

Microbial surveillance versus cytokine responsiveness in native and non-native house sparrows

McCain, Kailey M.; Mansilla, Gabby; Sheldon, Elizabeth L.; Zimmer, Cedric; Schrey, Aaron W.; Rowe, Melissah; Dor, Roi; Kohl, Kevin D.; Søraker, Jørgen S.; Jensen, Henrik; Mathot, Kimberley J.; Vu, Thinh; Phuong, Ho Thu; Jimeno, Blanca; Buchanan, Katherine L.; Thiam, Massamba; Briskie, James; Martin, Lynn B.

published in

Biology Letters

2025

DOI (link to publisher)

[10.1098/rsbl.2024.0431](https://doi.org/10.1098/rsbl.2024.0431)

document version

Publisher's PDF, also known as Version of record

document license

Taverne

[Link to publication in KNAW Research Portal](#)

citation for published version (APA)

McCain, K. M., Mansilla, G., Sheldon, E. L., Zimmer, C., Schrey, A. W., Rowe, M., Dor, R., Kohl, K. D., Søraker, J. S., Jensen, H., Mathot, K. J., Vu, T., Phuong, H. T., Jimeno, B., Buchanan, K. L., Thiam, M., Briskie, J., & Martin, L. B. (2025). Microbial surveillance versus cytokine responsiveness in native and non-native house sparrows. *Biology Letters*, 21(1), Article 20240431. <https://doi.org/10.1098/rsbl.2024.0431>

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the KNAW public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the KNAW public portal.

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
pure@knaaw.nl

Cite this article: McCain KM *et al.* 2025 Microbial surveillance versus cytokine responsiveness in native and non-native house sparrows. *Biol. Lett.* **21**: 20240431.

<https://doi.org/10.1098/rsbl.2024.0431>

Received: 24 July 2024

Accepted: 12 November 2024

Subject Category:

Physiology

Subject Areas:

health and disease and epidemiology, molecular biology, ecology

Keywords:

introduced species, cytokine, microbial surveillance, inflammation

Author for correspondence:

Kailey M. McCain

e-mail: Kaileymccain@gmail.com

Microbial surveillance versus cytokine responsiveness in native and non-native house sparrows

Kailey M. McCain¹, Gabby Mansilla¹, Elizabeth L. Sheldon², Cedric Zimmer³, Aaron W. Schrey⁴, Melissah Rowe⁵, Roi Dor⁶, Kevin D. Kohl⁷, Jørgen S. Søraker⁸, Henrik Jensen⁸, Kimberley J. Mathot⁹, Thinh Vu¹⁰, Ho Thu Phuong¹⁰, Blanca Jimeno¹¹, Katherine L. Buchanan¹², Massamba Thiam¹³, James Briskie¹⁴ and Lynn B. Martin¹

¹Global Environmental and Genomic Health Sciences, University of South Florida, Tampa, FL 33612, USA

²Sorbonne Université, Villefranche Oceanography Laboratory, 181 Chem. du Lazaret, Villefranche-sur-Mer 06230, France

³Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, Université Sorbonne Paris Nord, UR 4443, Villejuif 93430, France

⁴Department of Biology, Georgia Southern University Armstrong Campus, Science Center 1505, 16 11935 Abercorn Street, Savannah, GA 31419, USA

⁵Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6700 AB, The Netherlands

⁶Department of Natural Sciences, The Open University of Israel, Ra'anana, Israel

⁷Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue Pittsburgh, Pittsburgh, PA 15260, USA

⁸Department of Biology, Centre for Conservation Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Trondheim, Norway

⁹Canada Research Chair in Integrative Ecology, Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton AB T6G 2E9, Canada

¹⁰Department of Wildlife, Faculty of Forest Resource and Environmental Management, Vietnam National University of Forestry, Chuong My, Vietnam

¹¹Department of Biological Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (IPE-CSIC). Av. Nuestra Señora de la Victoria, 22700, Jaca, Spain,

¹²School of Life and Environmental Sciences, Deakin University Geelong, Geelong, Vic 3216, Australia

¹³Laboratory of Zoology of Terrestrial Vertebrates, Fundamental Institute of Black Africa, Cheikh Anta Diop University of Dakar Senegal, Dakar, Senegal

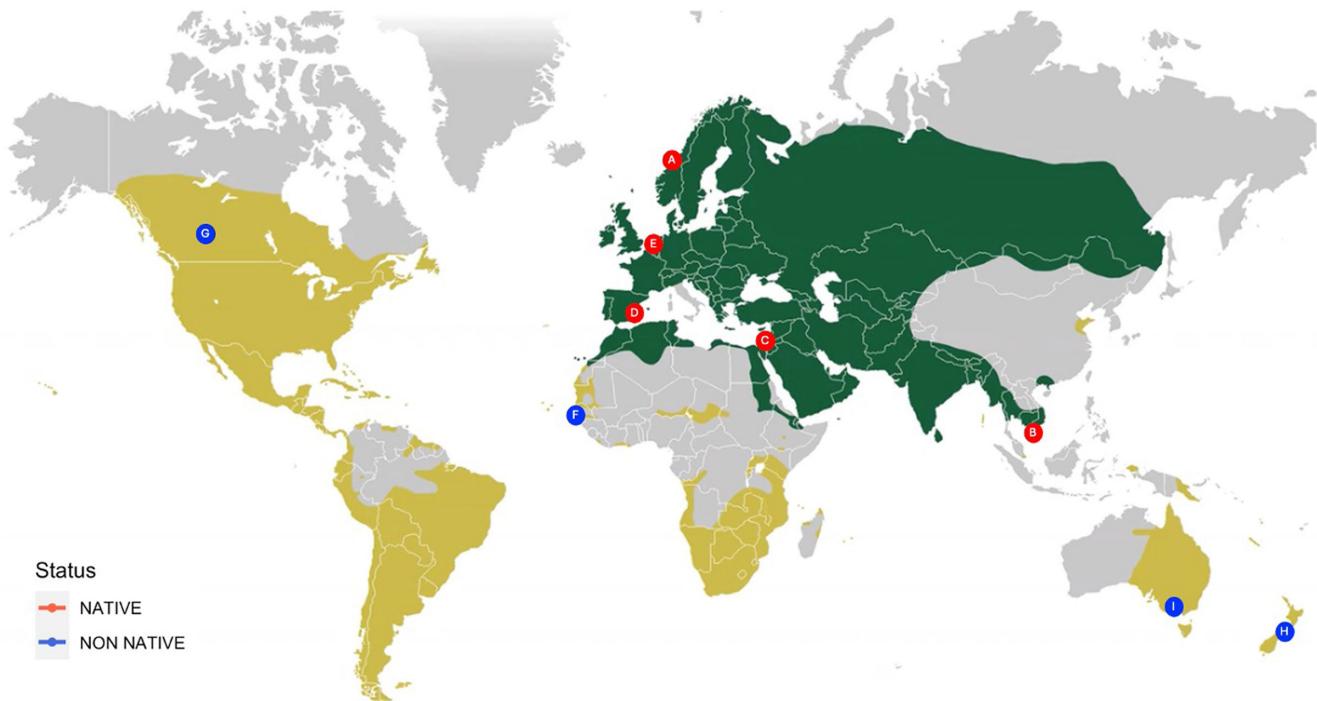
¹⁴School of Biological Sciences, University of Canterbury, Christchurch, New Zealand

