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Abstract 12 
Rationale 13 
Stable oxygen isotope measurements in silicate clays, such as smectite and kaolinite, provide 14 
crucial information for understanding Earth's climate history and environmental changes. Despite 15 
a growing interest in the oxygen isotope analysis of silicate clays and clay-rich sediments, there 16 
lacks a consensus on the preparation and standardization of clay mineral samples. To improve the 17 
accuracy and interlaboratory comparisons of clay isotope measurements, especially those 18 
involving laser-fluorination techniques, newly established kaolinite and smectite oxygen isotope 19 
standards are much needed.  20 
 21 
Methods 22 
We employed conventional nickel bomb fluorination combined with dual-inlet isotope ratio mass 23 
spectrometry to establish precise δ18O and Δ′17O values for leached clay reference materials KGa-24 
1b and SHCa-1, a kaolinite and a hectorite/smectite, respectively. We further measured leached 25 
KGa-1b and SHCa-1 pressed into pellets with a lithium fluoride as a binding agent for the laser 26 
fluorination method, allowing us to test the reproducibility between methods and utilize a standard 27 
laser chamber drift correction scheme. 28 
 29 
Results 30 
The laser fluorination technique yielded highly precise and reproducible δ18O and Δ′17O 31 
measurements for the KGa-1b and SHCa-1, aligning with bomb values of δ18O. This confirms the 32 
method's reliability and comparability to conventional isotope measurement techniques, while also 33 
stressing the importance of proper sample preparation and laser chamber drift corrections.  34 
 35 
Conclusions 36 
This study demonstrates that laser fluorination is an effective method for accurately measuring the 37 
stable oxygen isotope composition of silicate clays or clay-rich sediments when corrected with 38 
known silicate clay standards. These methods offer a valuable methodology for future research 39 
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and applications, that will significantly improve our understanding of past climate and 1 
environmental conditions. 2 
 3 
1. Introduction 4 

The stable oxygen isotope ratio (δ18O) of geological materials has been used to understand 5 
Earth’s system processes for decades1–3. Applications include reconstructing climatological 6 
changes in temperature4–6, regional water balance 7–10, global ice 11,12, and the determination of ore 7 
formation conditions13–18. Silicate clays like smectite or kaolinite are particularly useful for 8 
understanding regional weathering processes and water balance since these processes are closely 9 
tied to their formation in soils and fluvio-lacustrine settings 19–32. Further, the oxygen isotope 10 
composition of clay weathering products may be combined with modern hydrosphere mass-11 
balance equations to infer past ocean water composition32.  Despite their demonstrated usefulness 12 
in paleoclimate and environmental studies, the methodology for analyzing δ18O silicate clay has 13 
lagged that of more commonly measured sample types, like marine carbonates. For example, 14 
measuring the δ18O value of carbonates has become increasingly more automated through the use 15 
of peripheral sample preparation devices since the first measurements were made by hand on a 16 
vacuum line in the 1950’s and 1960’s33–35. 17 

The first measurements of δ18O on clay minerals were made in 196336 using previously 18 
established mineral fluorination techniques37. This method involves using either fluorine or an 19 
interhalogen fluoride (BrF5, or ClF3) to oxidize the clay minerals in nickel rod bombs to O2 gas, 20 
which was then quantitatively converted to CO2 using heated graphite rods1,3,19,21,22,27,28,30,38–41. 21 
The carbon dioxide was then purified using liquid nitrogen traps and hot mercury, which removed 22 
any residual bromine or fluorine prior to measurement on a mass spectrometer. More recent mass 23 
spectrometry methods eliminated the need for conversion of O2 to CO2 and instead measured the 24 
evolved O2 gas directly following purification 16,23,25,29,31,42–45.  25 

