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Abstract The physical and biogeochemical properties of the western Arctic Ocean are rapidly changing,
resulting in cascading shifts to the local ecosystems. The nutrient-rich Pacific water inflow to the Arctic through
the Bering Strait is modified on the Chukchi and East Siberian shelves by brine rejection during sea ice
formation, resulting in a strong halocline (called the Upper Halocline Layer (UHL)) that separates the cold and
relatively fresh surface layer from the warmer and more saline (and nutrient-poor) Atlantic-derived water
below. Biogeochemical signals entrained into the UHL result from Pacific Waters modified by sediment and
river influence on the shelf. In this synthesis, we bring together data from the 2015 Arctic U.S. GEOTRACES
program to implement a multi-tracer (dissolved and particulate trace elements, radioactive and stable isotopes,
macronutrients, and dissolved gas/atmospheric tracers) approach to assess the relative influence of shelf
sediments, rivers, and Pacific seawater contribution to the Amerasian Arctic halocline. For each element, we
characterized their behavior as mixing dominated (e.g., dCu, dGa), shelf-influenced (e.g., dFe, dZn), or a
combination of both (e.g., dBa, dNi). Leveraging this framework, we assessed sources and sinks contributing to
elemental distributions: shelf sediments (e.g., dFe, dZn, dCd, dHg), riverine sources, (e.g., dCu, dBa, dissolved
organic carbon), and scavenging by particles originating on the shelf (e.g., dFe, dMn, dV, etc.). Additionally,
synthesized results from isotopic and atmospheric tracers yielded tracer age estimates for the Upper Halocline
ranging between 1 and 2 decades on a spatial gradient consistent with cyclonic circulation.

1. Introduction

The surface air temperature over the Arctic is warming between two and four times faster than the planetary
average (Masson-Delmotte et al., 2021; Rantanen et al., 2022; Serreze et al., 2009). The impact on the Arctic
cryosphere, including the sea-ice cover, land snow and ice, and permafrost, is already significant, and there is no
reason to believe that current trends will slow in the near future (Stroeve et al., 2025). The Arctic Ocean connects
the Pacific and Atlantic Oceans, promoting the exchange of heat and salt, with local implications for sea ice cover
(Polyakov et al., 2017) and global implications for meridional overturning circulation (Aagaard & Car-
mack, 1994). Cold and relatively fresh Pacific Ocean-derived water flows through the Bering Strait between
Alaska and Russia, sitting above warmer, more saline Atlantic Ocean-derived water flowing through the Fram
Strait and Barents Sea. Pacific waters also carry different biogeochemical signals (such as lower oxygen and
higher macronutrients and trace metals) compared to Atlantic waters, creating strong vertical biogeochemical
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gradients during physical mixing between the two water types (Jones et al., 1998). The fresh, river-influenced
Pacific inflow through the Bering Strait results in a strong salinity gradient (“halocline”) between the surface
to ~300 m in the Amerasian Basin. This prominent halocline stands out as a defining feature of the Amerasian
Basin, resulting in stratification that both impedes the delivery of heat and prevents significant mixing from
underlying Atlantic water (AW) to the sea surface (Aagaard et al., 1981).

The Amerasian Basin halocline, hereafter referred to as the Upper Halocline Layer (UHL), is further distinguished
by its association with a sharply defined nutrient maximum in Pacific-derived water masses (Figure 1; Anderson
et al., 2013; Jones & Anderson, 1986). Nutrient concentrations are high, relative to Atlantic-derived waters, in
Pacific inflow through Bering Strait (Bering Strait Inflow (BSI)) and they are further increased by regeneration
and brine rejection in cold, saline shelf bottom waters (Cooper et al., 2005; Granger et al., 2018). This nutrient
maximum is advected offshore at depths between roughly 50 and 300 m, but is suppressed from upwelling to the
surface by stratification due to large surface freshwater inputs (Anderson et al., 2013; Granger et al., 2018; Jones
& Anderson, 1986; Moore et al., 1983). The nutrient maximum is observed in the Canada and Makarov Basins,
the western edge of Fram Strait discharging into the Nordic Seas, and permeates the Canadian Arctic Archipelago
(CAA) into Baffin Bay, exiting through the Davis Strait into the Labrador Sea (Codispoti & Owens, 1975; Dodd
et al., 2012; Jones & Coote, 1980; Jones et al., 2003; Lehmann et al., 2019).

The evolution of nutrients and tracers in the Canada and Makarov Basins provides insights into processes
contributing to their modifications, their influence on regional biogeochemistry, and their ultimate fate in the
Arctic Ocean. Recent GEOTRACES efforts in the Arctic Ocean basins have also revealed distinctive trace
element and isotopologue distributions coincident with the Amerasian Basin halocline nutrient maximum. Some
trace elements are elevated within the halocline (e.g., dissolved iron, zinc, cadmium, and radium; see Section 4,
Table 1; Colombo et al., 2020; Jensen et al., 2019; Kipp et al., 2019; Zhang et al., 2019), whereas others are
unexpectedly low (e.g., dissolved vanadium; Whitmore et al., 2019) relative to predicted concentrations based on
conservative mixing of Pacific, Atlantic, and riverine water. Furthermore, some tracers appear to be conserved in
the halocline and may even be evident downstream at the Arctic Ocean outflow sites (e.g., dissolved organic
carbon (DOC); Mathis et al., 2005), while others are influenced by internal cycling (Anderson et al., 2010;
Colombo et al., 2019; Jones et al., 2003; Lehmann et al., 2019; Taylor et al., 2003).

The physical properties of the UHL derive from the interaction of source waters, including Pacific inflow, and
brine rejection during sea ice formation over the shelves (Anderson et al., 2013), which cannot be deconvolved
with temperature and salinity alone. Geochemical tracer distributions (e.g., radium, nitrate isotopes, and man-
ganese particles) suggest an important role of shelf processes and riverine input in modifying tracers during transit
from the Pacific Ocean across the shallow Bering and Chukchi Sea shelves. These insights improve our un-
derstanding of mechanisms behind important physical processes such as stratification, heat transport, and
biogeochemical processes such as the carbon cycle, in the upper layers of the Arctic Ocean.

In light of rapid environmental change, it is imperative to synthesize the current biogeochemistry of the Arctic
Ocean. To this end, recent GEOTRACES expeditions have resulted in a quasi-synoptic survey of geochemical
tracers spanning the Arctic Ocean, including the Pacific-influenced Amerasian Basin. We examine the distri-
butions of trace elements and isotopes (TEIs) to investigate the transformation of Pacific-origin waters into those
observed in the UHL. We also explore geochemical tracer applications for water mass age, trace metal scavenging
in the upper water column, and identification of shelf sources contributing to the cold halocline. Lastly, we
consider how anticipated environmental changes are likely to modify the geochemistry of the halocline and the
consequences for the Arctic Ocean ecosystem. Our analysis highlights the disproportionate influence of shelf
dynamics and lateral advection on basin geochemical properties. Changes in the physical and biological regimes
are likely to lead to significant modifications in the distributions of geochemical tracers.

1.1. Physical, Biogeochemical, and Geographic Setting

The Amerasian Basin (Figure 1) is separated from the Eurasian Basin by the Lomonosov Ridge (sill depth
~1,500 m) and is further divided into the Makarov and Canada Basins by the Alpha-Mendeleev Ridge (~2500 m,
not shown in Figure 1). The Amerasian Basin is flanked by the expansive East Siberian and Chukchi Seas, and the
narrower Beaufort Sea shelf. To the east, it is bordered by the shallower CAA, a vast network of passageways and
shelf seas (See Figure 1a and numerical legend for geographic context).
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Figure 1. (a) The geography of the Arctic Ocean with features labeled as numbers and defined in the legend. General bathymetry of the basin is represented by the color
gradient (light blue to dark blue) from light blue (shelves) to dark blue (deep basins). Major circulation of seawater is depicted by arrows in light blue (Pacific inflow),
black (surface circulation of the Beaufort Gyre and Transpolar Drift), and red (Atlantic inflow). Blue diamonds indicate the station locations utilized in this study (2015
US GEOTRACES transect, GNO1). The hydrography of the Arctic Ocean is depicted in figure (b); the section shown is indicated by the shaded red rectangle. This study
investigates the upper halocline layer (UHL) in the Amerasian sector of the ocean, noted for its characteristic maximum in silicate (z-axis). The data from this study only
includes the upper 1,000 m of the water column and (b) has been divided into two panels: the upper 1,000 m and the waters deeper than 1,000 m; both panels have linear
depth axes. However, the bottom sub-plot in (b) is solely for bathymetric reference and has been compressed vertically relative to the upper 1,000 m. Modified from
Whitmore et al., 2019; silicate data is from GEOTRACES Intermediate Data Product Group, 2021 and van Ooijen et al., 2016.