 KMMC, [0009-0000-1208-801X](https://orcid.org/0009-0000-1208-801X); ELS, [0000-0001-5002-3006](https://orcid.org/0000-0001-5002-3006); CZ, [0000-0001-8160-2836](https://orcid.org/0000-0001-8160-2836); AWS, [0000-0002-2165-7349](https://orcid.org/0000-0002-2165-7349); MR, [0000-0001-9747-041X](https://orcid.org/0000-0001-9747-041X); RD, [0000-0002-8743-9387](https://orcid.org/0000-0002-8743-9387); KDK, [0000-0003-1126-2949](https://orcid.org/0000-0003-1126-2949); JSS, [0000-0001-8146-4576](https://orcid.org/0000-0001-8146-4576); KJM, [0000-0003-2021-1369](https://orcid.org/0000-0003-2021-1369); BJ, [0000-0003-3040-0163](https://orcid.org/0000-0003-3040-0163); KLB, [0000-0002-6648-5819](https://orcid.org/0000-0002-6648-5819); JB, [0000-0001-5813-4392](https://orcid.org/0000-0001-5813-4392); LBM, [0000-0002-5887-4937](https://orcid.org/0000-0002-5887-4937)

The success of introduced species often relies on flexible traits, including immune system traits. While theories predict non-natives will have weak defences due to decreased parasite pressure, effective parasite surveillance remains crucial, as infection risk is rarely zero and the evolutionary novelty of infection is elevated in non-native areas. This study examines the relationship between parasite surveillance and cytokine responsiveness in native and non-native house sparrows, hypothesizing that non-natives maintain high pathogen surveillance while avoiding costly inflammation. We made this specific prediction, as this pattern could enable invaders to effectively mitigate pathogen risk in a manner commensurate with the life-history priorities of a colonizing organism (i.e. rapid maturation and high reproductive effort). To test this hypothesis, we measured *TLR-2* and

Electronic supplementary material is available online at <https://doi.org/10.6084/m9.figshare.c.7647008>.

TLR-4 expression, markers of pathogen surveillance and cytokine responses (changes in *IL-1 β* and *IL-10*), regulators of inflammation, to a simulated bacterial infection. In non-native sparrows, we found that as TLR-4 expression increased, *IL-1 β* and *IL-10* responses decreased, a relationship not observed in native sparrows. Additionally, higher body condition predicted larger *IL-1 β* and *IL-10* responses in all birds. These findings suggest that high TLR-4 surveillance may mitigate strong inflammatory responses in non-native sparrows, with pathological and resource-based costs driving immune variation among and within populations.


1. Introduction

Why do some organisms successfully colonize novel environments whereas others do not? A key factor is the flexibility of traits that enhance survival and/or reproduction [1], with immune defences being especially crucial [2,3]. Successful invaders tend to be those that balance reproductive needs against other priorities, including infection risk. The enemy release hypothesis (ERH) and the evolution of increased competitive ability hypothesis (EICA) exemplify the idea that invasion success is linked to immunity, in particular. According to the ERH, introduced organisms (termed non-native here) experience weaker selection on their immune systems due to the relative decrease in exposure to natural enemies [4]. This relative rarity allows them to allocate resources towards growth and reproduction rather than immune defences [5], thus allowing them to become more competitive (EICA). Consequently, successful colonizers are expected to exhibit weaker immune responses compared to native individuals, particularly at the forefront of an invasion where encounters with parasites should be few [6]. In support of this idea, one study found that a successful invader, the house sparrow (*Passer domesticus*), had a weaker inflammatory response compared to a less successful invader, the tree sparrow [7]. However, hypotheses like ERH and EICA overlook the fact that while there is an overall reduction in exposure to parasites, non-native species are more likely to encounter more evolutionarily novel parasites [8], lineages or perhaps even species never encountered historically by their ancestors. Therefore, total immune suppression represents a large risk. Likely, the immune strategy of non-natives involves differential investment in components of defences that are effective at controlling mostly novel pathogens [6,9].

Not only do house sparrow populations vary immunologically, but given their wide distribution and success as an invader [10], they are ideal for questions regarding trait differences along invasion gradients. For example, during an active range expansion in Kenya, birds farther from their original site of introduction of the species (i.e. Mombasa) exhibited higher constitutive expression of Toll-like receptors (TLRs) than birds caught near the core [11]. Initially, this pattern may seem counter to EICA, especially given the function of TLRs, which recognize pathogen-associated molecular patterns and instigate various immune responses (e.g. inflammation) [12]. However, heightened TLR expression has been linked to quicker microbial detection across various species [13]. This upregulation may serve as a strategy to swiftly eliminate pathogens before they cause harm, especially in birds at the range's edge, where exposure to novel infections is more likely. Upon pathogen detection by TLRs on macrophages and heterophils, these leukocytes initiate the transcription and release of various pro-inflammatory (e.g. interleukin 1 β (IL-1 β)) and anti-inflammatory cytokines (e.g. interleukin 10 (IL-10)) [14], which work together to effectively control infections [15]. However, mounting an inflammatory response can be costly because of both the energetic/metabolic requirements of immune cells [16] and the indirect effects of the response, such as decreased activity and reproductive output [17]. Accordingly, theory predicts that the optimal immune response would balance the risk of infection (i.e. direct pathology from a pathogen) with the risk of immunopathology (i.e. collateral damage from the immune response) [17,18].

Cost-benefit frameworks like these can be used to predict immune response variation, but the fitness risks posed by infection and immunopathology are not always symmetrical. The optimal immune response arises from a combination of the life history [19] and demographic characteristics [20,21] of populations as well as the epidemiological setting [22–24]. For invading organisms, immunopathologies pose a particular risk as they can decrease reproductive fitness and survival [17,25,26]. This raises the question: why do we observe high parasite surveillance at the Kenyan house sparrow range edge, seemingly contradicting EICA, especially when house sparrows exhibit a subdued inflammatory response, at least relative to a congener? We hypothesize that increased surveillance does not always obligate a stronger inflammatory reaction and, more specifically, that non-native house sparrows would mount a weak inflammatory response even if microbial surveillance were high. In contrast, native house sparrows would exhibit a more robust inflammatory response commensurate with their level of microbial surveillance, reflecting a more traditional immune strategy.

In this study, we compared the relationship between constitutive TLR expression and cytokine responsiveness among five native (Spain, Norway, The Netherlands, Vietnam and Israel) and four non-native house sparrow populations (Australia, New Zealand, Senegal and Canada). We predicted that TLR expression would be related to cytokine expression within individual birds, but we expected a shallower relationship in non-natives compared to native sparrows. To test this prediction, we measured the expression of effectors (*IL-1 β* and *IL-10*) and TLRs (TLR-2 and TLR-4) in whole blood before and after administering lipopolysaccharide (LPS) from *Escherichia coli*, which mimics a bacterial infection [27] and has been extensively used in songbirds to induce inflammation [13]. Also, as immune responses are often condition-dependent [28], we asked whether the body condition index (BCI) of individual birds affected cytokine responsiveness. BCI was calculated as the residuals of a regression of body mass on a structural trait, hypothesizing that birds with a higher BCI, which indicates more mobilizable resources, would have a more robust cytokine response. The measure is based on the premise that better body condition equates to more resources available for defence [29], resulting in higher cytokine production [20,30,31].