Since the 1990s laser fluorination has also been used on silicate materials in lieu of nickel 26 
reaction tubes (referred throughout as Ni bombs), which allows for smaller sample volume, faster 27 
and more complete reactions, and the elimination of hygroscopic contaminant NiF2 buildup46. 28 
Laser fluorination is generally reserved for in-situ materials, ore chips, or individual large sample 29 
grains, since unconsolidated clay and silt-sized particles often containing highly reactive, hydrous 30 
minerals (e.g. phyllosilicates) are subject to dispersion within the laser chamber, partial 31 
fluorinations, and vaporization leading to lower sample yield and the depletion of δ18O values 46–32 
50. To accurately determine δ18O of fine-grained materials by laser, homogenized powders are now 33 
mixed with a LiF binder and pressed into a pellet prior to loading into the sample holder 34 
23,25,26,42,45,49,51. The LiF binder physically reduces sample dispersion upon heating, allowing for a 35 
more rapid, high-temperature reaction reducing the risk of partial fluorinations and vaporization. 36 
Reported δ18O precision among the various fluorination methods for clay minerals is around 0.2‰ 37 
for minerals that do not contain molecular water, such as kaolinite 25,35 and between 0.2‰-0.4‰ 38 
for clay minerals with interlayer water, such as smectite 29,35,45. In most cases, the reported 39 
precision for a given clay sample was determined from the repeat analysis of quartz or garnet 40 
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standards, not concurrent measurement of clay standards. Only in a few cases were in-house clays, 1 
kaolinite or smectite, analyzed alongside quartz or garnet standards for data quality assurance 2 
29,31,45,52.  3 
 Recent technological advancements have allowed for the precise measurement of mass-4 
dependent variations of triple oxygen isotopes (16O, 17O, 18O) in silicate materials using the laser 5 
methods described above 46,49,53–57. Small deviations of δ′18O and δ′17O from a mass-dependent 6 
reference relationship (Δ′17O) 56,58 provide additional context for the interpretation of δ18O values 7 
by constraining isotope effects of kinetic fractionation and other confounding processes that follow 8 
different mass law from the typical reference relationship53,59. Despite its applicability to terrestrial 9 
paleoclimate reconstructions there are currently no studies that have precisely determined the triple 10 
oxygen isotope value for pure silicate clay minerals, including widely distributed kaolinite and 11 
smectite mineral standards. The closest materials to pure silicate clays analyzed for Δ′17O include 12 
<4μm river sediment collected from major world rivers32, borehole shales60, and mixed illite-13 
smectite clay separates from hydrothermally altered mudstones61.   14 
 In the following, we determine the precise Δ′17O value for two internationally distributed 15 
clay mineral standards (KGa-1b and SHCa-1) and one in-house clay (C-6) using laser fluorination 16 
of 1:1 LiF-clay pressed pellets. We aim to demonstrate that the determination of Δ′17O by LiF-clay 17 
pellet laser fluorination can achieve similar precision to other commonly measured silicate 18 
materials. Secondly, we test the reproducibility of previously reported δ18O values for KGa-1b 62 19 
and SHCa-163 by both laser and bomb fluorination techniques. Lastly, we show that applying a 20 
laser chamber drift correction using KGa-1b leads to better precision of unknown clay samples 21 
than corrections commonly made using other silicate standards.  22 
 23 
2. Isotope notation 24 
Oxygen isotope ratios for 17O/16O and 18O/16O are reported in standard δ-notation64 relative to 25 
VSMOW-SLAP scale. We also report linearized δ18O and δ17O values to account for curvature 26 
when making comparisons65, which are defined as: 27 

δ′!O = 1000ln (δ!O/1000 + 1) 28 
Where !O refers to 17O or 18O. Using the δ′-notation, the mass-dependent fractionation between 29 
two phases can be written as 1000lnαa-b = δ′xOa - δ′xOb and deviations in δ′17O from a reference 30 
slope can be expressed as Δ′17O: 31 

