis Institutional Animal Care and Use Committee (protocol 22523).

Samples and sequencing

We collected blood samples from six unrelated coppery titi monkeys housed at the California
National Primate Research Center (CNPRC) during routine veterinary care. DNA extracted from
each sample with the PAXgene Blood DNA System (Qiagen, Hilden, Germany) was used to prepare
individual libraries following a PCR-free protocol. Libraries were sequenced on an lllumina
NovaSeq 6000 (lllumina, San Diego, CA, USA) with a 2 x 150 bp sequencing configuration with a

target of ~40x coverage.
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Whole genome sequencing alignment and variant calling

We removed adapters from the sequencing reads using TrimGalore v.0.6.10
(https://github.com/FelixKrueger/TrimGalore) with Cutadapt v.4.9 (Martin 2011) built-in and
subsequently mapped the reads to the reference genome sequence of the species, PleCup_hybrid
(NCBI GenBank ID: GCA_040437455.1; Pfeifer et al. 2024), using BWA-MEM v.0.7.17 (Li 2013).
Following best practices (Pfeifer 2017), we marked duplicate reads using the MarkDuplicates
function implemented in the Genome Analysis Toolkit (GATK) v.4.5.0.0 (van der Auwera and
O’Connor 2020) to remove technical duplicates from library preparation and sequencing.
Additionally, to avoid systematic biases in the base quality scores emitted by the sequencer, we
recalibrated base scores using GATK's BaseRecalibrator and ApplyBQSR functions together with
high-quality training data from pedigreed individuals of the species (Versoza et al. 2026a).
Afterward, we used GATK's HaplotypeCaller function to first call both variant and invariant sites
('-ERC BP_RESOLUTION') from the high-quality recalibrated reads ('--minimum-mapping-quality
40') of each sample (with the PCR error correction disabled as a PCR-free library protocol was
followed during sequencing: '-pcr-indel-model NONE'), merged individual calls using GATK's
CombineVCF function, and then jointly genotyped all samples using GATK's GenotypeGVCFs
function with the '-all-sites' flag enabled. We limited the call set to autosomal, biallelic variant
('--restrict-alleles-to BIALLELIC --select-type-to-include SNP') and monoallelic invariant ('--select-
type-to-include NO_VARIATION') sites genotyped in all individuals (AN == 12') using the
SelectVariants function implemented in GATK v.4.2.6.1 (van der Auwera and O’Connor 2020) and

then filtered sites using the VariantFiltration function according to the recommendations of the
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100 developers ('-filter QD<2.0 --filter-name QD2 -filter QUAL<30.0 --filter-name QUAL30 -filter
101  SOR>3.0 --filter-name SOR3 -filter FS>60.0 --filter-name FS60 -filter MQ<40.0 --filter-name MQ40
102  -filter MQRankSum<-12.5 --filter-name MQRankSum-12.5 -filter ReadPosRankSum<-8.0 --filter-
103  name ReadPosRankSum-8'). Additionally, we removed any sites overlapping repetitive / low-
104  complexity regions using the intersect function implemented in BEDTools v.2.30 (Quinlan and Hall
105 2010) based on the annotations of the coppery titi monkey reference genome (Pfeifer et al. 2024)
106  as well as those exhibiting extreme coverage (defined here as sites with less than 0.5, or more
107  than 2, times the mean sequencing depth of a sample) using the GATK SelectVariants function, as

108  such regions tend to be prone to mis-mapping, variant calling, and genotyping errors.

109

110  Population genomic data for demographic inference

111  As both direct and background selection can bias the inference of demographic history (Ewing
112  and Jensen 2014, 2016; Johri et al. 2020, 2021; Charlesworth and Jensen 2021, 2024), we
113  followed the recommendations of Johri et al. (2020, 2023) and restricted the high-quality call set
114  to putatively neutral genomic regions. To this end, we used BEDTools intersect v.2.30 (Quinlan
115 and Hall 2010) to exclude both sites overlapping with protein-coding sequence (Pfeifer et al.
116  2024) or non-coding regulatory sequence elements under selective constraint across primates
117  (Kuderna et al. 2024), thus controlling for the effects of purifying selection; we also excluded sites
118  located within 10 kb of exons, thus controlling for the effects of background selection. To improve

119 inference, these putatively neutral sites were phased using BEAGLE v.5.5 (Browning et al. 2021).

