

1 **Determination of KGa-1b and SHCa-1 $\Delta^{17}\text{O}$ and $\delta^{18}\text{O}$ via laser fluorination of lithium
2 fluoride clay pellets**

4 Catherine A. Gagnon^{1,2}, Riley Havel¹, Jiquan Chen^{1,3}, Gavin Piccione^{1,2}, Daniel E. Ibarra^{1,2*}

6 ¹Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI

7 ² Institute at Brown for Environment and Society, Brown University, Providence, RI

8 ³School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing,
9 China

10 *Corresponding author: daniel_ibarra@brown.edu

12 **Abstract**

13 **Rationale**

14 Stable oxygen isotope measurements in silicate clays, such as smectite and kaolinite, provide
15 crucial information for understanding Earth's climate history and environmental changes. Despite
16 a growing interest in the oxygen isotope analysis of silicate clays and clay-rich sediments, there
17 lacks a consensus on the preparation and standardization of clay mineral samples. To improve the
18 accuracy and interlaboratory comparisons of clay isotope measurements, especially those
19 involving laser-fluorination techniques, newly established kaolinite and smectite oxygen isotope
20 standards are much needed.

22 **Methods**

23 We employed conventional nickel bomb fluorination combined with dual-inlet isotope ratio mass
24 spectrometry to establish precise $\delta^{18}\text{O}$ and $\Delta^{17}\text{O}$ values for leached clay reference materials KGa-
25 1b and SHCa-1, a kaolinite and a hectorite/smectite, respectively. We further measured leached
26 KGa-1b and SHCa-1 pressed into pellets with a lithium fluoride as a binding agent for the laser
27 fluorination method, allowing us to test the reproducibility between methods and utilize a standard
28 laser chamber drift correction scheme.

30 **Results**

31 The laser fluorination technique yielded highly precise and reproducible $\delta^{18}\text{O}$ and $\Delta^{17}\text{O}$
32 measurements for the KGa-1b and SHCa-1, aligning with bomb values of $\delta^{18}\text{O}$. This confirms the
33 method's reliability and comparability to conventional isotope measurement techniques, while also
34 stressing the importance of proper sample preparation and laser chamber drift corrections.

36 **Conclusions**

37 This study demonstrates that laser fluorination is an effective method for accurately measuring the
38 stable oxygen isotope composition of silicate clays or clay-rich sediments when corrected with
39 known silicate clay standards. These methods offer a valuable methodology for future research

1 and applications, that will significantly improve our understanding of past climate and
2 environmental conditions.

3
4 **1. Introduction**

5 The stable oxygen isotope ratio ($\delta^{18}\text{O}$) of geological materials has been used to understand
6 Earth's system processes for decades¹⁻³. Applications include reconstructing climatological
7 changes in temperature⁴⁻⁶, regional water balance⁷⁻¹⁰, global ice^{11,12}, and the determination of ore
8 formation conditions¹³⁻¹⁸. Silicate clays like smectite or kaolinite are particularly useful for
9 understanding regional weathering processes and water balance since these processes are closely
10 tied to their formation in soils and fluvio-lacustrine settings¹⁹⁻³². Further, the oxygen isotope
11 composition of clay weathering products may be combined with modern hydrosphere mass-
12 balance equations to infer past ocean water composition³². Despite their demonstrated usefulness
13 in paleoclimate and environmental studies, the methodology for analyzing $\delta^{18}\text{O}$ silicate clay has
14 lagged that of more commonly measured sample types, like marine carbonates. For example,
15 measuring the $\delta^{18}\text{O}$ value of carbonates has become increasingly more automated through the use
16 of peripheral sample preparation devices since the first measurements were made by hand on a
17 vacuum line in the 1950's and 1960's³³⁻³⁵.

18 The first measurements of $\delta^{18}\text{O}$ on clay minerals were made in 1963³⁶ using previously
19 established mineral fluorination techniques³⁷. This method involves using either fluorine or an
20 interhalogen fluoride (BrF₅, or ClF₃) to oxidize the clay minerals in nickel rod bombs to O₂ gas,
21 which was then quantitatively converted to CO₂ using heated graphite rods^{1,3,19,21,22,27,28,30,38-41}.
22 The carbon dioxide was then purified using liquid nitrogen traps and hot mercury, which removed
23 any residual bromine or fluorine prior to measurement on a mass spectrometer. More recent mass
24 spectrometry methods eliminated the need for conversion of O₂ to CO₂ and instead measured the
25 evolved O₂ gas directly following purification^{16,23,25,29,31,42-45}.

26 Since the 1990s laser fluorination has also been used on silicate materials in lieu of nickel
27 reaction tubes (referred throughout as Ni bombs), which allows for smaller sample volume, faster
28 and more complete reactions, and the elimination of hygroscopic contaminant NiF₂ buildup⁴⁶.
29 Laser fluorination is generally reserved for in-situ materials, ore chips, or individual large sample
30 grains, since unconsolidated clay and silt-sized particles often containing highly reactive, hydrous
31 minerals (e.g. phyllosilicates) are subject to dispersion within the laser chamber, partial
32 fluorinations, and vaporization leading to lower sample yield and the depletion of $\delta^{18}\text{O}$ values⁴⁶⁻⁵⁰. To accurately determine $\delta^{18}\text{O}$ of fine-grained materials by laser, homogenized powders are now
33 mixed with a LiF binder and pressed into a pellet prior to loading into the sample holder^{23,25,26,42,45,49,51}. The LiF binder physically reduces sample dispersion upon heating, allowing for a
34 more rapid, high-temperature reaction reducing the risk of partial fluorinations and vaporization.
35 Reported $\delta^{18}\text{O}$ precision among the various fluorination methods for clay minerals is around 0.2‰
36 for minerals that do not contain molecular water, such as kaolinite^{25,35} and between 0.2‰-0.4‰
37 for clay minerals with interlayer water, such as smectite^{29,35,45}. In most cases, the reported
38 precision for a given clay sample was determined from the repeat analysis of quartz or garnet
39
40

1 standards, not concurrent measurement of clay standards. Only in a few cases were in-house clays,
 2 kaolinite or smectite, analyzed alongside quartz or garnet standards for data quality assurance
 3 29,31,45,52.

4 Recent technological advancements have allowed for the precise measurement of mass-
 5 dependent variations of triple oxygen isotopes (^{16}O , ^{17}O , ^{18}O) in silicate materials using the laser
 6 methods described above 46,49,53–57. Small deviations of $\delta'^{18}\text{O}$ and $\delta'^{17}\text{O}$ from a mass-dependent
 7 reference relationship ($\Delta'^{17}\text{O}$) 56,58 provide additional context for the interpretation of $\delta^{18}\text{O}$ values
 8 by constraining isotope effects of kinetic fractionation and other confounding processes that follow
 9 different mass law from the typical reference relationship^{53,59}. Despite its applicability to terrestrial
 10 paleoclimate reconstructions there are currently no studies that have precisely determined the triple
 11 oxygen isotope value for pure silicate clay minerals, including widely distributed kaolinite and
 12 smectite mineral standards. The closest materials to pure silicate clays analyzed for $\Delta'^{17}\text{O}$ include
 13 $<4\mu\text{m}$ river sediment collected from major world rivers³², borehole shales⁶⁰, and mixed illite-
 14 smectite clay separates from hydrothermally altered mudstones⁶¹.

15 In the following, we determine the precise $\Delta'^{17}\text{O}$ value for two internationally distributed
 16 clay mineral standards (KGa-1b and SHCa-1) and one in-house clay (C-6) using laser fluorination
 17 of 1:1 LiF-clay pressed pellets. We aim to demonstrate that the determination of $\Delta'^{17}\text{O}$ by LiF-clay
 18 pellet laser fluorination can achieve similar precision to other commonly measured silicate
 19 materials. Secondly, we test the reproducibility of previously reported $\delta^{18}\text{O}$ values for KGa-1b⁶²
 20 and SHCa-1⁶³ by both laser and bomb fluorination techniques. Lastly, we show that applying a
 21 laser chamber drift correction using KGa-1b leads to better precision of unknown clay samples
 22 than corrections commonly made using other silicate standards.