Δ′17O = δ′17O−λRL ✕ δ′18O+! 32 

where λRL is the reference slope and γ is the y-intercept (for this study γ=0). In this work, we 33 
adopt a λRL value of 0.528 consistent with other reported standards within the triple oxygen 34 
literature and geological community43,53,66–69.  35 
 36 
3. Methods 37 
3.1 Clay Standards 38 
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Kga-1b is a well-crystallized natural kaolinite obtained from the Source Clays Repository of The 1 
Clay Mineral Society (CMS). A large aliquot (>100 g) was obtained from C. Page Chamberlain 2 
(Stanford University) for this work from bulk material distributed by the Clay Mineral Society. 3 
KGa-1b contains 96% kaolinite and trace dickite (3% anatase, 1% crandallite + quartz) 70. KGa-4 
1b is used to replace the exhausted supply of KGa-1, because of near identical X-ray diffraction 5 
(XRD) patterns and only slight mineralogical and chemical differences including higher order 6 
crystal phases in KGa-1b 70–73. While there are no published δ18O values for KGa-1b, Chapligin et 7 
al. (2011) report a value of 21.5 ‰ (VSMOW) for KGa-1 analyzed at the University of Western 8 
Ontario. Evidence indicates that, once formed, diagenetic clay minerals may preserve their original 9 
isotopic composition, unless subjected to dissolution–reprecipitation reactions 74. We therefore use 10 
the reported KGa-1 δ18O value for KGa-1b (Table 1) as a point of interlaboratory comparison.  11 

SHCa-1 is a natural hectorite from the Red Mountain Andesite formation in San Bernardino 12 
county, CA. As with Kga-1b an aliquot (>100 g) was obtained from Page Chamberlain. This 13 
standard was also obtained from the Source Clays Repository. SHCa-1 contains approximately 14 
50% smectite, 43% calcite, 3% dolomite, 3% quartz and 1% other 70. Reported δ18O values for 15 
SHCa-1 range from 21.2 ‰ to 24.1 ‰ (VSMOW) depending on what pre-treatments were used 63 16 
(Table 1). 17 

C-6 is a Mg-rich pedogenic clay collected from the Uinta alpine zone, which consists of a 18 
smectite dominated mixture of kaolinite, illite, and smectite75 obtained from Jeffrey Munroe. We 19 
chose to establish C-6 as an in-house standard because of its low δ18O value, which falls within 20 
the range of natural clay samples from continental settings commonly measured at Brown 21 
University16,61. 22 

In addition to clay standards, known quartz, olivine, garnet, chert, and diatom/diatomite 23 
standards 43,54,55,76,77 were also measured during the analysis period (Table 1). The non-pellet 24 
standards were used to (1) determine the long-term reference tank Δ′17O value and (2) monitor the 25 
precision and accuracy of the corrected clay Δ’17O values (details below). 26 

 27 
3.2 Sample Preparation 28 
Powdered clay standards were first reacted with a 1M potassium acetate-acetic acid buffer solution 29 
(pH=5) to remove any carbonate phases. Samples were then triple rinsed with milli-Q water and 30 
re-homogenized via ceramic mortar and pestle. To prevent clay particles from dispersing in the 31 
laser chamber during analysis, ~3mg of each sample was then mixed with LiF (1:1 ratio by weight) 32 
and pressed into pellets 16,23,25,26,42,45,49,51. A custom pellet die set with a 2 cm tall chute 0.24 cm in 33 
diameter was used to form 0.24 cm pellets, which were loaded into 0.3 cm wide slots in the laser 34 
chamber sample holder (Figure 1). A combination of 9-11 pellets and 1-3 non-pellet standards 35 
were loaded into sample holder at a time.  The loaded sample holder was placed within the laser 36 
chamber and dried under vacuum using a molecular turbo pump for 12+ hours, reaching typical 37 
backgrounds in the 1x10-6 millibar range. All samples within the laser chamber were analyzed 38 
within an 8–14-hour window the following day.   39 
 40 



Triple Oxygen Determination of Silicate Clays 

 
 

