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ABSTRACT

This article examines how fiber crafting as a category of activity can develop mathematics learning
and the conditions under which various fiber crafting traditions differentially cultivate mathematical
understanding. Modifying the constructionist paradigm with relational materialist principles, this
paper advances the notion of “materialized action,” which describes the natural inquiry process
that results through emergent patterns between learners and the materialized traces of their
actions. This paper takes a qualitative approach, combining a design and intervention phase to
look closely across a set of materials (i.e., three fiber crafts, knitting, crochet, and pleating) and
engagement in a “powerful idea” (i.e., the role of unitizing in multiplicative proportional reasoning),
as instantiated across three youth case studies, and as an illustration of how we can better under-
stand micro-developmental learning processes. We identified three levels of unitizing that make up
the larger idea of enacting proportional reasoning (PR) through materialized action, which build
and catalyze toward one another and support emergent understanding of PR from the intra-action
of the material and the learner. In their engagement with PR, youth employed different strategies
based on personal choice, affordances of the materials, and practices of the crafting traditions.
Materialized actions as a theoretical advancement has the potential to reformulate what counts as
mathematics and can guide the design of mathematics learning that is embracing (rather than
reducing) worldly concreteness in learning key domain ideas, with implications for the design of
more equitable learning environments.

Introduction

Fiber crafting concerns represents a complex process of translating abstract patterns into embod-
ied, systematic actions that dynamically integrate multiple sensory and physical elements: hands,
needles, fiber (e.g., yarn), visual perception, muscular tension, and rhythmic movement. These
intertwined actions involve the continuous construction and reconstruction of discrete units that,
when strategically assembled, generate intricate patterns (e.g., Wertheim, 2005). Crafters sustain
and explore their patterned action through deeply personally material choices—carefully choosing
fabric, thread characteristics, thickness, color, and myriad other esthetic or functional variables.
While constructionism (Harel & Papert, 1991) offers valuable insights into learning through arti-
fact creation and “objects to think with,” the nuanced processes through which materials, actions,
and development intertwine remain under-developed and under-theorized.

Traditional constructionist perspectives have acknowledged bodily engagement through what
Papert called body syntonicity, which posits that individuals imaginatively embody the objects
they manipulate and design (Papert, 1980). Connecting physically with ideas that came from their

CONTACT Kylie Peppler @ kpeppler@uci.edu @ University of California, Irvine, 5206 Bren Hall Irvine, CA 92697, USA.

© 2025 The Author(s). Published with license by Taylor & Francis Group, LLC

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://
creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the
original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published
allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.


http://crossmark.crossref.org/dialog/?doi=10.1080/07370008.2025.2485070&domain=pdf&date_stamp=2025-06-06
http://orcid.org/0000-0002-1985-2313
http://orcid.org/0000-0001-8039-4414
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.tandfonline.com
https://doi.org/10.1080/07370008.2025.2485070

176 K. PEPPLER ET AL.

mind, learners deepen their conceptual understanding as well as multiple epistemological ways in
which concepts can express themselves in the world (Keune, 2022a).

In this study, we extend constructionist material perspectives by introducing the concept of
materialized action—a novel analytical framework that foregrounds the generative power of
materiality. Materialized action creates a developmental environment where learners generate
multiple conceptual understandings by actively constructing knowledge through hands-on project
work. This approach necessitates learners’ exploration, deduction, and performative engagement
with domain-specific ideas across interconnected modalities. We conceptualize materialized action
as a micro-developmental condition that generates diverse epistemological approaches to under-
standing. Through materialized actions—defined by the crafted production of projects that
demand constructive and deductive engagement with domain ideas—a rich spectrum of epistemic
approaches emerges. In this paper, we illustrate this process through the specific domain of multi-
plicative proportional reasoning, demonstrating how material practices can transform abstract
conceptual learning.

At its core, materialized action can be conceptualized as the patterns of intra-action (Barad,
2003) of learner(s) and material(s) in the construction of an artifact. While deeply rooted in the
constructionist paradigm—which posits that creating and sharing externalized artifacts is particu-
larly conducive to learning—materialized action critically extends this perspective by moving
beyond individual cognitive processes. Instead, it focuses on the emergent, dynamic interactions
that unfold between learners and the material traces of their actions. This theoretical approach
bridges constructionism with new materialist perspectives, revealing how learning is not solely an
individual cognitive process, but a collaborative negotiation between human agency and material
affordances. Fiber crafting becomes a particularly rich site for investigating this dynamic, as
it exemplifies how material properties actively shape and transform learning processes.
The materialist lens challenges traditional educational approaches by positioning materials not as
passive tools, but as active co-constructors of knowledge.

Mathematics learning, often perceived as an abstract, purely cognitive endeavor, becomes
reimagined through materialized action as an embodied, material-discursive practice. Fiber crafts
offer a unique lens for this investigation because they inherently involve mathematical concepts
such as proportionality, spatial reasoning, and pattern generation. The very act of crafting—with
its precise measurements, repeated units, and structural transformations—becomes a mode of
mathematical thinking that is simultaneously concrete and conceptual. For instance, in the open-
ing vignette, though both projects made use of the same type of yarn fiber (i.e., cotton) and fol-
lowed the same exact pattern, it was the weight or thickness of the yarn and the differently sized
crochet hooks that contributed to the difference in size. It is in fact the materials that shape the
size and look of the final product and, as such, in tandem with the crafter, create the final prod-
uct. Our study is motivated by a critical gap in understanding how learning—particularly math-
ematical learning—emerges through material engagement. By examining three distinct fiber
crafting traditions, we seek to illuminate the generative potential of material practices in mathem-
atical understanding, demonstrate how different crafting traditions differentially cultivate mathem-
atical reasoning, and challenge traditional cognitive models of learning by foregrounding material
agency. Specifically, we address two interrelated research questions:

1. How does fiber crafting develop opportunities for mathematics learning?
2. What are the conditions under which disparate fiber crafting traditions differentially culti-
vate opportunities for mathematical understanding?