23

24 2. Isotope notation

25 Oxygen isotope ratios for $^{17}\text{O}/^{16}\text{O}$ and $^{18}\text{O}/^{16}\text{O}$ are reported in standard δ -notation⁶⁴ relative to
 26 VSMOW-SLAP scale. We also report linearized $\delta^{18}\text{O}$ and $\delta^{17}\text{O}$ values to account for curvature
 27 when making comparisons⁶⁵, which are defined as:

$$28 \delta^x\text{O} = 1000\ln(\delta^x\text{O}/1000 + 1)$$

29 Where ^xO refers to ^{17}O or ^{18}O . Using the δ' -notation, the mass-dependent fractionation between
 30 two phases can be written as $1000\ln\alpha_{a-b} = \delta'^x\text{O}_a - \delta'^x\text{O}_b$ and deviations in $\delta'^{17}\text{O}$ from a reference
 31 slope can be expressed as $\Delta'^{17}\text{O}$:

$$32 \Delta'^{17}\text{O} = \delta'^{17}\text{O} - \lambda_{RL} \times \delta'^{18}\text{O} + \gamma$$

33 where λ_{RL} is the reference slope and γ is the y-intercept (for this study $\gamma=0$). In this work, we
 34 adopt a λ_{RL} value of 0.528 consistent with other reported standards within the triple oxygen
 35 literature and geological community^{43,53,66–69}.

36

37 3. Methods

38 3.1 Clay Standards

1 Kga-1b is a well-crystallized natural kaolinite obtained from the Source Clays Repository of The
2 Clay Mineral Society (CMS). A large aliquot (>100 g) was obtained from C. Page Chamberlain
3 (Stanford University) for this work from bulk material distributed by the Clay Mineral Society.
4 KGa-1b contains 96% kaolinite and trace dickite (3% anatase, 1% crandallite + quartz)⁷⁰. KGa-
5 1b is used to replace the exhausted supply of KGa-1, because of near identical X-ray diffraction
6 (XRD) patterns and only slight mineralogical and chemical differences including higher order
7 crystal phases in KGa-1b⁷⁰⁻⁷³. While there are no published $\delta^{18}\text{O}$ values for KGa-1b, Chaplgin et
8 al. (2011) report a value of 21.5 ‰ (VSMOW) for KGa-1 analyzed at the University of Western
9 Ontario. Evidence indicates that, once formed, diagenetic clay minerals may preserve their original
10 isotopic composition, unless subjected to dissolution–reprecipitation reactions⁷⁴. We therefore use
11 the reported KGa-1 $\delta^{18}\text{O}$ value for KGa-1b (Table 1) as a point of interlaboratory comparison.

12 SHCa-1 is a natural hectorite from the Red Mountain Andesite formation in San Bernardino
13 county, CA. As with Kga-1b an aliquot (>100 g) was obtained from Page Chamberlain. This
14 standard was also obtained from the Source Clays Repository. SHCa-1 contains approximately
15 50% smectite, 43% calcite, 3% dolomite, 3% quartz and 1% other⁷⁰. Reported $\delta^{18}\text{O}$ values for
16 SHCa-1 range from 21.2 ‰ to 24.1 ‰ (VSMOW) depending on what pre-treatments were used⁶³
17 (Table 1).

18 C-6 is a Mg-rich pedogenic clay collected from the Uinta alpine zone, which consists of a
19 smectite dominated mixture of kaolinite, illite, and smectite⁷⁵ obtained from Jeffrey Munroe. We
20 chose to establish C-6 as an in-house standard because of its low $\delta^{18}\text{O}$ value, which falls within
21 the range of natural clay samples from continental settings commonly measured at Brown
22 University^{16,61}.

23 In addition to clay standards, known quartz, olivine, garnet, chert, and diatom/diatomite
24 standards^{43,54,55,76,77} were also measured during the analysis period (Table 1). The non-pellet
25 standards were used to (1) determine the long-term reference tank $\Delta^{17}\text{O}$ value and (2) monitor the
26 precision and accuracy of the corrected clay $\Delta^{17}\text{O}$ values (details below).

27

28 *3.2 Sample Preparation*

29 Powdered clay standards were first reacted with a 1M potassium acetate-acetic acid buffer solution
30 (pH=5) to remove any carbonate phases. Samples were then triple rinsed with milli-Q water and
31 re-homogenized via ceramic mortar and pestle. To prevent clay particles from dispersing in the
32 laser chamber during analysis, ~3mg of each sample was then mixed with LiF (1:1 ratio by weight)
33 and pressed into pellets^{16,23,25,26,42,45,49,51}. A custom pellet die set with a 2 cm tall chute 0.24 cm in
34 diameter was used to form 0.24 cm pellets, which were loaded into 0.3 cm wide slots in the laser
35 chamber sample holder (Figure 1). A combination of 9-11 pellets and 1-3 non-pellet standards
36 were loaded into sample holder at a time. The loaded sample holder was placed within the laser
37 chamber and dried under vacuum using a molecular turbo pump for 12+ hours, reaching typical
38 backgrounds in the 1×10^{-6} millibar range. All samples within the laser chamber were analyzed
39 within an 8–14-hour window the following day.

40

1 **3.3 Fluorination Methods**

2 The oxygen isotope ratios of the clays pellets were measured via laser fluorination at Brown
3 University Oxygen Isotope Fluorination Lab. At the beginning of each analysis day, the samples
4 were exposed to three 3-5 min preflourinations under vacuum with BrF_5 to liberate impurities from
5 the samples and fluorination line. The O_2 gas was liberated from the samples by reaction with BrF_5
6 in a 3-5:1 stoichiometric excess while being heated using a 50 W CO_2 infrared laser as described
7 in detail ^{16,43,61,78}. Briefly, the O_2 gas was passed through a liquid N_2 trap, a NaCl trap, a second
8 liquid N_2 trap, and then sorbed on to a zeolite trap at liquid N_2 temperature. After evacuating
9 remaining non-condensables, the O_2 gas was then passed through a molecular sieve gas
10 chromatography column^{43,56,79} to another chilled zeolite using a He carrier gas before being
11 introduced to the sample side bellow of the mass spectrometer after evacuating the He carrier gas.

12 When analyzing via the conventional Ni bombs roughly 3mg of leached sample powder
13 was added to the nickel bombs. The bombs were then heated to 200 °C for 2 hours under vacuum
14 afterwards pre-fluorinated 3x for 5 min to remove any surficial contaminants^{43,80} BrF_5 at an ~5:1
15 stoichiometric excess was then added to each reaction vessel and heated to 600 °C for 16 hours.
16 Once the bomb samples are reacted with BrF_5 , the analytical procedure is identical to that of the
17 laser samples. All clay isotopic ratios are reported with respect to Vienna standard mean ocean
18 water (VSMOW) based on corrections described below.

19

20 **3.4. IRMS Methods**

21 Following laser fluorination and purification, sample O_2 was analyzed on a dual inlet MAT
22 253+ isotope ratio mass spectrometer. An initial argon background check was performed on each
23 bellow to screen for leaks introduced during the sample reaction and purification steps. Samples
24 that maintained low Ar backgrounds (<3000 mV) were then measured 2-3 times with an
25 integration time of XXs with 10 iterations per analysis and against the same O_2 reference gas.
26 Samples were run at an intensity of 5V on mass 32, corresponding to a pressure of ~25 mbar in
27 the bellows and XX mbar in the source.

28

29 **3.5 Drift Corrections ($\delta^{18}\text{O}$)**

30 There is an observable drift in the measured isotope values of clays analyzed in the laser
31 chamber^{25,42}. This drift is likely attributed to the liberation of excess contaminants and interstitial
32 waters throughout the course of the run and/or the partial reaction of clays during subsequent
33 reactions. At least 3 KGa-1b pellets were measured in each chamber in the beginning, middle, and
34 end of the analysis day and used to make daily $\delta^{18}\text{O}$ drift corrections. The difference between the
35 measured KGa-1b and the internal bomb determined KGa-1 $\delta^{18}\text{O}$ value (21.459 ‰; S1) were
36 plotted against the daily run order, and the resulting linear trend (typical R^2 of 0.25 to 0.91; Table
37 S1) applied to the other clay samples within the laser chamber. Identical corrections were made
38 using an externally determined value for KGa-1 for comparison (Table S2).

39

40 Typically, the KGa-1 $\delta^{18}\text{O}$ value becomes more positive after applying the correction. The
average magnitude of the correction is 0.88 ‰. This correction was only performed on the clay

1 samples run by laser fluorination. Samples run via conventional Ni bomb fluorination are corrected
2 via a daily offset^{43,44}.

3
4 *3.6 Reference Gas Corrections ($\Delta'^{17}\text{O}$)*
5 Because there are currently no reported $\Delta'^{17}\text{O}$ values for the clay standards, the $\Delta'^{17}\text{O}$ corrections
6 for KGa-1b, SHCa-1, and C-6 are made against known non-clay standards measured alongside the
7 clays^{16,32,60}. To reserve space for like-material standards and allow for higher sample throughput,
8 we tested using the long-term determined laboratory reference tank $\Delta'^{17}\text{O}$ value as a means for
9 making sample chamber corrections and compare the results with the conventional non-clay
10 standard correction method. The assumption is that fractionation in bulk composition ($\delta^{18}\text{O}$ values)
11 follows a mass law of ~0.528, as previously assumed in comparable work⁶⁹. Further, this
12 assumption is made to address a practical need for sample throughput because triple oxygen
13 isotope measurements take ~1 to 1.5 hours per sample.

