

1

2

3 **Main Manuscript for**4 **Rewinding evolution in planta: a Rubisco-null platform validates high-**
5 **performance ancestral enzymes**6 Vishalsingh R. Chaudhari, Myat T. Lin¹, Kevin M. Hines², and Maureen R. Hanson*

7 Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853

8 ¹Present address: C16 Biosciences, New York, NY 10019.9 ²Present address: Foundation Medicine, 400 Summer St, Boston, MA 02210

10 * Corresponding author- Maureen R. Hanson.

11 **Email:** mrh5@cornell.edu12 **Author Contributions:** V.R.C. and M.R.H. designed research. V.R.C., K.M.H., and M.T.L. performed
13 research. V.R.C. and M.R.H. analyzed data and wrote the manuscript. All authors reviewed the
14 manuscript.15 **Competing Interest Statement:** M.R.H. is on the scientific advisory board of Plastomics, Inc. The
16 authors declare no other competing interest.17
18 **Classification:** Biological Sciences/ Plant Biology19 **Keywords:** Rubisco, CRISPR, chloroplast transformation, ancestral, transgenic plant20 **This PDF file includes:**21 Main Text
22 Figures 1 to 623 **Abstract**24 Improving the photosynthetic enzyme Rubisco is a key target for enhancing C₃ crop productivity, but
25 progress has been hampered by the difficulty of evaluating engineered variants *in planta* without
26 interference from the native enzyme. Here, we report the creation of a Rubisco-null *Nicotiana tabacum*
27 platform by using CRISPR-Cas9 to knock out all 11 nuclear-encoded small subunit (*rbcS*) genes.
28 Knockout was achieved in a line expressing cyanobacterial Rubisco from the plastid genome, allowing
29 the recovery of viable plants. We then developed a chloroplast expression system for co-expressing both
30 large and small subunits from the plastid genome. We expressed two resurrected ancestral Rubiscos
31 from the Solanaceae family. The resulting transgenic plants were phenotypically normal and accumulated
32 Rubisco to wild-type levels. Importantly, kinetic analyses of the purified ancestral enzymes revealed they
33 possessed a 16-20% higher catalytic efficiency ($k_{cat,air}/K_{C,air}$) under ambient conditions, driven by a
34 significantly faster turnover rate ($k_{cat,air}$). We have demonstrated that our system allows robust *in vivo*

35 assessment of novel Rubiscos and that ancestral reconstruction is a powerful strategy for identifying
36 superior enzymes to improve photosynthesis in C₃ crops.

37 **Significance Statement**

38 The inefficiency of the photosynthetic enzyme Rubisco limits crop productivity. A major challenge in
39 improving Rubisco is testing new variants *in planta* without interference from the native enzyme. We have
40 overcome this problem by creating a Rubisco-null tobacco platform using CRISPR-Cas9 and an
41 optimized chloroplast expression system that enables robust evaluation of novel Rubiscos. Using this
42 platform, we show that resurrected ancestral enzymes assemble efficiently *in planta* and retain faster
43 catalytic properties previously observed in the *E. coli* based system. This work establishes ancestral
44 reconstruction as a promising strategy for discovering compatible and faster Rubiscos, and provides a
45 powerful tool for advancing photosynthetic improvements in crops.

46 **Main Text**

47

48 **Introduction**

49

50 Global photosynthetic carbon assimilation, estimated at approximately 250 billion tons of CO₂ annually, is
51 primarily mediated by the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (1, 2).
52 Rubisco catalyzes the initial and rate-limiting step in the Calvin-Benson-Bassham (CBB) cycle, fixing
53 inorganic carbon (CO₂) into organic molecules, thus supporting virtually all life on Earth. Despite its pivotal
54 role, Rubisco is notably inefficient, characterized by a low turnover rate (k_{cat}) and a tendency for
55 oxygenation reactions that lead to energetically wasteful photorespiration. In C₃ plants, which make up
56 most terrestrial vegetation, this oxygenation side reaction triggers photorespiration and can reduce net
57 carbon assimilation by up to 20–36% (3).

58

59 Rubisco, especially in C₃ plants, has long been a focus for kinetic improvement because of its rate-limiting
60 nature and agronomic importance. (4). Natural Rubisco variants display a wide range of kinetic rates (k_{cat})
61 and CO₂ specificities (S_{C/O}) which are typically inversely correlated (5, 6). Among the wide diversity of
62 Rubisco superior outliers exist, suggesting that kinetic properties of C₃ Rubisco could be optimized (5, 7,
63 8).

64 Form-I Rubisco, found in plants, cyanobacteria and several other autotrophs, is an L₈S₈ hexadecamer
65 comprising eight large subunits (LSU) and eight small subunits (SSU) (9). In eukaryotes, LSU is encoded
66 by a single chloroplast *rbcL* gene and SSUs are encoded by a family of nuclear *rbcS* genes. In *Nicotiana*
67 *tabacum* (tobacco), which is an allotetraploid, there are 11 *rbcS* genes, 6 from parent *N. sylvestris* and 5
68 from *N. tomentosiformis* (10). Rubisco assembly requires several steps and assembly factors (9). Two
69 catalytic sites are formed between two antiparallel LSU strands and a holoenzyme L₈S₈ has 8 catalytic
70 sites (9). Even though SSUs are distant from the active site, it is well known that they play a crucial role in
71 modulating Rubisco's kinetic and structural properties and remain an important target for improvement
72 (11, 12).

73 Historically, efforts to engineer a faster or more CO₂-specific Rubisco have been thwarted by practical
74 complexities of plant transformation (13, 14). Rubisco requires an array of chloroplast chaperonins and
75 chaperones (such as chaperonins Cpn60/Cpn20 and dedicated chaperones RAF1, RAF2, RbcX, and
76 BSD2) to fold and assemble correctly which are often species-specific, causing incompatibility issues
77 when transgenic Rubiscos are expressed without cognate chaperones (15, 16). Mutagenesis to improve
78 kinetic performance is often restricted by the many necessary interactions between LSUs, assembly
79 factors and SSUs, requiring complementary modifications to these non-catalytic proteins. The
80 breakthrough development of *Arabidopsis thaliana* Rubisco assembly in *Escherichia coli* has significantly
81 accelerated research in this area (17). Subsequently, the process has been optimized for more plant
82 species (8, 11, 18).

83 Our lab has previously utilized the *E. coli* system to resurrect and characterize ancestral Rubisco
84 enzymes from periods of warmer temperatures and higher atmospheric CO₂ (~30 million years ago),
85 representing the projected environment in this century (19). A significant proportion of these resurrected
86 ancestral Rubiscos exhibited faster catalysis with comparable specificity to the extant enzyme. This
87 crucial finding demonstrates the potential to improve Rubisco kinetics without the canonical catalytic
88 trade-off. Due to rapidly increasing aerial CO₂ concentrations in the postindustrial age, insufficient time
89 has occurred for plants to adapt, and improved kinetic properties may be sought through genetic
90 modifications.

91 Transferring engineered variants into plants is critical for testing their performance *in vivo* and their
92 broader metabolic integration. A problem in improving Rubisco arises from the presence of robustly
93 expressed native Rubiscos, which can mask the biochemistry of an engineered Rubisco and also
94 potentially result in hybrid Rubiscos (12, 20). Diminishing or removing the expression of native Rubiscos
95 is essential for investigating novel Rubiscos *in planta*.

96 Here, we report the creation of a Rubisco-null *Nicotiana tabacum* line by CRISPR-Cas9-mediated
97 knockout of all 11 nuclear *rbcS* genes. This provides a "clean slate" for evaluating engineered Rubiscos
98 without background interference from WT enzyme. We demonstrate that co-expressing a single *rbcS*
99 gene with *rbcL* in the chloroplast genome of the knockout line, using our dual-promoter system, restores
100 Rubisco expression to wild-type levels. We evaluated two of our previously characterized ancestral
101 Rubisco combinations in this platform, confirming their efficient assembly and promising kinetic
102 properties. Our system provides a unique opportunity to robustly test performance of compatible Rubisco
103 *in vivo* without background interference, to study individual subtypes, and to make transgenic plants with
104 maternally inherited Rubisco.

105 Results

106 **NOR-SeLS: Generation of a Rubisco-Null Tobacco Line.** To create a platform for evaluating Rubisco
107 variants without interference from the native enzyme, we generated a Rubisco-null *Nicotiana tabacum*
108 line. We began with the markerless transgenic tobacco line SeLSΔaadA, which expresses cyanobacterial
109 Rubisco (Se_rbcLS) from *Synechococcus elongatus* PCC7942 and has the wild-type Rubisco LSU gene
110 (*Nt_rbcL*) replaced with the cyanobacterial Rubisco genes in the chloroplast genome (Fig. 1A).
111 SeLSΔaadA plants are able to sustain photoautotrophic growth under elevated CO₂ conditions or with
112 sucrose supplementation (Fig. 1B), enabling disruption of native *rbcS* genes without lethal consequences.

113 We employed a CRISPR-Cas9 construct with two guide RNAs targeting a conserved region across all
114 *rbcS* genes (SI Appendix, Fig. S1). Initial screening of transformants by Sanger sequencing suggested
115 effective knockdown, but subsequent high-throughput sequencing of seeds revealed lower-than-
116 anticipated knockout penetration in the T1 generation, likely due to undetected chimerism (SI Appendix,
117 Fig. S2 and S3). Furthermore, one of the guide RNAs (gRNA #1) proved ineffective.

118 To enhance knockout efficiency, we replaced the ineffective guide RNA and retransformed the SeLS*-
119 CRISPR #4-C2 line exhibiting the highest number of knockout events and from which the Cas9 cassette
120 had been segregated (SI Appendix, Fig. S3). Through several rounds of regeneration and high-
121 throughput screening, we mitigated the chimerism and established a stable knockout line. Analysis of T1
122 seedlings confirmed complete mutation and frameshift of all *rbcS* genes, with the exception of *rbcS_T2*
123 (SI Appendix, Fig. S4). The *rbcS_T2* allele harbored a 6-bp deletion, resulting in the absence of two
124 amino acids and the substitution of another in the predicted protein. However, analysis using *E. coli*
125 expression confirmed that the observed mutation in *rbcS_T2* resulted in a non-functional SSU incapable
126 of assembling into Rubisco holoenzyme and showed no carboxyarabinitol-1,5-bisphosphate (CABP)
127 binding in the extract (SI Appendix, Fig. S5). Seeds from Cas9- and kanamycin marker-free plants were
128 collected, and mutations in the T2 generation were confirmed. The final set of mutations is listed in the SI
129 Appendix, Fig. S4. These lines, in which all native *rbcS* genes were disrupted and which express only the

130 cyanobacterial Rubisco large and small subunits, were designated NOR-SeLS (No Other Rubisco except
131 SeLS).

132 **Validating NOR-SeLS Lines.** To validate the NOR-SeLS line, we performed chloroplast transformation
133 with the plasmid LSC-NtL, thereby reintroducing the *Nt_rbcL* gene into the chloroplast genome and
134 removing the cyanobacterial Rubisco genes (Fig. 2A, 2B). The resulting plants (NOR-cNtL) exhibited a
135 pale phenotype and slow growth, and were incapable of growing without sucrose supplementation, as
136 expected due to the absence of functional Rubisco in the absence of SSUs (Fig. 2C). We were unable to
137 detect the wild-type LSU, likely due to its instability and degradation in the absence of small subunits (Fig.
138 2D). We were also unable to detect cyanobacterial LSU indicating its complete removal. In contrast,
139 transformation of wild-type plants with LSC-NtL resulted in normal green plants with no discernible
140 photosynthetic phenotype compared to wild-type (SI Appendix, Fig. S6).

141 Next, nuclear complementation of NOR-cNtL plants was achieved by introducing native *rbcS_S1a* and
142 *rbcS_T1* under the control of their endogenous promoters via Agrobacterium-mediated transformation,
143 generating NOR-cNtL-nS1a and NOR-cNtL-nT1 plants, respectively (Fig. 3A). These transformants
144 displayed a green phenotype (Fig. 3B) and were capable of photosynthesis, overcoming the severe
145 growth defect in the parental NOR-cNtL line. However, they produced lower amounts of Rubisco
146 compared to wild type, likely due to the lower copy number of the nuclear-encoded small subunit genes
147 (Fig. 3C). Interestingly, large subunit levels varied and were proportional to the small subunit expression
148 levels across several nuclear transformants. Furthermore, single insertion transformants segregated into
149 photosynthesis-competent (tT, Tt and TT) and -incompetent seedlings (tt) in an expected Mendelian 3:1
150 ratio, suggesting that the knockouts are resistant to reversion (SI Appendix, Fig. S7). This genetic
151 analysis confirmed that NOR-SeLS and NOR-cNtL lines did not harbor any native *Nt_rbcS* genes.