120
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121  Estimating population structure

122  To determine the number of sub-populations present among the titi monkeys sequenced in this
123 study (six diploid individuals, or 12 haploids), we analyzed putatively neutral data from each
124  chromosome independently and for the entire genome combined using fastSTRUCTURE v.1.0 (Raj
125 et al. 2014) — a software that uses a variational Bayesian framework to implement the
126  optimization algorithms from the STRUCTURE program (Pritchard et al. 2000; Falush et al. 2003).
127  Specifically, we performed analyses for values of k (number of demes) from 1 to 5 and selected

128  the optimal number of demes based on the value of k that maximized the marginal likelihood.

129

130 Inferring the population size-change history

131 Our fastSTRUCTURE results strongly favored a single deme model. Thus, we analyzed single-
132 population demographic models with six different model structures (0 to 5 size change events)
133 using fastsimcoal2 v.2.8.0.0 (Excoffier et al. 2013, 2021; Marchi et al. 2024) — a software that
134  compares the composite likelihood scores of SFS simulated under various parameters to that of
135  the empirical SFS, and then selects the best-fitting parameters by maximizing this composite
136  likelihood while minimizing the difference between the simulated and empirical scores. For all
137  fastsimcoal2 models, we bounded population sizes between 1,000 and 10,000,000 haploid
138  genomes (i.e., 500 to 5,000,000 diploid individuals), and initially set the timing of events to
139  between 1 to 300,000 generations for the single-event model and to between 1 to 500,000
140  generations for all other models, though the upper limit for event timing was not bounded. For

141  each of the six model structures (0 to 5 size change events), we ran 500 replicates based on the
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142  folded SFS, each with 150,000 rounds of simulation per parameter and 50 maximization cycles,
143  re-setting the parameter search after 10 consecutive failed cycles to improve the likelihood score
144  ('-n150000-L 50 -y 10 -M -u -m'). We assumed a neutral mutation rate of 4.88e-9 /site/generation
145  and a recombination rate of 1e-8 events/site/generation. Notably, this mutation rate was based
146  on pedigree-based (i.e., direct) estimation (Versoza et al. 2026a). In order to examine the impact
147  of uncertainty in this underlying mutation rate, we also examined demographic model scaling at
148 a rate of 1.07e-8 /site/generation for comparison, as suggested by divergence-based (i.e.,
149  indirect) estimation using a six-year generation time and an estimated divergence time of 1.16
150 million years between the cupreus clade and the caligatus clade within the Western moloch group
151  (Soni, Versoza, et al. 2026). This range of rates is comparable to other estimates obtained from
152  non-human primates (see the reviews of Tran and Pfeifer 2018; Chintalapati and Moorjani 2020).
153  Similarly, the recombination rate was based on a recent estimate obtained from pedigree data in
154  the species (Versoza et al. 2026b), which too resembles rates observed in other non-human
155 primates (e.g., Versoza, Weiss et al. 2024; Soni, Versoza et al. 2025b; Versoza, Lloret-Villas et al.

156  2025).

157 Following the analyses using fastsimcoal2, we sought to confirm the estimated
158  demographic history using 6aéi v.2.1.0 (Gutenkunst et al. 2009) — a demographic inference
159  software that optimizes parameters using a diffusion approximation approach and a continuous
160  approximation of the expected SFS under particular demographic models for comparison to the
161  observed SFS. We considered seven single-population models: the standard neutral model, as
162  well as 2-epoch (a single instantaneous population size change), 3-epoch (two instantaneous

163  population size changes), 4-epoch (three instantaneous population size changes), 5-epoch (four
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164  instantaneous size changes), growth (exponential population size change), and bottlegrowth (an
165 instantaneous population size change followed by an exponential population size change)
166  models. For each model, we performed inference 100 times using the dadi.Inference.optimize
167  function, with a maximum of 300 iterations (maxiter) and [30, 50, 70] grid points (pts) (i.e., larger
168  than the haploid sample size of n = 12), together with the &adi’s perturb_params function to
169  adjust the starting parameters two-fold up or down, within the parameter bounds defined in
170  Supplementary Table 1. As 6aéi infers the ancestral population size from 8, we calculated all other

171  parameters relative to this population size.