14 The reference tank calibration to the VSMOW-SLAP scale was achieved by analyzing
15 five known silicate standards by laser over several years (March 2022 to April 2024; Table S3).
16 The calibration to the VSMOW-SLAP scale also involves the determination of the compression
17 scale factor, which is unique for each mass-spectrometer and reflects its deviation from perfect
18 linearity of slope 1.00 across a wide range of δ values⁸¹. Repeat analysis of silicate standards
19 over time has allowed for the determination of the compression factor of the Brown University
20 MAT 253+ and the transformation of its measurements to the VSMOW-SLAP scale. The results
21 with an r^2 value of 0.9993 for $\delta'^{18}\text{O}$ and 0.9993 for $\delta'^{17}\text{O}$, respectively, with slopes of 1.0019 and
22 1.0017, respectively, cover a range of 60‰ in $\delta^{18}\text{O}$ and via the intercept values provide the
23 calibrated $\delta'^{18}\text{O}$ and $\delta'^{17}\text{O}$ values and thus the $\Delta'^{17}\text{O}$ of the Brown University MAT 253+
24 reference gas (Figure 2; $\delta'^{18}\text{O} = -10.0296$; $\delta'^{17}\text{O} = -5.2560$; $\Delta'^{17}\text{O} = +0.00396$ ‰).
25

26 **4. Results**

27 In the following, we report and compare the values obtained using multiple correction schemes.
28 For clarity, we define them here. Correcting via “daily offset” pertains to samples that have been
29 corrected to the average daily offset of the non-clay silicate standards run in that day’s laser
30 chamber or bomb set (Table S5). This is the traditional method of standard correction. Correcting
31 via “the known reference tank value” corresponds to isotope values that were corrected using the
32 previously established known value for the reference tank (see above section).
33

34 *4.1. KGa-1b*

35 The laser KGa-1b $\delta^{18}\text{O}$ values corrected via daily offset from non-clay standards have a value of
36 19.787‰ (± 1.000 (1 σ); ± 0.158 (1SE); n=40) (Table 2; Table S1), while the conventional Ni bomb
37 value corrected via daily offset is 21.459 (± 0.771 (1 σ); ± 0.257 (1SE); n=9) (Table S4). In addition
38 to the laser-produced clay $\delta^{18}\text{O}$ values being generally lower than bomb-produced clay $\delta^{18}\text{O}$
39 values, laser-produced clay $\delta^{18}\text{O}$ values experienced on average a 0.996‰ magnitude drift between
40 the first and last sample analyzed each day.

1 The drift-corrected laser fluorination $\delta^{18}\text{O}$ value for KGa-1b is 21.478‰ (± 0.267 (1 σ);
 2 ± 0.042 (1SE); n=40) (Figure 1; Table S1) when made using the reference tank value and 21.427‰
 3 (± 0.948 (1 σ); ± 0.03 (1SE); n=40) when corrected via non-clay chamber standards. The laser
 4 fluorination-based $\Delta'^{17}\text{O}$ value for KGa-1b is -0.074 (± 0.014 (1 σ); ± 0.002 (1SE); n=40) when the
 5 correction is made using the known reference tank value (Figure 3; Table S1). The laser
 6 fluorination based $\Delta'^{17}\text{O}$ value is nearly identical to the mean conventional Ni bomb $\Delta'^{17}\text{O}$ value,
 7 which is -0.073 (± 0.014 (1 σ); ± 0.005 (1SE); n=9) and corrected by non-clay bomb standards
 8 (Table S4). When corrected using the non-clay chamber standards, the drift corrected laser
 9 fluorination-based $\Delta'^{17}\text{O}$ value for KGa-1b is -0.067 (± 0.017 (1 σ); ± 0.003 (1SE); n=40) (Table
 10 S1).

11

12 4.2. SHCa-1

13 The mean drift-corrected laser fluorination $\delta^{18}\text{O}$ value for SHCa-1 is 21.769‰ (± 0.753 (1 σ);
 14 ± 0.227 (1SE); n=11) when corrected against the reference tank value (Figure 3) and 21.784‰
 15 (± 1.102 (1 σ); ± 0.348 (1SE); n=11) when corrected by non-clay chamber standards (Table S1). The
 16 conventional Ni bomb value corrected via daily standard offsets is 22.042‰ (± 0.830 (1 σ); ± 0.338
 17 (1SE); n=5) (Table 2; Table S4). The mean laser fluorination-based $\Delta'^{17}\text{O}$ value for SHCa-1 is -
 18 0.1162‰ (± 0.0073 (1 σ); ± 0.0023 (1SE); n=11) when corrected daily against non-clay chamber
 19 standards and -0.1222‰ (± 0.0078 (1 σ); ± 0.0023 (1SE); n=11) when corrected against the long-
 20 term reference tank value (Table S1). The mean conventional Ni bomb $\Delta'^{17}\text{O}$ value is -0.1083‰
 21 (± 0.016 (1 σ); ± 0.007 (1SE); n=5) when corrected via chamber standards, and -0.1005‰ (± 0.014
 22 (1 σ); ± 0.006 (1SE); n=5) when corrected using the reference tank value (Table S4). The bomb-
 23 determined $\Delta'^{17}\text{O}$ and $\delta^{18}\text{O}$ values for SHCa-1 are higher than the laser-determined values.

24

25

26 4.3. C-6

27 The mean drift-corrected laser fluorination $\delta^{18}\text{O}$ value for the unknown C-6 is 13.577‰ (± 1.141
 28 (1 σ); ± 0.277 (1SE); n=17) when corrected against the reference tank value (Figure 3; Table 2) and
 29 13.261‰ (± 1.360 (1 σ); ± 0.330 (1SE); n=17) when corrected using non-clay chamber standards
 30 (Table S1). The mean laser fluorination-based $\Delta'^{17}\text{O}$ value for C-6 is -0.1056 (± 0.0131 (1 σ);
 31 ± 0.0032 (1SE); n=17) when corrected using the tank value and -0.0993 (± 0.0155 (1 σ); ± 0.0038
 32 (1SE); n=17) when corrected using non-clay chamber standards. No C-6 samples were analyzed
 33 via bomb.

34

35 Discussion

36 5.1. New standards for clay-rich geologic materials

37 KGa-1b, SHCa-1, or C-6 are ideal standards for assessing the quality of $\Delta'^{17}\text{O}$ and $\delta^{18}\text{O}$ data
 38 generated from clay-rich geological materials, because of similar mineralogy, grain size, and
 39 consequently reactivity. Further, when plotted in $\Delta'^{17}\text{O}$ - $\delta^{18}\text{O}$ space, the isotopic composition of
 40 KGa-1b, SHCa-1, and C-6 fall within the same field as clay-rich shales⁶⁰, mixed illite and smectite

1 clays from hydrothermally altered mudstones⁶¹, and mixed clays from rivers around the world ³²
2 (Figure 4). This is particularly useful considering most clay materials plotted in a region
3 ($\delta^{18}\text{O}$ =3.24 to 19.96 ‰ and $\Delta^{17}\text{O}$ = -0.17 to -0.06 ‰) under-represented by existing inter-
4 laboratory silicate standards (Figure 4). As such, we propose that KGa-1b and SHCa-1, both
5 widely distributed clay mineral materials, can be used by other groups and laboratories as either
6 primary or secondary standards to allow for more direct interlaboratory comparisons between clay-
7 rich sediments or clay separates. For example, if leaching protocols can be standardized for oxygen
8 isotope analyses (beyond the scope of this work), like recent efforts by Kanik et al. (2022) for δD
9 measurements, these two clay mineral standards appear suitable for use to ensure cross-laboratory
10 intercalibration of $\Delta^{17}\text{O}$ - $\delta^{18}\text{O}$.

11 The drift-corrected laser fluorination $\delta^{18}\text{O}$ value for SHCa-1 is within 0.1‰ accuracy of
12 values reported by Fagan and Longstaffe (1996) for sodium acetate treated SHCa-1 samples
13 analyzed by bomb. Our bomb-produced clay $\delta^{18}\text{O}$ value is slightly lower, but accurate within 0.16
14 ‰ of the sodium acetate treated SHCa-1 samples⁶³. The incomplete fluorination of SHCa-1 with
15 BrF_5 within the nickel bombs may account for the unexpected low bomb-produced clay $\delta^{18}\text{O}$
16 values. In this case, slow and low-temperature reactions can lead to the vaporization of SiO_2 ,
17 which preferentially preserves $\text{Si}-^{18}\text{O}$ bonds and results in lower O_2 yields and $\delta^{18}\text{O}$ values⁴⁹. High
18 temperature reactions involving methanation prior to fluorination (Ellis and Passey, 2023) are
19 shown to generate more complete reactions in organic materials and could perhaps also curb these
20 effects in analogous reactions. Alternatively, laser-produced clay $\delta^{18}\text{O}$ values are higher than
21 bomb-produced clay $\delta^{18}\text{O}$ values due to the repeat exposure of the sample to BrF_5 and resulting
22 passive fluorination over the course of the analysis day. This phenomenon, only observed in very
23 fine-grained hydrous phases, preferentially liberates ^{16}O , resulting in higher residual clay $\delta^{18}\text{O}$
24 values⁴⁹. The effects of passive fluorination are likely higher for SHCa-1 compared to KGa-1b,
25 considering hectorite has a higher capacity for structural waters than kaolinite via a higher specific
26 surface area and thus may react more readily. Drift corrections based on KGa-1b may therefore
27 underestimate these effects in smectites.