152 **Chloroplast Expression of Wild-Type and Ancestral Nicotiana Rubiscos Achieves Wild-type-like
153 Growth and Protein Levels.** Following the validation of *rbcS* knockout in NOR-SeLS, we proceeded to
154 evaluate chloroplast-based expression of Rubisco enzymes. We designed a chloroplast expression
155 strategy to co-express both the LSU and SSU from the plastid genome. A control construct, LSC-NtLS1,
156 incorporated the native tobacco *Nt_rbcL* gene with its native regulatory elements, followed by a codon-
157 optimized SSU gene (*rbcS_S1a*) and *aadA* selectable marker driven by the *psbA* promoter (Fig. 4A). With
158 biolistic transformation, this construct replaced the cyanobacterial Rubisco module, creating the NOR-
159 cNtLS1 line, which expresses tobacco LSU and SSU exclusively from the chloroplast genome. Similar
160 constructs encoding previously characterized ancestral Rubisco pairs (Sola and Nico) were also
161 integrated into the NOR-SeLS line. Amino acid substitutions distinguishing these ancestral enzymes from
162 wild-type Rubisco are detailed in SI Appendix, Fig. S8.

163 Stable homoplasmic transformants were isolated for all three gene pairs and confirmed by Southern blot
164 analysis (Fig. 4B). All three chloroplast-expressor lines (collectively NOR-c lines) were phenotypically
165 indistinguishable from wild-type (WT) tobacco, displaying robust, healthy growth (Fig. 4C, Fig. 5A). At
166 Immunoblot analysis confirmed the accumulation of both plant LSU and SSU at high levels in the NOR-c
167 lines, consistent with the WT control (Fig. 4D), with concurrent loss of reactivity to anti-Se_RbcL,
168 indicating that the cyanobacterial cassette was removed, consistent with the Southern blots. Quantitative
169 growth analyses confirmed that chloroplast transformants exhibited growth rates similar to wild-type
170 plants when cultivated in soil under controlled green room conditions (Fig. 5A, B, SI Appendix, Fig. S9). At
171 67 days post-sowing (dps), NOR-c transformants accumulated fresh weights ranging from ~145 to 159 g,
172 closely paralleling wild-type plants (~141 g). There were no significant differences in the fresh weights of
173 WT and NOR-c rubisco expressing lines at 67 and 74 days. Furthermore, Rubisco content in total soluble
174 protein extracts, assessed through CABP-binding assays of fully activated Rubisco and Bradford protein
175 quantification, was similar or slightly higher in NOR-c transformants (~33–37% Rubisco/TSP) compared
176 to wild-type controls (~31%).

177

178 **Ancestral Rubiscos Expressed in Transgenic Plants Exhibit Superior Kinetic Properties.** To further
179 evaluate the functional consequences of expressing the ancestral enzymes, we first assessed
180 photosynthetic performance at the leaf level using steady-state CO₂ assimilation versus intercellular CO₂
181 concentration (A/C_i) response curves. Under Rubisco-limiting conditions, the net CO₂ assimilation rates of
182 the NOR-cNico and NOR-cSola lines were similar to those of the NOR-cNtLS1 and wild-type (WT) plants
183 (Fig. 6A). The maximum rate of carboxylation (V_{cmax}) in chloroplast transformants ranged between ~110–
184 127 $\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$, closely matching the wild-type rate (~126 $\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$). In contrast, homozygous
185 segregants of NOR-cNtL-nS1a line, which have a nuclear-expressed SSU gene, displayed slower aerial
186 photosynthesis (~ 68 $\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$) and growth rates, attributed to lower Rubisco accumulation levels
187 relative to wild-type (Fig. 6A, *SI Appendix*, Fig. S9B).

188 Rubisco activation levels were quantified from leaf extracts used in A/C_i measurements via ¹⁴C-CABP -
189 binding assays comparing initial active and fully activated Rubisco content (Fig. 6A). Activation levels in
190 chloroplast transformants ranged from ~50–57%, closely paralleling wild-type plants (~53%).

191 To directly probe the enzymatic properties underpinning this performance, Rubisco was extracted from
192 wild-type and chloroplast transformants for *in vitro* analysis using ¹⁴C-radiometric assays. Rubisco
193 carboxylation turnover rates (k_{cat}) measured by radiometric assays (¹⁴C fixation) at 25°C and ambient
194 oxygen concentration indicated significantly enhanced kinetics in ancestral Rubisco variants. The
195 ancestral Nico and Sola enzymes exhibited higher k_{cat} values of 3.31 s^{-1} and 3.41 s^{-1} , respectively,
196 compared to 2.93 s^{-1} in wild-type plant Rubisco and 2.90 s^{-1} in chloroplast-expressed WT-S1 Rubisco. No
197 significant difference was observed in enzyme affinity ($K_{\text{C,air}}$) between ancestral and wild-type Rubiscos.
198 As a result, the overall catalytic efficiency ($k_{\text{cat,air}}/K_{\text{C,air}}$) of the ancestral Rubiscos was improved by 16–
199 20% over the native WT enzyme. These findings validate that ancestral variants identified through
200 reconstruction experiments can be successfully expressed in tobacco and confer superior kinetic traits.
201

202 Discussion

203 C₃ plants represent a large majority of terrestrial plant species. Many major agroeconomic crops, like
204 wheat, rice, soybean and potato, are C₃ plants. Due to slow catalytic rates of C₃ Rubiscos, C₃ crops have
205 long been a target for increasing carbon assimilation by improving Rubisco characteristics or increasing
206 the enzyme's access to CO₂ (4, 21–24). While recent breakthroughs expressing and evolving Rubisco
207 variants in microbial systems have rapidly identified promising candidates, translating these advances to
208 crops remains a formidable challenge (25). A definitive test of any engineered Rubisco requires its
209 evaluation *in planta*, within the context of the complex metabolic networks within a plant.

210 A primary obstacle to this goal has been the robust expression of the native Rubisco in host plants. The
211 presence of endogenous large and small subunits can lead to the formation of undesirable hybrid
212 enzymes, confounding kinetic analyses and masking the true performance of the introduced variant.
213 Hence, studying specific Rubiscos *in vivo* and their integration into plant biochemistry requires the
214 removal or suppression of native Rubiscos. Attempts to remove or reduce native Rubiscos have been
215 underway for decades and these efforts have progressively yielded a greater degree of removal of native
216 subunits and provided a wealth of foundational information (26–31). Furthermore, for future strategies
217 involving the introduction of complex structures like pyrenoids or carboxysomes, the complete removal of
218 native subunits is essential to ensure the precise and ordered assembly of the new components (20).

219 To create our Rubisco-null platform, we performed a complete CRISPR-knockout of all native Rubisco
220 subunits. Using a tobacco line expressing a cyanobacterial Rubisco allowed us to remove the essential,
221 nuclear-encoded *rbcS* genes without causing a lethal phenotype. However, eliminating all 11 copies of the
222 *rbcS* gene family in allotetraploid tobacco presented a significant technical barrier. Unlike previous work
223 targeting only the most highly expressed homologs, our goal was complicated by high sequence similarity
224 across the gene family, which led to frequent gene conversion events during CRISPR-mediated repair.

230 Although not all the isoforms are expressed at high levels, it was important to knock out all *rbcS* genes
231 since it is unknown how these are regulated and they might serve as a template for reversion. Gene
232 conversion was observed to occur at high frequency in early stages and is especially evident by the
233 similarity of mutations across knockouts. Because the knockout mutations were phenotypically silent in
234 the SeLS background, unlike previous efforts (31), we relied on high-throughput sequencing to uncover
235 and systematically eliminate undetected chimerism through successive rounds of transformation and
236 regeneration. The resulting stable NOR-SeLS line was rigorously validated. The early stage reverions
237 led to final mutations which were mostly identical between alleles and genes, lending a degree of
238 resistance from reversion once the knockout was achieved (*SI Appendix*, Fig. S4B). We showed that no
239 Rubisco was formed when the cyanobacterial LS pair was replaced with the native large subunit (Fig.
240 2D). Only upon further supplementation with a small subunit did photosynthetic growth occur (Fig. 3).
241 Evidently, large and small subunits are unstable and both are rapidly degraded when not part of the fully
242 assembled Rubisco. There is some evidence that accumulation of chaperone- bound LSU without SSU
243 causes transcriptional inhibition of *rbcL* (32). We have previously seen that unbound SSU is rapidly
244 degraded in chloroplasts (33).
245

246 The NOR-cNtL-n lines, with single nuclear insertions, provide a source of rubisco-less NOR-cNtL seeds,
247 which could be useful for generating unique SSU subtypes or combinations (*SI Appendix*, Fig. S7). There
248 is some evidence that the expression of different SSUs varies under different environmental conditions
249 and might provide a form of adaptation (34). It remains unclear whether the L₈S₈ holoenzyme assembles
250 with uniform or mixed SSUs. The NOR lines could be useful for such investigations or for purifying mono-
251 SSU Rubisco.
252

253 The NOR-SeLS platform provides an advantage for testing LSU-SSU pairs *in vivo*. We aimed to achieve
254 wild-type Rubisco levels, a goal that had not been met in previous studies using bicistronic *rbcL*-*rbcS*
255 operons under *rbcL* regulatory sequences. To overcome this limitation, we decoupled *rbcS* expression
256 from *rbcL* and placed it under the strong *psbA* promoter with a customized Shine–Dalgarno sequence.
257 This dual-promoter strategy yielded an important improvement: we were able to express Rubiscos at
258 levels comparable to those in wild type, which may represent either saturating concentrations in C₃ plants
259 (Fig. 4D, 5B) or levels constrained by *rbcL* regulation. Chloroplasts are considered to have ample
260 translational capacity and act as net producers of amino acids and energy for the cell. They have been
261 used to express recombinant proteins reaching several percent of total soluble protein without noticeable
262 effects on growth (35). In our system, total Rubisco abundance was comparable to wild type, indicating
263 that overall protein demand was not increased but rather redistributed from the cytosol to the chloroplast,
264 which we expect to be easily balanced. Consistent with this, no adverse effects on growth were observed.
265 The ability to express both LSU and SSU at WT levels provides a robust and sensitive system to test
266 holistic effects of Rubisco characteristics. *In planta* expression of variant Rubiscos at WT or higher levels,
267 which can saturate the plant metabolic fluxes related to its activity, can also more easily reveal the other
268 tradeoffs or metabolic bottlenecks. Such fluxes would be difficult to attain stably through expression from
269 the nucleus.
270

271 We used our platform to test two ancestral Rubiscos, resurrected from a higher CO₂ era and previously
272 shown to have superior kinetics when expressed in *E. coli* (19). As postulated previously, the ancestral
273 enzymes assembled efficiently in tobacco chloroplasts, accumulated and activated to WT-like levels,
274 demonstrating their robust compatibility with assembly mechanisms. The resultant transformants grew
275 with WT-like vigor in air and soil (Fig. 5). Most importantly, the ancestral enzymes exhibited a significantly
276 faster catalytic rate, resulting in a 16–20% improvement in catalytic efficiency (Fig. 6C) similar to trends
277 observed in the *E. coli* system. Interestingly, despite this clear kinetic advantage, the transgenic lines did
278 not show a correspondingly large increase in biomass under controlled growth chamber conditions. This
279 is not entirely unexpected, as photosynthesis in C₃ plants under stable, non-stressful growth chamber
280 conditions may be limited by factors other than Rubisco activity, such as RuBP regeneration (light-

281 limited). The true benefit of a faster Rubisco may only become apparent under fluctuating field conditions
282 where light, nutrition, temperature, and water-stress can transiently limit or increase photosynthesis.
283

284 Our NOR-SeLS Rubisco expression platform provides a clean route not only to introduce better enzymes
285 but also to unravel the next set of metabolic bottlenecks that may constrain carbon assimilation. Our
286 NOR-cSola and NOR-cNico provide an *in planta* validation of our hypothesis that resetting plants to their
287 ancestral Rubiscos from high CO₂ eras can provide a shortcut to naturally optimized and compatible
288 Rubisco variants. By expressing a kinetically superior Rubisco at saturating levels, we can now begin to
289 identify and address the downstream pathways that will need to be optimized to realize the full potential of
290 an improved engine at the heart of photosynthesis. Future work in which transgenic plants are grown in
291 the field will be essential to determine the real-world agronomic impact of these promising ancestral
292 enzymes.

293 **Materials and Methods**

294 **Plant Materials and Growth Conditions**

295 *Nicotiana tabacum* cv. Samsun was utilized as the wild-type (WT) control. The transgenic lines generated
296 in this study were derived from a marker-less line obtained through spontaneous homologous
297 recombination of a direct repeat of the *Nt-TrbcL* terminator from the SeLS transgenic background, which
298 expresses cyanobacterial Rubisco (36). Plants were grown in soil using Lambert LM-111 all-purpose mix
299 within a controlled environment growth chamber (Percival Scientific, USA) maintained at 25°C, 60%
300 relative humidity, under a 14-h photoperiod supplied by cool white fluorescent lamps (150-200 μmol
301 photons m⁻² s⁻¹). Plants received full fertilization (21-5-20 NPK) after reaching an approximate height of 10
302 cm. For specific growth studies, plants were grown on benches under uniform illumination (200 μmol
303 photons m⁻² s⁻¹; GE MVR400 lamps), received full fertilization, and fresh weight was recorded at
304 designated time points. For sterile tissue culture, seeds were surface-sterilized and germinated on
305 Murashige and Skoog (MS) medium (M5524; Sigma Aldrich) containing 0.8% (w/v) agar (pH 5.8) and 3%
306 (w/v) sucrose in Magenta GA-7 boxes or petri dishes.