This qualitative study captures a range of three fiber crafting activities that engage young
learners in mathematical learning through personally meaningful design. This effort combines
research on the use of textile crafts for learning advanced mathematics (e.g., Belcastro & Yackel,
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2011; Greenfield & Childs, 1977; Harris, 1997; Peppler et al., 2022; Wertheim, 2005) with a rela-
tional materialist lens on learning and development (Hultman & Lenz Taguchi, 2010) to capture,
analyze, and theorize how materials prompt human development and learning. As part of a lon-
ger-term qualitative study that focused on capturing evidence of learning via fiber crafts (Keune,
2024; Peppler et al., 2020; Saxena et al., 2023; Thompson, 2024), this paper presents close analysis
of the entangled micro-developmental engagement of fiber crafts and three youth case studies to
show how material changes led to engagement in powerful mathematical ideas of unitizing and
proportional relationships during an introductory workshop experience. We chose three fiber
crafts (i.e., knitting, crochet, and pleating) to illustrate how materialized actions across the crafts
demonstrated similar patterns of emergence, yet engaged the youth differently in terms of math-
ematical engagement, and encouraged us to reconsider how we recognize mathematical under-
standing and enacting. Through this examination, we aim to reframe mathematics learning as
an embodied, material process—one where knowledge is not transmitted, but dynamically co-
constructed through the intricate dance of human intention and material responsiveness, with the
potential to disrupt inequitable mathematics education assumptions and practices.

Discerning what remains the same and what changes is a key mathematical practice. The
Japanese art and craft ofamigurumi, the creation of small hand-knitted or crocheted toys, reflects
this tenet by illuminating the importance of materialsand their impact on the overall look and
dimension of the final product. In her amigurumi explorations toward the creation oftoys for her
cat, one of the authors felt firsthand this material importance. Figure 1 shows an example of two
amigurumiprojects, which are different in size, but appear to represent the same object, a hand-
crafted whale. At first glance, it mightappear that what is different is the pattern that was used to
create the toys; one is evidently larger in size and appears to havea greater number of stitches in
its respectively lengthier circumference. However, both toys followed the same instructions and-
pattern: A magic circle (MC) with 6 single-crochet (SC) stitches, followed by an increasing and
then decreasing number of SCstitches in subsequent rows to maintain the spherical shape of the
toy (12 in the second row and 18 in the third), exemplifying proportional growth. Why is it,
then, that one ended up significantly larger than the other?
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Figure 1. Hand-crafted whales that are different in size.
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Background
Math and craft

Historically, math learning and fiber craft learning were placed in opposition to each other in
European and American schools, with boys learning higher math while girls learned textile crafts,
such as sewing and embroidery (Harris, 1997). However, researchers have observed ample con-
nections between textile crafts and math that belie this socio-cultural and historical separation,
such as in knitting, crochet, cross-stitch, quilting, needlepoint, and tatting, among others (e.g.,
Belcastro & Yackel, 2007; 2011; Harris, 1997). The first technique to successfully model hyper-
bolic planes in physical space was crochet (Taimina, 2009; Wertheim, 2005) and the first modern
computer was based on Jacquard’s automatic punch-card loom (e.g., Essinger, 2004). In fact, it
has been argued that weaving leads to highly mathematical engagement in cultural and educa-
tional contexts (Greenfield & Childs, 1977; Peppler et al., 2020; Saxe & Gearhart, 1990;
Thompson, 2019, 2020). For example, through ethnographic research, Greenfield and her team
presented that weaving can be a tool for developing cognitive skills related to pattern recognition,
spatial transformation, and meta-representational skills (Greenfield et al, 2003; Maynard &
Greenfield, 2003).

Other work has demonstrated mathematical learning through textile craft engagement, such as
sewing of tents and costumes, knitting, crochet, and weaving in both in-school (Peppler et al.,
2018; 2019) and out-of-school contexts (Bender & Peppler, 2019; Peppler et al., 2020). Beyond
mathematics, fiber crafts have been an inspiration for technological inventions (e.g., Hofmann
et al.,, 2019; Igarashi et al., 2008; Keune et al., in progress) and computer science learning (e.g.,
Keune, 2023, 2022a). Particularly the repeated and rhythmic movements of people and craft
materials that are connected to mathematical “doing” present opportunities for reimagining edu-
cation (Keune, 2022b).

Inclusive materialism, proportional reasoning, and unitizing in mathematics

In the constructionist tradition, researchers look for powerful ideas that are part of the domain
that are persistently difficult as taught using traditional approaches. One such powerful idea,
which we examine in this study, is the role of unitizing in multiplicative proportional reasoning
(PR). Proportional reasoning is the understanding of the multiplicative part-whole relations
between rational quantities (de la Torre et al., 2013) and is a predictor of future mathematics
achievement (Behr et al., 1992; Boyer & Levine, 2015). While PR has applications in a range of
professions, with practitioners using it in their daily practice (Noss et al., 2000), it has persistently
been challenging to learn (Lobato & Thanheiser, 2002); often, young learners try to use additive
instead of multiplicative strategies (e.g., incorrectly solving for x in 2 = £ by adding 3 to both
numerator and denominator instead of multiplying both numerator and denominator by 2; Hart,
1981; Lin, 1991; Tourniaire & Pulos, 1985; Van Dooren et al., 2010). Nonetheless, children as
young as 5 or 6 can reason proportionally, as well as develop intuitive proportional reasoning
strategies, if spatial-perceptual representational problem formats are used (Boyer & Levine, 2015).