5 

3.3 Fluorination Methods 1 
The oxygen isotope ratios of the clays pellets were measured via laser fluorination at Brown 2 
University Oxygen Isotope Fluorination Lab. At the beginning of each analysis day, the samples 3 
were exposed to three 3-5 min preflourinations under vacuum with BrF5 to liberate impurities from 4 
the samples and fluorination line. The O2 gas was liberated from the samples by reaction with BrF5 5 
in a 3-5:1 stoichiometric excess while being heated using a 50 W CO2 infrared laser as described 6 
in detail 16,43,61,78. Briefly, the O2 gas was passed through a liquid N2 trap, a NaCl trap, a second 7 
liquid N2 trap, and then sorbed on to a zeolite trap at liquid N2 temperature. After evacuating 8 
remaining non-condensables, the O2 gas was then passed through a molecular sieve gas 9 
chromatography column43,56,79 to another chilled zeolite using a He carrier gas before being 10 
introduced to the sample side bellow of the mass spectrometer after evacuating the He carrier gas. 11 

When analyzing via the conventional Ni bombs roughly 3mg of leached sample powder 12 
was added to the nickel bombs. The bombs were then heated to 200 ºC for 2 hours under vacuum 13 
afterwards pre-fluorinated 3x for 5 min to remove any surficial contaminants43,80 BrF5 at an ~5:1 14 
stoichiometric excess was then added to each reaction vessel and heated to 600 ºC for 16 hours. 15 
Once the bomb samples are reacted with BrF5, the analytical procedure is identical to that of the 16 
laser samples. All clay isotopic ratios are reported with respect to Vienna standard mean ocean 17 
water (VSMOW) based on corrections described below. 18 
 19 
3.4. IRMS Methods 20 
 Following laser fluorination and purification, sample O2 was analyzed on a dual inlet MAT 21 
253+ isotope ratio mass spectrometer. An initial argon background check was performed on each 22 
bellow to screen for leaks introduced during the sample reaction and purification steps. Samples 23 
that maintained low Ar backgrounds (<3000 mV) were then measured 2-3 times with an 24 
integration time of XXs with 10 iterations per analysis and against the same O2 reference gas. 25 
Samples were run at an intensity of 5V on mass 32, corresponding to a pressure of ~25 mbar in 26 
the bellows and XX mbar in the source.   27 
 28 
3.5 Drift Corrections (δ18O) 29 
There is an observable drift in the measured isotope values of clays analyzed in the laser 30 
chamber25,42. This drift is likely attributed to the liberation of excess contaminants and interstitial 31 
waters throughout the course of the run and/or the partial reaction of clays during subsequent 32 
reactions. At least 3 KGa-1b pellets were measured in each chamber in the beginning, middle, and 33 
end of the analysis day and used to make daily δ18O drift corrections. The difference between the 34 
measured KGa-1b and the internal bomb determined KGa-1 δ18O value (21.459 ‰; S1) were 35 
plotted against the daily run order, and the resulting linear trend (typical R2 of 0.25 to 0.91; Table 36 
S1) applied to the other clay samples within the laser chamber. Identical corrections were made 37 
using an externally determined value for KGa-1 for comparison (Table S2). 38 

Typically, the KGa-1 δ18O value becomes more positive after applying the correction. The 39 
average magnitude of the correction is 0.88 ‰. This correction was only performed on the clay 40 
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samples run by laser fluorination. Samples run via conventional Ni bomb fluorination are corrected 1 
via a daily offset43,44. 2 

  3 
3.6 Reference Gas Corrections (Δ′17O) 4 
Because there are currently no reported Δ′17O values for the clay standards, the Δ′17O corrections 5 
for KGa-1b, SHCa-1, and C-6 are made against known non-clay standards measured alongside the 6 
clays 16,32,60. To reserve space for like-material standards and allow for higher sample throughput, 7 
we tested using the long-term determined laboratory reference tank Δ′17O value as a means for 8 
making sample chamber corrections and compare the results with the conventional non-clay 9 
standard correction method. The assumption is that fractionation in bulk composition (δ18O values) 10 
follows a mass law of ~0.528, as previously assumed in comparable work69. Further, this 11 
assumption is made to address a practical need for sample throughput because triple oxygen 12 
isotope measurements take ~1 to 1.5 hours per sample.  13 