307 **Generation and Molecular Analysis of *rbcS* Knockout Lines**

308 Guide RNAs (gRNAs) targeting conserved regions of the tobacco *rbcS* gene family were designed using
309 the CCTOP tool (37). The pAGM4723 binary vector served as the backbone to express Cas9 under the
310 control of the Cauliflower Mosaic Virus (CaMV) 35S promoter and two distinct sgRNAs, each driven by an
311 *Arabidopsis* U6 promoter, as previously described (23). The initial construct was designated
312 pAGM_rbcS_12. To enhance knockout efficiency, a subsequent construct, pAGM_rbcS_23, was
313 generated by replacing gRNA#1 with gRNA#3.

314 Binary vectors pAGM_rbcS_12 and pAGM_rbcS_23 were introduced into *Agrobacterium tumefaciens*
315 strain GV3101 via electroporation. For tobacco *Agrobacterium*-mediated transformation, leaf explants
316 (approx. 2 cm²) from sterile 6-week-old SeLSΔaadA plants were briefly immersed in an *Agrobacterium*
317 suspension (resuspended in 1x liquid MS) carrying the desired plasmid and co-cultivated for 2 days on
318 RMOP medium. Following co-cultivation, leaf explants were washed and transferred to selective RMOP
319 medium containing 250 mg/L timentin and 100 mg/L kanamycin. Regenerated shoots were excised and
320 rooted on MS medium supplemented with 100 mg/L kanamycin.

321 Genomic DNA was isolated from tobacco leaf tissue using the CTAB method. Kanamycin-resistant T₀
322 plantlets transformed with pAGM_rbcS_12 were screened for *rbcS* mutations by PCR amplification of
323 target loci using gene-specific primers, followed by Sanger sequencing. One T₀ plant, #4 (out of six
324 analyzed) exhibiting the highest knockout efficiency was selected for progeny analysis. High-throughput
325 screening of 88 T₁ progeny from this selected line was performed to assess mutation transmission and
326 chimerism (SI Appendix, Fig. S2 and S3). Targeted PCR amplicons covering the *rbcS* loci were
327 sequenced using Illumina MiSeq (2x150 bp paired-end reads) at the Biotechnology Resource Center,

328 Cornell University. Raw sequence reads were filtered to retain *rbcS* sequences. A custom filtering method
329 employing unique sequence regions was used to classify reads according to specific *rbcS* genes, and the
330 fraction of remaining WT-like sequences within the target regions was calculated to determine CRISPR
331 mutation penetration. Due to observed genetic chimerism in the T₁ generation, a subsequent round of
332 transformation was conducted using pAGM_*rbcS_23* on a Cas9-free, segregated T₁ line derived from the
333 initial pAGM_*rbcS_12* transformation. Further rounds of regeneration and screening were performed to
334 isolate stable, non-chimeric knockout lines, designated NOR-SeLS. Mutation frequencies and allelic
335 compositions were analyzed using the CRISP-ID tool (38). Progeny of NOR-SeLS (T₁/T₂ generations)
336 were screened by PCR using primers specific for the Cas9 transgene to select Cas9-free and marker-free
337 individuals arising from genetic segregation. The final mutational status of the selected NOR-SeLS lines
338 was confirmed by Sanger sequencing of the target *rbcS* loci (SI Appendix, Fig. S4).

339

340 ***E. coli* Expression for SSU Functional Assay**

341 The functional impact of the specific mutation identified in the *rbcS_T2* allele was evaluated using an *E.*
342 *coli* expression system, as previously described (Lin et al., 2020). This system enables the co-expression
343 of the tobacco RbcL subunit, the RbcS variant of interest, and a defined set of chaperones required for
344 plant Rubisco assembly (Cpn60α/β, Cpn20, RbcX, RAF1, RAF2, and BSD2). Soluble protein extracts
345 from these *E. coli* cultures were analyzed for the formation of the Rubisco holoenzyme and its ability to
346 bind the inhibitor CABP.

347 **Chloroplast Transformation**

348 Chloroplast transgenic lines were generated by biolistic transformation of the NOR- SeLS line, replacing
349 the integrated cyanobacterial Rubisco cassette via homologous recombination. The LSC-NtL construct
350 was designed to reintroduce the native tobacco *rbcL* gene (*Nt_rbcL*) and generate NOR-cNtL line. For
351 expression of WT and ancestral Rubisco variants, chloroplast expression vectors were constructed.
352 Coding sequences for the large subunits (LSUs) retained WT codon usage, except for the specific amino
353 acid substitutions defining the ancestral variants. Mature small subunit (SSU) sequences, lacking the
354 native chloroplast transit peptide but incorporating appropriate substitutions for ancestral variants, were
355 codon-optimized for expression in tobacco chloroplasts. Codon optimization was done based on *rbcL*
356 codon usage, similar to Martin-Avila et al (29). The LSC-NtLS1 construct, used to generate NOR-cNtLS1
357 contained the native *Nt_rbcL* gene under its endogenous regulatory elements, followed downstream by
358 the codon-optimized *rbcS_S1a* gene and the *aadA* selectable marker, both driven by the *psbA* promoter.
359 A g10L 5'UTR sequence with modifications to reduce secondary structures around the Shine-Dalgarno
360 sequence was used for *rbcS*. Analogous constructs for expressing ancestral Rubisco variants #50 Sola-
361 2L1S and #1 Nico-1L1S (LSC-Sola and LSC-Nico for NOR-cSola and NOR-cNico, respectively) were
362 created by substituting the *Nt_rbcL* and *rbcS_S1a* coding sequences with the corresponding mutations
363 (details in SI Appendix, Fig. S7) (19). Transformation was performed via particle bombardment following
364 established protocols (39). Selection of transplastomic events utilized RMOP regeneration medium
365 containing 500 mg/L spectinomycin. Successful integration into the chloroplast genome and achievement
366 of homoplasmy were confirmed by Southern blot analysis using a probe hybridizing to the *accD* region.

367 **Nuclear Transformation**

368 For nuclear complementation, genomic fragments containing the native *rbcS_S1a* or *rbcS_T1* genes,
369 including their endogenous 5' and 3' regions, were cloned into a modified pAGM binary vector backbone,
370 replacing the Cas9 and sgRNA expression cassettes. Transformation of NOR-cNtL plants was carried out
371 using the *Agrobacterium*-mediated leaf disc method described above. Transgenic lines were selected on
372 RMOP medium containing 100 mg/L kanamycin. The resulting lines (NOR-cNtL-nS1a and NOR-cNtL-
373 nT1) were assessed for phenotypic rescue and Rubisco protein expression levels. Segregation analysis

374 of the kanamycin resistance marker in the T₁ generation was performed to infer the transgene copy
375 number and confirm the stability of the *rbcS* knockout background.

376 **Protein Analysis**

377 Total soluble protein was extracted from leaf samples snap-frozen in liquid nitrogen. Tissue was
378 homogenized in an ice-cold extraction buffer (25 mM Tris-HCl pH 7.5, 1 mM EDTA, 10% glycerol, 0.1%
379 Triton X-100, 150 mM NaCl, 1 mM DTT, with protease inhibitors; or 50 mM Bicine-NaOH pH 8.2, 20 mM
380 MgCl₂, 1 mM EDTA, with protease inhibitors and DTT/β-mercaptoethanol). Insoluble cellular debris was
381 removed by centrifugation. Protein concentration in the supernatant was determined using the Bradford
382 assay, with Bovine Serum Albumin (BSA) as the standard.

383 Protein extracts were analyzed by both denaturing SDS-PAGE and non-denaturing (native) PAGE. SDS-
384 PAGE and subsequent immunoblotting were performed using Mini-Protean TGX gels (Bio-Rad) according
385 to manufacturer's protocol. Non-denaturing PAGE was conducted using a Tris-Glycine buffering system
386 at 4°C according to the manufacturer's protocols. For immunoblotting following SDS-PAGE (Biorad Any
387 kD TGX gels), proteins were transferred to polyvinylidene difluoride (PVDF) membranes. Membranes
388 were blocked using a commercial blocking buffer (Everyblot, Biorad) and incubated with primary
389 antibodies against tobacco LSU (rabbit anti-RbcL, Agrisera, cat# AS03 037), cyanobacterial LSU (rabbit
390 anti-Se_RbcL, kind gift from Dr. Orr, Lancaster University), and tobacco SSU (rabbit anti-RbcS, Agrisera,
391 cat# AS07 259). Detection utilized fluorescently-conjugated secondary antibodies (IRDye 800CW goat
392 anti-rabbit IgG, ThermoFisher, cat# 32735). Signals were visualized and quantified using an Odyssey
393 Imager (LI-COR) and associated analysis software (Image Studio, LI-COR).

394 Rubisco active site concentration was quantified using a [¹⁴C]CABP binding assay as described
395 previously (11). Soluble protein extracts were incubated with a molar excess of [¹⁴C]CABP. Protein-bound
396 [¹⁴C]CABP was separated from free ligand by size-exclusion chromatography (SEC) using Sephadex G50
397 fine column. Radioactivity associated with the Rubisco-containing fractions was measured by liquid
398 scintillation counting using Ultima Gold cocktail and a Tri-Carb counter (Perkin Elmer). For Rubisco
399 activation status, a protocol described by Choquette et al was followed (40). Briefly, Rubisco from frozen
400 leaf tissue was extracted using extraction buffer (50 mM EPPS-OH, pH 8; 5 mM MgCl₂; 2 mM DTT; 1 mM
401 EDTA; 1% PVPP (w/v); 1% (v/v) Plant protease protein inhibitor). 'Initial' number of activated Rubisco was
402 measured by incubating with [¹⁴C]CABP for 30 min on ice and then activating using CO₂-Mg buffer (50
403 mM EPPS-OH, pH 8; 80 mM NaHCO₃; 40 mM MgCl₂; 1 mM EDTA) in the presence of >100-molar excess
404 of [¹²C]CABP. The 'total' number of catalytic sites were measured by fully activating Rubisco in CO₂-Mg
405 buffer and binding with [¹⁴C]CABP. Both samples were measured by SEC as described earlier.

406 **A/C_i Measurements**

407 Leaf gas exchange was measured using a portable photosynthesis system (LI-COR 6800) equipped with
408 a 2 cm² leaf chamber. Measurements were conducted on the youngest fully expanded leaves (typically
409 leaf 5 or 6) of plants of the same age, under controlled environmental conditions: leaf temperature
410 maintained at 25°C, vapor pressure deficit (VPD) at approximately 1.2 kPa, and chamber flow rate at 300
411 μmol s⁻¹. The response of net CO₂ assimilation rate (A) to varying intercellular CO₂ concentrations (C_i)
412 (A/C_i curves) was determined by systematically altering the reference CO₂ concentration (from ambient
413 down to 50 μmol mol⁻¹, then increasing stepwise up to 1600 μmol mol⁻¹) under saturating irradiance
414 (determined from A/PAR curves, typically 1200 μmol photons m⁻² s⁻¹). The maximum rate of RuBP
415 carboxylation (V_{max}) was estimated by fitting the A/C_i response data to established C₃ photosynthesis
416 models using plantcophys R package (41).

417 **In Vitro Rubisco Kinetic Assays**

418 Leaf discs (approx. 2 cm²) were excised and immediately homogenized in 1 ml of ice-cold extraction
419 buffer (100 mM Bicine-NaOH pH 7.9, 5 mM MgCl₂, 1 mM EDTA, 1 mM EGTA, 50 mM 2-mercaptoethanol,

420 10 mM DTT, 20 mM NaHCO₃, Sigma plant protease inhibitor cocktail (1:100 dilution), 1 mM PMSF, 2 mM
421 benzamidine, 5 mM ε-aminocaproic acid) using an ice-cold Dounce homogenizer. The crude extract was
422 clarified by centrifugation at 16,000 g for 3 min at 4°C. The supernatant was desalted using Zeba spin
423 columns (7kD cutoff, ThermoFisher) pre-equilibrated with extraction buffer lacking protease inhibitors and
424 PMSF. Desalting extracts were divided into aliquots, snap-frozen in liquid N₂, and stored at -80°C until
425 analysis. Rubisco carboxylase activity was measured immediately after thawing aliquots using a
426 previously described method (11). Assays were performed at 25°C in assay buffer (100 mM Bicine-NaOH
427 pH 8.0, 20 mM MgCl₂, 0.8 mM RuBP) containing varying concentrations of NaH¹⁴CO₃. Reactions were
428 initiated by adding 20 µl of the leaf extract and terminated after exactly 1 min by the addition of 200 µl of 1
429 M formic acid. Samples were dried completely on a heating block at 100°C. Acid-stable ¹⁴C incorporation
430 was quantified by liquid scintillation counting (Ultima Gold, PerkinElmer) after resuspending the residue in
431 500 µl H₂O. Kinetic parameters (K_c for CO₂ and k_{cat}) were determined by measuring carboxylation rates
432 across a range of dissolved CO₂ concentrations and fitting the data to the Michaelis-Menten equation
433 using non-linear regression analysis.