Density gradients in the Arctic Ocean are dominated by salinity. The surface waters, that is, the Polar Mixed Layer
(PML), are among the freshest in the world ocean because of large influxes of river runoff, seasonal sea-ice melt,
and precipitation. The PML extends from the surface to ~50 m. Slightly more saline waters make up the UHL,
including nutrient-poor Alaskan Coastal Water (ACW; S: 30-32 in the Canada Basin only), Pacific Summer
Water (PSW; S: 32-33), and Pacific Winter Water (PWW; S: 33-33.5). PSW and PWW are Pacific-origin waters
modified by physical and biogeochemical seasonal processes occurring over the Pacific Arctic shelf seas (see
Section 4). PWW is formed on the Bering and Chukchi shelves in winter as a result of cooling and salination
during sea ice formation and subsequent brine rejection (Shimada et al., 2005; Woodgate, Aagaard, Swift,
et al., 2005). All three water masses (ACW, PSW, and PWW) ventilate the UHL via bathymetric features,
including the Herald and Barrow Canyons (Figure 3). These waters move from the boundaries into the basin along
isopycnal surfaces and in eddies that frequently form in the shelf break jet and slope currents, which tend to travel
parallel to the shelf break (Corlett & Pickart, 2017; Pickart et al., 2005; Spall et al., 2008; Steele et al., 2004,
p. 200).

g:l:)-llgalsin—Scale Age Estimates of the Upper Halocline Layer (UHL) Derived From SFg, *HF He, and ***Ra/***Ra
Mendeleev ridge Canada basin S. Canada basin
Makarov basin (77-84°N) (<77°N)
Tracer Input Age (yr) Age (yr) Age (yr)
SF¢* Atmosphere (anthropogenic) ~9-16 11-16 ~16-19
*H/°HeP Atmosphere, river runoff (anthropogenic, natural radioactive decay) 6-14 10-18 14-23
228Ra/**Ra® Sediment (natural radioactive decay) 7-9 8-14 13-17
#(Smethie & Swift, 2018; Swift et al., 2016). *This Study.
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The export of water masses and associated shelf-derived elements into the halocline via the shelf break jet exhibits
seasonal variability and is additionally correlated with climate forcings on an interannual time scale. The export of
sediment-derived materials from the shallow Chukchi shelf (~50 m) via the shelf break jet is strongest in the fall
and winter (Kipp et al., 2020). PWW is the dominant water mass carried in both of these currents, with newly-
ventilated PWW most prevalent between March and August in the slope current and between mid-May and mid-
September along the shelf break, while remnant PWW was dominant the rest of the year (M. Li et al., 2019).

Benthic inputs from sediments are enhanced during PWW formation due to convective mixing resulting from sea
ice formation. The PWW that reaches the shelf break jet in the fall and winter (which was farther south on the
shelf at the time of PWW formation) has therefore had a longer contact time with shelf sediments to become
enriched in sediment-derived elements (Kipp et al., 2020; Kondo et al., 2016; Mathis et al., 2007). Because the
2015 U.S. GEOTRACES transect took place in the late summer and fall, the concentrations of sediment-derived
elements along the Chukchi slope may represent seasonal maxima, though the distribution of non-conservative
elements may also be influenced by biological uptake and/or particle adsorption during transport across the
shelf, resulting in lower concentrations.

2. Data Used in This Study

This paper investigates the UHL, leveraging observations from the Amerasian Basin (Figure 1). Geochemical
trace element and isotope (TEI) data used in this study are available in the GEOTRACES Intermediate Data
Product (IDP) 2021 (GEOTRACES Intermediate Data Product Group, 2021). This study focuses on data from the
upper 1,000 m of the water column from the 2015 U.S. GEOTRACES Arctic expedition (GNO1). Additional
hydrochemical parameters, such as nutrients and carbon, are available at the “CLIVAR and Carbon Hydrographic
Data Office” (https://cchdo.ucsd.edu/). Hydrographic sampling occurred following GO-SHIP methodology
(Hood et al., 2010). Trace metal clean sampling adhered to GEOTRACES approved methods (Cutter et al., 2014).
Some parameters synthesized herein have been published in project-specific publications; our goal is to compare
and contrast the tracers in one study to identify patterns in tracer behavior.

The data in this study were extracted from three types of sampling systems: standard rosette, trace metal clean
rosette, and large volume in situ filtration (McLane Pumps). Depths of sampling between the systems may not
have been the same; to match depths, the Conductivity, Temperature, and Depth (CTD) profile was binned to 5 m
(e.g.,2.5,7.5,12.5, etc.). Water samples were assigned to the nearest 5 m bin. A few parameters (macronutrients,
SF6-derived age, suspended particulate material, and fraction of Mn oxides (MnO,)) were linearly interpolated to
all bins to allow for comparison to all other parameters.

Data availability, including sampling methods and analytical methods, are reported in (Table 2). In this paper, we
adopt a shorthand nomenclature to indicate element (E) type: dE (dissolved), pE (particle), dE_L (dissolved labile
fraction). The abbreviations used in this manuscript are fully articulated in Table 3.

3. Age Tracers in the Amerasian Halocline

Transient chemical tracers can be used to determine when the waters in the halocline were last in contact with the
atmosphere or shelf sediments, providing estimates of ventilation timescales or the apparent “age” of water since
detraining from the continental shelf. Together, tracers from the GNO1 transect provide evidence that the
Makarov Basin was ventilated more recently than the Canada Basin and the oldest water in the Upper Halocline
resides in the southern part of the Canada Basin.

Specifically, chlorofluorocarbons (CFCs) and sulfur hexafluoride (SF) are chemically stable anthropogenically-
sourced gasses with well-known source functions that enter the surface ocean through air-sea gas exchange
(Fine, 2011) and are subsequently subducted into the halocline. Comparing their halocline concentrations to the
known history of atmospheric concentrations (Bullister & Warner, 2017) can provide an estimate of the time
elapsed since the water was in contact with the atmosphere over the shelf for time scales of about 1-70 years for
CFCs and 1-50 years for SFq (with typical errors of 2%—4%). The ratio of tritium (*H) and helium-3 (°*He) can be
applied in a similar manner. Tritium is naturally produced by the interaction of cosmic rays with oxygen and
nitrogen and decays into 3He with a half-life of 12.32 + 0.02 years (Lucas & Unterweger, 2000). Nuclear weapons
testing in the 1960s also created an anthropogenic release of tritium that was several orders of magnitude larger
than the natural background level. In the atmosphere, tritium quickly oxidizes, enters the hydrological cycle, and
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Table 2
Data Availability and Methods

Parameter

Data repository

Sampling methods

Analytical methods

dMn, dFe, dNi, dCu, dZn, dCd
dV, dGa, dBa

dCH,

Ra isotopes
DIC, TA, pH,,
DOC

230Th, 231Pa

°H, 3He
Hg

Nitrous oxide concentrations and stable isotopes

CFC-11, CFC-12, SF,

pMn, pFe, pCo, pNi, pCu, pZn, pBa, pCd (total and labile), (bottle)

Major particle composition (pump)

1DP? GEOTRACES Cookbook: Jensen, Wyatt, et al., 2020
Cutter et al., 2014

IDP? GEOTRACES Cookbook: Whitmore et al., 2019,
Cutter et al., 2014 2020, 2022

BCO-DMO® Roberts & Shiller, 2015 Roberts & Shiller, 2015

IDP? GEOTRACES Cookbook: Kipp et al., 2019
Cutter et al., 2014

CCHDO® Dickson et al., 2007 Dickson et al., 2007;

Carter et al., 2013

IDP GEOTRACES Cookbook: Halewood et al., 2022
Cutter et al., 2014

1DP? GEOTRACES Cookbook: Anderson et al., 2012

EarthChem Library*

IDP*

e

Arctic Data Center

Cutter et al., 2014
Ludin et al., 1997
Lamborg et al., 2012

Bourbonnais et al., 2017,
2023

Ludin et al., 1997
Agather et al., 2019
Bourbonnais et al., 2017, 2023

IDP? GO-SHIP Repeat Hood et al., 2010
Hydrography Manual

BCO-DMO* GEOTRACES Cookbook: Ohnemus et al., 2017;
Cutter et al., 2014 Twining et al., 2019

IDP? GEOTRACES Cookbook: Xiang & Lam, 2020

Cutter et al., 2014

“GEOTRACES Intermediate Data Product Group, 2021. *Whitmore & Shiller, 2024. “°CCHDO Hydrographic Data Office, 2023. dSchlosser et al., 2023. “Bourbonnais &

Altabet, 2021. fTwining et al., 2019.

is deposited to the ocean via precipitation, continental runoff, and vapor exchange (Weiss & Roether, 1980).
H/*He dating utilizes the principle that the *He accumulation in subsurface waters is a proxy for the time elapsed
since that water parcel last equilibrated with the atmosphere (Jenkins & Clarke, 1976). *H/>He ages are appro-
priate for water masses and processes with timescales from months to ca. 60 years. Typical errors on the apparent
H/’He ages in the halocline layer are 2%—3%.