Figure 1. House sparrow (*Passer domesticus*) distribution as of 2019, with the green shading representing their native range and the yellow shading representing their introduced or non-native range. The locations of the sparrow populations sampled for this project are highlighted: native populations (locations A–E) are marked in red, while non-native populations (locations F–I) are marked in blue. (Figure adapted from [10].)

2. Methods

(a) Bird capture and care

During the non-breeding seasons of 2020–2023, we captured adult house sparrows ($n = 89$) via mist netting from sunrise to 11.00 in nine locations across the globe (figure 1) with exact location, dates and sample size available in the electronic supplementary material. Prioritizing the non-breeding season minimized potential confounding effects of reproductive activities, which could otherwise influence immune function [32], which allowed for more consistent and comparable measurements across individuals and locations. Upon capture, we measured wing chord (to 1 mm), tarsus length (to 0.1 mm) and body mass (to 0.1 g) and collected an approx. 50 μ l blood sample from the brachial vein of each bird (stored in 300 μ l of DNA/RNA Shield (Zymo R1100-50)). Immediately thereafter, we injected each bird with 100 μ l of 1 mg ml⁻¹ LPS (from *E. coli* 055:B5; Fisher L4005) in sterile saline subcutaneously over the breast muscle [33]. Post injection, we housed birds individually (but in visual and vocal contact with one another) in wire songbird cages (approximately 35.6 \times 40.6 \times 44.5) with food and water ad libitum. Eight hours post-injection, we took an additional approx. 10 μ l of blood from the brachial vein. Forty-eight hours post-injection, we euthanized birds via isoflurane overdose and rapid decapitation, and approx. 50 μ l of blood was again taken. Liver, spleen and gut samples were also taken for future studies and stored in 500 μ l of DNA/RNA Shield. All samples were stored at -80°C until further processing. All animal research procedures adhered to local animal research guidelines and were approved in advance by both the USF IACUC (IS00011653) and the relevant authorities in the country of capture. Export and import of animal tissue were also compliant with all local US regulations according to USDA-APHIS and other appropriate permits.

(b) Molecular assays

(i) Target gene sequences and primer and probe design

Sequences for our target genes (i.e. *TLR-2*, *TLR-4*, *IL-10* and *IL-1 β*) were identified using either *Passer domesticus* or *Passer montanus* genomes. To address potential concerns regarding DNA polymorphisms, we designed primers for conserved regions of exons by utilizing the BLAST alignment tool, ensuring a sequence similarity of at least 99% across multiple species to minimize the risk of SNP variation. Primers and probes for all four genes (detailed in the electronic supplementary material) were designed using Integrated DNA Technologies' PrimerQuest tool, using qPCR parameters (two primers and one probe). ZEN double-quenched probes were chosen, with either a FAM or HEX fluorescent dye used for different genes. For assays, all primers and probes were diluted to 10 μ M concentration.

(ii) RNA extraction and cDNA synthesis

We extracted RNA from 50 μ l of whole blood/shield mixture using a standard phenol:chloroform protocol [34]. For the full RNA extraction protocol, see the electronic supplementary material. Following extraction, RNA concentration quality was

assessed using a NanoDrop spectrophotometer, with special attention to the 260/280 ratio to ensure sample purity. Reverse transcription was performed using the iScript cDNA Synthesis kit (Bio-Rad 1708891), following the manufacturer's instructions.

(iii) Droplet digital polymerase chain reaction

We performed a droplet digital PCR (ddPCR) to quantify absolute copy numbers of the PCR targets. ddPCR reactions contained 5 μ l ddPCR Multiplex Supermix (ddPCR Multiplex Supermix, 12005909, Bio-Rad); 2.25 μ l forward primers (10 μ M), 2.25 μ l reverse primers (10 μ M), 0.63 μ l probe FAM, 0.63 μ l probe HEX, 0.63 μ l probe FAM+HEX (e.g. when 50% FAM + HEX, add 0.31 μ l of each) and 3.5 μ l sample (cDNA 1000 ng μ l⁻¹). The ddPCR analysis was performed using the C1000 TouchTM Thermal Cycler with the 96-Deep Well Reaction Module (1851197, Bio-Rad). After amplification, the droplets were separated and counted as either positive (i.e. having the target sequence of interest) or negative (i.e. not having the target sequence of interest) using the droplet reader (QXDx Droplet Reader, 12008020, Bio-Rad). At the end of all runs, expression data were obtained using QuantaSoftTM Analysis Pro software (v. 1.05).

(c) Data analysis

We initially transformed all gene expression data using \log_{10} to normalize distributions and reduce heteroscedasticity. Next, we tested for any baseline significant differences in gene expression between the native and non-native. Subsequently, we computed the change in gene expression following LPS injection of *IL-1 β* and *IL-10*, denoted as delta (Δ). We directly assessed an individual's response to the LPS, as we had no predictions about pre-LPS values in relation to TLRs and for simplicity of interpretation.

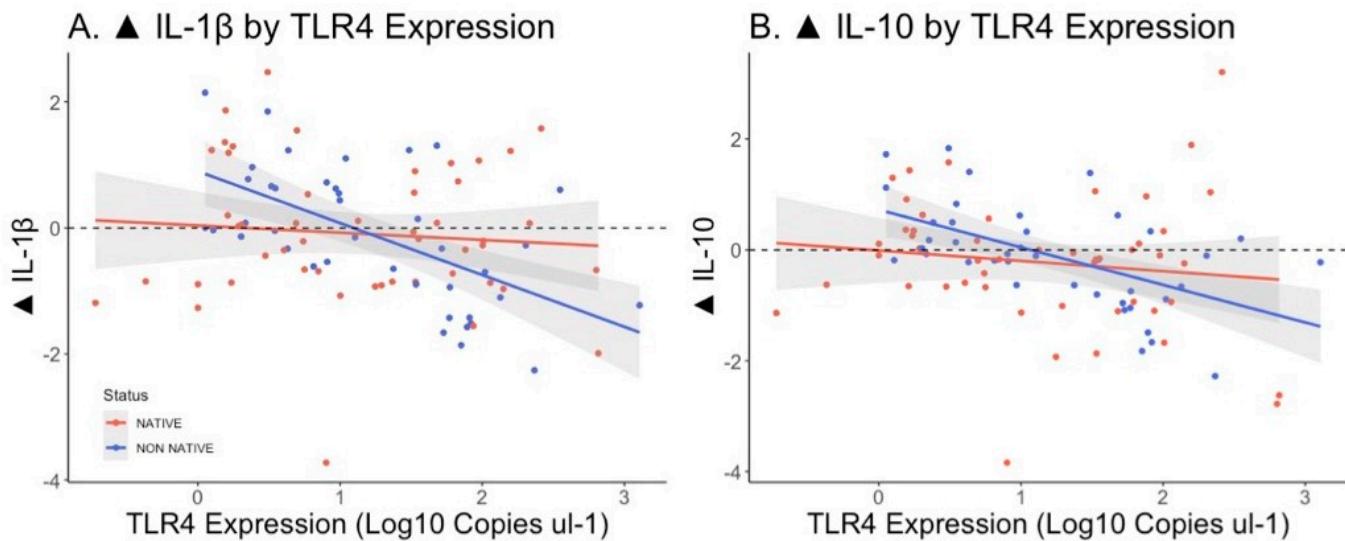
We then examined whether population status (native or non-native), baseline TLR expression, or their interaction could predict cytokine deltas (Δ) using linear mixed models, with country of capture treated as a random effect. We then determined the body condition index (BCI) for each bird by regressing body mass against wing chord and saving standardized residuals from the models. In exploratory analyses, we found that wing chord regressed against body mass provided a better fit than tarsus against body mass, and wing chord was found to be a more repeatable measurement [35]. Due to sexual dimorphism in sparrows [10], BCI was calculated separately for males and females. Subsequently, we investigated whether BCI, along with its interaction with population status, could predict cytokine responsiveness and/or the ratio of $\Delta IL-1\beta$ to $\Delta IL-10$. All linear mixed effects models were fitted using the 'lmer' function from the 'lme4' package (v. 4.3.2) [36]. Regression summaries were computed using the 'jtools' package (v. 4.3.2) [37]. All analyses were conducted using R v. 4.3.2.