The reference tank calibration to the VSMOW-SLAP scale was achieved by analyzing 14 
five known silicate standards by laser over several years (March 2022 to April 2024; Table S3). 15 
The calibration to the VSMOW-SLAP scale also involves the determination of the compression 16 
scale factor, which is unique for each mass-spectrometer and reflects its deviation from perfect 17 
linearity of slope 1.00 across a wide range of δ values81. Repeat analysis of silicate standards 18 
over time has allowed for the determination of the compression factor of the Brown University 19 
MAT 253+ and the transformation of its measurements to the VSMOW-SLAP scale. The results 20 
with an r2 value of 0.9993 for δ′18O and 0.9993 for δ′17O, respectively, with slopes of 1.0019 and 21 
1.0017, respectively, cover a range of 60‰ in δ18O and via the intercept values provide the 22 
calibrated δ′18O and δ′17O values and thus the Δ′’17O of the Brown University MAT 253+ 23 
reference gas (Figure 2; δ′18O = -10.0296; δ′17O = -5.2560; Δ′17O = +0.00396 ‰). 24 
 25 
4. Results 26 
In the following, we report and compare the values obtained using multiple correction schemes. 27 
For clarity, we define them here. Correcting via “daily offset” pertains to samples that have been 28 
corrected to the average daily offset of the non-clay silicate standards run in that day’s laser 29 
chamber or bomb set (Table S5). This is the traditional method of standard correction. Correcting 30 
via “the known reference tank value” corresponds to isotope values that were corrected using the 31 
previously established known value for the reference tank (see above section).  32 
 33 
4.1. KGa-1b 34 
The laser KGa-1b δ18O values corrected via daily offset from non-clay standards have a value of 35 
19.787‰ (±1.000 (1σ); ±0.158 (1SE); n=40) (Table 2; Table S1), while the conventional Ni bomb 36 
value corrected via daily offset is 21.459 (±0.771 (1σ); ±0.257 (1SE); n=9) (Table S4). In addition 37 
to the laser-produced clay δ18O values being generally lower than bomb-produced clay δ18O 38 
values, laser-produced clay δ18O values experienced on average a 0.996‰ magnitude drift between 39 
the first and last sample analyzed each day.  40 



Triple Oxygen Determination of Silicate Clays 

 
 

7 

The drift-corrected laser fluorination δ18O value for KGa-1b is 21.478‰ (±0.267 (1σ); 1 
±0.042 (1SE); n=40) (Figure 1; Table S1) when made using the reference tank value and 21.427‰ 2 
(±0.948 (1σ); ±0.03 (1SE); n=40) when corrected via non-clay chamber standards. The laser 3 
fluorination-based Δ’17O value for KGa-1b is -0.074 (±0.014 (1σ); ±0.002 (1SE); n=40) when the 4 
correction is made using the known reference tank value (Figure 3; Table S1). The laser 5 
fluorination based Δ′17O value is nearly identical to the mean conventional Ni bomb Δ′17O value, 6 
which is -0.073 (±0.014 (1σ); ±0.005 (1SE); n=9) and corrected by non-clay bomb standards 7 
(Table S4). When corrected using the non-clay chamber standards, the drift corrected laser 8 
fluorination-based Δ’17O value for KGa-1b is -0.067 (±0.017 (1σ); ±0.003 (1SE); n=40) (Table 9 
S1).  10 