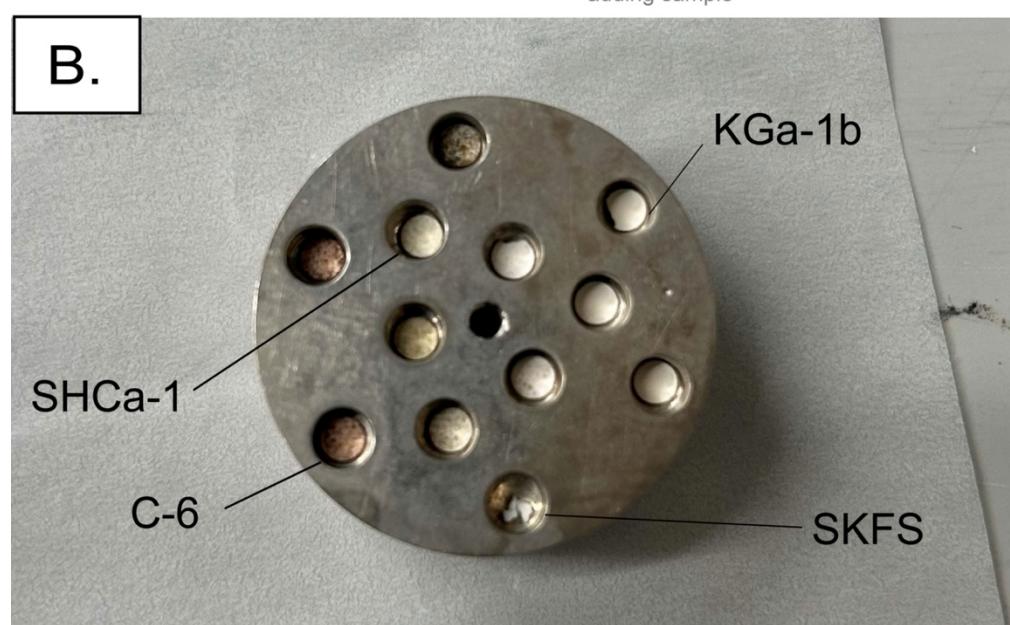
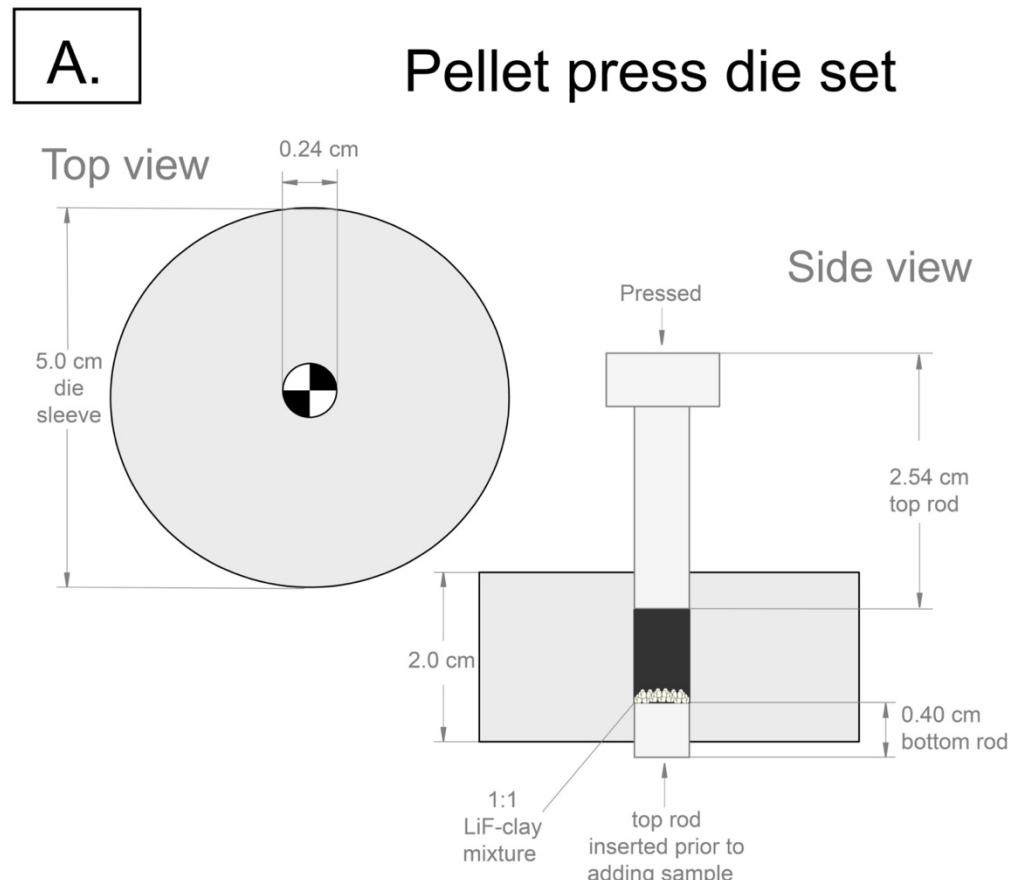
28
29 *5.2. Proposed method for the laser determination of $\Delta^{17}\text{O}$ and $\delta^{18}\text{O}$ in clay materials*
30 In this work, clay samples were standardized to the VSMOW-SLAP scale by adjusting them based
31 on known 2-3 silicate standards analyzed in the same laser chamber on the same day. Additionally,
32 internal clay standards were analyzed in the same chamber to account for any drift related to the
33 clay materials. The combination of clay and non-clay standards restricts the number of unknown
34 samples that can be feasibly run in each day. We instead propose that our newly determined bomb-
35 produced clay $\delta^{18}\text{O}$ value for KGa-1b ($21.459\text{‰} \pm 0.771$ (1 σ)) and laser determined $\Delta^{17}\text{O}$ value
36 for KGa-1b ($-0.0735\text{‰} \pm 0.0144$ (1 σ)) be used as a primary standard for the analysis of $\delta^{18}\text{O}$ and
37 $\Delta^{17}\text{O}$ of clay materials, which eliminates the need for additional non-clay standards.

38 Practical considerations for standardization of clay materials include necessary
39 pretreatments, the number and type of samples and standards to be analyzed per day (limited by
40 the 60-to-90-minute measurement on the IRMS), and whether the $\Delta^{17}\text{O}$ value of a given lab's