While these atmospherically sourced tracers provide estimates of when the halocline water was last at the surface,
radium isotopes can provide information on the time elapsed since water was last in contact with shelf sediments.
Radium is produced through the decay of thorium in shelf sediments and is soluble in seawater. The half-life of
radium-228 (***Ra; t,, = 5.75 years) is ideal for determination of ages in the halocline since it has a residence
time of less than 30 years. Normalizing **Ra to the longer-lived radium-226 (***Ra; t, ,» = 1,600 years) corrects
for any dilution or mixing during transit so that any decrease in the ratio is due to ***Ra decay.

Along the GNO1 transect, the concentrations of CFCs and SF, indicate that the waters sampled in the halocline
were last at the surface ~1-2 decades ago (Smethie & Swift, 2018; Swift et al., 2016). This timescale is similar to
upper halocline *H/°He apparent ages in the Amerasian Basin, which range from 5 to 23 years. These values are
also in line with previously published mean residence times based on *H/°He (e.g., Ekwurzel et al., 2001;
Schlosser et al., 1999), with the upper limit being ~5 years higher. Kipp et al. (2019) determined that the Canada
Basin halocline is ventilated with Chukchi shelf inputs on timescales <19-23 years with the **Ra/**°Ra ratio
method, demonstrating consistency between tracers. The SF, ***Ra/**°Ra, and *H/°He estimates from 2015 align
well with ages based on *H/>He measurements collected in this region over a period of 27 years (1987-2013;
Pasqualini et al., 2024).
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Table 3 The episodic nature of shelf outflows (e.g., via eddies and brine rejection),
Acronyms Used Throughout the Manuscript along with inputs from multiple shelves (e.g., Chukchi, East Siberian) results
. in heterogeneity in the halocline. It is therefore useful to consider ventilation
Acronym Meaning R X X . K .
timescales on a smaller spatial resolution when interpreting the distribution of
ACW Alaskan Coastal Water elements in the halocline on basin-wide scales. Ages in the UHL (centered on
AW Atlantic Water 6o 26.5 kg m™) on the GNO1 transect indicate that the youngest waters were
AOU Apparent oxygen utilization located on the 180°W section above the Mendeleyev Ridge and in the
CAA Canadian Arctic Archipelago Makarov Basin (Table 4). The Canada Basin between 77 and 84°N had in-
CTD Conductivity Temperature Depth profiler termediate ages, while those at the southern edge of this basin were oldest
(Table 4).
BSI Bering Strait Inflow
5 (delta) Anomaly in per mil The slightly younger ages in the Makarov Basin compared to the Canada
JE Dissolved fraction of element E Bas.m ar'e cons1sFent with hypot.hesued c1rculat.10n pathways for Atlantic-
derived intermediate waters, which flow cyclonically through the Makarov
DIC Dissolved inorganic carbon . . . .
and Canada Basins following bathymetric features such that waters in the
DOC Wit @7 EEmie anin southern Canada Basin have a longer flow path and have been removed from
DOM Dissolved organic matter the atmosphere for a longer time compared to those along the Mendeleyev
E An element of interest Ridge and in the Makarov Basin (e.g., Rudels et al., 1994; Schauer
IDP Intermediate Data Product etal., 1997; Smethie Jr. et al., 2000). The oldest water in the southern Canada
N# R0 e i e el el Basin is also located beneath the southern arrr.l of thfe Beaufort Gyre, which
where N* = ([NO3] — 16* [PO4] + 2.9) * 0.87 accumulates surface water that has been recirculating around the Canada
pE s e o Al 3 Basin; 2szlérfac.e vYater ages based on the ingrowth of thorium-228 with its
) parent ““°Ra indicated that these waters have left the shelf at least 2.5 years
PML Polar mixed layer
_ ) ago, the longest of any of the surface waters sampled on the 2015 transect
e IOl e e Caiios (Kipp et al., 2018). The ages of the UHL presented herein therefore show that
PSW Pacific summer water the circulation pathways of the halocline mirror that of the underlying
PWW Pacific winter water Atlantic layer. This suggests that halocline chemistry is likely modified via
SIZ Seasonal ice zone contributions from the Eurasian slopes, and that water originating on the
SPM Sl pea s i Chukchi shelf loops around the Canada Basin rather than flowing directly into
. the southern basin (which would result in lower apparent ages).
TEIs Trace elements and isotopes
UHL Upper halocline layer Ventilation timescales between methods (SFg, 3H/’He and *?*Ra/**Ra) are

generally consistent: all three tracers show an increase in halocline age from
the Makarov Basin to the Northern Canada Basin to the Southern Canada Basin

(Table 4; Figure 3). Although the ages for specific regions differ by up to 10 years across all three tracers, each
individual tracer shows a similar geographic pattern and has significant differences in the age ranges for different

regions. Radium ages skew slightly younger than the other two tracers; because Ra has a different source location

(sediment rather than atmospheric), the offset likely indicates that there were inputs from the shelf sediments
(which adds ?*®Ra) after the water was out of contact with the atmosphere (which adds SF¢ and >H/’He).

4. Biogeochemical Properties of the Upper Halocline

4.1. Macronutrients and Their Isotopes

The biogeochemical properties of the Amerasian Arctic Ocean, specifically those in the UHL, are distinct from

other ocean basins. The subsurface nutricline in the Canada Basin features a prominent maximum in macronu-
trient (N, P, Si) concentrations associated with colder PWW, and a coincident maximum in apparent O, utilization
(AOU) (Figure 2). The nutrient maximum originates from the inflow of nutrient-rich Pacific waters at Bering
Strait and is enhanced by the near-bottom regeneration of organic matter from summer production on the Chukchi
and East Siberian shelves (Granger et al., 2013; Jones & Anderson, 1986; Jones et al., 1998; Newton et al., 2013).

Mechanistically, the coincidence of the nutrient maxima and low dissolved O, concentrations in PWW likely
arises from seasonal dynamics on the shelves (Figure 3, modified from Granger et al., 2018). Under ice cover in
winter, the water column on the Chukchi shelf is isothermal and isohaline and is consequently well-mixed
(Woodgate, Aagaard, & Weingartner, 2005). Given open leads in sea ice, dissolved O, in winter approach
saturation (Nishino et al., 2016). In late spring, ice melt, river runoff, and increased solar radiation freshen and

warm the surface, resulting in strong stratification that leads to the formation of PSW in the upper water column
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Table 4

Categorization of Trace Metals and Their Isotopes Into Characteristic

Distributions in the UHL
Theme 1:
Diapycnal
mixing
dominated Theme 2: Shelf influenced Theme 3: Combination
dGa pP_.L dZn (+) pFe_L pCo_L, dBa(+) pZn_L,pCu_L,
dCu pP dCd (+) pMn_L,pV_L, dNi(+) pNi_L,pBa_L,
dU dFe (+) pTi_L, pAl_L, dCo (+) pCd_L, pCd, pNi,
d**Th 5'"*Cd (-) pMo_L,pCr_L, dPb pCu, pZn (+)
d®!' pa &Fe (=) pMo, pFe, pMn, dV (-)
DOC 228Ra pV, pBa, pAl, dMn (4)

226Ra (+) pCo, pCe, pPb

Hg (+) )

Note. Uncharacterized isotopes include 234Th and ?*’Th. (+) indicates an
increase, (—) indicates a decrease relative to the PML and Atlantic water. No
symbol indicates that it is hard to determine or varies between stations.

and isolation of PWW from the surface (Lowry et al., 2015; Pacini
et al., 2019; Timmermans et al., 2014; Woodgate, Aagaard, & Weingart-
ner, 2005). Seasonal phytoplankton blooms consume nutrients in PSW;
sinking organic material is subsequently remineralized to inorganic nutrients
in remnant PWW at the shelf bottom (Figure 3; Granger et al., 2018; Juranek
et al., 2023; Lowry et al., 2015). Dissolved O, in remnant PWW is consumed
in proportion to nutrients regenerated, resulting in high AOU in the remnant
PWW that advects off-shelf during late summer and fall—at which time net
poleward flows at Barrow and Herald Canyons are higher than in other
seasons (Itoh et al., 2015; Pickart et al., 2005; Weingartner et al., 1998).