Unitizing is a foundational concept for multiplicative and proportional reasoning. Gotze and
Baiker (2021) found that a language-responsive introduction to multiplication as unitizing (e.g.,
introducing 3 X 4 as “having 3 fours”) helped students to improve their multiplicative reasoning.
Additionally, a study of children’s PR before formal instruction in ratio and proportion found
that unitizing was essential for developing PR: “[I]t is useful to view a ratio as a unit, the result
of multiple compositions of composite units” (Lamon, 1993, p. 58). Lamon (1996) continued her
work on unitizing with a study that explored the development of unitizing in youths’ partitioning
strategies; she found that more sophisticated unitizing (partitioning into composite units) occurs
over time and is difficult for children to develop.
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Yet, there is an alternative way of looking at proportional reasoning. Within their work on
Inclusive Materialism, de Freitas and Sinclair (2020) argue there is a powerful possibility in feel-
ing and practicing units across multiple materialities as to “disturb narrow (and perhaps white,
western, male) images of mathematics—and to open up opportunities for a more pluralist school
mathematics,” that draws on different cultural experiences, materialities, and abilities (2020, p.2).
For instance, in their crafting practices, the Yup’ik of Alaska make use of proportion in their ini-
tial measurements by standing in a line and estimating measurements relative to one another’s
height (de Freitas & Sinclair, 2020). Additionally, de Freitas and Sinclair (2020) bring into focus
tangible materials that can streamline better understanding of these concepts (e.g., rope stretcher
with knots at equal intervals). Adding to this work, we consider how units can be dynamic and
tangibly produced (rather than being given pre-formed units by the teacher/problem) as well as
how units sediment and build over time (e.g., stitch unit to patterning unit to project unit).

In sum, we aim to illuminate the processes of epistemic engagement that learners embark on
during constructionist experiences, using the powerful idea of unitizing within PR to explore how
disparate materials and their associated crafting practices differentially cultivate mathematical
understanding. This work takes a view of unitizing as a production-centered process shaped by
youth’s individual approach to the craft and the specific materials in use that affect the final
product. In this paper, we seek to uncover whether a range of “materialized actions” resulting
from co-constructions across various crafting traditions (e.g., knitting, crochet, and pleating) in
relation to the same domain (e.g., proportional reasoning and unitizing) can present an under-
standing of the domain concept as something that is anchored in the physical world, as well as
surface new understandings about the domain and how it can be expressed.

Constructionism, objects-to-think-with, and body syntonicity

This study takes as a starting point the theory of constructionism, which posits that learning
occurs best when individuals design physical (or digital) constructions that can be shared, and by
that represent cognitive transformations that happen as learners actively engage with domain-rele-
vant ideas. Working out reasons for why designs fail and adjusting designs to address such issues
is one important way to deepen understanding of the mental models and concepts employed in
design (Kafai, 2006; Kolodner et al., 2003; Litts et al., 2016; Papert, 1980). This iterative approach
turns materials and tools—physical or digital-into objects-to-think-with that provide opportunities
to improve upon and change mental models through design modifications and reflection
(Bamberger, 2014; Papert, 1980).

Attention paid to the types of materials used for learning is not without consequence, as mate-
rials, and the relative marginalization of other materials, have shown to shape domains in forma-
tive ways. For instance, Michael Friedman (2018) detailed how the compass and straight-edge
used since Greek antiquity produced a range of mathematical techniques and practices that sub-
verted and marginalized other mathematical principles based on the folding of parchment. This
has manifold consequences for how we conceive of mathematics today. Similarly, the epistemo-
logical consequences of sidestepping Frobel’s folding, embroidery and sewing “gifts” as materials
for exploratory patterning (Brosterman, 1997; Frobel, 1885; Kafai et al., 2010) looms large in our
conception of the mathematics domain and how it is experienced by learners. As there is not
“one way” to experience the domain of mathematics, such observations lead us to consider: a)
The underexplored areas of the domain that rest on actions and practices afforded by non-dom-
inant materials and their patterns of activity; b) the nuanced understandings of the domain that
they can provide; and ¢) what is ignored within the domain by their absence. In short, the mater-
ial aspect of objects-to-think-with is important for understanding learning processes, specifically
in the ways in which co-creations between materials and learners lead to new understandings
that are not seen as representative of how a domain is traditionally expressed.
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In addition to material considerations, constructionism has also taken the body and its move-
ments into account through what Papert called body syntonicity, which considers the body (and
its movements) as material by frequently imagining or mapping the body onto the object that is
manipulated (Papert, 1980). As an illustrative and often cited example, Papert’s robotic LOGO
turtle physicalized code in 3D environments. Children using the turtle could imagine the path it
would take when instructed with certain code, and sometimes even enacted the path taken with
their own bodies, connecting their programming notions to a host of epistemic understandings
informed by physical movement. This is an important idea for developing ways to evidence mate-
rialized actions, which in this paper means the body movements involved in the production of
units and their multiplications. The present paper also seeks to account for the materialized doing
that extends this idea by following the second author’s approach of merging constructionist ideas
with material-focused theories and sharing this perspective next.