434 **Data Availability.** All relevant data are included in the article, SI appendix or Datasets.

435 **Acknowledgments**

436 This work was funded by the U.S. Department of Energy, Office of Basic Energy Sciences; Chemical
437 Sciences, Geosciences, and Biosciences Division grant DE-SC0020142 (to M.T.L. and M.R.H.); and
438 National Science Foundation MCB-2131582 to M.R.H. We would like to thank David Stern's lab (Boyce
439 Thompson Institute) for lending the Li-6800 instrument for photosynthesis assays. We would like to thank
440 Dr. Laura Gunn (Cornell University) for helpful suggestions and Dr. Douglas Orr (Lancaster University,
441 UK) for kindly providing the anti-Se rbcL antibody.

442 **References**

- 444 1. C. B. Field, M. J. Behrenfeld, J. T. Randerson, P. Falkowski, Primary production of the biosphere:
445 integrating terrestrial and oceanic components. *Science* **281**, 237-240 (1998).
- 446 2. Y. M. Bar-On, R. Milo, The global mass and average rate of rubisco. *Proc Natl Acad Sci U S A* **116**,
447 4738-4743 (2019).
- 448 3. B. J. Walker, A. VanLoocke, C. J. Bernacchi, D. R. Ort, The Costs of Photorespiration to Food
449 Production Now and in the Future. *Annual review of plant biology* **67**, 107-129 (2016).
- 450 4. C. Iniguez, P. Aguiño-Nicolau, J. Galmes, Improving photosynthesis through the enhancement of
451 Rubisco carboxylation capacity. *Biochem Soc Trans* **49**, 2007-2019 (2021).
- 452 5. A. I. Flamholz *et al.*, Revisiting Trade-offs between Rubisco Kinetic Parameters. *Biochemistry* **58**,
453 3365-3376 (2019).
- 454 6. D. J. Orr *et al.*, Surveying Rubisco Diversity and Temperature Response to Improve Crop
455 Photosynthetic Efficiency. *Plant Physiol* **172**, 707-717 (2016).
- 456 7. J. N. Young *et al.*, Large variation in the Rubisco kinetics of diatoms reveals diversity among their
457 carbon-concentrating mechanisms. *J Exp Bot* **67**, 3445-3456 (2016).
- 458 8. Z. G. Oh *et al.*, Unique biogenesis and kinetics of hornwort Rubiscos revealed by synthetic biology
459 systems. *Mol Plant* **17**, 1833-1849 (2024).
- 460 9. A. Bracher, S. M. Whitney, F. U. Hartl, M. Hayer-Hartl, Biogenesis and Metabolic Maintenance of
461 Rubisco. *Annual review of plant biology* 10.1146/annurev-arplant-043015-111633 (2017).
- 462 10. N. Sierro *et al.*, The tobacco genome sequence and its comparison with those of tomato and potato.
463 *Nat Commun* **5**, 3833 (2014).
- 464 11. M. T. Lin, W. D. Stone, V. Chaudhari, M. R. Hanson, Small subunits can determine enzyme kinetics of
465 tobacco Rubisco expressed in Escherichia coli. *Nat Plants* **6**, 1289-1299 (2020).
- 466 12. Y. Mao *et al.*, The small subunit of Rubisco and its potential as an engineering target. *J Exp Bot* **74**,
467 543-561 (2023).
- 468 13. M. Gionfriddo, K. Zang, M. Hayer-Hartl, The challenge of engineering Rubisco for improving
469 photosynthesis. *FEBS Lett* **597**, 1679-1680 (2023).

470 14. S. M. Whitney, R. E. Sharwood, Rubisco Engineering by Plastid Transformation and Protocols for
471 Assessing Expression. *Methods Mol Biol* **2317**, 195-214 (2021).

472 15. M. T. Lin, M. R. Hanson, Red algal Rubisco fails to accumulate in transplastomic tobacco expressing
473 *Griffithsia monilis* RbcL and RbcS genes. *Plant Direct* **2**, e00045 (2018).

474 16. S. M. Whitney, P. Baldet, G. S. Hudson, T. J. Andrews, Form I Rubiscos from non-green algae are
475 expressed abundantly but not assembled in tobacco chloroplasts. *Plant J* **26**, 535-547 (2001).

476 17. H. Aigner *et al.*, Plant RuBisCo assembly in *E. coli* with five chloroplast chaperones including BSD2.
477 *Science* **358**, 1272-1278 (2017).

478 18. J. Archer, M. Kathpalia, B. U. Lee, S. Li, T. Wang, Effects of chaperone selectivity on the assembly of
479 plant Rubisco orthologs in *E. coli*. *J Exp Bot* 10.1093/jxb/eraf140 (2025).

480 19. M. T. Lin, H. Salihovic, F. K. Clark, M. R. Hanson, Improving the efficiency of Rubisco by resurrecting
481 its ancestors in the family Solanaceae. *Sci Adv* **8**, eabm6871 (2022).

482 20. D. J. Orr *et al.*, Hybrid Cyanobacterial-Tobacco Rubisco Supports Autotrophic Growth and
483 Procarboxysomal Aggregation. *Plant Physiol* **182**, 807-818 (2020).

484 21. M. R. Hanson, M. T. Lin, A. E. Carmo-Silva, M. A. Parry, Towards engineering carboxysomes into C3
485 plants. *Plant J* **87**, 38-50 (2016).

486 22. M. Gionfriddo, T. Rhodes, S. M. Whitney, Perspectives on improving crop Rubisco by directed
487 evolution. *Semin Cell Dev Biol* **155**, 37-47 (2024).

488 23. K. M. Hines, V. Chaudhari, K. N. Edgeworth, T. G. Owens, M. R. Hanson, Absence of carbonic
489 anhydrase in chloroplasts affects C3 plant development but not photosynthesis. *Proc Natl Acad Sci U*
490 *SA* **118** (2021).

491 24. B. Forster *et al.*, The *Chlamydomonas reinhardtii* chloroplast envelope protein LCIA transports
492 bicarbonate in planta. *J Exp Bot* **74**, 3651-3666 (2023).

493 25. D. H. Loh, L. H. Gunn, A SynBio explosion: a whole new world for Rubisco engineering. *J Exp Bot* **76**,
494 2593-2597 (2025).

495 26. G. S. Hudson, J. R. Evans, S. von Caemmerer, Y. B. Arvidsson, T. J. Andrews, Reduction of ribulose-
496 1,5-bisphosphate carboxylase/oxygenase content by antisense RNA reduces photosynthesis in
497 transgenic tobacco plants. *Plant Physiol* **98**, 294-302 (1992).

498 27. S. R. Rodermel, M. S. Abbott, L. Bogorad, Nuclear-organelle interactions: nuclear antisense gene
499 inhibits ribulose bisphosphate carboxylase enzyme levels in transformed tobacco plants. *Cell* **55**, 673-
500 681 (1988).

501 28. H. Matsumura *et al.*, Hybrid Rubisco with Complete Replacement of Rice Rubisco Small Subunits by
502 Sorghum Counterparts Confers C(4) Plant-like High Catalytic Activity. *Mol Plant* **13**, 1570-1581
503 (2020).

504 29. E. Martin-Avila *et al.*, Modifying Plant Photosynthesis and Growth via Simultaneous Chloroplast
505 Transformation of Rubisco Large and Small Subunits. *Plant Cell* **32**, 2898-2916 (2020).

506 30. P. Khumsupan *et al.*, Generating and characterizing single- and multigene mutants of the Rubisco
507 small subunit family in *Arabidopsis*. *J Exp Bot* **71**, 5963-5975 (2020).

508 31. S. Donovan, Y. Mao, D. J. Orr, E. Carmo-Silva, A. J. McCormick, CRISPR-Cas9-Mediated
509 Mutagenesis of the Rubisco Small Subunit Family in *Nicotiana tabacum*. *Front Genome Ed* **2**, 605614
510 (2020).

511 32. W. Wietrzynski, E. Traverso, F. A. Wollman, K. Wostrikoff, The state of oligomerization of Rubisco
512 controls the rate of synthesis of the Rubisco large subunit in *Chlamydomonas reinhardtii*. *Plant Cell*
513 **33**, 1706-1727 (2021).

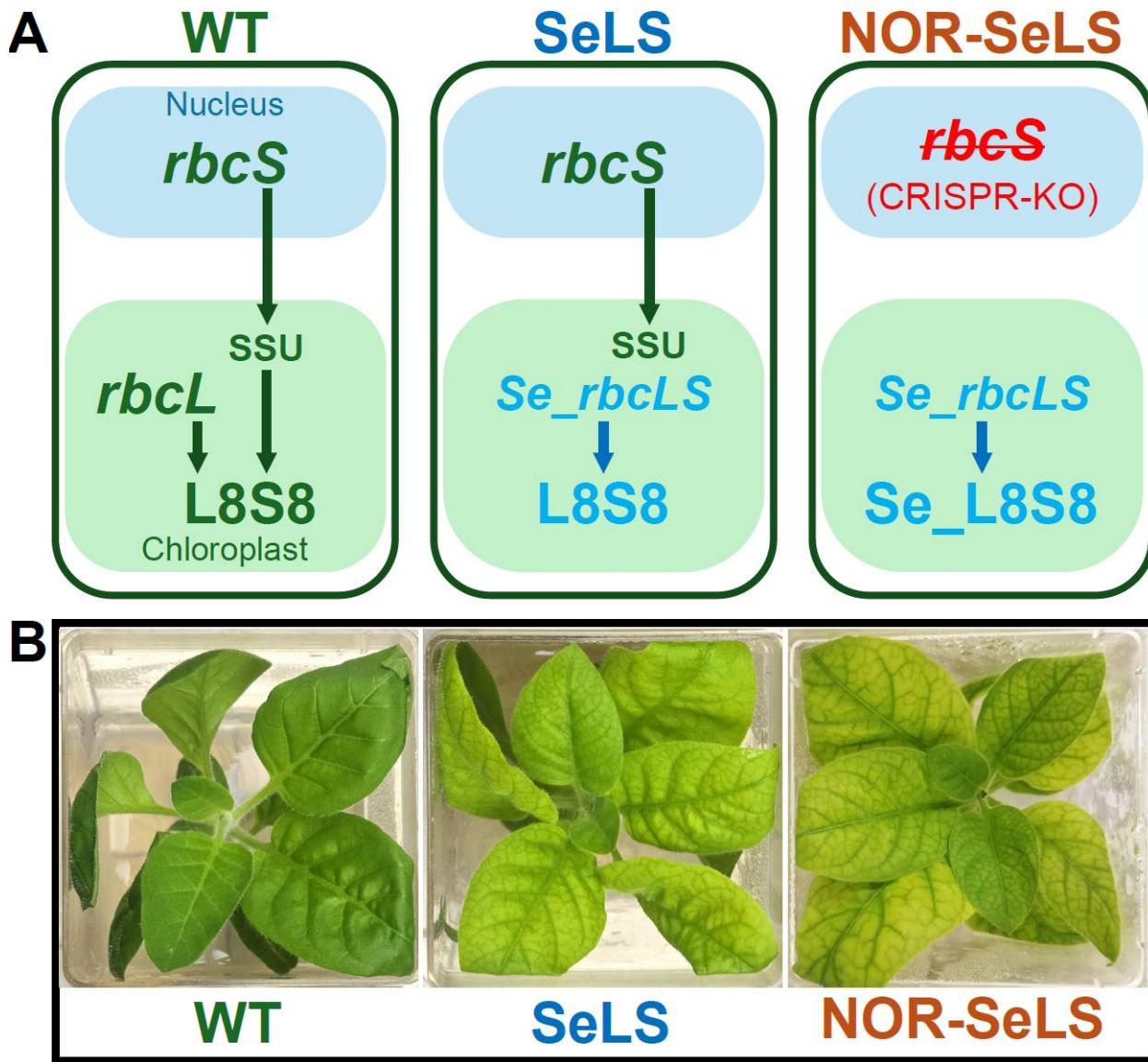
514 33. M. T. Lin, A. Occhialini, P. J. Andralojc, M. A. J. Parry, M. R. Hanson, A faster Rubisco with potential to
515 increase photosynthesis in crops. *Nature* **513**, 547-+ (2014).

516 34. A. Dedonder, R. Rethy, H. Fredericq, M. Van Montagu, E. Krebbers, *Arabidopsis rbcS* Genes Are
517 Differentially Regulated by Light. *Plant Physiology* **101**, 801-808 (1993).

518 35. J. A. Schmidt, J. M. McGrath, M. R. Hanson, S. P. Long, B. A. Ahner, Field-grown tobacco plants
519 maintain robust growth while accumulating large quantities of a bacterial cellulase in chloroplasts. *Nat*
520 *Plants* **5**, 715-721 (2019).