3. Results

(a) Immune surveillance and cytokine responsiveness

Baseline gene expression levels of *IL-1 β* , *IL-10*, *TLR-2* and *TLR-4* were comparable between native and non-native populations (electronic supplementary material, table S2). Also, neither $\Delta IL-1\beta$ nor $\Delta IL-10$ differed significantly by population status ($\Delta IL-1\beta$: estimate = 0.692, p = 0.195; $\Delta IL-10$: estimate = 0.476, p = 0.380). However, the interaction between TLR surveillance and population status was a significant predictor of cytokine responsiveness. Specifically, in non-native but not native birds, *TLR-4* expression was inversely related to $\Delta IL-10$ (estimate = -0.623, p = 0.037) (figure 2, table 1) and $\Delta IL-1\beta$ expression (estimate = -0.735, p = 0.012) (figure 2B, table 1). However, this pattern did not hold for *TLR-2*; neither *TLR-2* alone nor its interaction with population status predicted $\Delta IL-1\beta$ (estimate = 0.11, p = 0.631) or $\Delta IL-10$ (estimate = 0.227, p = 0.358; table 2).

(b) Body condition index and cytokine responsiveness


BCI did not differ by population status (estimate = 0.188, p = 0.67; figure 3A). However, $\Delta IL-1\beta$ (estimate = 0.463, p = 0.006; figure 3B) and $\Delta IL-10$ (estimate = 0.482, p = 0.004; figure 3C) were both positively related to BCI. Population status did not affect the manner in which $\Delta IL-1\beta$ (estimate = -0.220, p = 0.367) or $\Delta IL-10$ (estimate = -0.346, p = 0.148) related to BCI, however.

4. Discussion

We found that non-native house sparrows with high *TLR-4* expression showed reduced *IL-1 β* and *IL-10* responsiveness, an effect not seen in natives. To our surprise, we also found that non-native sparrows with low *TLR-4* expression showed a heightened *IL-1 β* and *IL-10* response. We also hypothesized that body condition would partly underlie the patterns of cytokine responsiveness and found it positively related to both *IL-1 β* and *IL-10* responsiveness. However, these effects were consistent between population status, condition positively affected cytokine expression, but similarly in both groups. We offer several explanations for these findings and discuss their implications as follows.

(a) Immune surveillance and responsiveness

We found that native and non-native sparrows exhibit different relationships between *TLR-4* expression and cytokine responses. This result challenges the assumption that heightened microbial surveillance always leads to a strong cytokine response. The most parsimonious explanation for the negative relationship between cytokine responsiveness and surveillance involves the

Figure 2. $\Delta\text{IL-1}\beta$ and $\Delta\text{IL-10}$ are inversely related to TLR4 expression in non-native but not native house sparrows (*Passer domesticus*). Each symbol depicts the expression of a single bird, and trend lines depict linear relationships between variables with slopes differing between population status. The grey shaded area represents 95% confidence intervals.

Table 1. Effects of baseline TLR expression and invasion status on cytokine responsiveness ($\Delta\text{IL-1}\beta$ and $\Delta\text{IL-10}$) in house sparrows.

dependent variable: $\Delta\text{IL-1}\beta$					
fixed effects	estimate \pm SE	t-value	p-value	variance	s.d.
intercept	0.165 ± 0.343	0.481	0.631		
TLR2	-0.091 ± 0.170	-0.531	0.595		
status (non-native)	0.692 ± 0.534	1.296	0.195		
TLR4	-0.085 ± 0.200	-0.424	0.671		
status \times TLR2	0.117 ± 0.243	0.481	0.631		
status \times TLR4	-0.735 ± 0.293	-2.504	0.012		
country				0.079	0.282
marginal $R^2 = 0.21$; conditional $R^2 = 0.15$					

dependent variable: $\Delta\text{IL-10}$					
fixed effects	estimate \pm SE	t-value	p-value	variance	s.d.
intercept	0.324 ± 0.348	0.929	0.353		
TLR2	-0.297 ± 0.173	-1.712	0.087		
status (non-native)	0.476 ± 0.542	0.878	0.380		
TLR4	-0.033 ± 0.203	-0.161	0.872		
status \times TLR2	0.227 ± 0.247	0.920	0.358		
status \times TLR4	-0.623 ± 0.298	-2.089	0.037		
country				0.081	0.285
marginal $R^2 = 0.19$; conditional $R^2 = 0.13$					

Linear mixed model results exploring the impact of TLR-2 and TLR-4 (surveillance molecules) on cytokine responsiveness ($\Delta\text{IL-1}\beta$ and $\Delta\text{IL-10}$), along with the interaction between these molecules and invasion status (native versus non-native). Notably, the model included country as a random fixed effect and variables with p values less than 0.05 are bolded in the table.