Despite the inflow of nutrient-rich Pacific waters to the Bering and Chukchi
Seas (Arrigo & van Dijken, 2011; Hansell et al., 1993; Springer &
McRoy, 1993), the Canada Basin downstream is oligotrophic (Tremblay
et al., 2015). Once in the basin, the PWW nutrient reservoir is generally
located below the euphotic zone and is suppressed from upwelling by strat-
ification and limited vertical mixing (e.g., Jackson et al., 2010; Timmermans
et al., 2008; Tremblay et al., 2014; Walsh et al., 2005). Recent increases in
both Ekman convergence and freshwater input to the Canada Basin have
increased stratification (Woodgate and Peralta-Ferriz, 2021; Yamamoto-
Kawai et al., 2009), leading to a discernible deepening of the nutrient reser-

voir (McLaughlin & Carmack, 2010). Primary production in central Arctic surface waters is therefore largely
recycled (Ji et al., 2019; Tremblay et al., 2015) and phytoplankton are subject to chronic nitrogen limitation,
curtailing their biomass (Simpson et al., 2008; Taylor et al., 2013; Tremblay et al., 2015).

The influence of shelf processes on the biogeochemical properties of the UHL is further evident in the stable
isotope ratios of nitrate and silicic acid. Measurements of the 8'%0-NOj in the UHL covary with 5'%0-H,0,

indicating that nitrate originated from nitrification (Granger et al., 2018)—the biological oxidation of ammonium

from regenerated organic material—corroborating the notion that nitrate in the UHL originates from regeneration,
which is likely advected from the shelves (Brown et al., 2016; Fripiat et al., 2018; Granger et al., 2011). The 5'°N-
NOs, in turn, has a uniformly high value in the UHL (8%0) compared to the Atlantic water below (5%o) (Figure 2).
The high §' N-NOj; value results in part from isotope fractionation due to benthic denitrification on the Bering
and Chukchi shelves and is coincident with a substantial N-deficit (N* & —12 pumol kg™', Figure 2 (Chang &
Devol, 2009; Granger et al., 2011; Mordy et al., 2021; Zhuang et al., 2022). The high 615N-NO3 of the UHL
distinguishes it from Atlantic-origin NO; throughout the Arctic Ocean basins and within the CAA and is a useful
tracer of Pacific-origin waters (Lehmann et al., 2019, 2022).

The Si isotope ratios of silicic acid (83OSi-Si(OH)4) similarly track the Pacific-origin of dissolved silica (dSi) in

the UHL. A subsurface minimum in 630Si-Si(OH)4 is associated with the subsurface dSi maximum in PWW
(Figure 2), with values similar to those observed in BSI. The light UHL 8°°Si-Si(OH), signal is thought to derive
from the relatively low value of subsurface 63OSi—Si(OH)4 in the North Pacific (Reynolds et al., 2006) that is
further modified by biological consumption in the Bering Sea, and benthic inputs derived from the dissolution of
biogenic opal in shelf sediments (Brzezinski et al., 2021). Unlike nitrate, dSi persists into the PML, albeit

decreasing toward the surface due to biological utilization. Values of §°°Si-Si(OH), increase toward the surface

due to characteristic assimilation isotope effects during biological uptake (Brzezinski et al., 2021; Giesbrecht &
Varela, 2021; Liguori et al., 2021; Varela et al., 2016). Brzezinski et al. (2021) postulated that the elevated dSi in
the PML may also derive from local riverine input, although the effect on °°Si-Si(OH), is not readily distin-
guishable due to the competing influence of fractionation from biological assimilation and the spatial and sea-
sonal variability of the 63OSi-Si(OH)4 values in Arctic rivers (Pokrovsky et al., 2013).

4.2. Inorganic and Organic Carbon

A dominant influence of shelf processes in the UHL is also evident in the distribution of dissolved inorganic

carbon (DIC). A maximum in DIC and coincident minimum of pH,,,, (pH on the seawater scale) are co-located
with the AOU and nutrient maxima in UHL (Figure 2). These features are consistent with the remineralization of
carbon photosynthetically produced on the shelf (Bauch et al., 2015; Brown et al., 2016; Ko & Quay, 2020).
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Figure 2. Biogeochemical properties of the UHL (gray shaded area) including (a) salinity, silicate, 5°°Si, phosphate,
(b) nitrate, N*, ' N-nitrate, 8'*O-nitrate, (c) Apparent oxygen utilization (apparent O2 utilization), dissolved organic

carbon, dissolved inorganic carbon, Alkalinity, and pH. The symbol color is silicate concentration, where high Si

concentration indicates the core of the UHL.
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Figure 3. Seasonal dynamics of the Chukchi shelf. In winter, nutrients and dissolved oxygen are homogeneous in well-mixed
newly formed Pacific Winter Water (PWW), and oxygen approaches saturation. In summer, nutrients are depleted at the
surface in the relatively warm Pacific Summer Water and abundant at depth in the remnant PWW; the processes controlling
this summer distribution are shown in the schematic on the right. Nutrients are consumed by primary producers at the surface
and regenerated at depth following the export of organic material; benthic inputs can further enhance nutrient stocks.
Nutrients sourced from water column and benthic regeneration are added to existing pools in remnant PWW. Oxygen is
consumed proportionally. Modified from Granger et al., 2018. The leftmost panel indicates the general circulation of waters
(blue arrows) as they are advected off the Chukchi Sea shelf and into the Amerasian Basin. The Beaufort Gyre circulation and
qualitative age of halocline waters (see Section 3; white = younger, red = older) are depicted by the red gradient. Bathymetry
is represented in greyscale from 0 m (white) to 500 m (black).

Barring some evidence of nonlinearity throughout the water column—especially in surface waters—due to the trace
effect of respiration on alkalinity, the alkalinity distribution is predominantly driven by diapycnal mixing. There
is no evidence of significant CaCOj; dissolution in the UHL.

The surface of the Amerasian Basin provides a weak sink for anthropogenic CO, (Bates et al., 2006; Else
etal., 2013; Ko & Quay, 2020; Woosley & Millero, 2020), thus anticipated decreases in alkalinity and pH,, from
continued freshening (H. Li & Fedorov, 2021) will render the Amerasian Basin an even weaker sink of
anthropogenic CO,.

Rivers contribute a significant amount of DOC to the surface Arctic regionally with the highest concentrations
along GNO1 measured in the river-dominated (i.e., Transpolar Drift) component of the PML (Figure 2), despite
removal of DOC on Arctic shelves (Cooper et al., 2005; Hansell et al., 2004; Letscher et al., 2011). There is
apparent endmember mixing between the riverine signal, BSI, and sea ice melt, with the latter diluting the DOC
signal in the PML (Mathis et al., 2005). The DOC distribution from GNO1 (Figure 2) generally agrees well with
previous observations and interpretations (Amon et al., 2003; Mathis et al., 2005). High concentrations of dis-
solved organic matter, likely introduced by Eurasian rivers, have been found in UHL waters leaving the Arctic via
the Fram Strait (Amon et al., 2003). Here, we report the highest individual DOC values (>70 pM) within the
UHL, suggesting a shelf or river water source contributing to the Pacific-derived DOC signal.

4.3. Dissolved Gasses (N,0O, CH,)

As with the nutrient tracers, biogenic gasses, and their isotopes in the UHL reflect the influence of shelf processes.
Nitrous oxide (N,0), a potent greenhouse gas produced during both nitrification and denitrification, has a
prominent maximum in PWW that is ~30% above atmospheric saturation (Figure 4a), in contrast to near at-
mospheric equilibrium at the surface. The N,O maximum persists basin wide, as there is no sink of N,O in
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Figure 4. Dissolved gasses. From top to bottom: N, O saturation (%), 615N—N20 (%0), 6180—N20 (%0), and CH, saturation (%)
off the shelf (>73°N, <84°N) and within the upper 1,000 m. Symbol color is silicate concentration to denote UHL.

oxygenated waters. This feature has been observed previously in this region (Fenwick et al., 2017; Hirota
et al., 2009). The N and O isotopic ratios of N,O (6'°N-N,O and 6'%0-N,0) reported here and by others (Toyoda
et al., 2021) reveal end-member mixing of atmospheric and marine biogenic N,O. A minimum in bulk §'°N-N,O
(5-6%0) and high 8'%0-N,O (47-48%0) in PWW together suggest that the biogenic N,O is a product of nitri-
fication and that it is partially consumed by denitrification in shelf sediments. A dominant sediment source of N,O
is further revealed by depth profiles on the Chukchi shelf, where N,O concentrations are generally highest at the
bottom (Fenwick et al., 2017; Toyoda et al., 2021). The N,O bottom water maximum corresponds to the
prominent N deficit (N* minimum) noted above. Nevertheless, in spite of exhibiting a large shelf area rendering
the system propitious to benthic denitrification (Chang & Devol, 2009), the Amerasian Basin is considered a
minor source of N,O to the atmosphere (Fenwick et al., 2017).
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Figure 5. The element-salinity relationship can be characterized in 3 general themes: (a) diapycnal mixing dominated, (b) shelf influenced, (c) a combination of mixing
and shelf influence. The gray dashed line indicates that some elements have opposing patterns (i.e., higher concentrations in the fresh Polar Mixed Layer vs. lower
concentrations in the saltier Atlantic layer). The salinity range for the UHL is shaded (tan) on each panel. Note that this paradigm does not preclude other processes
affecting trace elements and isotopes (TEIs) in the UHL including biotic and abiotic scavenging.