Materialized action for epistemic engagement

Correspondingly to body syntonicity, how learners interpret the traces that actions bear upon the
materials they use (e.g., the tension of gears, the snap of magnets, the folds of origami) invites an
investigation into material syntonicity: Recognizing how domain concepts are projected by the
behaviors of material and their response to learner interaction (Keune, 2022b). Because of this, it
is important to move beyond not just facilitating engaging learning experiences but understanding
the opportunities for developing stronger epistemic understandings over time. These theoretical
ideas (e.g., material syntonicity) stem from taking on dual theoretical perspectives that merge
constructionist approaches to learning with posthumanist perspectives to understand how domain
learning emerges and how the materials used are actively taking part in driving domain-specific
learning (Keune, 2022b). This is important for the theoretical background of the present paper,
because it begins to show that taking a dual theoretical perspective, which is combining construc-
tionist ideas with material-focused theories, can advance our understanding of learning. This is
especially important when we want to introduce nontraditional materials into mathematics learn-
ing as a means for broadening participation (as we are doing in the present paper) because the
dual theoretical lens provides an opportunity to evidence the process in which mathematical ideas
are engaged so that they can be named and recognized beyond individual instances.

In the present study, we advance this trajectory by drawing on relational materialist views (c.f,,
Hultman & Lenz Taguchi, 2010; Lenz Taguchi, 2011) that call for lowering and, in the best case,
flattening hierarchies between people and things and, thus, making it possible to interrogate the
relationship between materials and learners by questioning typical assumptions in educational
research that materials serve people through the mediation of concepts. This leads to a focus on
intra-actions (Barad, 2003), the actions that emerge as people and things form relationships with
one another. This contrasts with a focus on separate individual parts and shifts attention to the
production of something more than the individual parts.

From this approach, learning can be considered the formation of relationships through which
potentially unforeseen possibilities are being produced (Hultman & Lenz Taguchi, 2010; Lenz
Taguchi, 2011; Keune & Peppler, 2019). Prior work that examined maker-centered learning in the
context of additive manufacturing in out-of-school settings as well as fiber crafts as a context for
computational learning showed that this view naturally expands constructionist notions toward
acknowledging how people and things dynamically emerge together, and how learning trajecto-
ries, learning activities, and learning environments expand beyond the planned (Keune &
Peppler, 2019). The prior work in the domains of computing and additive manufacturing showed
in larger scale and microanalytic ways that studying the forming of relationships among materials
and people can shift not only theoretical understanding of learning in context but can also impact
educational practice toward more inclusive and equitable approaches within domains that are still



COGNITION AND INSTRUCTION 181

marked by inequitable participation (e.g., Keune, 2022b; Keune & Peppler, 2019). The work
presents that the study of domain learning should focus beyond learners’ and educators’ inten-
tions—there is a field of research around the equal relationships between learner and material that
can shift domain learning approaches.

Following this dual theoretical take, in this study we conceptualize the notion of materialized
actions as a process of producing and constructing small elements that together make up the per-
formance of what we can materially recognize as an epistemic idea. We show this by first aligning
three crafts with the mathematical idea of multiplicative proportional reasoning and evidencing
how this epistemic idea is engaged and constructed in the crafts. Then, we show how young peo-
ple produce the idea in their own projects to evidence a way to understand and value mathemat-
ical epistemic engagement in relation to relevant yet nontraditional tangible material contexts.
Materialized action presents how knowledge engagement through crafting necessitates the per-
formance of mathematical ideas that we aligned the crafts with (i.e., multiple proportional
reasoning).

Methods

We designed crafting activities that built on a grounded understanding of the potential of crafts
to cultivate mathematical learning, informed by prior embedded ethnographies as well as inter-
views with educators and professional crafters (Peppler et al., 2022). Specifically, we considered
which features of our designs (i.e., aspects of the tangible manipulatives and/or aspects of the
supporting activity) appear to support mathematical learning. To accomplish this, we embarked
on a qualitative study with the intention to inform activity design across three fiber crafts with
considerations of what features of activities could lead to exploration of PR, and then evaluated
these features as part of two iterations: 1) artifact analysis with a team of adult crafters to further
align activities with PR learning formally, and 2) a three-day fiber crafts camp in which youth
performed the three craft activities to understand how the crafts supported engagement with PR.

To support the engagement with PR through each crafting tradition, we co-designed activities
with five adult crafters to craft artifacts, design activities, and analyze mathematical concepts
within craft products. One crafter had been knitting for two years and had helped with different
aspects of this project previously. The second crafter was an undergraduate researcher on the pro-
ject who had been practicing all sorts of textile crafts for at least five years and had made many
example projects for us. The third crafter was also an undergraduate researcher who was major-
ing in fashion design and helped by sewing example projects. The remaining two crafters also
had experience in mathematics; one had recently graduated with an MS in mathematics, and the
other was in a mathematics education graduate program. Both mathematicians were also excited
about craft, had experience with crafts, and made their own crafts to sell at local craft fairs.