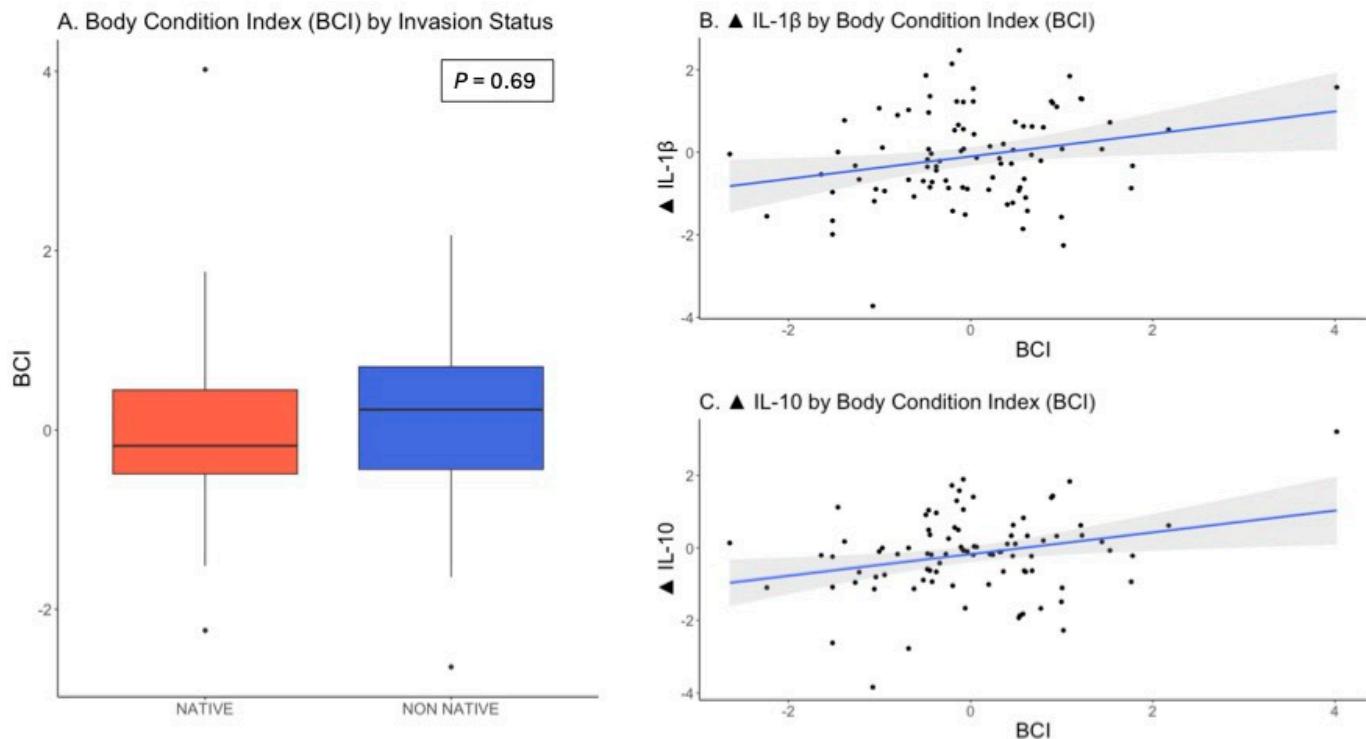
speed and resolution of the inflammatory response. Non-native birds with high initial TLR-4 expression may quickly detect and eliminate pathogens [13]; therefore, the smaller cytokine delta could be signalling the resolution of the inflammatory response. Conversely, non-native birds with lower initial TLR-4 expression might take longer to respond, resulting in a larger cytokine response at 8 h and a more prolonged inflammatory response.

Alternatively, these patterns also reinforce that the inflammatory response is quite complex. In line with the EICA-refined hypothesis [6], variation in immune defences involves strategic trade-offs among components of the response, rather than simple upregulation or downregulation. Lee & Klasing [6] proposed that successful invaders should dampen the costly and/or least effective immune defences in favour of more efficient ones. Here, non-native birds might maintain effective pathogen surveillance and a more modest inflammatory response.

Table 2. Effects of body condition index (BCI) on cytokine responsiveness ($\Delta\text{IL-1}\beta$ and $\Delta\text{IL-10}$) in native and non-native house sparrows.

dependent variable: $\Delta\text{IL-1}\beta$					
fixed effects	estimate \pm s.e.	t-value	p-value	variance	s.d.
intercept	-0.041 ± 0.244	-0.168	0.866		
BCI	0.463 ± 0.168	2.749	0.006		
status (non-native)	-0.099 ± 0.366	-0.272	0.786		
BCI \times status	-0.220 ± 0.243	-0.902	0.367		
country				0.194	0.441
marginal $R^2 = 0.27$; conditional $R^2 = 0.12$					
dependent variable: $\Delta\text{IL-10}$					
fixed effects	estimate \pm SE	t-value	p-value	variance	s.d.
intercept	-0.173 ± 0.196	-0.881	0.378		
BCI	0.482 ± 0.166	2.898	0.004		
status (non-native)	0.048 ± 0.294	0.162	0.871		
BCI \times status	-0.346 ± 0.239	-1.446	0.148		
country				0.084	0.290
marginal $R^2 = 0.17$; conditional $R^2 = 0.11$					

Linear mixed model results exploring the impact of the body condition index (BCI) on cytokine responsiveness ($\Delta\text{IL-1}\beta$ and $\Delta\text{IL-10}$), along with the interaction with invasion status (native versus non-native).


Notably, the model included country as a random fixed effect and variables with $p < 0.05$ are bolded in the table.

Indeed, we were surprised to see a negative relationship between *TLR-4* expression and cytokine responsiveness in non-native populations; our hypothesis was that relationships would be positive in all birds but more modest in non-natives than in natives. One phenomenon that could explain this unexpected result is endotoxin tolerance. Endotoxin tolerance, defined as a reduced responsiveness to Gram-negative pathogens due to repeated exposure to endotoxins (e.g. LPS) [27,38,39], has been observed across many taxa, from mammals [40] to songbirds [41]. Endotoxin tolerance arises through various mechanisms, primarily involving defects in *TLR-4* signalling pathways [38], and these defects can occur at the level of the receptor itself, its adaptor molecules, downstream signalling molecules or even transcription factors [38]. As mounting a robust inflammatory response can be costly and increase the risk of tissue damage, endotoxin tolerance can be understood as an adaptation that results in the reduced capacity of a cell to respond to LPS [38], mitigating the energy use and damage from constant activation [42,43]. House sparrows from Tampa, FL, where they are also non-native, have a notable degree of endotoxin tolerance [33]. Perhaps our results reflect a general disposition towards endotoxin tolerance in house sparrows as a species, but one that is particularly pronounced in non-native populations.

As previously explained, non-native organisms face an environment with reduced pressure from familiar pathogens but increased exposure to novel ones [8]. This scenario may lead to a strategy that involves enhanced surveillance for quick parasite detection combined with a controlled inflammatory response using endotoxin tolerance to mitigate the costs of inflammation [39]. Endotoxin tolerance might also explain certain behavioural phenomena. For example, female house sparrows expressing more *TLR-4* take greater foraging risks [44]. This heightened risk-taking behaviour could be attributed to their increased tolerance to endotoxins, enabling them to exploit a wider range of food sources, including those potentially contaminated with bacteria, without suffering the adverse effects of inflammation. This ability to utilize a broader variety of food resources could enhance survival of infection and confer a competitive advantage in certain environments [45]. Furthermore, endotoxin tolerance could be viewed as a regulatory mechanism, with parasite tolerance [26] representing the broader outcome. However, it should be noted that a refractory immune response due to endotoxin tolerance may also render the host vulnerable to secondary infections [46,47].

Another explanation for the negative relationship between surveillance and cytokine responsiveness involves the leukocyte composition of the blood, with heterophils followed by lymphocytes being the most abundant cell type in circulation [48,49]. Lymphocytes, both B and T, are central to adaptive immunity, with T cells recognizing specific antigens presented on cells and B cells producing immunoglobulins that bind specific antigens [50]. Heterophils, the most numerous leukocytes, are key components of innate immunity, rapidly migrating to sites of infection or injury to phagocytize pathogens and produce cytokines [51]. As the 'first responders', heterophils initiate acute inflammation and injury repair by releasing antimicrobial mediators and activating signalling pathways for chemokine and cytokine expression. Notably, given their abundance, heterophils predominantly drive TLRs and cytokine expression [51,52].