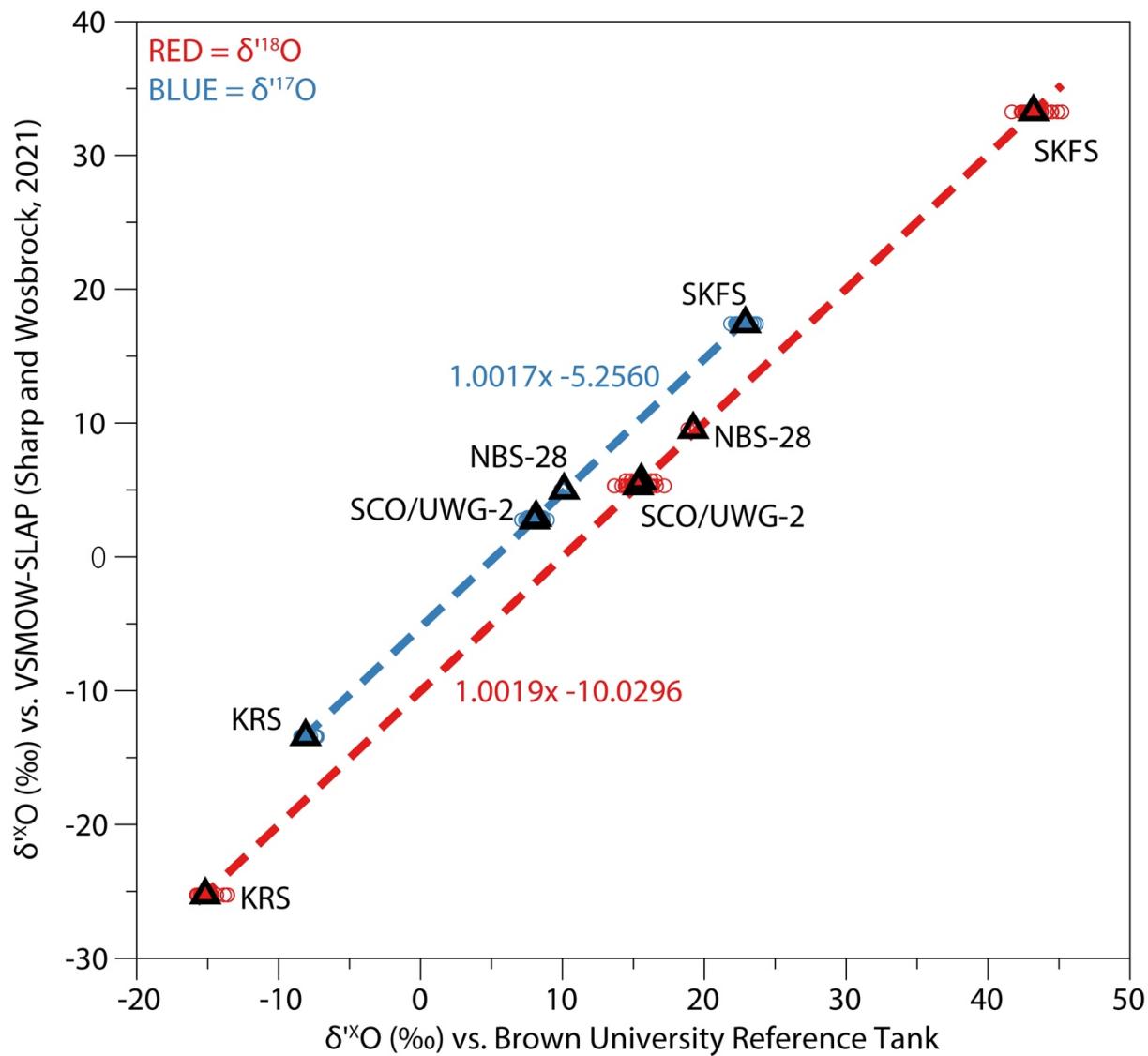
1 reference tank is precisely known. Aliquots of KGa-1b obtained from CMS should be leached
2 prior to isotope analysis, to be consistent with established pretreatments necessary for clay mineral
3 separation. When analyzing via laser fluorination, no less than 3 KGa-1b pellets should be
4 analyzed across the beginning, middle, and end of day. These standards should be used to apply a
5 daily drift correction normalized to our accepted bomb value for KGa-1b. The laser chamber may
6 then contain up to 9 additional samples or standards, which would typically equate to a 12–14-
7 hour analysis period. If the $\Delta^{17}\text{O}$ of the dual inlet reference tank is precisely known, up to 9
8 remaining sample slots may be filled with unknowns. Otherwise, we recommend analyzing an
9 additional non-clay silicate standard in addition to KGa-1b when correcting $\Delta^{17}\text{O}$ values.