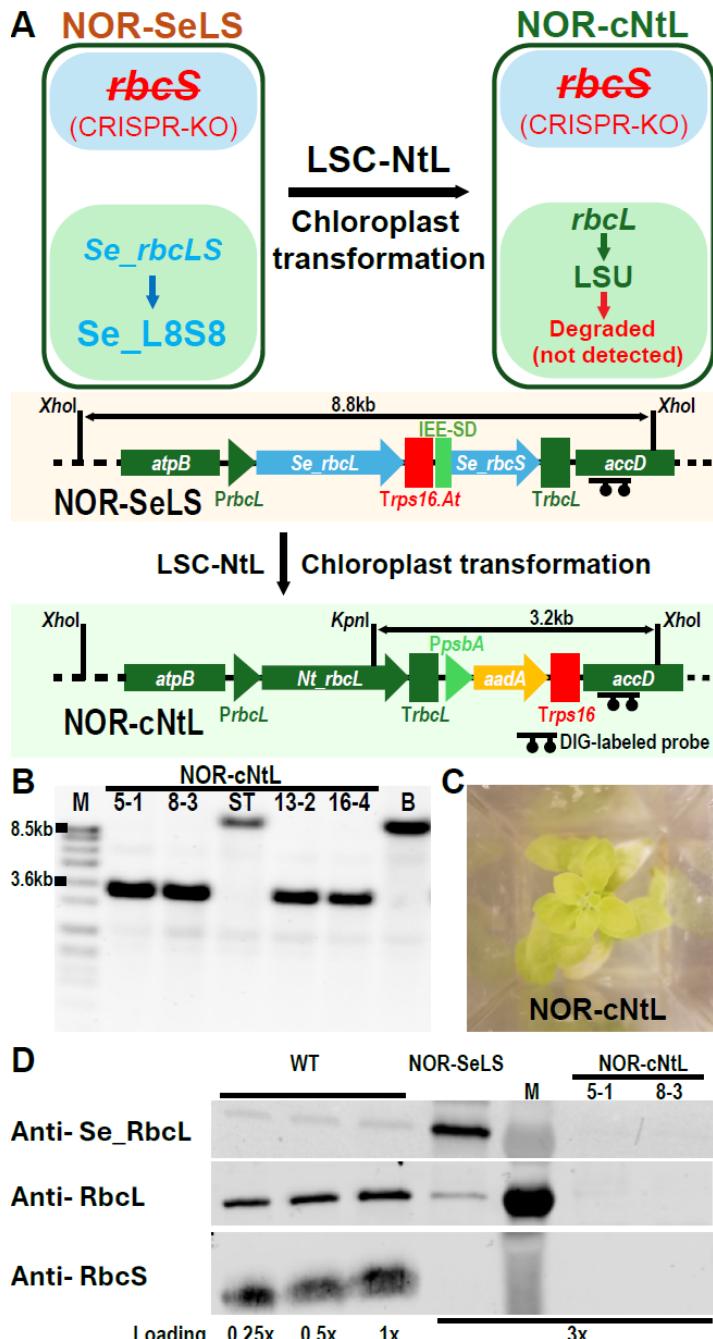
521 36. A. Occhialini, M. T. Lin, P. J. Andralojc, M. R. Hanson, M. A. J. Parry, Transgenic tobacco plants with
522 improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type
523 rates if provided with elevated CO₂. *Plant Journal* **85**, 148-160 (2016).

524 37. M. Stemmer, T. Thumberger, M. Del Sol Keyer, J. Wittbrodt, J. L. Mateo, CCTop: An Intuitive, Flexible
525 and Reliable CRISPR/Cas9 Target Prediction Tool. *PLoS One* **10**, e0124633 (2015).


526 38. J. Dehairs, A. Talebi, Y. Cherifi, J. V. Swinnen, CRISP-ID: decoding CRISPR mediated indels by
527 Sanger sequencing. *Sci Rep* **6**, 28973 (2016).

528 39. P. Maliga, T. Tungsuchat-Huang, K. A. Lutz, "Transformation of the Plastid Genome in Tobacco: The
529 Model System for Chloroplast Genome Engineering" in Methods in Molecular Biology. (Springer US,
530 2021), 10.1007/978-1-0716-1472-3_6, pp. 135-153.

531 40. N. E. Choquette, E. A. Ainsworth, W. Bezodis, A. P. Cavanagh, Ozone tolerant maize hybrids maintain
532 Rubisco content and activity during long-term exposure in the field. *Plant, Cell & Environment* **43**,
533 3033-3047 (2020).


534 41. R. A. Duursma, Plantecophys - An R Package for Analysing and Modelling Leaf Gas Exchange Data.
535 *PloS one* **10**, e0143346 (2015).

536

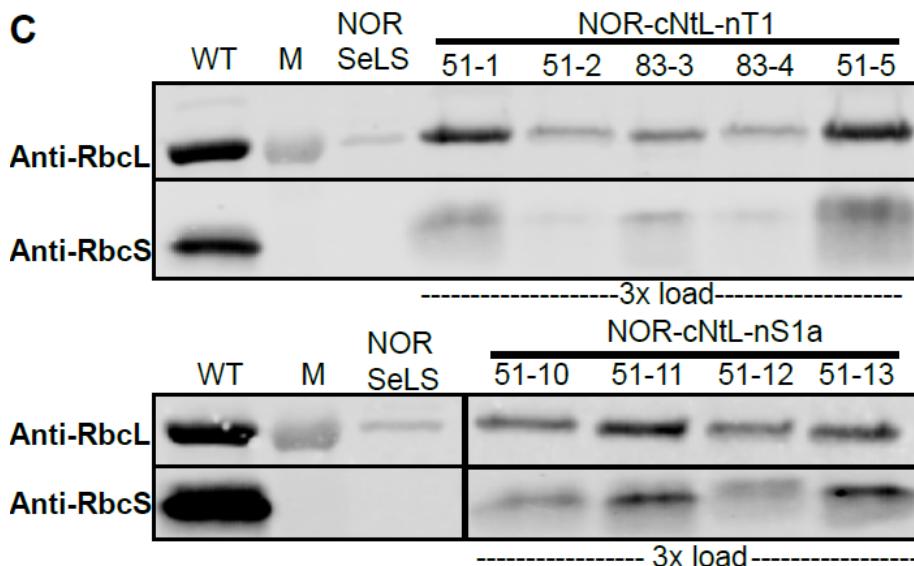
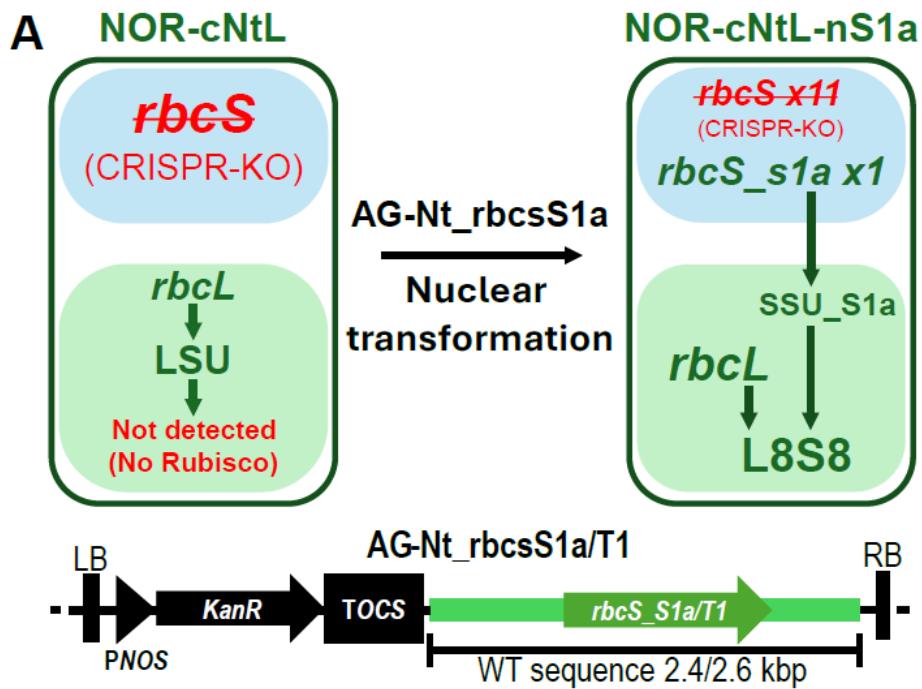
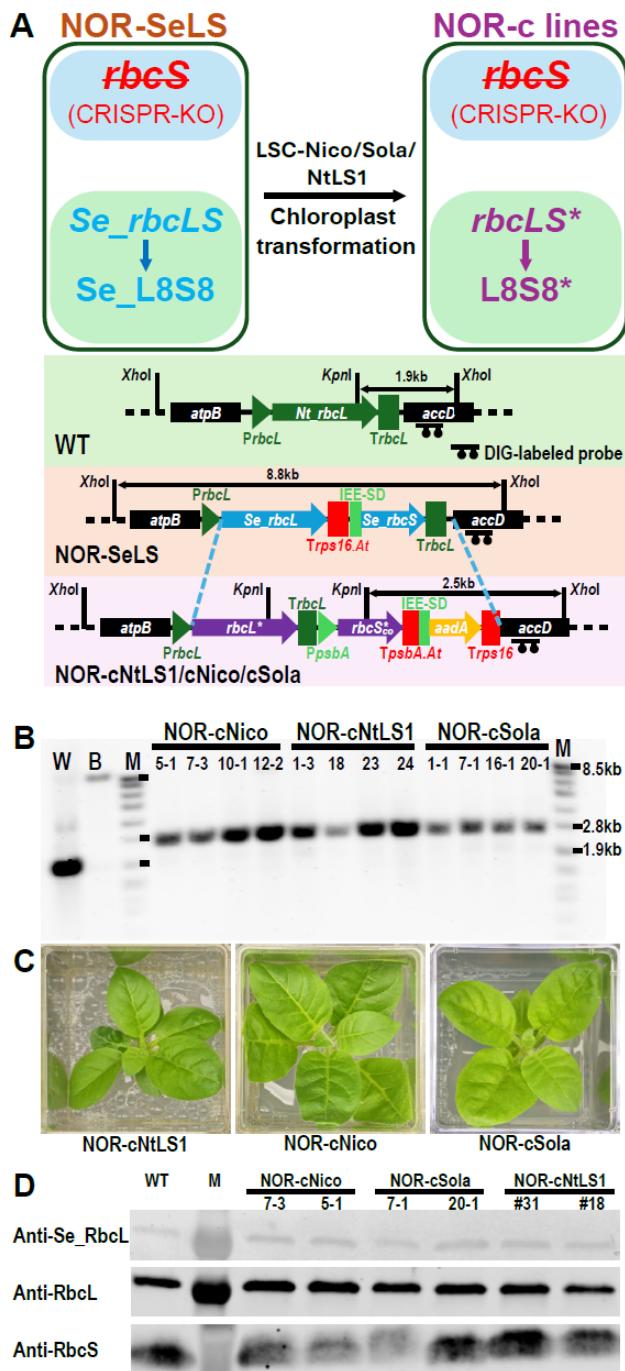



Fig. 1. Generation of the NOR-SeLS *Nicotiana tabacum* line devoid of all native Rubisco sequences.


(A) Schematic outlining the genetic background within *N. tabacum* plant cells. The Rubisco large subunit (LSU) is encoded by the chloroplast genome (*rbcL*). Native small subunits (SSUs) coded by nuclear *rbcS* genes are imported into the chloroplast and assemble with LSUs to form the L₈S₈ holoenzyme. A previously developed precursor line, SeLS, was generated by replacing the native *rbcL* with cyanobacterial rubisco genes *Se_rbcL* and *Se_rbcS* in the chloroplast. The NOR-SeLS line (No Other Rubisco except SeLS) was created by CRISPR-Cas9-mediated knockout of all 11 native *rbcS* genes within a marker-less SeLSΔaadA background. (B) Comparative phenotype of wild-type (WT), SeLS and NOR-SeLS lines grown photomixotrophically on sucrose medium under ambient air. Similar to SeLS, NOR-SeLS is paler than WT when grown at ambient air in media.