Methane (CH,), which is generally short-lived in oxygenated water, has a maximum in PWW that is contiguous
with the Chukchi shelf but is not conserved basin-wide (Y. Li et al., 2017), likely due to microbial oxidation.
Methane on the shelf and slope region may derive from a variety of sources but can be coarsely divided into
biogenic and geologic, i.e., from active microbial degradation of organic material and from seepage of fossil
methane. On the shelf, CH, is highest at the sediment interface as a result of biogenic methane production, which
was determined by isotopic analysis (Kudo et al., 2022). Methane data from the 2015 GEOTRACES cruise
indicate a maximum in saturation at salinity of 30-32 (likely PSW) that is not coincident with the UHL (PWW)
silicate maximum. The highest CH, saturations were observed in bottom waters at the shelf break and on the shelf
(Whitmore & Shiller, 2016), which is consistent with a benthic source of CH, and rapid oxidation and dilution in
the water column (Manning et al., 2022). In the Amerasian Basin, CH, has a near surface (<100 m) maximum
(Figure S1 in Supporting Information S1) co-located with the chlorophyll maximum, a widely observed feature in
other ocean basins (N. J. P. Owens et al., 1991). This result from 2015 is consistent with previous observations in
the Amerasian Arctic (e.g., Kitidis et al., 2010). When sea ice is present, there is a capping effect of the ice which
could lead to this maximum (Kitidis et al., 2010) and substantially influences the flux of methane from the surface
ocean to the atmosphere (He et al., 2013; Lorenson et al., 2016). Thus, the CH, maximum appears to be associated
with local surface water processes, rather than from distal advected sources, and hence is not a suitable tracer over
broad spatial ranges.

5. Trace Element and Isotope Distributions in the Upper Halocline

Origins and transformations of the UHL become apparent when TEls are plotted against salinity. Using this
framework, we classify tracers in three distinct themes that illustrate the dominant processes shaping the chemical
and isotopic distributions of each tracer in the open basins: (Theme 1) diapycnal mixing dominated, (Theme 2)
shelf-influenced, or (Theme 3) a combination of the preceding two processes (Figure 5). Importantly, we establish
this framework to help group the predominant processes controlling element distributions in the UHL but note
that there are likely multiple influences on individual element profiles. For example, many elements show evi-
dence of particle scavenging in the UHL that may not be immediately apparent from their profiles, but will be
discussed further in Section 6.

Away from the shelf, TEIs typically conform, if sometimes imperfectly, to these three themes. Theme 1 tracers
exhibit mixing between endmembers: surface (fresher), Pacific-origin waters, and deep (saltier, Atlantic-origin)
water. A shelf source or sink is not required to explain their distribution. This results in linear or curvilinear
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Figure 6. Theme 1 TEISs versus. salinity: Mixing-dominated. (a) dissolved Cu (nmol/kg), (b) dGa (pmol/kg), (c) d*°Th (uBq/
kg), (d) d**! Pa (uBg/kg). The symbol color is silicate concentration to denote the bounds of the UHL. Red rectangles are
used to indicate the Bering Sea Inflow concentration/salinity range for each element as defined in Section 4. Where the
concentration range of Bering Sea Inflow is very small, the box may appear as a bold line. Green rectangles indicate the
Atlantic Water endmember as an average plus or minus one standard deviation. Since the salinity range of Atlantic Water is
very small, the range of the salinity used for drawing the box has been inflated by 10% relative to observations of the Atlantic
Water endmember.

distributions of elements (Section 5.1). Theme 2 parameters are relatively uniform in the surface and deep waters
of the basins, and have a source (or sink, gray dashed line, Figure 5) over the shelves. Like Theme 1, Theme 3
tracers also exhibit mixing between multiple endmembers, but are also influenced by modifications on the shelf.
Further, the placement of elements within these categories is with consideration to the “Pacific” endmember,
which we define as the concentration observed in the BSI, estimated by averaging above and below the mixed
layer depth at stations 4 and 5 (red box in Figures 6, 7 and 9). We also include Atlantic Water endmembers in the
subsequent figures for reference (green box in Figures 6, 7 and 9), which are determined as the average value of
data between sigma theta isopycnals (27.87-28.02 kg m™) associated with Fram Strait Branch Water and Barents
Sea Branch Water (e.g., Dmitrenko et al., 2015; Rudels et al., 1994, 2000; Schauer et al., 2002; Shimada
et al., 2004). Although they make an important contribution to the upper Arctic Ocean, we do not estimate river
endmembers for most of these elements as there is insufficient data for the majority of these parameters; river
endmembers also tend to be variable by drainage basin.

5.1. Theme 1: Diapycnal Mixing Dominated Dissolved TEIs

Tracers can be broadly categorized as conservative (concentrations change solely by mixing) or non-conservative
(those that are influenced by biological or chemical processes in addition to mixing). At best, geochemical tracers
in the UHL are “quasi-conservative” where the chemical or biological processes that influence the element are
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Figure 7. Theme 2 TEIs versus. salinity: shelf influenced. (a) dCd (nmol/kg), (b) dFe (nmol/kg), (c) dZn (nmol/kg), (d) 8'4cd (%o0), (€) 8°°Fe (%o), (f) 8°°Zn (%o),
(g) dHgT (pmol/kg), (h) dDMHg (pmol/kg), (i) dIMMHg (pmol/kg). The symbol color is silicate concentration to denote the bounds of the UHL. Red boxes are the
Bering Sea Inflow range for each element. Green rectangles indicate the Atlantic Water endmember as an average plus or minus one standard deviation. Since the
salinity range of Atlantic Water is very small, the x-axis bounds have been expanded by 10%. Note that dDMHg and dMMHg data are missing at stations used in the

endmember calculations.

minimal relative to the element's observed concentrations. The element-salinity relationships for the distributions
of these elements tend to be curvilinear: in part because of multiple water masses and their relative endmembers,
but non-linearity between endmembers may be because diapycnal mixing is suppressed within the halocline and
thus vertical mixing rates differ throughout the halocline. Curvilinear distributions are concave or convex
depending on whether elemental concentrations are high or low in the PML. This distribution results from dia-
pycnal mixing between the river and ice melt-influenced PML (Figure 5a) and the underlying Pacific-derived
UHL (S ~32.5). At higher salinity (S >32.5), Pacific-derived waters mix with the Atlantic layer (saltier, far
right) (Figure 5a).

Dissolved Ga and Cu distributions are both driven by the mixing of low salinity surface waters with higher salinity
Pacific and Atlantic waters (Figure 6). Globally, Cu is typically sourced from river water input and atmospheric
deposition (Jacquot & Moffett, 2015; Richon & Tagliabue, 2019) but is low in the surface ocean away from the
continents due to biological uptake (Bruland et al., 2014). Contrary to other ocean basins, dCu in the Arctic Ocean
is high in the surface and declines with depth, in the UHL and AW (Figure 6). The high surface concentrations
reflect high river water input (Charette et al., 2020; Jensen et al., 2022) and a large freshwater reservoir (Serreze
et al., 2006). The BSI endmember of dCu is low relative to the observed UHL waters (Figure 6); we expect that
this may be driven by a misrepresentation of the BSI endmember with potentially high seasonal variability in dCu
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Figure 8. Particle composition (particle size >0.8 pm) versus salinity within the UHL. (a) Concentrations of manganese oxide (MnO,) (ug/L); (b) the fraction of MnO,;
(c) the molar ratio between biogenic silica and particulate organic carbon (mol:mol). The symbol color is silicate concentration to denote the core of the UHL.

driven by Yukon (and other river) discharge and seasonal biogeochemical cycling. The salinity-dCu does not

indicate strong removal on the Chukchi shelf or in the basin, likely due to the large riverine contribution over-
shadowing any depletion due to biological uptake (Cid et al., 2012; Jensen et al., 2022). Conversely, dGa is
elevated in Atlantic waters and low in Pacific and freshwater, a characteristic driven by differences in the supply

of atmospheric dust to the North Atlantic Ocean (relatively high) and North Pacific Ocean (relatively low;
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McAlister & Orians, 2015; Orians & Bruland, 1988; Shiller & Bairamadgi, 2006; Whitmore et al., 2020).
Although dGa has an atmospheric source, dust deposition in the Arctic Ocean basins is often low due to retention
of dust in sea ice cover (rather than directly deposited to the ocean surface) and atmospherically derived dGa does
not appear to be a substantial source to the PML (Marsay et al., 2018; Whitmore et al., 2020). Despite being
somewhat prone to scavenging in particle-rich settings, distributions of dGa in the Arctic Ocean basins appear
conservative along isopycnals (Whitmore et al., 2020). Thus, it may be leveraged as a tracer of mixing between
Pacific and Atlantic waters across the Arctic with little evidence of external sources and sinks (Whitmore
et al., 2020).