10

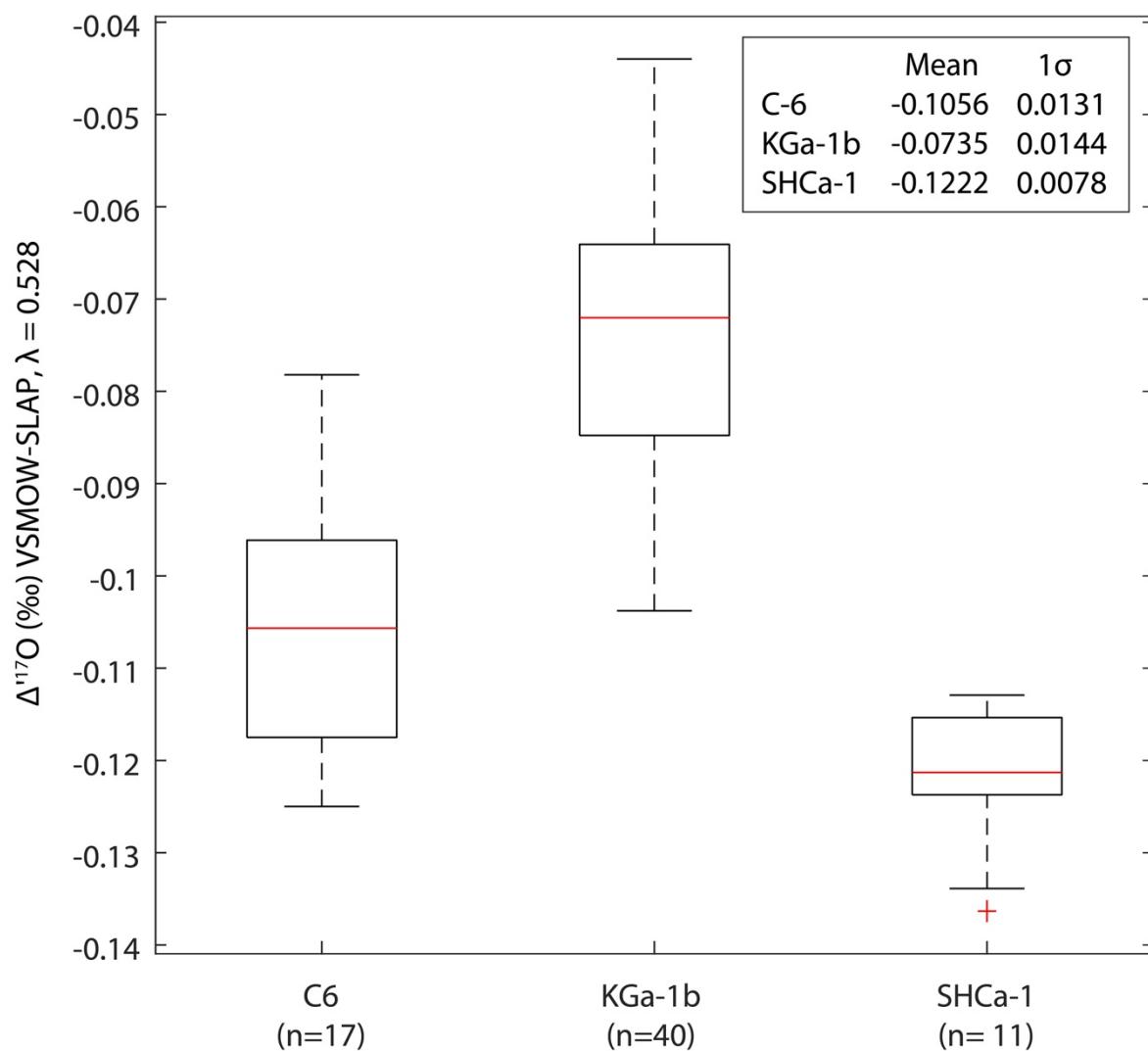
11 **6. Conclusion**

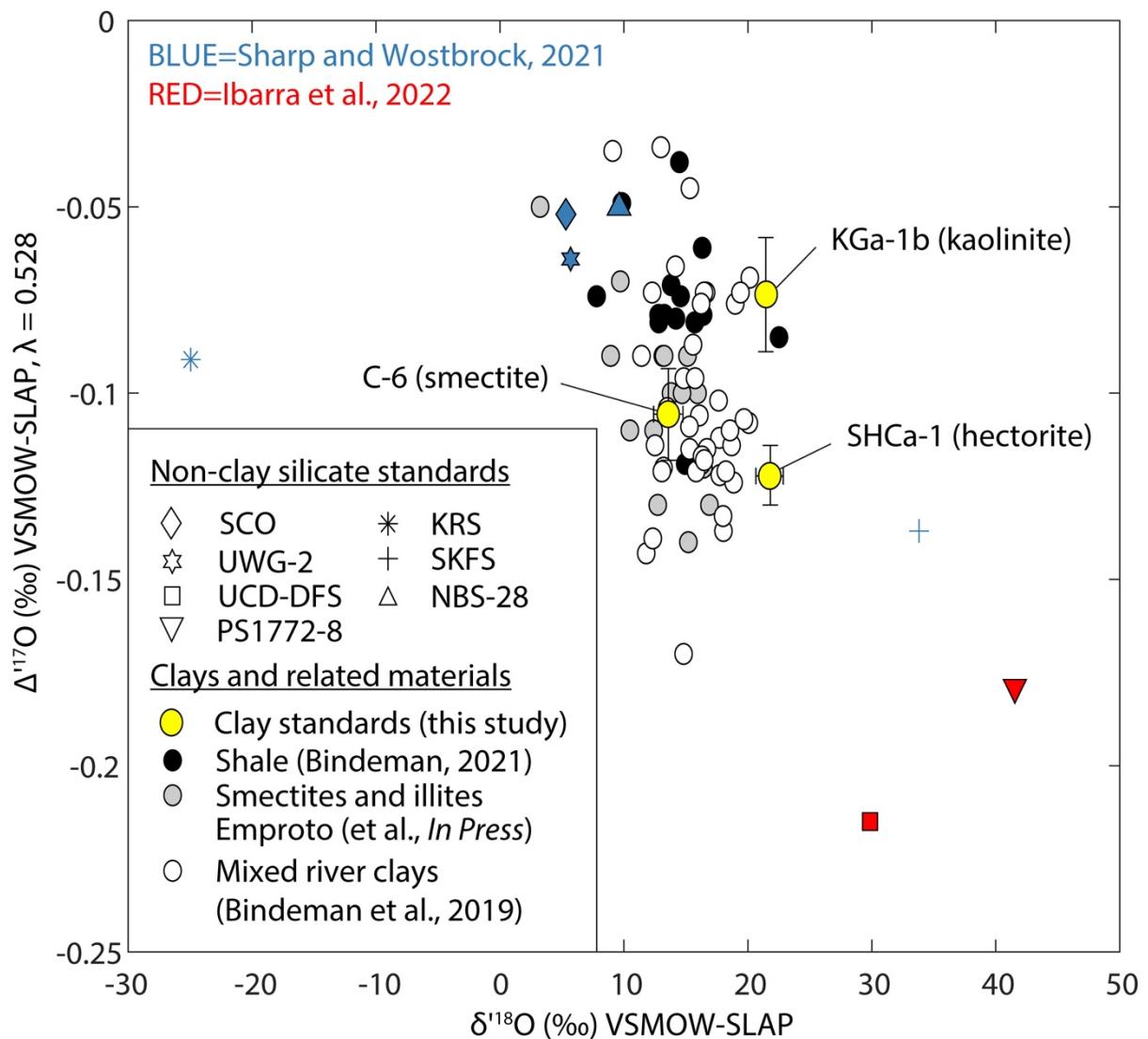


12 Advancements in the stable oxygen isotope analysis of silicate clays, particularly kaolinite and
13 smectite, have provided significant insights into paleoclimate and environmental studies.
14 However, a consensus is lacking on the proper preparation and standardization of clay minerals,
15 which are much more susceptible to isotopic drift from incomplete reactions and contamination
16 than standard silicate materials. By employing a combination of LiF-clay pellet preparation and
17 laser fluorination methods, this study demonstrates the capability to achieve high precision in $\delta^{18}\text{O}$
18 and $\Delta^{17}\text{O}$ values for kaolinite and smectite, comparable to those of other silicate materials. The
19 findings affirm that KGa-1b and SHCa-1 can serve as reliable standards for oxygen isotope
20 analysis in clay-rich materials, promoting consistent interlaboratory calibration. Furthermore, the
21 study underscores the importance of standardizing leaching protocols and correcting for procedural
22 drifts to enhance the accuracy of clay isotope data.

23


24 **Acknowledgements and Funding**

25 We thank Joe Orchardo and Steve Clemens for support in laboratory analyses; C. Page
26 Chamberlain for providing the clay mineral standards and methodological discussions; Cameron
27 Meyers and Greg Hirth for help with pellet press methodology. We thank Fred Longstaffe for
28 sharing internal standard values. Gagnon was partially supported by NSF AGS 2102901 to Ibarra;
29 Piccione was partially supported by NSF EAR 2303484 to Ibarra; and Havel was supported by
30 NSF GRFP (Grant no. 2040433).


31


1
2 Figure 1. (A) Die set used to form clay pellets and (B) laser chamber sample holder containing 11
3 prepared pellets and 1 non-pellet standard typical of one daily analysis period.
4

1
 2 Figure 2. Measured isotope values vs the Brown University reference tank against the known
 3 standard values in VSMOW-SLAP for both $\delta^{18}\text{O}$ (red) and $\delta^{17}\text{O}$ (blue) (Table S3). Known values
 4 are taken from the multi-laboratory average given in Sharp and Wostbrock (2021) (their Table 1).
 5

1
2 Figure 3. Reference tank corrected $\Delta'^{17}\text{O}$ values measured by laser for C-6, KGa-1b, and SHCa-1
3 shown using box and whisker plots.
4

1
2 Figure 4. Comparison of newly established clay mineral standard values (this study, yellow) to
3 well-established non-clay silicate standard values (blue and red) and clay-rich geological
4 samples (black, gray, and white) plotted within the $\Delta^{17}\text{O}$ - $\delta^{18}\text{O}$ reference frame.

1 **References**

- 2 1. O'Neil JR, Kharaka YK. Hydrogen and oxygen isotope exchange reactions between clay
3 minerals and water. *Geochim Cosmochim Acta*. 1976;40(2):241-246.
- 4 2. Urey HC. The thermodynamic properties of isotopic substances. *Journal of the Chemical
5 Society (Resumed)*. 1947;(0):562-581. doi:10.1039/JR9470000562
- 6 3. Savin SM, Epstein S. The oxygen and hydrogen isotope geochemistry of ocean sediments
7 and shales. *Geochim Cosmochim Acta*. 1970;34(1):43-63.
- 8 4. Zachos J, Pagani M, Sloan L, Thomas E, Billups K. Trends, rhythms, and aberrations in
9 global climate 65 Ma to present. *Science (1979)*. 2001;292(5517):686-693.
- 10 5. Erez J, Luz B. Experimental paleotemperature equation for planktonic foraminifera. *Geochim
11 Cosmochim Acta*. 1983;47(6):1025-1031.
- 12 6. Prentice ML, Matthews RK. Cenozoic ice-volume history: development of a composite
13 oxygen isotope record. *Geology*. 1988;16(11):963-966.
- 14 7. Gat JR. Oxygen and hydrogen isotopes in the hydrologic cycle. *Annu Rev Earth Planet Sci*.
15 1996;24(1):225-262.
- 16 8. Dee S, Bailey A, Conroy JL, et al. Water isotopes, climate variability, and the hydrological
17 cycle: recent advances and new frontiers. *Environmental Research: Climate*.
18 2023;2(2):022002.
- 19 9. Dansgaard W. Stable isotopes in precipitation. *Tellus*. 1964;16(4):436-468.
20 doi:<https://doi.org/10.1111/j.2153-3490.1964.tb00181.x>
- 21 10. Konecky BL, McKay NP, Churakova (Sidorova) O V, et al. The Iso2k database: a global
22 compilation of paleo- δ 18O and δ 2H records to aid understanding of Common Era climate.
23 *Earth Syst Sci Data*. 2020;12(3):2261-2288. doi:10.5194/essd-12-2261-2020
- 24 11. Raymo ME, Lisiecki LE, Nisancioglu KH. Plio-Pleistocene ice volume, Antarctic climate,
25 and the global δ 18O record. *Science (1979)*. 2006;313(5786):492-495.
- 26 12. Shakun JD, Lea DW, Lisiecki LE, Raymo ME. An 800-kyr record of global surface ocean
27 δ 18O and implications for ice volume-temperature coupling. *Earth Planet Sci Lett*.
28 2015;426:58-68. doi:<https://doi.org/10.1016/j.epsl.2015.05.042>
- 29 13. Pacey A, Wilkinson JJ, Boyce AJ, Millar IL. Magmatic Fluids Implicated in the Formation of
30 Propylitic Alteration: Oxygen, Hydrogen, and Strontium Isotope Constraints from the
31 Northparkes Porphyry Cu-Au District, New South Wales, Australia. *Economic Geology*.
32 2020;115(4):729-748. doi:10.5382/econgeo.4732
- 33 14. Huston DL, Trumbull RB, Beaudoin G, Ireland T. Light stable isotopes (H, B, C, O and S) in
34 ore studies—methods, theory, applications and uncertainties. In: *Isotopes in Economic
35 Geology, Metallogenesis and Exploration*. Springer; 2023:209-244.
- 36 15. Bindeman HN, Valley JW. Oxygen isotope study of the Long Valley magma system,
37 California: Isotope thermometry and convection in large silicic magma bodies. *Contributions
38 to Mineralogy and Petrology*. 2002;144(2):185-205. doi:10.1007/s00410-002-0371-8
- 39 16. Gagnon CA, Butler KL, Robertson K, et al. *Economic Geology VOLCANO-SEDIMENTARY
40 LITHIUM OCCURRENCES IN BARSTOW, CA AND THEIR RELATED FORMATION
41 MECHANISMS DETERMINED BY STABLE ISOTOPE ANALYSES OF CARBONATES AND
42 CLAYS*.
- 43 17. Wagner T, Mlynarczyk MSJ, Williams-Jones AE, Boyce AJ. Stable Isotope Constraints on
44 Ore Formation at the San Rafael Tin-Copper Deposit, Southeast Peru. *Economic Geology*.
45 2009;104(2):223-248. doi:10.2113/gsecongeo.104.2.223

1 18. Wilkinson JJ. Fluid inclusions in hydrothermal ore deposits. *Lithos*. 2001;55(1):229-272.
2 doi:[https://doi.org/10.1016/S0024-4937\(00\)00047-5](https://doi.org/10.1016/S0024-4937(00)00047-5)

3 19. Gilg HA, Hall AM, Ebert K, Fallick AE. Cool kaolins in Finland. *Palaeogeogr*
4 *Palaeoclimatol Palaeoecol*. 2013;392:454-462.