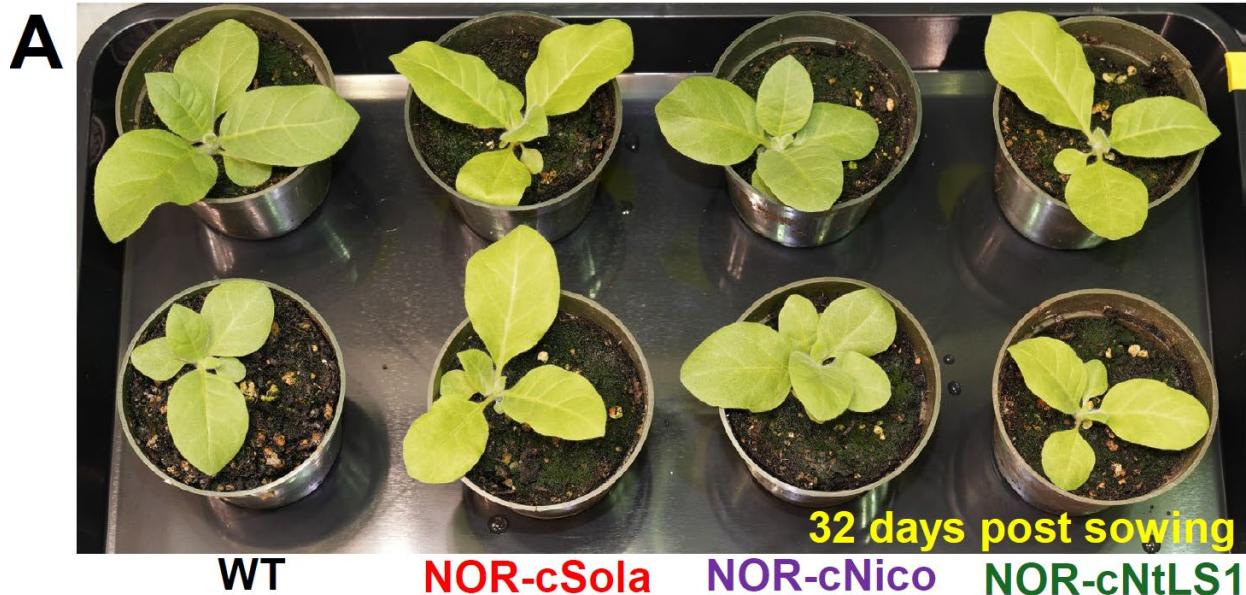
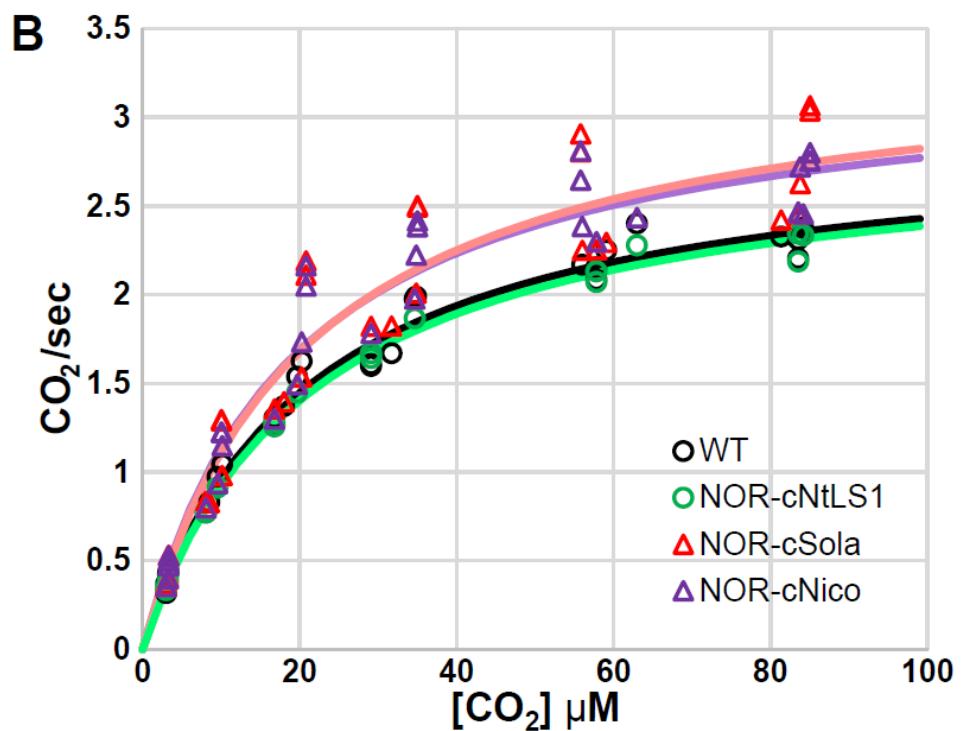

Fig. 2. Validating NOR-SeLS lines. (A) The NOR-SeLS line was transformed with the LSC-NtL vector, which replaced the cyanobacterial cassette with the native LSU (*Nt_rbcL*) via homologous recombination. The resulting NOR-cNtL line contains *Nt_rbcL* but lacks any *rbcS* genes, thus preventing functional Rubisco assembly and confirming the knockout phenotype. *atpB* and *accD* mark the flanking region for the *rbcL* locus transformation. *PrbcL* and *PpsbA* are native promoters from the corresponding genes. *Trps16*, *TrbcL* and *Trps16.At* are terminators from corresponding genes, with “At” marking the terminator from *Arabidopsis thaliana*. IEE-SD is the intergenic region. *Xhol* and *KpnI* mark the relevant restriction sites for Southern blot. Probe binds to *accD* region. (B) Southern blot confirming the replacement of the 8.8 kb *Se_rbcLS* locus with the 3.2 kb *Nt_rbcL* construct in NOR-cNtL transformants. The parental NOR-SeLS line (Lane B, background) shows an 8.8 kb band corresponding to the *Se-rbcLS*-containing region. Four independent NOR-cNtL transformants (Lanes 2, 3, 5 and 6) exhibit the expected 3.2 kb band, confirming successful integration of the *Nt_rbcL* construct. Lane M contains the DNA size marker and ST is a spontaneous transformant. (C) Representative phenotype of NOR-cNtL plants grown on MS medium. (D) Immunoblot analysis of total leaf protein extracts. Protein extracts run using SDS-PAGE gel and transferred to PVDF membrane were probed with anti-Se_RbcL antibody specific to cyanobacterial LSU, anti-RbcL specific to plant LSU, and Anti-RbcS specific to plant SSU. The transformant's protein extract was loaded in 3x amounts to allow detection of lower amounts of Rubisco.

Fig. 3. Nuclear complementation of the Rubisco-deficient NOR-cNtL line. (A) Schematic of the plasmid constructs used for *Agrobacterium*-mediated transformation. The constructs encode either the wild-type *rbcS_S1a* or *rbcS_T1* gene under their respective native regulatory sequences. (B) Rescue of the NOR-cNtL phenotype by single *rbcS* gene expression. Stable transformants expressing either *rbcS_S1a* (NOR-cNtL-nS1a) or *rbcS_T1* (NOR-cNtL-nT1) regain green pigmentation and exhibit restored growth on MS medium. (C) Immunoblot analysis showing reappearance of the Rubisco in multiple complemented lines. Total soluble protein loaded: 1.6 μ g for wild-type (WT) and NOR-SeLS, and 4.2 μ g for the complemented lines. M lane has molecular weight markers. Immunoblotting was performed with anti-RbcL and anti-RbcS antibodies.

Fig. 4. Engineering and characterization of *N. tabacum* lines expressing Rubisco entirely from the chloroplast genome. (A) Schematic representation of the chloroplast *rbcL* locus in WT and chloroplast expressor lines expressing either cyanobacterial Rubisco (NOR-SeLS), wild-type Rubisco (NOR-cNtLS1) or ancestral Rubisco variants (NOR-cNico and NOR-cSola). Chloroplast expressor lines were generated by chloroplast transformation of the NOR-SeLS background, and '*' marks the gene or Rubisco corresponding to the construct used. Blue dashes show homologous recombination for NOR-SeLS transformation. (B) Southern blot analysis confirming chloroplast transformation and homoplasmy. Genomic DNA digested with *Xhol* and *Kpn*l was hybridized using a probe for *accD* locus. NOR-SeLS shows a native 8.3 kb band, which is replaced by a 2.5 kb band in the transformed NOR-cNtLS1, NOR-cNico, and NOR-cSola lines, indicating homoplasmic transformation. M, DNA size marker. (C) Representative NOR-cNtLS1, NOR-cNico, and NOR-cSola plants grown on MS medium exhibit robust greening and autotrophic growth. (D) Immunoblot analysis of Rubisco subunit accumulation. Total soluble protein extracts (0.5 µg) from WT and the chloroplast expressor lines were loaded per lane of the SDS-PAGE gel. Blots were probed with antibodies recognizing the respective LSU and SSU. The engineered lines, NOR-cNtLS1, NOR-cSola and NOR-cNico, accumulate comparable levels of Rubisco compared to WT. M, Protein size marker.


B

Genotype	Fresh weight (g)		Rubisco/TSP %
	67 dps	74 dps	
WT	141.5 ± 9.9	182.9 ± 12.7	30.7 ± 1.8
NOR-cNtLS1	153.9 ± 4.2	194.4 ± 7.6	33.4 ± 0.8
NOR-cSola	159.3 ± 3.2	207.9 ± 10.6	37.3 ± 1.3
NOR-cNico	145.2 ± 3.3	199.4 ± 6.9	34.7 ± 1.7

Fig. 5. Comparative growth analysis of *N. tabacum* lines expressing native Rubisco exclusively from chloroplasts. Plants were cultivated in soil under controlled environment conditions (ambient CO₂ concentration, ~200 µmol m⁻² s⁻¹ PPFD, 25°C, with full fertilization). (A) Representative phenotypes of wild-type (WT) and the chloroplast expression line NOR-cNtLS1, NOR-cSola and NOR-cNico at 32 days post-sowing (dps) (B) Quantitative comparison of biomass accumulation (fresh weight) presented in the table for WT, NOR-C-NtLS1, NOR-C-Sola, and NOR-C-Nico, measured at 67 and 74 dps. Values represent the mean ± SEM for n=6 or more plants per genotype. P-values for one way ANOVA are >0.1

A

Genotype	$V_{cmax,air}$	Activation (%)
WT	126.23 \pm 2.7	53.6 \pm 2.94
NOR-cNtLS1	110.87 \pm 4.4	56.0 \pm 2.02
NOR-cSola	129.35 \pm 5.3	50.4 \pm 1.56
NOR-cNico	127.77 \pm 5.8	57.3 \pm 1.42
NOR-cNtL-nS1a	68.25 ^{**} \pm 2.4	n.d.

C

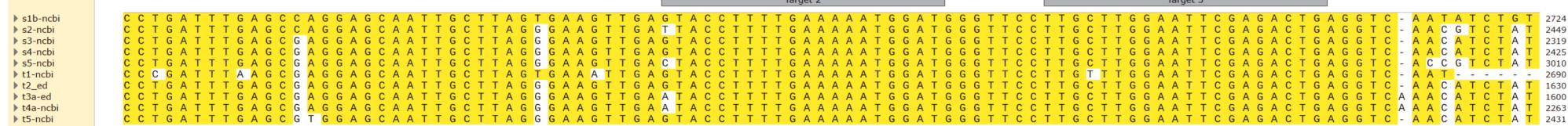
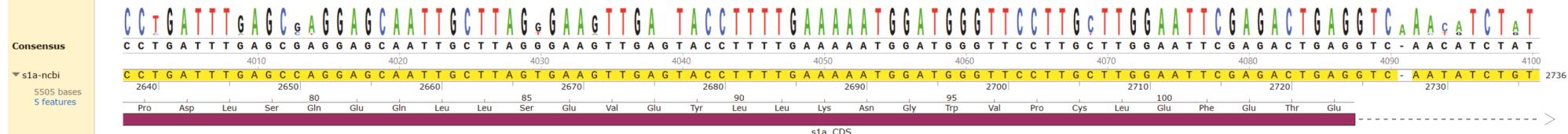
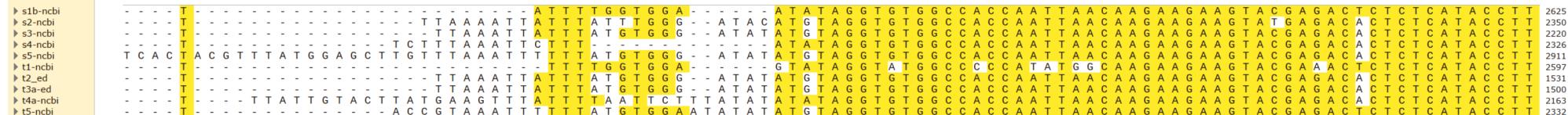
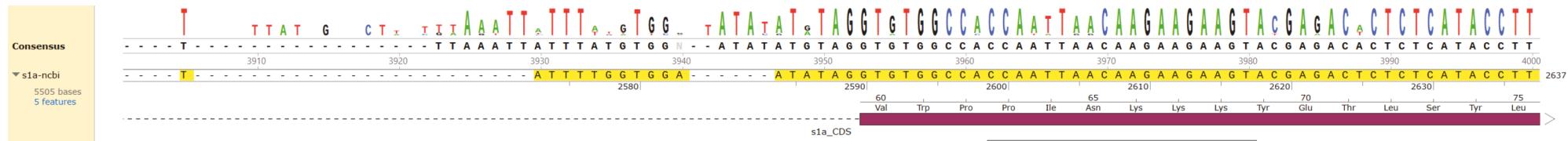
Assay at Air level $[\text{O}_2]$ and 25 °C			
Genotype	$K_{\text{C,air}} (\mu\text{M})$	$k_{\text{cat,air}} (\text{s}^{-1})$	$k_{\text{cat}}/K_{\text{C,air}}$
WT	20.52 ± 1.05	2.93 ± 0.04	0.145 ± 0.008
NOR-cNtLS1	21.33 ± 0.90	2.90 ± 0.08	0.136 ± 0.004
NOR-cSola	20.63 ± 1.35	$3.41 \pm 0.14^{**}$	0.170 ± 0.018
NOR-cNico	19.27 ± 1.73	$3.31 \pm 0.05^*$	0.178 ± 0.018

Supporting Information for

Resurrecting Rubisco: Superior kinetics of ancestral enzymes validated *in planta* using a Rubisco knockout tobacco platform

Vishalsingh R. Chaudhari, Myat T. Lin, Kevin M. Hines and Maureen R. Hanson*

* Corresponding author- Maureen R. Hanson.