29T (tVa ~ 75.4 kyr) and 2*'Pa (tV2 ~ 32.7 kyr) have distributions similar to those of dGa (Figure 6). Activities of
longer-lived (t¥2 > 10 kyr) dissolved radioisotopes have been widely used in the Arctic Ocean and in other basins
to investigate circulation and particle dynamics (Bacon & Anderson, 1982; Gdaniec et al., 2020; Hayes
et al., 2018; Hoffmann et al., 2013; Lerner et al., 2017; Pavia et al., 2019). The source of these isotopes is the
decay of parent isotopes naturally present in seawater. >>'Pa and ***Th have uranium parents, which behave
conservatively in marine environments and are correlated with salinity (S. A. Owens et al., 2011). Even with brine
formation and significant freshwater inputs in the Arctic, a linear uranium-salinity relationship consistent with
other oceanic regions is observed (Not et al., 2012). Unlike their conservative parents, >>'Pa and **°Th are particle
reactive; 2°Th has a high particle affinity and an oceanic residence time of decades, while **' Pa is slightly more
soluble and has a residence time of centuries. The strong mixing pattern observed in the **°Th and **'Pa activities
(Figure 6) is likely related to the long half-lives and oceanic residence times of these isotopes compared to the
residence time of the water in the halocline (~6-23 years, see Section 3). The short-lived dissolved Z4Th
(tV2 ~ 24 days) behaves dissimilarly to >*°Th and **'Pa and increases slightly with increasing salinity but does not
match the Theme 1 patterns.

5.2. Theme 2: Shelf-Influenced TEIs

Element-salinity distributions that have a distinct peak or trough within the salinity range for the UHL indicate
shelf processing during the origin and formation of the halocline itself. A peak is observed in the UHL for all
macronutrients, N,O gas, and many dissolved and particulate trace metals. Thus, the UHL becomes the major
source or reservoir for these elements in the Canada Basin.

Many bioactive trace metal profiles in the ocean are heavily influenced by biological uptake and regeneration,
thus sharing similar distributions to the macronutrients. In the Amerasian Basin, uptake and regeneration signals
are primarily formed on the shelves. Advection of shelf waters into the basin results in distinctive profiles in the
open basins, where some of the bioactive dissolved trace metals exhibit a subsurface peak coinciding with the
nutrient maximum. Elements such as dFe, dZn, dCd (Figure 7a-7c), as well as the major macronutrients
(Figure 2), fit into Theme 2. These elements have a maximum concentration in the salinity range of PSW and
PWW (S ~31-33.1). On the Chukchi shelf, dFe, dZn, and dCd appear to share a benthic maximum with Si. For
dFe and dZn, maxima in PWW result from diagenetic release of Fe from the sediments (Jensen, Morton,
etal., 2020) and the release of Zn from Si-rich organic matter (Jensen et al., 2019), respectively. Although dCd has
UHL maximum that is a similar concentration as the BSI, it is likely still heavily modified by shelf biogeo-
chemical cycling and sedimentary exchange processes. Specifically, dCd has strong correlation with tracers of
sedimentary remineralization and enrichment compared to P in shelf bottom waters (Zhang et al., 2019).

Metal isotope ratios (Figures 7d—7f) corroborate the influence of both remineralization and reductive dissolution
in shelf bottom waters on the basin distributions of advected dissolved metals. Low &°°Fe values, which are
indicative of reductive dissolution, were observed along the Chukchi shelf and this signal persists into the UHL
(Zhang et al., 2021), leading to a trough in the 8°°Fe-salinity plot (Figure 7e). §''*Cd is also depleted in shelf
bottom waters and within the halocline relative to the PML and AW (Figure 7d), indicative of Pacific-origin or
remineralization-influenced waters, both of which skew to relatively low isotope ratios due to organic matter
decomposition (Zhang et al., 2019). Values of 5%7n (Figure 7f) align more closely with Theme 3 (Section 5.3)
but are nevertheless consistent with the release of dZn in shelf sediments that persists within the UHL.

Mercury concentrations and speciation are influenced by shelf interactions, although correlations with salinity are
impacted by gaseous mercury species and sea ice dynamics that control air-sea exchange (Figures 7g-71).
Elemental Hg (Hg) is typically sourced by atmospheric deposition, rivers, soil runoff, and groundwater (Dastoor
et al., 2022; Mason et al., 2012). It accumulates in the Arctic PML when sea ice cover limits evasion to the
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atmosphere (Agather et al., 2019; Bowman et al., 2020). Total dissolved Hg (dHg) can be mobilized from
sediments where microbial production of the neurotoxin monomethylmercury (MMHg) and subsequent forma-
tion of dimethylmercury (DMHg) may occur (Agather et al., 2019; Mason et al., 2012). While concentrations of
dHg are lower in the Arctic compared to other global oceans, MMHg and DMHg were elevated over the Chukchi
shelf and DMHg in particular had a peak in the halocline (Agather et al., 2019), suggesting high concentrations
over the shelf persist in the halocline. Thawing permafrost and sea ice are significant reservoirs of Hg in the
Arctic, potentially contributing to enhanced MMHg and DMHg production leading to cascading ecosystem ef-
fects as the Arctic warms (Dastoor et al., 2022).

The Amerasian Basin has a distinct particle maximum associated with Pacific-origin halocline waters against an
otherwise very low particle abundance in the oligotrophic central Arctic Ocean (Xiang et al., 2022; Xiang &
Lam, 2020). Labile (_L) particulate trace metals (>0.45 pm) such as pMn_L, pCo_L, pV_L, pAl_L, and pFe_L
were noticeably elevated on the Chukchi shelf and within the UHL (Twining et al., 2019), following a Theme 2
distribution (Figure S2 in Supporting Information S1, Table 3). Chemical signatures of particle composition in the
UHL, including concentrations and relative fractions of MnO,, and biogenic Si to particulate organic carbon (POC)
ratios (Figure 8), suggest the importance of lateral transport from the Chukchi shelf and potentially other nearby
shelves into the central Arctic Ocean (Xiang & Lam, 2020). Concentrations of MnO, are more elevated within the
UHL than Fe oxyhydroxides. This difference is due to slower oxidation kinetics of dMn(Il) compared to dFe(II)
released from shelf sediments during sediment diagenesis allowing dMn to be transported a longer distance into the
central basin before it is oxidized (Jensen, Morton, et al., 2020; Vieira et al., 2019; Xiang & Lam, 2020).

5.3. Theme 3: Combination—Mixing and Shelf Influenced TEIs

Many elements are also significantly influenced by both diapycnal mixing and shelf modification. These elements
appeared to be mixed between surface and Atlantic waters (Theme 1) but also displayed noticeable peaks or
troughs within the UHL salinity range (Theme 2). Two prevailing profile types emerged: one with high con-
centrations in surface waters, possibly correlated to freshwater/riverine input, displaying a peak in the halocline,
and declining to Atlantic concentrations (Figure 5c). Alternatively, concentrations may be low on the surface with
a peak in the halocline and continue to increase to Atlantic concentrations (gray dashed line, Figure 5c).

Trace elements that fall into this category can be bioactive/“nutrient-type” (e.g., dNi, dBa) or scavenging prone
(e.g.,dPb,dV, dMn) or hybrid-type (dCo). As noted in Section 5.2, element profiles in the Arctic Ocean are atypical
compared to global distributions. Typically, dNi is low in surface waters and increases with depth, following the
distribution of both Si and P (Middag et al., 2020). Barium is also correlated with Si (Wolgemuth &
Broecker, 1970), but unlike the bioactive trace metals there is no known Ba requirement for enzymes in phyto-
plankton (Horner et al., 2021). Both dNi and dBa have elevated concentrations in Arctic rivers relative to seawater
(Cooperetal., 2008; Guay & Falkner, 1997), leading to pervasively high concentrations in the PML (Figures 9a and
9d). The presence of a peak in dNi and dBa in the UHL suggests a non-negligible source from shelf sediments, as
well as the influence of river runoff incorporated into the UHL (Jensen et al., 2022; Whitmore et al., 2022).