5 20. Gilg HA. D-H evidence for the timing of kaolinization in Northeast Bavaria, Germany.
6 *Chem Geol*. 2000;170(1-4):5-18.

7 21. Mora G, Pratt LM. Isotopic evidence for cooler and drier conditions in the tropical Andes
8 during the last glacial stage. *Geology*. 2001;29(6):519-522.

9 22. Rosenau NA, Tabor NJ. Oxygen and hydrogen isotope compositions of paleosol
10 phyllosilicates: differential burial histories and determination of Middle-Late Pennsylvanian
11 low-latitude terrestrial paleotemperatures. *Palaeogeogr Palaeoclimatol Palaeoecol*.
12 2013;392:382-397.

13 23. Mix HT, Chamberlain CP. Stable isotope records of hydrologic change and paleotemperature
14 from smectite in Cenozoic western North America. *Geochim Cosmochim Acta*.
15 2014;141:532-546.

16 24. Hall AM, Gilg HA, Fallick AE, Merritt JW. Kaolins in gravels and saprolites in north-east
17 Scotland: Evidence from stable H and O isotopes for Palaeocene-Miocene deep weathering.
18 *Palaeogeogr Palaeoclimatol Palaeoecol*. 2015;424:6-16.

19 25. Mix HT, Ibarra DE, Mulch A, Graham SA, Chamberlain CP. A hot and high Eocene Sierra
20 Nevada. *Bulletin*. 2016;128(3-4):531-542.

21 26. Gao Y, Gao Y, Ibarra DE, et al. Clay mineralogical evidence for mid-latitude terrestrial
22 climate change from the latest Cretaceous through the earliest Paleogene in the Songliao
23 Basin, NE China. *Cretac Res*. 2021;124:104827.

24 27. Stern LA, Chamberlain CP, Reynolds RC, Johnson GD. Oxygen isotope evidence of climate
25 change from pedogenic clay minerals in the Himalayan molasse. *Geochim Cosmochim Acta*.
26 1997;61(4):731-744.

27 28. Vitali F, Longstaffe FJ, McCarthy PJ, Plint AG, Caldwell WGE. Stable isotopic investigation
28 of clay minerals and pedogenesis in an interfluvial paleosol from the Cenomanian Dunvegan
29 Formation, NE British Columbia, Canada. *Chem Geol*. 2002;192(3-4):269-287.

30 29. Sjostrom DJ, Hren MT, Horton TW, Waldbauer JR, Chamberlain CP. Stable isotopic
31 evidence for a pre-late Miocene elevation gradient in the Great Plains-Rocky Mountain
32 region, USA. Published online 2006.

33 30. Feng W, Yapp CJ. $^{18}\text{O}/^{16}\text{O}$ and D/H ratios of pedogenic kaolinite in a North American
34 Cenomanian laterite: Paleoclimatic implications. *Geochim Cosmochim Acta*.
35 2009;73(20):6249-6263.

36 31. Muttik N, Kirsimäe K, Vennemann TW. Stable isotope composition of smectite in suevites at
37 the Ries crater, Germany: Implications for hydrous alteration of impactites. *Earth Planet Sci
38 Lett*. 2010;299(1-2):190-195.

39 32. Bindeman IN, Bayon G, Palandri J. Triple oxygen isotope investigation of fine-grained
40 sediments from major world's rivers: Insights into weathering processes and global fluxes
41 into the hydrosphere. *Earth Planet Sci Lett*. 2019;528:115851.

42 33. Keith ML, Weber JN. Carbon and oxygen isotopic composition of selected limestones and
43 fossils. *Geochim Cosmochim Acta*. 1964;28(10-11):1787-1816.

44 34. Degens ET, Epstein S. Oxygen and carbon isotope ratios in coexisting calcites and dolomites
45 from recent and ancient sediments. *Geochim Cosmochim Acta*. 1964;28(1):23-44.

1 35. Epstein S, Buchsbaum R, Lowenstam H, Urey HC. Carbonate-water isotopic temperature
2 scale. *Geol Soc Am Bull.* 1951;62(4):417-426.

3 36. Clayton RN, Mayeda TK. The use of bromine pentafluoride in the extraction of oxygen from
4 oxides and silicates for isotopic analysis. *Geochim Cosmochim Acta.* 1963;27(1):43-52.

5 37. TAYLOR JR. HP, EPSTEIN S. Relationship Between O₁₈/O₁₆ Ratios in Coexisting
6 Minerals of Igneous and Metamorphic Rocks: Part 1: Principles and Experimental Results.
7 *GSA Bulletin.* 1962;73(4):461-480. doi:10.1130/0016-7606(1962)73[461:RBORIC]2.0.CO;2

8 38. Chamberlain CP, Poage MA, Craw D, Reynolds RC. Topographic development of the
9 Southern Alps recorded by the isotopic composition of authigenic clay minerals, South
10 Island, New Zealand. *Chem Geol.* 1999;155(3-4):279-294.

11 39. Girard JP, Freyssinet P, Chazot G. Unraveling climatic changes from intraprofile variation in
12 oxygen and hydrogen isotopic composition of goethite and kaolinite in laterites: an integrated
13 study from Yaou, French Guiana. *Geochim Cosmochim Acta.* 2000;64(3):409-426.

14 40. Tabor NJ, Montanez IP. Shifts in late Paleozoic atmospheric circulation over western
15 equatorial Pangea: Insights from pedogenic mineral $\delta^{18}\text{O}$ compositions. *Geology.*
16 2002;30(12):1127-1130.

17 41. Tabor NJ, Montañez IP. Oxygen and hydrogen isotope compositions of Permian pedogenic
18 phyllosilicates: Development of modern surface domain arrays and implications for
19 paleotemperature reconstructions. *Palaeogeogr Palaeoclimatol Palaeoecol.* 2005;223(1-
20 2):127-146.

21 42. Pope EC, Bird DK, Arnórsson S. Evolution of low- ^{18}O Icelandic crust. *Earth Planet Sci
22 Lett.* 2013;374:47-59.

23 43. Ibarra DE, Yanchilina AG, Lloyd MK, et al. Triple oxygen isotope systematics of diagenetic
24 recrystallization of diatom opal-A to opal-CT to microquartz in deep sea sediments. *Geochim
25 Cosmochim Acta.* 2022;320:304-323.

26 44. Ibarra DE, Dai J, Gao Y, et al. High-elevation Tibetan Plateau before India-Eurasia collision
27 recorded by triple oxygen isotopes. *Nat Geosci.* 2023;16(9):810-815.

28 45. Kukla T, Ibarra DE, Rugenstein JKC, et al. High-Resolution Stable Isotope Paleotopography
29 of the John Day Region, Oregon, United States. *Front Earth Sci (Lausanne).* 2021;9:635181.

30 46. Sharp ZD. A laser-based microanalytical method for the in situ determination of oxygen
31 isotope ratios of silicates and oxides. *Geochim Cosmochim Acta.* 1990;54(5):1353-1357.
32 doi:[https://doi.org/10.1016/0016-7037\(90\)90160-M](https://doi.org/10.1016/0016-7037(90)90160-M)

33 47. Rowe MW, Clayton RN, Mayeda TK. Oxygen isotopes in separated components of CI and
34 CM meteorites. *Geochim Cosmochim Acta.* 1994;58(23):5341-5347.

35 48. Fouillac AM, Girard JP. Laser oxygen isotope analysis of silicate/oxide grain separates:
36 Evidence for a grain size effect? *Chem Geol.* 1996;130(1-2):31-54.

37 49. Kirschner DL, Sharp ZD. Oxygen isotope analyses of fine-grained minerals and rocks using
38 the laser-extraction technique. *Chem Geol.* 1997;137(1-2):109-115.

39 50. Ghoshmaulik S, Bhattacharya SK, Roy P, Sarkar A. A simple cryogenic method for efficient
40 analysis of triple oxygen isotopes in silicates. *Rapid Communications in Mass Spectrometry.*
41 2020;34(18):e8833.