The heterophil to lymphocyte (H/L) ratio is highly sensitive to external stressors [48,49], as the body redistributes circulating lymphocytes from the blood to tissues [53], and all while stimulating the bone marrow to prioritize heterophil production during stressful states [48,54]. Notably, the H/L ratio often differs significantly between native and non-native populations [49], with invaders often exhibiting a higher proportion of heterophils. With heterophils containing pattern recognition receptors (e.g. TLRs), this increase could translate to a heightened expression of *TLR-4* [52]. However, this same stress-induced increase

Figure 3. Cytokine responsiveness is positively related to body condition in both native and non-native house sparrows (*Passer domesticus*). (A). Body condition index (i.e. BCI, residuals from a regression of body mass and wing chord length) did not vary between house sparrow population types, with error bars depicting 95% confidence intervals. Panels (B) and (C) show that BCI was positively related to cytokine responsiveness, although population status did not affect these relationships. In (B) and (C), individual symbols derive from each bird with lines depicting regression relationships between variables, with the grey shaded area representing 95% confidence intervals.

in heterophils could explain a decrease in cytokine responsiveness. Glucocorticoids, known for their immunosuppressive effects [55,56], might promote the development of heterophils while concomitantly dampening the downstream signalling of TLRs by repressing the NF- κ B pathway [57]. This could result in surveillance increasing while reducing cytokine responsiveness. Altogether, the mismatch between surveillance and responsiveness suggests immunological rewiring in non-native sparrows, absent in native populations.

(b) Body condition index and cytokine responsiveness

Although BCI did not differ between native and non-native birds, BCI was positively related to $\Delta IL-1\beta$ and $\Delta IL-10$. Traditionally, a high BCI in passerines signifies that an animal has more fat content per unit physical size [58], providing a larger energy reserve for physiological functions [59,60]. Quantifying the metabolic costs of immune defence remains a challenge; however, evidence suggests a clear link between increased energy expenditure and proinflammatory cytokine upregulation. *In vivo* studies have demonstrated a 30% rise in respiration rates in animals stimulated with cytokines like TNF- α and IL-1 β [61]. Furthermore, individuals mounting a pro-inflammatory response also exhibit a heightened demand for glucose and glutamine, which ultimately leads to the catabolism of the body's reserves of protein, carbohydrates and lipids [61–63].

Therefore, when considering the costs of immunity, individuals in poorer physiological states (i.e. low BCI) might face a trade-off [64]: either prioritize immediate immune defences or invest resources in other crucial traits for fitness [21]. This trade-off means that birds with a lower BCI may not have the necessary reserves to mount an effective immune response without compromising other vital functions [29]. In contrast, birds with a higher BCI have a surplus of resources for mounting robust inflammatory responses [65]. The relationship between BCI and IL-10 was particularly surprising, though, as there is a lack of literature exploring the costs of anti-inflammatory cytokine expression. While the metabolic costs of pro-inflammatory responses have been studied extensively, less is known about the energy requirements and potential trade-offs associated with producing anti-inflammatory cytokines like IL-10. Altogether, birds with higher BCI are better equipped to both defend against parasites (e.g. through *IL-1 β*) and protect against immunopathology (e.g. through *IL-10*).

5. Conclusion

Overall, our results challenge the notion that high parasite surveillance necessitates a strong immune response. Instead, we demonstrate that non-native house sparrows have a more nuanced response, one that allows some to have heightened microbial surveillance without triggering an overly sensitive 'smoke-detector'. This strategy could involve mechanisms such as endotoxin tolerance, which allows non-native sparrows to maintain vigilance against pathogens without the costs of

excessive inflammation [38,39]. Such a trait could provide a competitive edge by enabling these non-native birds to cope with a wider array of environmental challenges, including novel pathogens, while minimizing the trade-offs associated with immune activation.

Furthermore, understanding how non-native species respond to pathogens (i.e. resistance versus tolerance) offers valuable insight into disease dynamics [26]. This perspective is further emphasized when considering the well-established reservoir capabilities of successful invaders like the house sparrow [10,66,67]. Future research should not only investigate the mechanisms behind the regulation of inflammation and physiological trade-offs but also explore pressures that make immune flexibility important for facilitating range expansions and the ecological consequences of such variation.

Ethics. All animal research procedures adhered to local animal research guidelines and were approved in advance by both the USF IACUC (IS00011653) and the relevant authorities in the country of capture. Export and import of animal tissue were also compliant with all local US regulations according to USDA-APHIS and other appropriate permits.

Data accessibility. Data and analysis code are available from the Dryad Digital Repository [37].

Supplementary material is available online [68].

Declaration of AI use. We have not used AI-assisted technologies in creating this article.

Authors' contributions. K.M.M.: conceptualization, data curation, formal analysis, investigation, methodology, writing—original draft; G.M.: data curation, methodology, writing—review and editing; E.L.S.: data curation, methodology, writing—review and editing; C.Z.: methodology, resources, writing—review and editing; A.W.S.: conceptualization, data curation, formal analysis, funding acquisition, methodology, supervision, writing—review and editing; M.R.: methodology, resources, writing—review and editing; R.D.: methodology, resources, writing—review and editing; K.D.K.: conceptualization, data curation, formal analysis, funding acquisition, methodology, supervision, writing—review and editing; J.S.S.: investigation, methodology, writing—review and editing; H.J.: methodology, resources, writing—review and editing; K.J.M.: methodology, resources, writing—review and editing; T.V.: methodology, resources, writing—review and editing; H.T.P.: methodology, resources, writing—review and editing; B.J.: methodology, resources, writing—review and editing; K.L.B.: methodology, resources, writing—review and editing; L.B.M.: funding acquisition, investigation, methodology, project administration, resources, supervision, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed therein.

Conflict of interest declaration. We declare we have no competing interests.

Funding. This work was supported by the National Science Foundation (2027040) and Sigma XI (G20230315-5001)

Acknowledgements. We would like to extend our gratitude to the local researchers who assisted in scouting potential capture locations. In particular, we would like to thank Edgar Bernat-Ponce for his invaluable support in Valencia, Spain; Ruth Fawthrop for her assistance in the Netherlands; and Jan Wijmenga for his help in Edmonton, Canada.