 11 
4.2. SHCa-1 12 
The mean drift-corrected laser fluorination δ18O value for SHCa-1 is 21.769‰ (±0.753 (1σ); 13 
±0.227 (1SE); n=11) when corrected against the reference tank value (Figure 3) and 21.784‰ 14 
(±1.102 (1σ); ±0.348 (1SE); n=11) when corrected by non-clay chamber standards (Table S1). The 15 
conventional Ni bomb value corrected via daily standard offsets is 22.042‰ (±0.830 (1σ); ±0.338 16 
(1SE); n=5) (Table 2; Table S4). The mean laser fluorination-based Δ’17O value for SHCa-1 is -17 
0.1162‰ (±0.0073 (1σ); ±0.0023 (1SE); n=11) when corrected daily against non-clay chamber 18 
standards and -0.1222‰ (±0.0078 (1σ); ±0.0023 (1SE); n=11) when corrected against the long-19 
term reference tank value (Table S1). The mean conventional Ni bomb Δ′17O value is -0.1083‰ 20 
(±0.016 (1σ); ±0.007 (1SE); n=5) when corrected via chamber standards, and -0.1005‰ (±0.014 21 
(1σ); ±0.006 (1SE); n=5) when corrected using the reference tank value (Table S4). The bomb- 22 
determined Δ′17O and δ18O values for SHCa-1 are higher than the laser-determined values.  23 
 24 
 25 
4.3. C-6 26 
The mean drift-corrected laser fluorination δ18O value for the unknown C-6 is 13.577‰ (±1.141 27 
(1σ); ±0.277 (1SE); n=17) when corrected against the reference tank value (Figure 3; Table 2) and 28 
13.261‰ (±1.360 (1σ); ±0.330 (1SE); n=17) when corrected using non-clay chamber standards 29 
(Table S1). The mean laser fluorination-based Δ’17O value for C-6 is -0.1056 (±0.0131 (1σ); 30 
±0.0032 (1SE); n=17) when corrected using the tank value and -0.0993 (±0.0155 (1σ); ±0.0038 31 
(1SE); n=17) when corrected using non-clay chamber standards. No C-6 samples were analyzed 32 
via bomb.  33 
 34 
 Discussion 35 
5.1. New standards for clay-rich geologic materials 36 
KGa-1b, SHCa-1, or C-6 are ideal standards for assessing the quality of Δ′17O and δ18O data 37 
generated from clay-rich geological materials, because of similar mineralogy, grain size, and 38 
consequently reactivity. Further, when plotted in Δ′17O-δ18O space, the isotopic composition of 39 
KGa-1b, SHCa-1, and C-6 fall within the same field as clay-rich shales60 , mixed illite and smectite 40 
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clays from hydrothermally altered mudstones61, and mixed clays from rivers around the world 32 1 
(Figure 4). This is particularly useful considering most clay materials plotted in a region 2 
(δ′18O=3.24 to 19.96 ‰ and Δ′17O= -0.17 to -0.06 ‰) under-represented by existing inter-3 
laboratory silicate standards (Figure 4). As such, we propose that KGa-1b and SHCa-1, both 4 
widely distributed clay mineral materials, can be used by other groups and laboratories as either 5 
primary or secondary standards to allow for more direct interlaboratory comparisons between clay-6 
rich sediments or clay separates. For example, if leaching protocols can be standardized for oxygen 7 
isotope analyses (beyond the scope of this work), like recent efforts by Kanik et al. (2022) for δD 8 
measurements, these two clay mineral standards appear suitable for use to ensure cross-laboratory 9 
intercalibration of Δ′17O-δ18O.  10 

The drift-corrected laser fluorination δ18O value for SHCa-1 is within 0.1‰ accuracy of 11 
values reported by Fagan and Longstaffe (1996) for sodium acetate treated SHCa-1 samples 12 
analyzed by bomb. Our bomb-produced clay δ18O value is slightly lower, but accurate within 0.16 13 
‰ of the sodium acetate treated SHCa-1 samples63. The incomplete fluorination of SHCa-1 with 14 
BrF5 within the nickel bombs may account for the unexpected low bomb-produced clay δ18O 15 
values.  In this case, slow and low-temperature reactions can lead to the vaporization of SiO2, 16 
which preferentially preserves Si–18O bonds and results in lower O2 yields and δ18O values49. High 17 
temperature reactions involving methanation prior to fluorination (Ellis and Passey, 2023) are 18 
shown to generate more complete reactions in organic materials and could perhaps also curb these 19 
effects in analogous reactions. Alternatively, laser-produced clay δ18O values are higher than 20 
bomb-produced clay δ18O values due to the repeat exposure of the sample to BrF5 and resulting 21 
passive fluorination over the course of the analysis day. This phenomenon, only observed in very 22 
fine-grained hydrous phases, preferentially liberates 16O, resulting in higher residual clay δ18O 23 
values49. The effects of passive fluorination are likely higher for SHCa-1 compared to KGa-1b, 24 
considering hectorite has a higher capacity for structural waters than kaolinite via a higher specific 25 
surface area and thus may react more readily. Drift corrections based on KGa-1b may therefore 26 
underestimate these effects in smectites.  27 