Dissolved Mn is also sourced from both rivers and shelf sediments in the Arctic Ocean (Colombo et al., 2020;
Jensen, Morton, et al., 2020), leading to high concentrations in shelf bottom waters, the PML, and the UHL.
Abundant freshwater sources lead to high dMn at low salinities in the Amerasian Basin (Figure 9¢) and lack of
removal processes and potential photoreduction helps to maintain the high dMn in the PML (Gerringa et al., 2021;
Jensen, Morton, et al., 2020; Xiang et al., 2021). A local peak in dMn in the UHL (Figure 9c) implies supply of
dMn from shelf bottom waters (Jensen, Morton, et al., 2020). Away from the shelves, dMn concentrations in the
UHL are rapidly attenuated due to scavenging and oxidation, as seen for dFe and dPb (Colombo et al., 2019;
Jensen, Morton, et al., 2020). Oxidized Mn in the UHL potentially drives scavenging of other TEIs (Section 5).

The dCo is elevated over the Chukchi shelf relative to Pacific water, and this signature is preserved in the
Amerasian Basin PML. However, dCo displays a minimum in the underlying halocline, which is associated with
scavenging (scavenging is discussed further in Section 6; Bundy et al., 2020). This is unique to the Amerasian
Basins, and contrasts with the “nutrient-type” or “hybrid-type” depth distribution observed in other (non-Arctic)
ocean basins (Chmiel et al., 2022; Saito et al., 2017). The dCo is heavily influenced by shelf processes, effectively
masking any biological uptake signal. Similar to dCo, dV, which is globally low in surface waters and increases
with depth (Ho et al., 2018), is depleted within the UHL relative to the BSI (Figure 9f). Unlike dCo, dV is also low
in the PML, indicating the influence of riverine and sea ice melt endmembers. The high concentrations of MnO,
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Figure 10. The relationship between the partitioning coefficient K of different TEIs and the fraction of manganese oxides within the core of UHL (where silicate
concentrations are >25 pmol/kg). (a) Cd; (b) Co; (c) Cu; (d) Mn; (e) V; (f) 228, (g): excess 2307, (h) excess 231 Pa; (i) 2**Th. The dashed lines are linear regression fits
(p <0.05) and the color bar is silicate concentrations. The coefficient of determination of each fit is displayed in the subplot. Additional parameters are shown in Figure

S3 in Supporting Information S1.

in the UHL (Xiang & Lam, 2020) contribute to scavenging of dCo and dV within the halocline (Whitmore
et al., 2019; see Section 6). However, the scavenging of these metals by MnQO, is likely also biologically related,
and the diminished scavenging in surface waters may be due to the lower abundance of MnO,.

Dissolved Pb was elevated on the Chukchi shelf but did not have a discernible peak or trough within the UHL. In
fact, dPb did not fit cleanly into any of the three themes as it is similarly elevated in the PML, PSW, and un-
derlying Atlantic waters, and displays a small peak in the UHL at some stations (Figure 9¢). The global distri-
bution of Pb in the ocean is heavily influenced by anthropogenic contamination of Pb to the surface ocean (Boyle
etal., 2014). While aerosol deposition of Pb is markedly less than in the dust-influenced North Atlantic by roughly
an order of magnitude, anthropogenic pollutants from the surrounding continents lead to significant Pb in Arctic
aerosols, potentially contributing to elevated concentrations in the PML found in this study. Freshwater sources
such as sea ice melt and North American/Eurasian rivers may be another source of PML in the Canada Basin
(Colombo et al., 2019; Newton et al., 2008). Elevated in both the North Pacific and North Atlantic, high dPb
concentrations entering through the Bering Strait and dPb mobilized during remineralization on the Chukchi shelf
are likely attenuated due to scavenging by particulates along the shelf break (Colombo et al., 2019; Nozaki
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etal., 1997), similar to dMn and dFe. The peak in dPb above the UHL has been previously observed in the Canada
Basin and is traceable through the CAA (Colombo et al., 2019).

Some bottle particulate species were elevated in the UHL and also in the PML and/or overlying PSW. Unlike the
Theme 2 particulate species above, many did not follow their corresponding dissolved species theme categori-
zations. For instance, while dZn, dCd, and dCu fell into Themes 1 and 2, pZn_L, pZn, pCd_L, pCd, and pCu_L,
pCu all show Theme 3 patterns off-shelf (Figure S1 in Supporting Information S1, Table 3). Additionally, pNi_L,
pNi, and pBa_L were all elevated in both surface and UHL waters, much like dNi and dBa. Enrichment of these
TEIs in the UHL likely results from lateral advection of authigenic or biogenic particles formed over the shelf
(Whitmore et al., 2022), consistent with high biogenic silica to POC ratios as a result of lateral transport of shelf-
derived particles (Xiang & Lam, 2020).

6. Particle Cycling of Trace Elements in the Halocline

Concentrations of MnO, within the UHL are notably high, reaching up to one order of magnitude higher than
those found near vents of the East Pacific Rise (Lam et al., 2018; Xiang & Lam, 2020). Since MnO, are known as
the “scavenger of the sea” (Goldberg, 1954), many TEIs in the UHL are likely substantially influenced by Mn
oxide scavenging. We calculated for all TEIs the bulk partition coefficient K, an index for scavenging affinity
(Bam et al., 2020; Cui et al., 2021; Hayes et al., 2015; Pavia et al., 2018). The K, (unit: L/kg) for an element (E) is
defined as

pEexcess
dE x SPM’

Ky(E) =
where pE., ... and dE are non-lithogenic (excess) particulate and dissolved concentrations, respectively, and
(suspended particulate matter) SPM is the concentration of suspended particulate matter.

Most TEIs have a significant positive correlation between Ky and the compositional fraction of MnO, (famo,;
calculated as [MnO,]/[SPM]) in total particles (>1 pm) within the UHL (Figure 10 and Figure S3). Dissolved Mn
and V are prone to strong scavenging by MnO, (R* > 0.7; p < 0.01). Likewise, scavenging of dCu, dCd, and dCo
by MnO, is potentially an important removal process (R> > 0.4; p < 0.01). Particulate Co and V have a pro-
nounced increase of similar magnitudes within the UHL (Figure S1 in Supporting Information S1). A better
correlation between Ky and fyjo, exists in V (Ky(V) = 5.0 X 10° X fyg0, + 8.3 x 10% R* = 0.70) than Co
(K4(Co) =6.3 X% 108 x fymo, + 1.5 X 107; R? = 0.41), possibly pointing to a stronger affinity of V to MnO, than
Co. All four scavenging-prone Th and Pa isotopes' K, values correlate well with 0, (R? from 0.47 to 0.84,
p < 0.05; Figure 10). These high R? values indicate similar levels of correlation with fmno, to those seen with Mn
and V, reflecting the strong influence of MnO, on Th and Pa scavenging and distributions in the UHL (Hayes
et al., 2015; Lee et al., 2021; Pavia et al., 2018).

Fe, Ni, and Pb have insignificant relationships between K, and fy,0, (p > 0.05; Figure S3 in Supporting In-
formation S1). The lack of a significant relationship for Ni suggests that scavenging removal is minor during the
transport of dNi within the UHL (Jensen et al., 2022). Pb scavenges to both Fe oxyhydroxides (Fe(OH);) and
MnO, (Bargar et al., 1997; Villalobos et al., 2005). However, particle scavenging of Pb by either authigenic
particle phase seems to be relatively small within the UHL: a multiple linear regression using compositional
fractions of both Fe(OH); and MnO, also shows an insignificant relationship with K, (p > 0.05).

Mn oxide scavenging likely decreases concentrations of almost all Theme 3 dissolved TEIs within the UHL,
including dMn, dCo, dV and d***Th. Interestingly, despite strong scavenging by MnO, within the UHL, dCu,
d***Th and d**' Pa are categorized into Theme 1. The drawdown of these dissolved TEIs still occurs, but similar
dissolved TEIs concentrations between the PML and UHL make scavenging signals harder to observe. This is
further supported by high concentrations of pCu observed within the UHL (Figure S1 in Supporting Informa-
tion S1). Overall, particle scavenging plays an important role in decreasing concentrations of many dissolved
TEIs in all three themes, providing more insights into the mechanism of such characteristic distributions.
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7. How Do We Expect Climate Change to Affect the Halocline

Recognizing the drastic changes ongoing in the Arctic with regards to surface air temperature, sea ice loss,
reduction in terrestrial snow and ice, and permafrost thaw, we anticipate these trends will continue in the near
future. Below, we consider the impacts these changes in the Arctic system may have on the chemistry of the Arctic
halocline.