References

1. Davidson AM, Jennions M, Nicotra AB. 2011 Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. *Ecol. Lett.* **14**. (doi:10.1111/j.1461-0248.2011.01596.x)
2. White TA, Perkins SE. 2012 The ecoimmunology of invasive species. *Funct. Ecol.* **26**, 1313–1323. (doi:10.1111/1365-2435.12012)
3. Dunn AM *et al.* 2012 Indirect effects of parasites in invasions. *Funct. Ecol.* **26**, 1262–1274. (doi:10.1111/j.1365-2435.2012.02041.x)
4. Colautti RI, Ricciardi A, Grigorovich IA, MacIsaac HJ. 2004 Is invasion success explained by the enemy release hypothesis. *Ecol. Lett.* **7**, 721–733. (doi:10.1111/j.1461-0248.2004.00616.x)
5. Blossey B, Notzold R. 1995 Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. *J. Ecol.* **83**, 887. (doi:10.2307/2261425)
6. Lee KA, Klasing KC. 2004 A role for immunology in invasion biology. *Trends Ecol. Evol.* **19**, 523–529. (doi:10.1016/j.tree.2004.07.012)
7. Lee KA, Martin LB, Wikelski MC. 2005 Responding to inflammatory challenges is less costly for a successful avian invader, the house sparrow (*Passer domesticus*), than its less-invasive congener. *Oecologia* **145**, 244–251. (doi:10.1007/s00442-005-0113-5)
8. Kelly DW, Paterson RA, Townsend CR, Poulin R, Tompkins DM. 2009 Parasite spillback: a neglected concept in invasion ecology? *Ecology* **90**, 2047–2056. (doi:10.1890/08-1085.1)
9. Cornet S, Brouat C, Diagne C, Charbonnel N. 2016 Eco-immunology and bioinvasion: revisiting the evolution of increased competitive ability hypotheses. *Evol. Appl.* **9**, 952–962. (doi:10.1111/eva.12406)
10. Hanson HE, Mathews NS, Hauber ME, Martin LB. 2020 The natural history of model organisms: the house sparrow in the service of basic and applied biology. *Elife* (doi:10.7554/elife.52803)
11. Martin LB, Coon CAC, Liebl AL, Schrey AW. 2014 Surveillance for microbes and range expansion in house sparrows. *Proc. R. Soc. B* **281**, 20132690. (doi:10.1098/rspb.2013.2690)
12. Brownlie R, Allan B. 2011 Avian toll-like receptors. *Cell Tissue Res.* **343**, 121–130. (doi:10.1007/s00441-010-1026-0)
13. Matsuguchi T, Musikacharoen T, Ogawa T, Yoshikai Y. 2000 Gene expressions of toll-like receptor 2, but not toll-like receptor 4, is induced by LPS and inflammatory cytokines in mouse macrophages. *J. Immunol.* **165**, 5767–5772. (doi:10.4049/jimmunol.165.10.5767)
14. Sternberg EM. 2006 Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. *Nat. Rev. Immunol.* **6**, 318–328. (doi:10.1038/nri1810)
15. Sears BF, Rohr JR, Allen JE, Martin LB. 2011 The economy of inflammation: when is less more? *Trends Parasitol.* **27**, 382–387. (doi:10.1016/j.pt.2011.05.004)
16. Demas GE, Chefer V, Talan MI, Nelson RJ. 1997 Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* **273**, R1631–R1637. (doi:10.1152/ajpregu.1997.273.5.R1631)
17. Bonneaud C, Mazuc J, Gonzalez G, Haussy C, Chastel O, Faivre B, Sorci G. 2003 Assessing the cost of mounting an immune response. *Am. Nat.* **161**, 367–379. (doi:10.1086/346134)
18. Graham AL, Schrom EC, Metcalf CJE. 2022 The evolution of powerful yet perilous immune systems. *Trends Immunol.* **43**, 117–131. (doi:10.1016/j.it.2021.12.002)
19. Zuk M, Stoehr AM. 2002 Immune defense and host life history. *Am. Nat.* **160**, (Suppl. 4), S9–S22. (doi:10.1086/342131)
20. Norris K, Evans MR. 2000 Ecological immunology: life history trade-offs and immune defense in birds. *Behav. Ecol.* **11**, 19–26. (doi:10.1093/beheco/11.1.19)
21. Lee KA. 2006 Linking immune defenses and life history at the levels of the individual and the species. *Integr. Comp. Biol.* **46**, 1000–1015. (doi:10.1093/icb/icl049)
22. Tscharren B, Richner H. 2006 Parasites shape the optimal investment in immunity. *Proc. R. Soc. B* **273**, 1773–1777. (doi:10.1098/rspb.2006.3524)
23. Horrocks NPC, Matson KD, Tieleman BI. 2011 Pathogen pressure puts immune defense into perspective. *Integr. Comp. Biol.* **51**, 563–576. (doi:10.1093/icb/icr011)

24. Downie AE, Mayer A, Metcalf CJE, Graham AL. 2021 Optimal immune specificity at the intersection of host life history and parasite epidemiology. *PLoS Comput. Biol.* **17**, e1009714. (doi:10.1371/journal.pcbi.1009714)

25. Ilmonen P, Taarna T, Hasselquist D. 2000 Experimentally activated immune defence in female pied flycatchers results in reduced breeding success. *Proc. R. Soc. Lond. B* **267**, 665–670. (doi:10.1098/rspb.2000.1053)

26. Råberg L, Graham AL, Read AF. 2009 Decomposing health: tolerance and resistance to parasites in animals. *Phil. Trans. R. Soc. B* **364**, 37–49. (doi:10.1098/rstb.2008.0184)

27. Beutler B, Rietschel ET. 2003 Innate immune sensing and its roots: the story of endotoxin. *Nat. Rev. Immunol.* **3**, 169–176. (doi:10.1038/nri1004)

28. Beldomenico PM, Begon M. 2010 Disease spread, susceptibility and infection intensity: vicious circles? *Trends Ecol. Evol.* **25**, 21–27. (doi:10.1016/j.tree.2009.06.015)

29. Milenkaya O, Catlin DH, Legge S, Walters JR. 2015 Body condition indices predict reproductive success but not survival in a sedentary, tropical bird. *PLoS One* **10**, e0136582. (doi:10.1371/journal.pone.0136582)

30. Ujvari B, Madsen T. 2006 Age, parasites, and condition affect humoral immune response in tropical pythons. *Behav. Ecol.* **17**, 20–24. (doi:10.1093/beheco/ari091)

31. Warburton EM, Pearl CA, Vonhof MJ. 2016 Relationships between host body condition and immunocompetence, not host sex, best predict parasite burden in a bat–helminth system. *Parasitol. Res.* **115**, 2155–2164. (doi:10.1007/s00436-016-4957-x)

32. Greenman CG, Martin LB, Hau M. 2005 Reproductive state, but not testosterone, reduces immune function in male house sparrows (*Passer domesticus*). *Physiol. Biochem. Zool.* **78**, 60–68. (doi:10.1086/425194)

33. Martin LB, Kidd L, Liebl AL, Coon CAC. 2011 Captivity induces hyper-inflammation in the house sparrow (*Passer domesticus*). *J. Exp. Biol.* **214**, 2579–2585. (doi:10.1242/jeb.057216)

34. Sambrook J, Russell DW. 2001 *Molecular cloning: a laboratory manual*, vol. **33**, 3rd ed. New York, NY: Cold Spring Harbor Laboratory Press.