42 51. Kukla T, Rugenstein JKC, Ibarra DE, Winnick MJ, Strömberg CAE, Chamberlain CP. Drier
43 winters drove Cenozoic open habitat expansion in North America. *AGU Advances.*
44 2022;3(2):e2021AV000566.

1 52. Mix HT, Chamberlain CP. Stable isotope records of hydrologic change and paleotemperature
2 from smectite in Cenozoic western North America. *Geochim Cosmochim Acta*.
3 2014;141:532-546.

4 53. Sharp ZD, Wostbrock JAG, Pack A. Mass-dependent triple oxygen isotope variations in
5 terrestrial materials. *Geochem Perspect Lett*. 2018;7:27-31.

6 54. Sharp ZD, Wostbrock JAG. Standardization for the Triple Oxygen Isotope System: Waters,
7 Silicates, Carbonates, Air, and Sulfates. *Rev Mineral Geochem*. 2021;86(1):179-196.
8 doi:10.2138/rmg.2021.86.05

9 55. Wostbrock JAG, Cano EJ, Sharp ZD. An internally consistent triple oxygen isotope
10 calibration of standards for silicates, carbonates and air relative to VSMOW2 and SLAP2.
11 *Chem Geol*. 2020;533:119432. doi:<https://doi.org/10.1016/j.chemgeo.2019.119432>

12 56. Pack A, Herwartz D. The triple oxygen isotope composition of the Earth mantle and
13 understanding ΔO_{17} variations in terrestrial rocks and minerals. *Earth Planet Sci Lett*.
14 2014;390:138-145.

15 57. Hofmann MEG, Pack A. Technique for high-precision analysis of triple oxygen isotope
16 ratios in carbon dioxide. *Anal Chem*. 2010;82(11):4357-4361.

17 58. Luz B, Barkan E. Variations of $^{17}\text{O}/^{16}\text{O}$ and $^{18}\text{O}/^{16}\text{O}$ in meteoric waters. *Geochim
18 Cosmochim Acta*. 2010;74(22):6276-6286.

19 59. Aron PG, Levin NE, Beverly EJ, et al. Triple oxygen isotopes in the water cycle. *Chem Geol*.
20 2021;565:120026.

21 60. Bindeman IN. Triple oxygen isotopes in evolving continental crust, granites, and clastic
22 sediments. *Rev Mineral Geochem*. 2021;86(1):241-290.

23 61. Emproto C, Benson TR, Gagnon CA, Baek W, Ibarra DE, Simon AC. Clay Chemistry of the
24 Thacker Pass Deposit, Nevada: Implications for the Formation of High-grade Volcano-
25 sedimentary Lithium Resources. *Economic Geology*.

26 62. Chaplgin B, Leng MJ, Webb E, et al. Inter-laboratory comparison of oxygen isotope
27 compositions from biogenic silica. *Geochim Cosmochim Acta*. 2011;75(22):7242-7256.

28 63. Fagan R, Longstaffe F. The effects of laboratory pretreatments on the hydrogen-and oxygen-
29 isotope compositions of clay minerals. In: *Clays in and for the Environment. 33rd Annual
30 Meeting of the Clay Minerals Society, Program and Abstracts* . ; 1996:55.

31 64. McKinney CR, McCrea JM, Epstein S, Allen HA, Urey HC. Improvements in Mass
32 Spectrometers for the Measurement of Small Differences in Isotope Abundance Ratios.
33 *Review of Scientific Instruments*. 1950;21(8):724-730. doi:10.1063/1.1745698

34 65. Miller MF. Isotopic fractionation and the quantification of ^{17}O anomalies in the oxygen
35 three-isotope system: an appraisal and geochemical significance. *Geochim Cosmochim Acta*.
36 2002;66(11):1881-1889. doi:[https://doi.org/10.1016/S0016-7037\(02\)00832-3](https://doi.org/10.1016/S0016-7037(02)00832-3)

37 66. Meijer HAJ, Li WJ. The Use of Electrolysis for Accurate $\delta^{17}\text{O}$ and $\delta^{18}\text{O}$ Isotope
38 Measurements in Water. *Isotopes Environ Health Stud*. 1998;34(4):349-369.
39 doi:10.1080/10256019808234072

40 67. Passey BH, Hu H, Ji H, et al. Triple oxygen isotopes in biogenic and sedimentary carbonates.
41 *Geochim Cosmochim Acta*. 2014;141:1-25. doi:<https://doi.org/10.1016/j.gca.2014.06.006>

42 68. Barkan E, Affek HP, Luz B, Bergel SJ, Voarintsoa NRG, Musan I. Calibration of $\delta^{17}\text{O}$ and
43 $^{17}\text{O}_{\text{excess}}$ values of three international standards: IAEA-603, NBS19 and NBS18. *Rapid
44 Communications in Mass Spectrometry*. 2019;33(7):737-740.
45 doi:<https://doi.org/10.1002/rcm.8391>

1 69. Wostbrock JAG, Cano EJ, Sharp ZD. An internally consistent triple oxygen isotope
2 calibration of standards for silicates, carbonates and air relative to VSMOW2 and SLAP2.
3 *Chem Geol.* 2020;533:119432. doi:<https://doi.org/10.1016/j.chemgeo.2019.119432>

4 70. Chipera SJ, Bish DL. Baseline Studies of the Clay Minerals Society Source Clays: Powder
5 X-Ray Diffraction Analyses. *Clays Clay Miner.* 2001;49(5):398-409. doi:DOI:
6 10.1346/CCMN.2001.0490507

7 71. Pruett RJ, Webb HL. Sampling and Analysis of KGa-1B Well-Crystallized Kaolin Source
8 Clay. *Clays Clay Miner.* 1993;41(4):514-519. doi:DOI: 10.1346/CCMN.1993.0410411

9 72. Mermut AR, Cano AF. Baseline Studies of the Clay Minerals Society Source Clays:
10 Chemical Analyses of Major Elements. *Clays Clay Miner.* 2001;49(5):381-386. doi:DOI:
11 10.1346/CCMN.2001.0490504

12 73. Sakharov BA, Drits VA, McCarty DK, Walker GM. Modeling Powder X-ray Diffraction
13 Patterns of the Clay Minerals Society Kaolinite Standards: KGa-1, KGa-1b, and KGa-2.
14 *Clays Clay Miner.* 2016;64(3):314-333. doi:DOI: 10.1346/CCMN.2016.0640307

15 74. Morad S, Worden RH, Ketzer JM. Oxygen and Hydrogen Isotopic Composition of
16 Diagenetic Clay Minerals in Sandstones: A Review of the Data and Controls. In: *Clay*
17 *Mineral Cements in Sandstones.* ; 1999:63-91.
18 doi:<https://doi.org/10.1002/9781444304336.ch3>

19 75. Munroe JS, Ryan PC, Proctor A. Pedogenic clay formation from allochthonous parent
20 materials in a periglacial alpine critical zone. *Catena (Amst).* 2021;203:105324.
21 doi:<https://doi.org/10.1016/j.catena.2021.105324>

22 76. Menicucci AJ, Matthews JA, Spero HJ. Oxygen isotope analyses of biogenic opal and quartz
23 using a novel microfluorination technique. *Rapid Communications in Mass Spectrometry.*
24 2013;27(16):1873-1881. doi:<https://doi.org/10.1002/rcm.6642>

25 77. Piccione G, Blackburn T, Tulaczyk S, et al. Subglacial precipitates record Antarctic ice sheet
26 response to late Pleistocene millennial climate cycles. *Nat Commun.* 2022;13(1):5428.
27 doi:10.1038/s41467-022-33009-1

28 78. Ibarra DE, Dai J, Gao Y, et al. High-elevation Tibetan Plateau before India–Eurasia collision
29 recorded by triple oxygen isotopes. *Nat Geosci.* 2023;16(9):810-815.

30 79. Yeung LY, Young ED, Schauble EA. Measurements of ^{18}O ^{18}O and ^{17}O ^{18}O in the
31 atmosphere and the role of isotope-exchange reactions. *Journal of Geophysical Research: Atmospheres.* 2012;117(D18). doi:<https://doi.org/10.1029/2012JD017992>

32 80. Swann GEA, Leng MJ, Juschus O, Melles M, Brigham-Grette J, Sloane HJ. A combined
33 oxygen and silicon diatom isotope record of Late Quaternary change in Lake El'gygytgyn,
34 North East Siberia. *Quat Sci Rev.* 2010;29(5):774-786.
35 doi:<https://doi.org/10.1016/j.quascirev.2009.11.024>

36 81. Shemesh A, Yam R, Assulin M, Elish E. The triple oxygen isotope signature of uranium
37 oxides in the nuclear fuel cycle. *Journal of Nuclear Materials.* 2024;590:154889.
38