With regards to the crafts camp, we captured detailed accounts of the crafts through photo-
graphs of projects. We also captured youths’ verbal expressions and detailed accounts of their
physical engagement with the crafts and their materials through video recordings. We used quali-
tative methods of artifact analysis (Pahl & Rowsell, 2010) of crafts to analyze activities for math-
ematics alignment. We then performed modal analysis (Abrahamson, 2009) of how the youths’
bodies performed the craft activities and the PR embedded within to better understand educa-
tional productions at play at the craft tables and to identify the materialized aspects of the craft
related to units and shapes that added to PR engagement. We argue that these approaches are
productive for better understanding mathematics learning and engagement with tangible tools
and materials, as they support the understanding of aligning crafts with mathematics concepts as
well as understanding emergent meaning-making with materials designed for mathematical
engagement.
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Settings

The setting of this research was a public library of a midwestern college town, where we first piloted
and later facilitated a three session-long math-based fiber-crafts summer camp in the summer of
2017. To pilot the three activities of the craft camp—Kknitting, crochet, and sewing—we facilitated two
drop-in sessions per craft at the library’s crafting space for 12-19-year-olds. The pilots supported the
refinement of the facilitation strategies as well as participant recruitment for the summer camp, as the
camp was facilitated in the same library. We offered the camp in the library’s activity room located
on the ground floor. The room included tables and chairs that we arranged into small group table
pods. The camp took place over the course of three consecutive days. Each day’s session was four
hours long, and on each day, youth learned a new craft and created a project with the craft: 1)
Crochet a circular bag, 2) knit a bag out of a rectangle, and 3) sew a pleated pattern into a bag. Time
was given to learn the basics of the craft and then to make the project.

Participants

We targeted middle-school-aged youth for the crafting camp because this is the age at which PR is
typically taught (Common Core State Standards Initiative, n.d.) as well as the age at which girls—and
other underrepresented youth—begin to wind down on interest with STEM (Corbett & Hill, 2015).
The library supported the recruitment efforts by designing and printing flyers that we distributed in
local shops. A total of 15 participants registered for the workshop and two additional participants
dropped in. Due to attendance variations, a total of 17 youth attended, but 15 per day. All registered
participants were between 9-12years old and of all participants, 16 were female and one was male.
Two participants were joined by their parents to support language translation.

During the camp, we asked youth to form small groups and to distribute themselves across the
arranged craft tables. Each craft table had a dedicated adult facilitator. Throughout the camp, the
youth had to learn a new craft at the start of each session. During the crochet and knitting days, three
facilitators worked with craft tables of 4-7 youth, and on the pleating day, four facilitators worked
with craft tables of 3-4 youth. Additionally, during all three days, two adult facilitators were assigned
to float around the room and to provide just-in-time help with crafting, checking of camera func-
tions, as well as taking observational notes on the flow of the day’s activities.

For analytical purposes, we focused on three focal youth and their experiences with PR through the
crafts. Across the data, we chose exemplary cases to understand the conditions under which PR arises.
While we looked at the youths’ experiences across the crafts, we predominantly focused on one craft
experience per youth. Youth had to actively participate in the crafts and create projects that met the
instructional requirements so we could investigate their experiences with proportional reasoning.
Another criterion for the focal youth selection was that youth had to work on projects with low to
medium facilitation to ensure that most of their projects were created by them rather than the instructor.
Youth with low facilitation needs could complete their project with initial instructions from an adult
facilitator, while those with medium facilitation needs asked facilitators for instructions throughout the
project progression but did not hand their project over to facilitators. Youth with high facilitation needs
asked facilitators to start or complete youth projects and cases in which adult facilitators implemented
most of the projects. Of all, 13 youth worked independently with low facilitation needs.

Given the early-stage explorations of the activities within educational settings, we aimed to
analyze exemplary youth engagement because we were interested in investigating the conditions
under which PR engagement was supported and came about. Of the 13 with low facilitation
needs, eight youth followed the design activity instructions per craft.

For knitting, we selected a youth named Katie (all names are pseudonyms), who created a
knitted bag with differently colored yarn and explored PR by restarting her project and compar-
ing it to other knitting techniques. For crochet, we selected a youth named Tracy, who created a
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three-row circular bag with pink chunky yarn and engaged with PR through unitizing and stitch
distribution. For pleating, we selected a youth named Margaret, who created a bag with two
pleats using a fabric with a planetary print and engaged with PR through repeated engagement
and by inventing strategies to make her proportional units permanent.

Data sources

We first created example projects with all three crafts that acted as proofs of concept for the ini-
tial activities. The example projects served as reference materials that guided our explorations of
the underlying math concepts and shaped our understanding of how PR was instantiated in each
of the crafts. The fiber projects were used in this inquiry process to pull apart, look closely, and
reconstruct soft constructions.

Additionally, the data sources included video recordings of the youth camp to observe the
youth-produced proportional reasoning across projects through material unitizing and shaping.
The cameras captured the youth working on their projects and any audio as the youth and adults
spoke. We captured 40 hours of video data (i.e., four hours per camera per day). Following Derry
et al. (2010), we set up video cameras facing the youth and captured their hands and faces as
they worked on their projects, filming each table group. Thus, based on the number of table
groups per craft, we captured the crochet and knitting days with three cameras and the pleating
day with four cameras. Throughout the camp, at intermittent points in their design process, facil-
itators asked youth about what they were doing and what else they could try.

Lastly, the data sources included 231 photographs of youth projects. We used phone or iPad
cameras to capture pictures that showed the dimensionality of the artifacts and details of the
youth’s projects to support reverse engineering of the steps the youth performed. The photo-
graphs provided a more detailed view of the projects when videos did not support clear images.
We linked the photographs of the projects to the youth participants who created them to keep a
detailed record of the youths’ mathematics and craft engagement while also allowing us to return
the project to youth at the end of every day.