35. Subasinghe K, Symonds MRE, Vidal-García M, Bonnet T, Prober SM, Williams KJ, Gardner JL. 2021 Repeatability and validity of phenotypic trait measurements in birds. *Evol. Biol.* **48**, 100–114. (doi:10.1007/s11692-020-09527-5)

36. Bates D, Mächler M, Bolker BM, Walker SC. 2015 Fitting linear mixed-effects models using lme4. *J. Stat. Softw.* **67**. (doi:10.18637/jss.v067.i01)

37. McCain K, Mansilla G, Sheldon E, Zimmer C, Schrey A, Rowe M *et al.* 2024 Microbial surveillance verses cytokine responsiveness in native and non-native house sparrows. Dryad. (doi:10.5061/dryad.73n5tb35c)

38. Biswas SK, Lopez-Collazo E. 2009 Endotoxin tolerance: new mechanisms, molecules and clinical significance. *Trends Immunol.* **30**, 475–487. (doi:10.1016/j.it.2009.07.009)

39. Fan H, Cook JA. 2004 Molecular mechanisms of endotoxin tolerance. *J. Endotoxin Res.* **10**, 71–84. (doi:10.1179/096805104225003997)

40. Roth J, McClellan JL, Kluger MJ, Zeisberger E. 1994 Attenuation of fever and release of cytokines after repeated injections of lipopolysaccharide in guinea-pigs. *J. Physiol.* **477**, 177–185. (doi:10.1113/jphysiol.1994.sp020182)

41. Leon AE, Hawley DM. 2017 Host responses to pathogen priming in a natural songbird host. *Ecohealth* **14**, 793–804. (doi:10.1007/s10393-017-1261-x)

42. Seeley JJ, Baker RG, Mohamed G, Bruns T, Hayden MS, Deshmukh SD, Freedberg DE, Ghosh S. 2018 Induction of innate immune memory via microRNA targeting of chromatin remodelling factors. *Nature* **559**, 114–119. (doi:10.1038/s41586-018-0253-5)

43. Vergadi E, Vaporidi K, Tsatsanis C. 2018 Regulation of endotoxin tolerance and compensatory anti-inflammatory response syndrome by non-coding RNAs. *Front. Immunol.* **9**, 2705. (doi:10.3389/fimmu.2018.02705)

44. Zimmer C, Hanson HE, Garrison M, Reese D, Dor R, Søraker JS, Ho Thu P, Sheldon EL, Martin LB. 2024 Immune gene expression and epigenetic potential affect the consumption of risky food by female house sparrows. *Brain Behav. Immun.* **119**, 6–13. (doi:10.1016/j.bbi.2024.03.033)

45. Martin LB, Fitzgerald L. 2005 A taste for novelty in invading house sparrows, *Passer domesticus*. *Behav. Ecol.* **16**, 702–707. (doi:10.1093/beheco/ari044)

46. Cavaillon JM, Adib-Conquy M. 2006 Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. *Crit. Care* **10**, 233. (doi:10.1186/cc5055)

47. Marais M, Maloney SK, Gray DA. 2011 The development of endotoxin tolerance, and the role of hypothalamo–pituitary–adrenal function and glucocorticoids in Pekin ducks. *J. Exp. Biol.* **214**, 3378–3385. (doi:10.1242/jeb.056499)

48. Davis AK, Maney DL, Maerz JC. 2008 The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. *Funct. Ecol.* **22**, 760–772. (doi:10.1111/j.1365-2435.2008.01467.x)

49. Minias P. 2019 Evolution of heterophil/lymphocyte ratios in response to ecological and life-history traits: a comparative analysis across the avian tree of life. *J. Anim. Ecol.* **88**, 554–565. (doi:10.1111/1365-2656.12941)

50. McCormack WT, Tjoelker LW, Thompson CB. 1991 Avian B-cell development: generation of an immunoglobulin repertoire by gene conversion. *Annu. Rev. Immunol.* **9**, 219–241. (doi:10.1146/annurev.iy.09.040191.001251)

51. Kogut MH. 2021 Avian granulocytes. In *Avian immunology*. Cambridge, UK: Academic Press. (doi:10.1016/B978-0-12-818708-1.00014-2)

52. Kogut MH, Iqbal M, He H, Philbin V, Kaiser P, Smith A. 2005 Expression and function of toll-like receptors in chicken heterophils. *Dev. Comp. Immunol.* **29**, 791–807. (doi:10.1016/j.dci.2005.02.002)

53. Dhabhar FS. 2002 A hassle a day may keep the doctor away: stress and the augmentation of immune function. *Integr. Comp. Biol.* **42**, 556–564. (doi:10.1093/icb/42.3.556)

54. Ronchetti S, Ricci E, Migliorati G, Gentili M, Riccardi C. 2018 How glucocorticoids affect the neutrophil life. *Int. J. Mol. Sci.* **19**, 4090. (doi:10.3390/ijms19124090)

55. Sapolsky RM, Romero LM, Munck AU. 2000 How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. *Endocr. Rev.* **21**, 55–89. (doi:10.1210/edrv.21.1.0389)

56. Martin II LB, Gilliam J, Han P, Lee K, Wikelski M. 2005 Corticosterone suppresses cutaneous immune function in temperate but not tropical house sparrows, *Passer domesticus*. *Gen. Comp. Endocrinol.* **140**, 126–135. (doi:10.1016/j.ygcen.2004.10.010)

57. Cruz-Topete D, Cidlowski JA. 2015 One hormone, two actions: anti- and pro-inflammatory effects of glucocorticoids. *Neuroimmunomodulation* **22**, 20–32. (doi:10.1159/000362724)

58. Green AJ. 2001 Mass/length residuals: measures of body condition or generators of spurious results? *Ecology* **82**, 1473–1483. (doi:10.1890/0012-9658(2001)082[1473:MLRM0B]2.0.CO;2)

59. Wenker ES, Kendrick EL, Maslanka M, Power ML. 2022 Fat scoring in four sparrow species as an estimation of body condition: a validation study. *J. Field Ornithol.* **93**. (doi:10.5751/JFO-00119-930205)

60. Labocha MK, Hayes JP. 2012 Morphometric indices of body condition in birds: a review. *J. Ornithol.* **153**, 1–22. (doi:10.1007/s10336-011-0706-1)

61. Lochmiller RL, Deerenberg C. 2000 Trade-offs in evolutionary immunology: just what is the cost of immunity? *Oikos* **88**, 87–98. (doi:10.1034/j.1600-0706.2000.880110.x)

62. Michie HR. 1996 Metabolism of sepsis and multiple organ failure. *World J. Surg.* **20**, 460–464. (doi:10.1007/s002689900072)

63. Crouser ED, Dorinsky PM. 1996 Metabolic consequences of sepsis. Correlation with altered intracellular calcium homeostasis. *Clin. Chest Med.* **17**, 249–261. (doi:10.1016/s0272-5231(05)70312-9)

64. Sheldon BC, Verhulst S. 1996 Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. *Trends Ecol. Evol.* **11**, 317–321. (doi:10.1016/0169-5347(96)10039-2)

65. Møller AP, Christe Ph, Erritzøe J, Mavarez J, Møller AP, Erritzoe J. 1998 Condition, disease and immune defence. *Oikos* **83**, 301. (doi:10.2307/3546841)
66. Kilpatrick AM, LaDeau SL, Marra PP. 2007 Ecology of West Nile Virus transmission and its impact on birds in the Western Hemisphere. *Auk* **124**, 1121–1136. (doi:10.1093/auk/124.4.1121)
67. Tizard I. 2004 Salmonellosis in wild birds. *Semin. Avian Exot. Pet Med.* **13**, 50–66. (doi:10.1053/j.saep.2004.01.008)
68. McCain KM, Sheldon EL, Mansilla G, Zimmer C, Buchanan K, Schrey AW *et al.* 2025 Supplementary material from: Microbial surveillance verses cytokine responsiveness in native and non-native house sparrows. Figshare. (doi:10.6084/m9.figshare.c.7647008)