7.1. Northward Migration of the Seasonal Ice Zone

Arctic sea ice cover is already well into a rapid shift from perennial to seasonal over the pelagic ocean (Babb
et al., 2022). That is, the seasonal ice zone (SIZ) has expanded from the shelves toward the pole, a trend that is
expected to continue through this century (Brunette et al., 2019; Kwok, 2004, 2018; Newton et al., 2017, 2021;
Pfirman et al., 2004; Rampal et al., 2009). This has impacted the structure of the upper water column through an
increased mass of annual sea ice formation, longer open-water seasons, and increased rates of sea-ice drift (Kwok
et al., 1998; Newton et al., 2017; Rampal et al., 2009). When the SIZ extends over the deep Arctic basins,
increased ice formation in fall will lead to deepening of the winter mixed layer, and episodic (e.g., seasonal)
degradation of the stratification between the UHL, AW and PML (Polyakov et al., 2017, 2020). Thus, the balance
of isopycnal ventilation of the UHL (via shelf detrainment) and vertical ventilation (via brine-driven convection)
are likely to shift toward the latter.

The Chukchi Sea, where much of the chemistry of the upper halocline is established, has recently seen especially
rapid northward expansion of the SIZ. This has already led to changes in the timing of the spring bloom and
phytoplankton community composition (Huntington et al., 2020; Lalande et al., 2021), consistent with a shift
from benthic to pelagic communities. Current trends in the chemistry of the upper halocline waters are unknown,
since these are the first halocline measurements for most of the parameters measured on GNO1. In the near future,
the fluxes of Theme 2 and Theme 3 elements will likely increase to the UHL due to enhanced sediment-water
column exchange resulting from brine rejection and water column overturning during sea ice formation
(Pacini et al., 2019; Weingartner et al., 1998), from increased frequency of storms (Ardyna et al., 2014), and
enhanced internal wave energy facilitated by a longer open-water season (Rainville & Woodgate, 2009).

With respect to dissolved gasses, the sea ice cover is not an “air-tight lid”, but it restricts air-sea fluxes, perhaps by
about two thirds (Loose et al., 2011). As the SIZ expands (both in space and time) and the ice thins, concentrations
of dissolved gasses in the mixed layer will further approach equilibrium with the Arctic atmosphere. If vertical
ventilation of the halocline becomes more important (as discussed above), these changes will be propagated into
the UHL.

7.2. Stratification and Relative Endmember Influence

The distributions of Theme 1 elements, which are dominated by diapycnal mixing, are set by gradients between
the PML, BSI and AW concentrations. There is no reason to believe that the chemical composition of Atlantic
Water inflow will change in the near future; however, shoaling of AW and weakening of the halocline have been
observed along the Laptev Slope (Polyakov et al., 2017, 2020), which may shift the concentrations of Theme 1
elements in the halocline by changing the relative magnitude of the Atlantic endmember. Changes in the BSI are
underway, with a persistent warming and freshening trend that is likely to shoal the PSW ventilation to the UHL
(Woodgate and Peralta-Ferriz, 2021), weakening the halocline and, thereby, the subsurface nutrient and TEI
reservoir. The thickness of the PML is also changing through time, in response to episodic changes in the surface
wind-stresses (Hunkins & Whitehead, 1992; Proshutinsky & Johnson, 1997) as well as changes in the supply of
freshwater from runoff and sea-ice melt (Newton et al., 2013; Proshutinsky et al., 2019). Therefore, while we do
not expect the vertical structure of Theme 1 profiles to change, the relative magnitudes of the endmember in-
fluences, and the depth ranges of their dominance, are likely to shift incrementally.

7.3. Increase in Terrestrial Fluxes

Several climate-driven changes may increase the delivery of terrestrial-derived elements to the Arctic Ocean.
River discharge is increasing (Holmes et al., 2021), resulting in an increase in ions associated with mineral
weathering (Tank et al., 2023), which will likely have an impact on Theme 1 and Theme 3 elements. The
northward retreat of sea ice allows for increased wind-driven mixing, water column turbulence, and surface wave
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fetch (Rainville & Woodgate, 2009). These are increasing coastal erosion rates (Overeem et al., 2011) and likely
causing an increased release of shelf sediment-derived elements into the overlying water column (Kipp
et al., 2018). Further, aeolian deposition over open water will result in more sediment accumulation directly to the
shelves, rather than to the surface of sea ice. Historically, dust has accumulated on the ice over several years, and
is then deposited into the water column where the ice melts—mostly over the shelf seas and along the East
Greenland Current (Newton et al., 2017). We are therefore likely to see increased particle supply from local
atmospheric deposition in addition to sea ice transport (Pernov et al., 2022). Together, these changes are likely to
impact the concentration of Theme 2 (and potentially Theme 3) elements in the UHL; concentrations of elements
with a terrestrial source will likely increase.

Rising air and sea temperatures are also thawing permafrost (Luo et al., 2016). The subsea and above-ground
permafrost that surrounds the Arctic Ocean currently acts as a reservoir of carbon, nutrients, and TEIs (Frey &
McClelland, 2009; Schuur et al., 2008), so the thawing of permafrost results in increased concentrations of these
liberated solutes in rivers (Feng et al., 2013; Frey & McClelland, 2009). Higher permafrost-derived solute
concentrations in rivers are likely to have the greatest impact on Theme 1 elements, though this could also impact
Theme 2 and 3 elements through alterations in the biogeochemical cycling of elements following delivery to the
shelf seas.

Permafrost-derived solutes can also be transported to the coastal ocean via submarine groundwater discharge.
Although permafrost likely acts as a physical barrier to groundwater flow across much of the Arctic, active
submarine groundwater discharge has been documented in the Laptev Sea (Charkin et al., 2017) and is likely to
increase in the future as permafrost continues to thaw (Walvoord et al., 2012). Because submarine groundwater
discharge can extend out onto the continental shelf, this has the potential to impact the relative concentrations and
biogeochemical cycling of all three types of elements discussed here. However, permafrost thaw is slow (~cm/y;
Luo et al., 2016), and the signal of permafrost-derived solutes can be difficult to identify following dilution in
rivers and the coastal ocean (e.g., Francis et al., 2023). It is therefore unlikely that we will be able to attribute
significant changes in UHL chemistry to permafrost-driven shifts in the river- or shelf-cycling of elements in the
near term. These potential changes may become more important in the future as degradation becomes more
widespread and/or the rate of thaw increases.

8. Conclusions and Further Considerations

We have shown here that minor trace chemical constituents' diverse sources and behaviors can be leveraged to
elucidate supply to and internal cycling in the halocline. The Chukchi shelf is an important modifier of the so-
called “Pacific signal” of the halocline and many trace constituents are added to halocline waters during expo-
sure to the shelves. In addition, biophysical processes over the shelves are highly variable spatially and
seasonally, and they are undergoing a regime shift as the Arctic warms. Tracers in the upper halocline are
integrative measures of those changes. Thus they provide an efficient way to track changes over both the shelf
seas and the pelagic basins, where continuous monitoring is rare due to the very high costs of seagoing operations
in remote areas.

An ongoing question into the utility of TEISs in the Arctic Ocean regards whether different shelf regions imprint
distinct geochemical characteristics on the overlying waters (Alkire et al., 2019; Guay & Falkner, 1997).
Certainly, there are enough observations in the Chukchi and Barents Seas to indicate that the shelf systems can be
quite different from each other. Yet there are not enough observations along the East Siberian Sea to determine if
there are distinct signatures between the Chukchi and East Siberian Sea, which are both shallow (<50 m) shelf
systems. We approached this question by mapping our data as UHL (by isopycnal) averages (Figures S4-S6 in
Supporting Information S1); ultimately, concentrations alone are not distinct between the Makarov and Canada
Basin UHL. Our work characterizes the distributions of these TEIs, but further synthesis regarding elemental
ratios may elucidate differences between the halocline across the Amerasian Basin (Alkire et al., 2019).

Climate-driven changes in the chemistry and ventilation of the halocline will propagate through the Arctic Ocean
with lags commensurate with the mean transit times between water sources and sampling points. For the UHL,
those times range from a year up to about 20 years. Unfortunately, we have already missed the window of op-
portunity to get a pre-regime-shift baseline. The data from the Arctic GEOTRACES campaigns are nonetheless an
essential initial survey against which to measure the response of the Arctic Ocean to ongoing climate change.
Given the timescales of transit and changes (both those evident in the historical record and those forced by current
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warming trends), continued high-resolution monitoring of Arctic Ocean chemistry on sub-decadal timescales will
be vital for assessing changes.
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