172

173 Distinguishing between estimated demographic histories

174  We determined the best-fitting fastsimcoal2 model by first comparing the composite likelihood
175  scores of the best parameterized version of each model and then assessing the number of
176  replicates for each model that represented improvements over the best-performing, next
177  simplest model. Additionally, we performed a final screening by quantifying the consistency of
178  the specific parameters estimated for each model’s best performing replicates using z-scores,
179  calculated based on the mean and standard deviation of each parameter across those replicates.
180  For the 6adi models, we selected the model with the highest log-likelihood score across all
181  replicates as the best-fitting model. To further define the best-fitting parameters for this model,
182  we ran another 100 inference replicates and determined the best-fit parameter combination

183  based on the highest log-likelihood score.
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184 As the demographic histories inferred by fastsimcoal2 and 6aéi were fairly distinct (see
185  Results below), we simulated data using fastsimcoal2 under the best-performing fastsimcoal2
186  models and the best-performing 6aéi models to directly compare to the empirical data in order
187  to further study model fit, keeping all simulated polymorphic sites and producing a single
188  simulated SFS per replicate ('-n1 -m -sO --jobs --header --noarloutput -u -k 6200000'). We
189  simulated 100 replicates of the entire set of putatively neutral sites across the chromosomes
190 (specifically, 22 autosomes were simulated with the same recombination and mutation rates used
191  during inference and chromosome sizes of 81,997,209; 57,596,708; 59,482,194; 51,452,482;
192 56,421,937, 37,428,171; 57,377,548; 42,072,168; 32,858,669; 16,254,630; 13,862,685;
193  78,475,508; 36,722,319; 41,001,960; 32,326,613; 37,251,058; 16,847,824; 37,884,098;
194  19,023,431; 37,470,834; 27,914,525; and 13,844,647 bps). We then averaged the SFS from each
195 replicate to produce the mean SFS for the best-performing fastsimcoal2 models and the best-

196  performing 6adi models and visually compared the mean SFS for each model to the empirical SFS.

197

198  Results

199  Population genomic data for demographic inference

200  To infer the demographic dynamics of the coppery titi monkey, we deep-sequenced the genomes
201  of six unrelated individuals housed at the CNPRC (Supplementary Table 2). After mapping the
202  sequencing reads to the species-specific reference genome (PleCup_hybrid; Pfeifer et al. 2024),
203  we called both biallelic variant and monoallelic invariant sites, limiting the dataset to putatively

204  neutral, autosomal regions to circumvent the biasing effects of purifying and background
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205 selection on demographic inference (Ewing and Jensen 2014, 2016; Johri et al. 2020, 2021;
206  Charlesworth and Jensen 2021, 2024). In total, 6 million variants were discovered in the accessible
207 genome (Supplementary Table 3). Figure 1 provides a visual summary of this genome-wide,

208  neutral data, showing Watterson's & and Tajima's D for each autosome.

209

210  Estimating population structure

211  The fastSTRUCTURE analyses strongly concluded that all samples were collected from a single
212 deme. The assignment of individuals to a specific deme was nearly complete with Q > 0.99999
213  ancestry components for all analyses. For both the full autosomal genome and individual
214  autosomes, a value of k = 1 provided the greatest marginal likelihood (for the full autosomal
215 genome, L = -1.102912 for k = 1; likelihood values for individual autosomes can be found in
216  Supplementary Table 4); moreover, the full autosomal genome as well as most autosomes
217  assigned all individuals to a single deme even for values of k greater than 1. Therefore, based on

218  these analyses, our sampled individuals are likely of a single deme origin.

219

220 Inferring the population size-change history

221  Based on this single deme result, we evaluated a variety of historical size change models (0 to 5
222 population size change events) using fastsimcoal2 (Excoffier et al. 2013), and the best
223  parameterization was chosen based on the maximum likelihood scores of each replicate. The best

224  performing models involved between 2 and 5 size change events (0-event: L =-19,827,291.914;
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225  1l-event:L=-19,755,162.832; 2-event: L =-19,747,605.136; 3-event: L =-19,747,259.099; 4-event:
226 L =-19,747,248.682; 5-event: L =-19,747,239.622). Diagrams of the best-performing parameters
227  for each of these models can be found in Figure 2 for the 3-event model, and in Supplementary
228  Figure 1 for all other models (numerical parameter values are provided in Supplementary Table
229 5). Considering an alternative mutational scaling for the best-fitting model (1.07e-8
230 /site/generation [supported by indirect estimation; Soni, Versoza, et al. 2026] instead of 4.88e-9
231  /site/generation as used above [supported by direct estimation; Versoza et al. 2026a]), we
232 observed a scaling down of estimated population sizes and more recent size change events
233 (Supplementary Figure 2). This result is to be expected, given that changing the neutral mutation
234  rate does not alter the SFS shape and thus does not alter the fit of the generalized model, but
235  rather serves to re-scale the underlying parameters (e.g., population sizes scale smaller to keep
236  the product of population size and mutation rate constant, and events scale more recently given
237  the population size-based generation time scaling). Thus, it is important to be mindful of the
238  impact of this underlying mutation rate uncertainty on the resulting demographic estimation;
239  nonetheless, as direct pedigree-based mutation rate estimation is considered to be the gold-

240  standard, it is fortunate to have such estimation available in this species.