Analytical techniques

We first analyzed the example projects generated by the research team with the adult crafters. Our
analysis included three layers that carved out connections between crafts and PR: 1) Verbal
descriptions, 2) visual representations, and 3) corresponding mathematical notation. The abstrac-
tion supported the refinement of the activity design in that it helped narrow down which affor-
dances and features of the designed activity were necessary to support the engagement with PR.
For the verbal descriptions of PR, we generated step-by-step breakdowns of the process from the
start to finish of the craft project. Next, we identified rules that could be abstracted, including
steps that occurred several times in the same way or with slight variations. We created visual rep-
resentations (e.g., illustrations or photographs) that showed the emergent material and craft pat-
tern and further abstracted the activities toward symbolic mathematical representations. This
layer of analysis focused on intersections of math and particular aspects of the crafts (e.g., distri-
bution of crochet and knit stitch units) and how these aspects differed across crafts. Lastly, we
represented the rules that governed the patterns we designed through mathematical notation
which directly connected PR with the designed craft activities. In doing so, we took apart and
reconstructed the material projects continuously to guide the translation to mathematical nota-
tion. As per constructionist philosophy, the abstractions into mathematical notation were not a
part of the camp experience—at no point during the workshop was the learning of PR an explicit
goal of participation. Rather, to do each activity well, the learner had to successfully execute PR
concepts, even if they were never described to the learner as such. Instead, we abstract the
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learners’ projects into mathematical forms after the fact to illustrate the intersections of canonical
mathematical doing with crafting, which is not canonical of mathematical doing (see also
Keune, 2022b). Such translations rarely take place explicitly, and especially in our camp, the
youth felt the materialized units and their proportional relationship as the units were multiplied,
rather than calculating, for instance, amounts of stitches per row.

The analysis of the video recordings of the youth camp focused on how youth produce PR across
fiber crafts through material unitizing and shaping. We were particularly interested in how crafters
produced units in the materials—and the subsequent changes to the shape of their project—as well as
how the unitizing and shaping added to the material unit and shape production. To identify relevant
moments of the focal youths’ craft engagement, we viewed all four hours of video data for all focal
youth. This included creating content logs of the video that summarized the focal youths™ practice in
relation to the identified mathematics for every 5-10-minute-long blocks of video. We used the sum-
maries to highlight where in the video the most relevant moments of proportional reasoning hap-
pened. These were the moments that we focused on for further in-depth analysis. Our analytical
process was inspired by relational materialist understanding that took into consideration the role of
the body in mathematical learning experiences. Accordingly, our analysis shifted away from interpret-
ing the children’s intentional design meanings, instead focusing on how the materials and bodily
actions collaboratively produced proportional relationships through the crafting process.

Our analysis also drew on the photographs of youth projects, which showed their material pro-
ductions of proportional relationships across crafts. The images provided the possibility to closely
observe stitches and folds in order to reconstruct the mathematical doing that occurred to pro-
duce the project. The photographs and detailed videos of completed projects were used to trace
the production processes. We particularly focused on the differences between planned and imple-
mented projects (e.g., in relation to stitch size) as reference for mathematical processes.

Findings

To uncover how fiber crafting develops mathematics learning, as well as the conditions under
which disparate fiber crafting traditions differentially cultivate mathematical understanding, we
present the three levels of unitizing that make up the larger idea of enacting PR through material-
ized action. In this analysis, we present how unitizing levels build and catalyze toward the other
through crafting, and how understanding emerges from the intra-action of the material and the
learner. Our analysis centers on how participants reason with the stratification of personally
defined units throughout the development of their crafts.

Unitizing and proportional reasoning per crafting tradition

In contrast to the use of established units as the basis for ratios and proportional relationships,
fiber crafting begins with an initial stitch unit that users define through their choice of materials
and their body’s relationship to their manipulation. As they knit, crochet, or pleat, crafters reason
with multiplicative part-whole relations as rhythmic and repeated movements of people and
materials arrange and multiply stitch units into pattern units, which are multiplied again into a
project unit. In this study, we define three levels of unitizing:

Stitch unit (i.e., knitted stitch unit, crocheted stitch unit, fold unit)—The unit basis for a pro-
ject, consisting of several small intra-actions between people and materials specific to each
crafting tradition (see Table 1). Stitch units form the basis of proportional relationships when
considering the number of stitches per row (i.e., knitting), stitches per sector in a circle (i.e.,
crochet), or inches per pleat (i.e., pleating).
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Pattern unit—The repetition of stitches or folds into larger patterns to define the project’s
overall size (e.g., the number of stitches per horizontal inch, crochet stitches per row, or inches
per pleat). By bringing stitch units in relation, patterns emerge. Note: We define a pattern as a
form or model used for imitation, not to be confused with a crafting “pattern,” which is craft-
ing parlance for a physical diagram users follow (or pieces users trace, in sewing) to make a
project.

Project unit—The combination of completed patterns that form the finished product. Where
the mathematical characteristics of a materialized action begin to emerge from the two units
above, the project unit shows the mathematical connections even more clearly.

In the next section, we walk through how each craft uniquely supports unitizing within PR, and
investigate the processes of epistemic engagement that learners embark on within each crafting
practice. Guided by de Freitas and Sinclair (2020) decolonial approach toward units to uncover dis/
abilities in curricular frameworks, we zoom in on the materiality of units within proportional rea-
soning as practicing routines and how they build up a recognizable unit that can be chained to pro-
duce a measurement, which, in turn can then be put into a proportional relationship.