Email: mrh5@cornell.edu

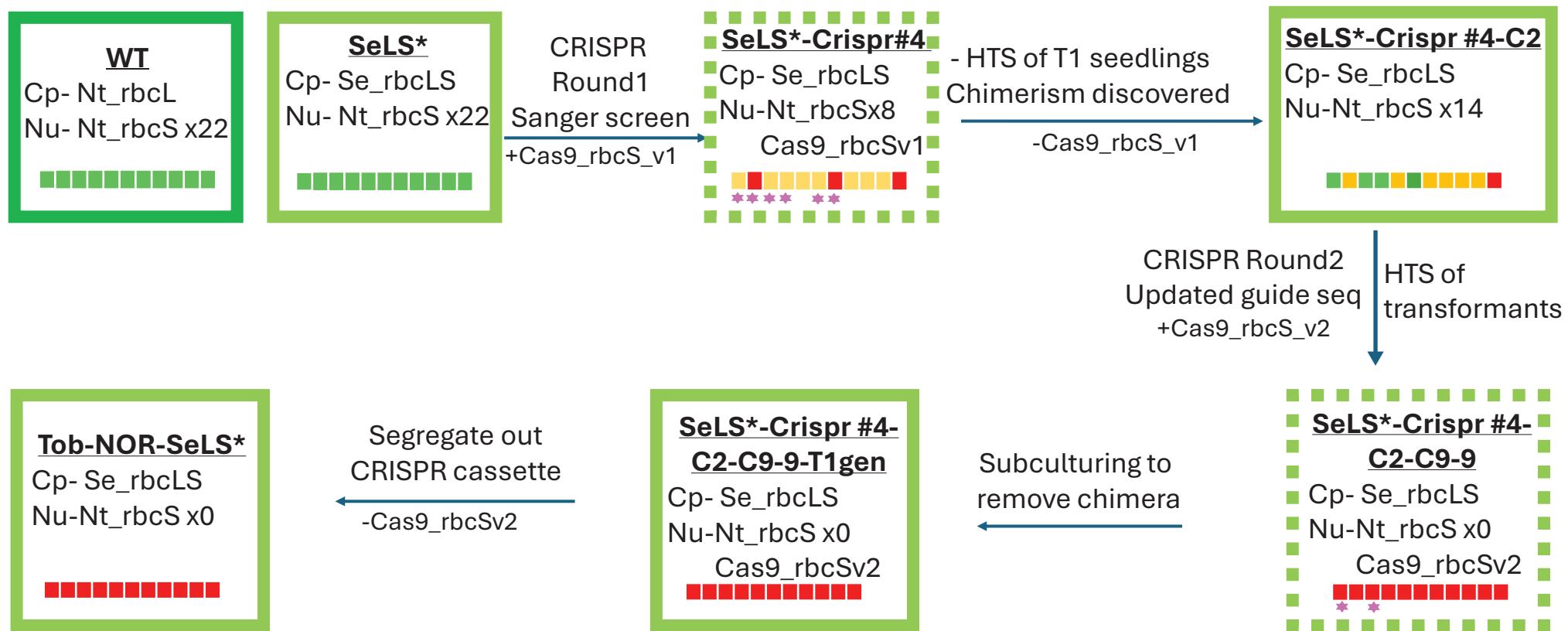
This PDF file includes:

Supporting text
Figures S1 to S9

Other supporting materials for this manuscript include the following:

Datasets S1 and S2

Fig. S1. Target region for CRISPR-mediated mutation. (Top) A nucleotide region highly conserved among *rbcS* gene sequences was targeted using three guide RNAs. The binding sites for guide RNAs T1, T2, and T3 are indicated as targets 1, 2, and 3, respectively. (Bottom) Constructs AGM_Cas9_rbcS_12 and AGM_Cas9_rbcS_23, expressing Cas9 along with pairs of guide RNAs (T1+T2 and T2+T3, respectively), were employed for genome editing.

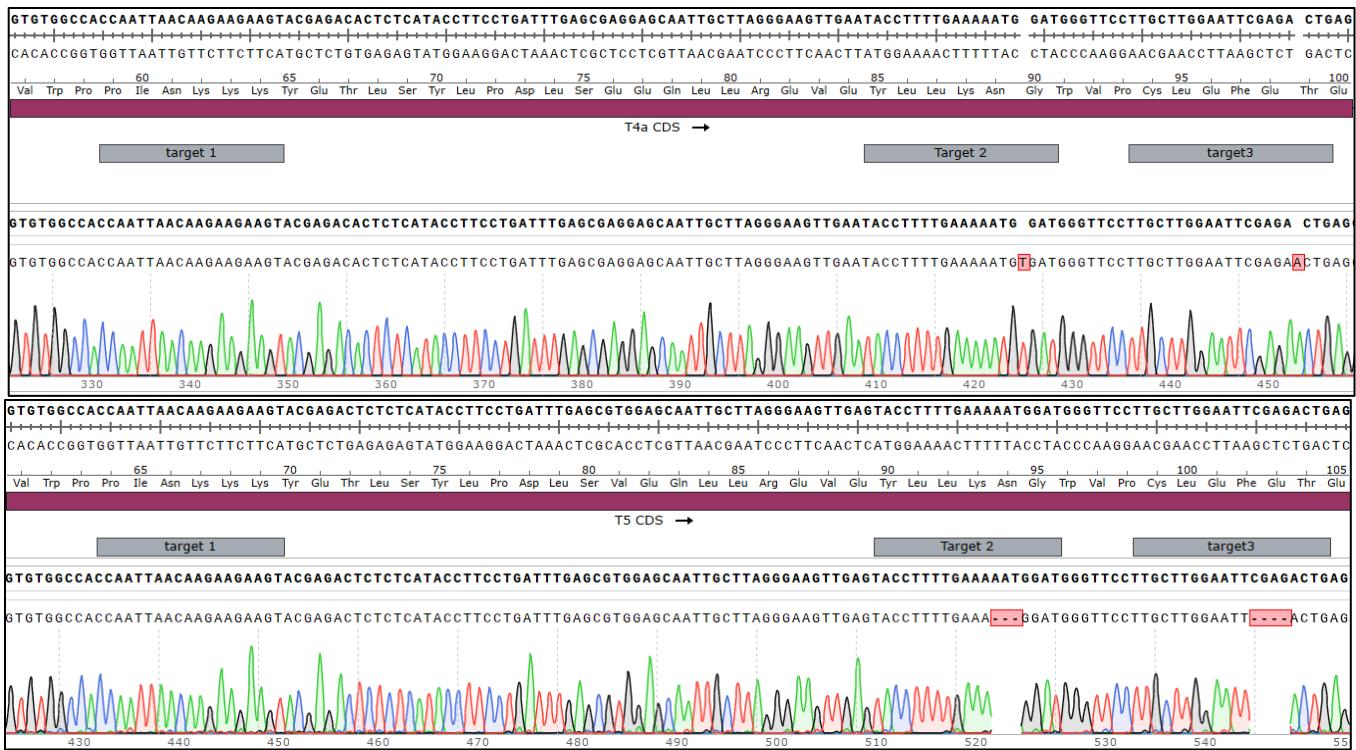

#4-T1

plants

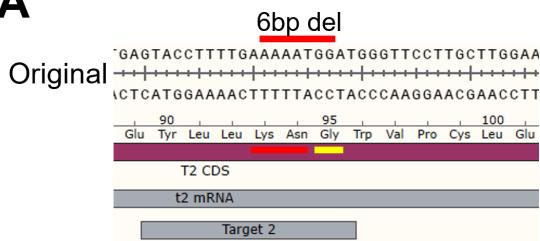
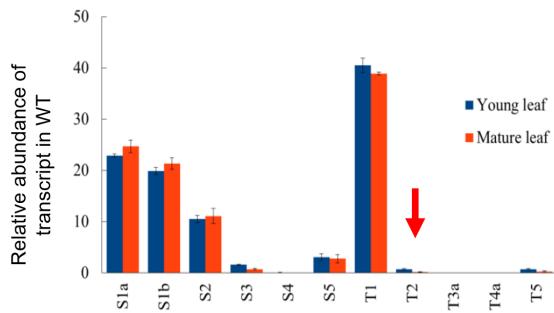
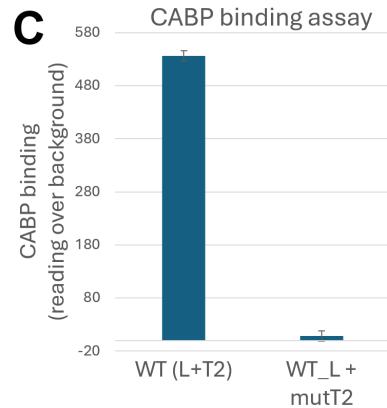
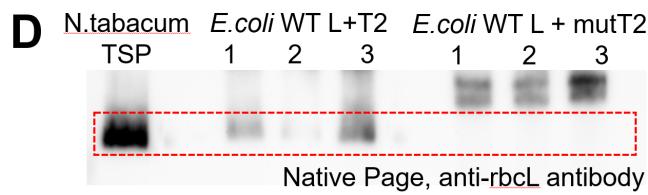
rbcS genes

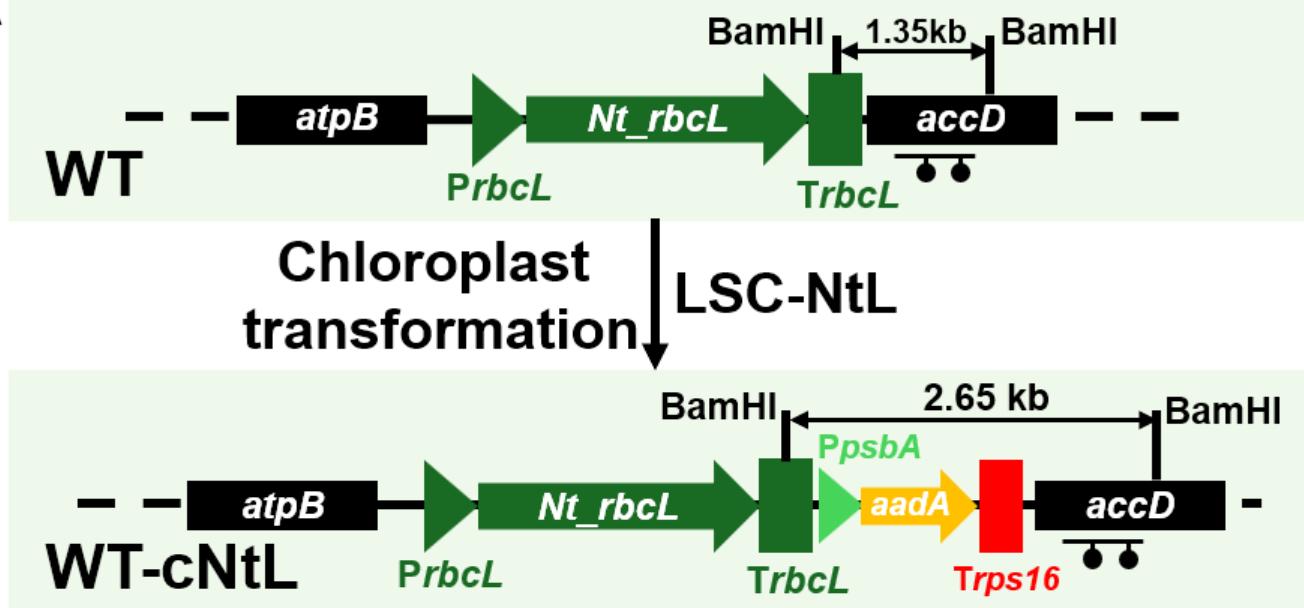
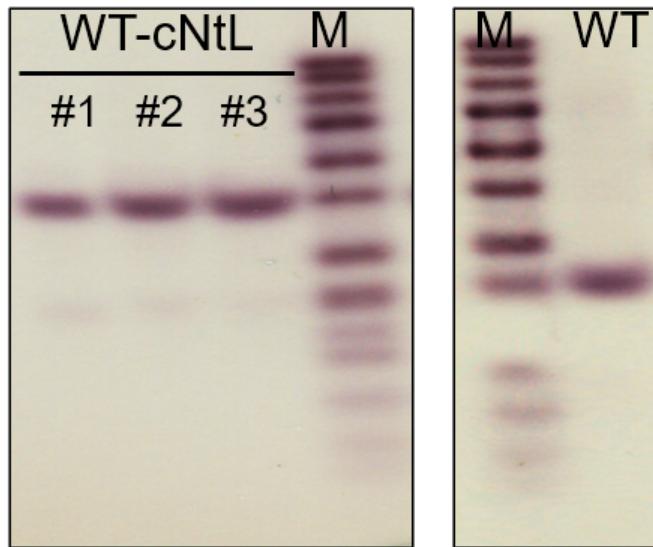
Fig. S2. High-throughput genotyping of *rbcS* mutations in T1 progeny from CRISPR-Cas9 transformant #4. 88 T1 seeds derived from transformant #4 were grown and analyzed for mutations at the 11 targeted *rbcS* loci. Each row in the provided table corresponds to an individual seedling, and columns represent the status of each *rbcS* gene: green = wild-type alleles, orange = heterozygous knockout, and red = biallelic knockout. The mutation status detected in the parental T0 plant is shown below for reference. The lower than Mendelian frequency of inherited mutations in the T1 generation reflects somatic chimerism in the T0 plant.