241 For comparative purposes, we also performed demographic inference using 6adi
242  (Gutenkunst et al. 2009), an SFS-based neutral demographic estimator that infers population
243 history via diffusion approximation. We initially tested seven single-population demographic
244  models (see Material and Methods for more details), in order to identify the best-fitting model.
245  The 5-epoch model (in which four instantaneous size changes occur) had the highest log-

246  likelihood (-4,537.61), and the fewer parameters of the 3-epoch model (consisting of two
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247  instantaneous size changes) also provided a strong fit despite a lower log-likelihood (-19,500.89;
248  and see Discussion below). Example diagrams of models are presented in Supplementary Figure
249 3 (specific numerical values scaled based on a mutation rate of 4.88e-9 /site/generation are

250 available in Supplementary Table 6).

251

252  Distinguishing between estimated demographic histories

253  As the composite likelihood scores emitted by fastsimcoal2 do not include any penalties for the
254 use of additional parameters (each additional size change event requires two additional
255  parameters), the relative improvement over simpler models, as well as the absolute difference
256  from the observed composite likelihood, are important considerations when selecting the
257  preferred model. The 3-event model is the simplest model within 50 units of the observed
258  composite likelihood, with the additions of the 4-event and 5-event models resulting in likelihood
259  scores with very minor improvements (Supplementary Table 7). Additionally, one would
260 anticipate better performing models to consistently produce replicates that represent
261  improvements over simpler models. The 1-event model produced 84.4% of replicates that
262  outperform the constant size model, the 2-event model produced 43.0% of replicates that
263  outperform the 1-event model, the 3-event model produced 5.8% of replicates that outperform
264  the 2-event model, the 4-event model produced 0.6% of replicates that outperform the 3-event
265 model, and the 5-event model produced 0.4% of replicates that outperform the 4-event model.
266  As such, the 3-event model is the most complex model still resulting in >5% performance

267  improvement amongst replicates. Finally, we compared the spread of the estimated parameters
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268  for better performing replicates using z-scores for the 0-, 1-, 2-, and 3-event models
269  (Supplementary Figure 4). While the 0- and 1-event models are decidedly the most consistent in
270  the resulting estimated parameters, the parameter estimates of the 3-event model exhibit
271  comparatively less spread than the 2-event model. Taken together, these results thus suggest that
272  the 3-event history is the best-performing fastsimcoal2 model, though if additional parameters
273  are penalized more substantially, the 2-size change event model performs well with two fewer
274  parameters. Notably, the general history of the 3-event and 2-event models are highly similar,

275  suggesting strong growth over the past 1 million years followed by a very recent decline.

276 To compare the parameterized models of fastsimcoal2 and 6adi, we simulated SFS under
277  each of the estimated demographic models and visually compared the simulated SFS to the
278  empirically observed SFS. The mean simulated SFS of fastsimcoal2’s best performing models (2-
279  event to 5-event models) all reasonably recapitulated the observed SFS; in contrast, the 3-epoch
280  and 4-epoch models from 6adi resulted in SFS distinct from the observed SFS (Supplementary
281  Figure 5). Thus, the 3-event model of fastsimcoal2 continues to appear most consistent with the

282  observed data (Figure 3).

283

284 Discussion

285  Our results indicate that the sequenced individuals were sampled from a single population. While
286  previous results have suggested population structuring (Byrne et al. 2016), it is most likely that all
287  of our samples simply derived from a single deme and gene flow between / amongst demes is

288  restricted, at least in the genetic ancestry of this sample. Alternatively, if there is sufficient gene
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289  flow amongst the demes, there may be no detectable genetic structuring. With regards to the
290  ancestral history of population size change, in order to distinguish between our best performing
291  models as derived from two commonly used inference approaches, we relied upon direct
292  comparisons between predicted and empirically observed SFS. Scaling the timings of events from
293  units of generations to years under these models (assuming a generation time of six years), a
294  number of notable observations arise. Firstly, the bottleneck estimated at 2.1 mya by fastsimcoal2
295  corresponds with the previously rapid speciation occurring in the moloch group about 1.44 mya
296 to 3.44 mya (Byrne et al. 2016, 2018; Byrne 2017). Moreover, the subsequent size changes
297  correspond to major climatic shifts during the Pleistocene (Figure 4). Notably, the timing of a large
298  population size expansion to nearly 2 million individuals is dated to about 786 kya, corresponding
299  to the end of the Mid-Pleistocene Transition in which the glaciation cycles shifted from a 41,000-
300 vyear periodicity to around a 100,000-year period; these longer cycles produced larger and more
301 stable glacial sheets which would have led to overall dryer and cooler conditions (Clapperton
302 1992; Cook and Vizy 2006). Finally, the most recent estimated size change event is a relatively
303 severe contraction dating to about 19 kya, which corresponds with the Pleistocene-Holocene

304 boundary and the end of the Last Glacial Maximum (Hughes et al. 2013; Palacios et al. 2020).