How fiber crafts differentially develop mathematics learning

In the crafting camp, youth formed relationships with domain concepts (i.e., unitizing and propor-
tional reasoning) through their iterative engagement with the materials as they crafted in preferred
ways (e.g., by stitching and unraveling, by exploring the number of stitches per row). In our ana-
lysis, we examine how the material construction as part of the craft brought about engagement
with PR, which took a different form for the three youth and employed different strategies based
on personal choice, affordances of the materials, and practices of the crafting traditions.

Katie’s knitted bag: Stitching a unit and PR as stitches and rows per inch

For the knitting activity, participants learned how to knit a bag composed of two individually
knitted squares to be later sewn together, each approximately 4 x 4 inches in size. First, partici-
pants learned how to cast on stitches as well as execute knit and purl stitches (i.e., the fundamen-
tal knit stitches). Second, with their choice of yarn and knitting needles, participants practiced
casting on a set number of stitches and knitting for a few rows to get a sense of the proportional
relationship between stitch length and stitch height in order to define their gauge (i.e., a small
knit that gives a sense of the proportional relationship produced by knitter, needle size, yarn
thickness, stitch unit, pattern unit, and the resulting tension from the interplay of the human and
non-human parts). Third, participants completed their projects by being taught how to cast off
stitches, which provided a smooth edge to their knit.

When knitting, stitches become routines that form a unit from which the proportional rela-
tionship can emerge. One stitch unit consists of the following actions that involve the coordin-
ation of hands, needles, yarn, eyes, tension, and speed: Go through stitch, wrap-around, pick up
yarn, drop yarn, and tighten (see Table 1). The action that the hand, yarn, needle, eyes, etc., per-
form together to produce a unit has an imprint on the material (e.g., how the materials respond
to manipulation) and the crafter (e.g., how their hands develop muscle memory and the consist-
ent tension of yarn when wrapped around fingers). Stitches’ dimensions can vary in proportion
because the length and height of one stitch depends on the knitter’s personal tension or grip of
the yarn, the selected needle, and the yarn itself. It is an interplay of people and materials that
produces a stitch unit, although the steps of the routine stay largely the same.
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One of the youth was Katie, a 10-year-old experienced knitter who showed others how to knit. Katie
produced stitch units only to unravel them and to restart a total of 12 times, working to establish a con-
sistent and intuitive feel for her stitch units, including determining which yarn thickness and needle size
to use. The size and tension of her stitch unit varied across iterations. Where initial stitch units were
loose and irregularly shaped, as Katie got into a routine, her stitch units became tighter and more uni-
form. Katie and a neighboring youth also explored stitch units through a conversation about arm knit-
ting, a knitting technique that uses the arms of the crafter in place of knitting needles (see Table 2).
Together, the youth determined that the stitches would be gathered on one arm and picked up by the
other arm (see Table 2, panel 1 and 2). Through gestures, the youth compared the effects of using differ-
ent materials (i.e., wooden needles vs. arms as needles) on one’s personal stitch unit (see Table 2, panel 3
to 5). Through her body posture and arm gestures, Katie expressed how the size of a needle affected the
amount of yarn needed for a stitch as well as the size of a stitch unit (see Table 2, panel 6).

Starting over also made it possible for Katie to practice and develop a sense of her personal
gauge, reflective of pattern units. With an increasing number of unraveled projects, Katie began
to consider how the number of stitches she cast on would relate to the end product’s size, count-
ing the stitches she cast on her needle. Additionally, Katie also compared knitting techniques to

Table 2. Transcript of a conversation about arm knitting that involves stitch units and pattern units.
1 2 3 4

Katie: “Your arms are like Sarah: "Like this?" Katie: "I don't know how Katie: "Now that | think about

needles.” exactly." it, it’s like the needles.”
Katie turns to Sarah and lifts  Sarah lifts her project. Katie Katie lifts her arms and Katie picks up her project
her arms. drops her arms and nods. twists them. and points at the needles.

Katie's arms become needles. With arms as needles, Katie
explores how arm knitting

would work.

Sarah introduces her project
as a comparison.

Katie suggests that arm-
needles would act
similarly to wooden
needles.

Katie: "If you used this arm,

Sarah: "Ah."

Katie: "Yes."

Sarah lifts her left arm and
grabs it with her right
hand at three places.
Katie nods. Both knit on.

Sarah’s arm becomes a
needle and the grabbing
motion become stitches
gathering on the needle.

it'd be stitches that big."

Katie holds her hands one
foot apart.

Katie shows how the size of
the project becomes
larger with arms as
needles.

Katie: "Lalala"

Singing, Katie waves her
arms.

The waves become stitches
and Katie adds a few
stitches to her imaginary
project.

Katie: "Then you have that
much."

Katie holds her arm two feet
apart.

The imaginary project grew
over twice in size and,
thus, at a faster rate
compared to using
wooden needles.
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get a physical sense of the size of a stitch in relation to the created pattern unit in space, and,
more specifically, the length of a row of stitches (see Table 2, panel 7 and 8). For example, Katie
discovered that six stitches in regular knitting is shorter than six stitches done in arm knitting.
This is relevant because needle size is one aspect of how knitters conceive of their personal pat-
tern unit, which ultimately shapes the look and size of a stitch unit (i.e., how big or how loose it
is). As she worked, each stitch reconstructed the rectangular stitch unit that became the basis for
a proportional relationship while this reconstruction was a part of forming the pattern unit. Each
pattern of stitches thus formed another unit of the mathematical materialized action that left an
imprint on Katie as she repeated units and combinations of units and the yarn that formed into
the visible pattern shape.