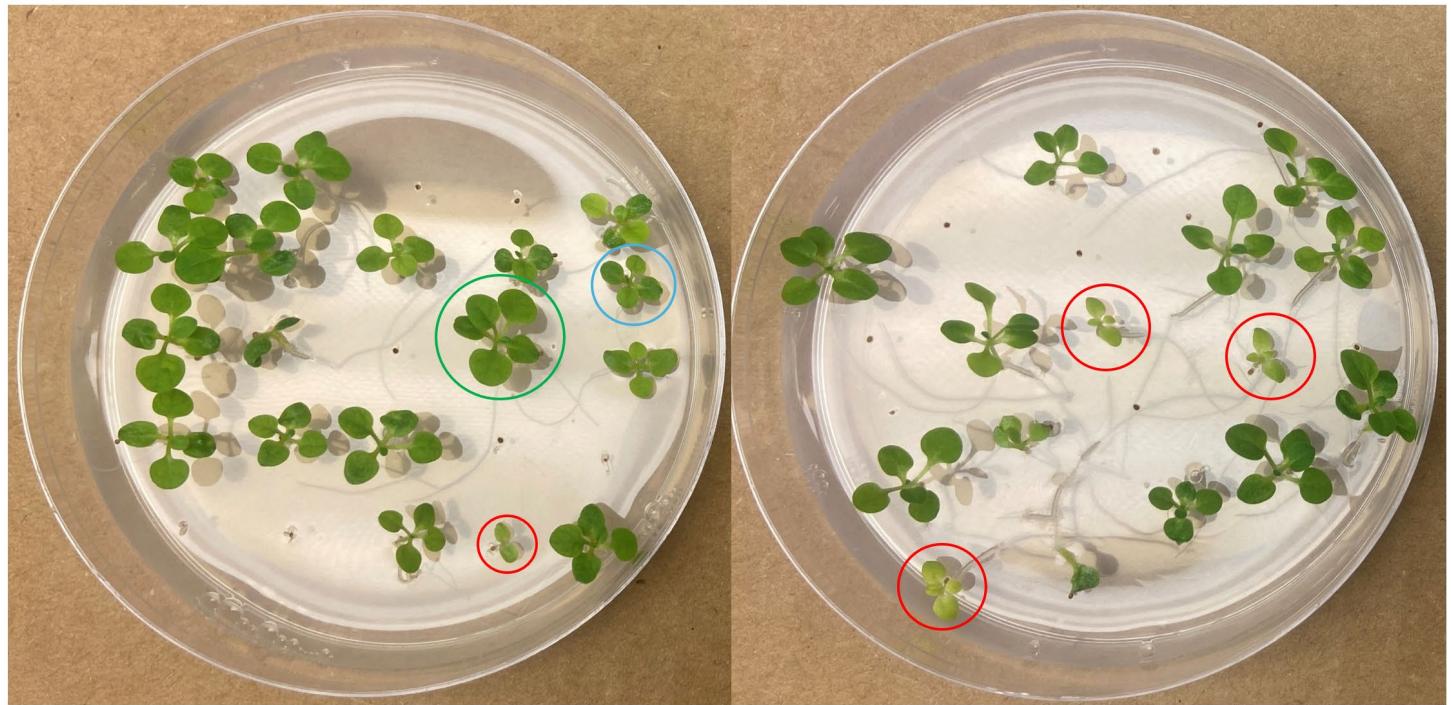
Fig. S3. Workflow for generating the *rbcS*-knockout NOR-SeLS line via iterative CRISPR-Cas9 editing (supports Fig.1). Schematic overview of the multi-step process to eliminate all endogenous nuclear *rbcS* genes in tobacco (shown as 11 green boxes in WT and SeLS). The process started with the SeLS Δ aadA line, a marker-free derivative of the SeLS line (Fig. 1) which expresses chloroplast-encoded cyanobacterial Rubisco LSU (Se_ *rbcL*) and SSU (Se_ *rbcS*). Round 1: The SeLS Δ aadA line was transformed with a CRISPR-Cas9 construct expressing guide RNAs (gRNAs) 1 and 2 targeting all *rbcS* loci. Initial Sanger sequencing of *rbcS* loci from six T0 transformants identified plant #4 as carrying most mutations, with heterologous (orange) or biallelic (red) knockouts indicated. However, high-throughput genotyping of 88 T1 progeny derived from #4 revealed incomplete knockout (four *rbcS* loci remained wild-type), low inheritance frequency of mutations, and identified gRNA T1 as ineffective. This discrepancy highlighted significant somatic chimerism in the T0 generation, complicated by the lack of a discernible phenotype for *rbcS* knockouts. Genes behaving chimerically are marked with a purple star. Round 2: A Cas9-free T1-progeny of #4 showing most knockout penetration and segregated Cas9 was selected and re-transformed with a new CRISPR-Cas9 construct expressing gRNAs 2 and 3. High-throughput screening identified transformants with all targeted genes disrupted, which were then repeatedly subcultured to eliminate chimerism. Screening of 10 T1 seeds confirmed a complete knockout across all progeny. Lines free of the CRISPR-Cas9 cassette were selected, and seeds (T2) were harvested and subsequently retested to ensure stable knockouts.


A

rbcS gene	Mutation
S1a	2x 1 bp insertion, frame shift
S1b	2 x 1 bp insertion, frame shift
S2	1 bp insertion, 4 bp insertion + 4(5) bp deletion, frameshift
S3	2x 1 bp insertion, frameshift
S4	2x 1 bp insertion, frameshift
S5	2x 1 bp insertion, frameshift
T1	2x 1 bp insertion, frameshift
T2	6 bp deletion (2 aa deletion, 1 aa substitution), defective SSU
T3	1 bp insertion, frameshift
T4	2x 1 bp insertion, frameshift
T5	3 bp + 4 bp deletion, frameshift





B

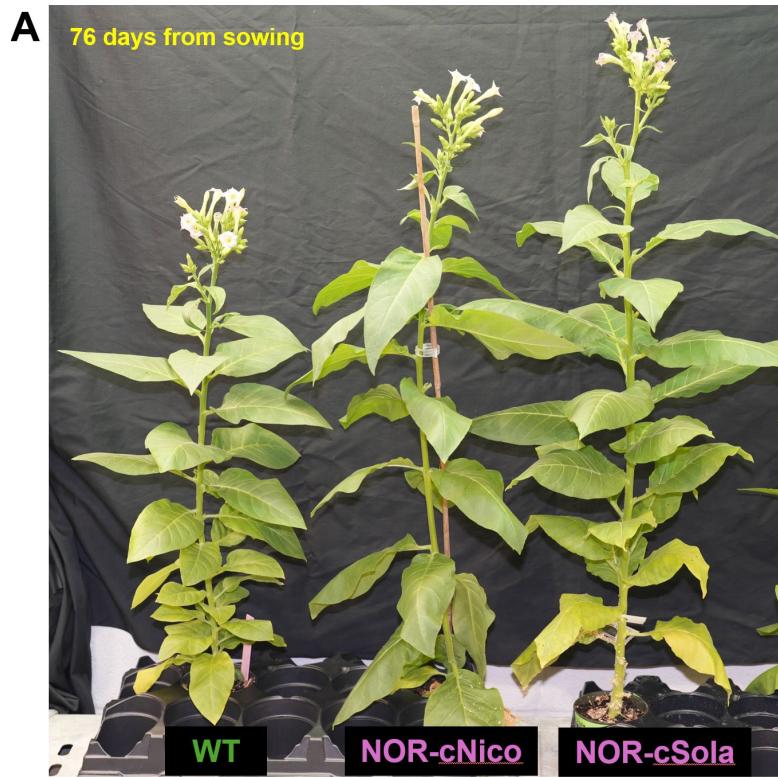

Fig.S4. Characterization of CRISPR-Cas9 induced mutations at targeted *rbcS* loci. (A) Table summarizing the specific mutations identified at each targeted *rbcS* locus in the selected NOR-SeLS line #52a. The predominant mutation type across most loci resulted in frameshifts, predicted to cause premature stop codons. A notable exception is the *rbcS*_T2, see Supp. Figure S5. (B) Analysis of Sanger sequencing reads covering these loci indicated that the induced mutations were primarily homozygous, with identical mutant alleles detected at most sites. *rbcS*_T3 loci could not be amplified in final line and is presumably recombined with other allele.

A**B****C****D**

Fig. S5. Functional analysis of the *rbcS_T2* gene product carrying an in-frame deletion. (A) Diagram illustrating the 6 bp in-frame deletion identified within the *rbcS_T2* locus. This mutation causes a 2 amino acid deletion and 1 amino acid substitution (Gly95>Arg93) (B) Relative expression of endogenous *rbcS* transcript levels in wild-type *Nicotiana tabacum*, indicating low expression of *rbcS_T2*. The reads are plotted from Sequence Read Archive (SRA) data available publicly. (C) *In vitro* analysis of Rubisco assembly competence using an *E. coli*-based Rubisco expression system (Lin et al., 2020 *Nat Plants*) expressing LSU alongside either wild-type *rbcS_T2* SSU (T2) or the mutant variant (mutT2). Extracts were assayed for binding to the radio-labeled inhibitor [¹⁴C]CABP. Strong CABP binding, indicative of correctly assembled Rubisco active sites, was observed only in extracts containing the WT SSU. (D) Rubisco holoenzyme assembly state analyzed by Blue Native PAGE (BN-PAGE) followed by immunoblotting using an anti-RbcL antibody. When co-expressed with WT *rbcS_T2* SSU, LSU predominantly assembled into the L8S8 holoenzyme complex. In contrast, co-expression with the mutated-T2 SSU resulted in impaired L8S8 formation, with LSU accumulating in higher molecular weight forms, potentially representing assembly intermediates complexed with chaperonins.

A**B****C**

Fig. S6. Control transformation of the LSC-NtL vector into WT *N. tabacum* Samsun for experiment in Figure 2. (A) Schematic representation of the WT *rbcL* locus before and after transformation. *BamHI* sites are indicated that were used for southern blot validation in (B). (C) The transformed plants exhibit green leaves and are phenotypically the same as WT.


**NOR-cNtL-nS1a
132-3
MS-Kan**

**NOR-cNtL-nS1a
132-3
MS (no Kan)**

Fig. S7. T1 seeds from the NOR-cNtL-nS1a line were germinated on Murashige and Skoog (MS) medium with and without kanamycin selection. Segregation of the inserted *rbcS* gene is reflected in phenotypic variation: seedlings with green circles indicate heterozygous or homozygous presence of the transgene, while those with red circles represent null segregants that exhibit growth arrest. Notably, *rbcS-null* seedlings continue to grow slowly and produce true leaves on MS medium without kanamycin, suggesting that these lines can serve as a source of viable Rubisco-deficient plants.

RUBISCO	Large subunit mutations	Small subunit Mutations
WT_S1a	reference	reference
Nico_1L1S	L225I, K429Q	N8G, Q23E, S28R, V30I, E88Q
Sola_2L1S	L225I, K429Q	K9M, Q23D, S28K, V30I, E88Q

Fig. S8. A table showing amino acid changes between WT and ancestral Rubisco proteins used in this study.

Fig. S9. Phenotypes of mature wild-type and engineered *N.tabacum* lines expressing Rubisco. Plants were grown in soil under controlled environment conditions (as described for Fig. 5) (A) Representative images of wild-type (WT) and chloroplast expressor lines at 76 dps. (B) Comparison of representative mature plants photographed at 75 dps: WT, the chloroplast expression NOR-cNtLS1, and the nuclear complemented lines NOR-cNtL-nS1a and NOR-cNtL-nT1.

Dataset S1 (separate file). Raw data and statistical analyses for this study.

Dataset S2 (separate file). Rich text file for plasmid sequences used in the study.