305 Thus, these inferred population size changes appear to fit with the general pattern in the
306 larger taxonomic group of range expansions and speciation following dryings of wetland
307 ecosystems such as the Pebas system (Byrne 2017; Byrne et al. 2018), as well as with the current
308 ecology of the coppery titi monkey relying on dry and/or seasonally wet terrestrial ecosystems.
309 Asglobal climate change leads to warmer weather and changes in precipitation patterns including

310 increased river flooding (Almazroui et al. 2021; Alifu et al. 2022), this could lead to ecosystem
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changes detrimental to the coppery titi monkey, a species otherwise thought to be under little
threat (Heymann et al. 2021). As such, an improved understanding of how past changes in climate
relate to the population sizes of species like the coppery titi monkey sheds light on how the
impacts of future climate change may be expected to affect species across the world, including
those not currently considered vulnerable. Finally, aside from gaining novel insights into the
population history of the species, this demographic null model will be useful for future genomic
studies which may seek to quantify selective dynamics (as discussed in Johri et al. 2022),
particularly given that this species is important as a model organism for the study of the

neurophysiology underlying social attachment and monogamous pair bonds.
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Figure 1: Summary of the genome-wide, neutral data being analyzed. The left axis provides the
scaling for Watterson's &(plotted in red), the right axis provides the scaling for Tajima's D (plotted

in blue) — both based on 50 kb genomic windows — and the x-axis provides the chromosome being
plotted.
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Figure 2: Diagram of best-performing fastsimcoal2 model, with 3 size-change events. The size of
the population (in diploid individuals, scaled by 1e6) is represented by the width of the rectangles
in the diagram, and the duration during which the population maintained that size (in years,
scaled by 1e6) is indicated by the height of the rectangles in the diagram. Briefly, an ancestral
population size of ~170,000 individuals contracted to ~46,000 individuals around 2.1 mya, grew
to a population size of nearly 2,000,000 individuals within the past 1 mya, and contracted to
~12,500 individuals within the past 20,000 years.
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Figure 3: Mean simulated SFS for the two best fastsimcoal2 models (2-event and 3-event shown
in solid gray bars, foreground) and two best §adi models (shown in dotted gray bars, foreground)
compared to the empirically observed SFS (black bar, background). SFS were simulated using
fastsimcoal2 under the best parameters for each model. Diagrams of these models can be found
in Figure 2 (fsc2, 3-event), Supplementary Figure 1 (fsc2, 2-event), and Supplementary Figure 3
(6abi, 2-event and 6adi, 3-event). Mean simulated SFS for the 0-, 1-, and 4-event models
parameterized by fastsimcoal2 can be found in Supplementary Figure 5.
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Figure 4: The biogeography underlying the modern and historical P. cupreus ranges. Top panel:
Approximate current ranges of P. moloch and four species in the Western moloch group (P.
brunneus, P. caligatus, P. cupreus, and P. discolor) based on data from the IUCN Red List (2025).
Note that this is not an exhaustive depiction of all extant Plecturocebus species. Bottom panel:
Diagram of the biogeographic model of speciation proposed by Byrne et al. (2018) for the Western
moloch group. During the Pliocene, the final remnants of the mega-wetlands remaining from the
Miocene Pebas and Acre systems (Hoorn et al. 2010) were receding and transitioning to terra
firme rainforests (indicated in the diagram by the small red arrows in the "receding wetlands"), a
process nearly finished by the early Pleistocene ~2.5 mya. Accompanying this was migration into
the new rainforest ecosystems by the common ancestors of the moloch group, (1) first expanding
North and West leading to the split in the clade containing P. miltoni and P. hoffmannsi ~2.24 mya.
Following this, further expansion (2) led to the divergence between the Eastern and Western
moloch groups ~1.8-2.0 mya. Finally, as the ancestors of the Western moloch group reached the
newest expansions of rainforest into the former mega-wetlands, (3) divergence between the
members of the Western moloch group began ~1.8 mya. Note that the rivers depicted are their
current locations and not necessarily related to the ancient waterways that were present
throughout this timespan.
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