 28 
5.2. Proposed method for the laser determination of Δ′17O and δ18O in clay materials 29 
In this work, clay samples were standardized to the VSMOW-SLAP scale by adjusting them based 30 
on known 2-3 silicate standards analyzed in the same laser chamber on the same day. Additionally, 31 
internal clay standards were analyzed in the same chamber to account for any drift related to the 32 
clay materials. The combination of clay and non-clay standards restricts the number of unknown 33 
samples that can be feasibly run in each day. We instead propose that our newly determined bomb-34 
produced clay δ18O value for KGa-1b (21.459‰ ±0.771 (1σ)) and laser determined Δ′17O value 35 
for Kga-1b (-0.0735‰ ±0.0144 (1σ)) be used as a primary standard for the analysis of δ18O and 36 
Δ′17O of clay materials, which eliminates the need for additional non-clay standards.  37 
 Practical considerations for standardization of clay materials include necessary 38 
pretreatments, the number and type of samples and standards to be analyzed per day (limited by 39 
the 60-to-90-minute measurement on the IRMS), and whether the Δ′17O value of a given lab’s 40 
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reference tank is precisely known. Aliquots of KGa-1b obtained from CMS should be leached 1 
prior to isotope analysis, to be consistent with established pretreatments necessary for clay mineral 2 
separation. When analyzing via laser fluorination, no less than 3 KGa-1b pellets should be 3 
analyzed across the beginning, middle, and end of day. These standards should be used to apply a 4 
daily drift correction normalized to our accepted bomb value for KGa-1b. The laser chamber may 5 
then contain up to 9 additional samples or standards, which would typically equate to a 12–14-6 
hour analysis period. If the Δ′17O of the dual inlet reference tank is precisely known, up to 9 7 
remaining sample slots may be filled with unknowns. Otherwise, we recommend analyzing an 8 
additional non-clay silicate standard in addition to KGa-1b when correcting Δ′17O values.  9 
 10 
6. Conclusion 11 
Advancements in the stable oxygen isotope analysis of silicate clays, particularly kaolinite and 12 
smectite, have provided significant insights into paleoclimate and environmental studies. 13 
However, a consensus is lacking on the proper preparation and standardization of clay minerals, 14 
which are much more susceptible to isotopic drift from incomplete reactions and contamination 15 
than standard silicate materials. By employing a combination of LiF-clay pellet preparation and 16 
laser fluorination methods, this study demonstrates the capability to achieve high precision in δ18O 17 
and Δ′17O values for kaolinite and smectite, comparable to those of other silicate materials. The 18 
findings affirm that KGa-1b and SHCa-1 can serve as reliable standards for oxygen isotope 19 
analysis in clay-rich materials, promoting consistent interlaboratory calibration. Furthermore, the 20 
study underscores the importance of standardizing leaching protocols and correcting for procedural 21 
drifts to enhance the accuracy of clay isotope data.  22 
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 1 
Figure 1. (A) Die set used to form clay pellets and (B) laser chamber sample holder containing 11 2 
prepared pellets and 1 non-pellet standard typical of one daily analysis period.  3 
 4 
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 1 
Figure 2. Measured isotope values vs the Brown University reference tank against the known 2 
standard values in VSMOW-SLAP for both δ′18O (red) and δ′17O (blue) (Table S3). Known values 3 
are taken from the multi-laboratory average given in Sharp and Wostbrock (2021) (their Table 1).  4 
 5 
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 1 
Figure 3. Reference tank corrected Δ′17O values measured by laser for C-6, KGa-1b, and SHCa-1 2 
shown using box and whisker plots.  3 
 4 
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 1 
Figure 4. Comparison of newly established clay mineral standard values (this study, yellow) to 2 
well-established non-clay silicate standard values (blue and red) and clay-rich geological 3 
samples (black, gray, and white) plotted within the Δ′17O-δ18O reference frame.   4 
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