Where the mathematical characteristics of a materialized action began to emerge from the
two-unit levels above, the project unit showed the mathematical connections even more clearly. A
knitted stitch unit is rectangular in shape and, thus, the stitch height is unequal to (shorter than)
stitch length. This produces a proportional relationship, which in knitting looks like a perform-
ance centered on the gauge of a knit. As described above, to create a particular sized project,
Katie first defined her stitch unit and then considered how many stitch units per row and how
many rows she needed in total (see Figure 2). As she worked, Katie noticed the proportional rela-
tionship at the level of the project unit, when she realized her project unit did not match the
drawn pattern unit and that her stitch unit was not square as she had anticipated in her sketches.
For instance, Katie’s pattern unit (i.e., project plan, see Figure 2) showed two squares of ten
stitches per ten rows side by side, which assumed that a stitch unit is as tall as it is wide.
Following her plan, Katie cast on 20 stitches.

By comparison, her implemented project unit included 8 rows: Two purple rows (one cast on,
i.e., the stitches that Katie added to her needle at the start of the project and that defined the
number of stitches each subsequent row would include), two pink rows, one blue row, and three
green rows (one cast off). Even these eight knitted rows (instead of the planned 10 rows) pro-
duced a rectangle rather than a planned square. She adjusted her pattern unit so the drawn plan
would represent the project unit with the colors she implemented (Figure 2, bottom left). Yet,
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when comparing the adjusted plan to her completed project, the plan included more rows per
color than Katie actually knit and rows were drawn with less accuracy compared to the previous
drawn pattern unit (see Figure 2, top left). This evidence shows that Katie discontinued consider-
ing the squares of the graph paper as individual stitch units and rather seemed to use the squares
to illustrate the space the pattern unit with its colors would take up. Further, it indicates that
Katie noticed that the number of rows she knit produced a project unit that was rectangular
rather than square in shape and, therefore, that the individual stitch units were taller than they
were wide. Thus, by moving across her sketched annotation (i.e., pattern unit) and her completed
project (i.e., project unit), Katie discovered that the ratio of stitch width to stitch height is not
1:1. Instead of redoing her design, Katie adjusted her project unit based on the physical outcome
that was different from the pattern unit; she said: “So this is going to be a little bit bigger than
the square because this has a flap on it, too.” Katie decided to use the extra space, resulting from
the produced proportional relationship as a feature in her bag project unit (i.e., the length of her
stitch unit to the project’s length and the height of her stitch unit to the number of rows
produced).

Repeated undoing and redoing of knitted stitch units and comparing how knitting techniques
change the stitch unit’s size helped Katie get a sense of her own gauge (i.e., the pattern unit) and
the aspects that drove it. Knitting presented an opportunity for Katie to explore how combina-
tions of stitch units (i.e., pattern units) could be arranged into a larger whole (i.e., project unit).
This combination and the comparison of a drawn pattern unit with an implemented knitted pro-
ject unit led to the exploration of proportional relationships—that is, numbers of stitch units per
row. Moving across three different units provided Katie with the space for iterative material
exploration (i.e., through the undoing and redoing of stitch units) and to make sense of the rela-
tionship across units, which brought about the implementation of proportional reasoning, but in
greater complexity than what we would find in traditional classroom exercises.

Furthermore, we can see that learning about the epistemic idea is moving between units and is
building toward larger constructions. This performative comparison of knitting with needles and
knitting with arms was indicative of Katie’s developing sense of a key material aspect of the craft
that affected the production of a stitch unit, the basic element for PR within knitting. Yet, when
moving from stitch unit to pattern unit, we start to see intersections and moving back and forth
across units. Katie’s stitch unit produced a new material that patterned units built on.

Tracy’s crocheted bag: Stitching a unit and PR as stitches per sector and row

For the crochet activity, participants learned how to crochet a circular bag, which enacts ratio
and proportion in a similar way to knitting by considering the number of stitches per row.
However, the circular nature of the project in crochet also prompts a consideration of the num-
ber of stitches across sectors and the within-sector relationship of proportional growth. To create
a flat circular shape, crocheters first create a magic circle, which includes creating a slipknot and
crocheting chain stitch units (e.g., a series of looped stitches forming a chain-like pattern) into
the knot’s loop, with a desired number of stitches. The number of stitches that make up the
magic circle defines the factor of multiplicative proportional growth, with each stitch representing
one separate sector of the whole circle. By bringing stitches in relation with one another, patterns
emerge that impact the material shape and dimensionality of the produced units. To maintain a
flat circular shape, crafters produce and reproduce stitch units that are then uniformly distributed
across sectors and rows. One of the youth, Tracy, a 9-year-old who was not very experienced
with crochet at the start of camp, produced a magic circle composed initially of six crochet stitch
units. Where in a rectangular crocheted project, stitch units resemble rectangles like in knitting,
in a crocheted circle, inserting a stitch into the prior row’s stitches pulls the yarn to produce a
stitch unit resembling a trapezoid. Similarly to knitting, the overall shape and size of individual
stitch units is co-constructed as part of the interplay of the materials in use (e.g., yarn, size of
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Table 3. Transcript of Tracy identifying a stitch unit in her project unit.

2

R

y - "‘i o

Tracy: "You see, the two
parallel lines make a V or
a teardrop."

Tracy shows Elena how to
identify where on the
project the next stitch
unit goes.

Tracy characterizes a stitch
unit with a distinct shape
and identifies it in Elena’s
project.

* ) BN

Tracy: "And you go only
under those two."

Tracy maneuvers the crochet
hook through the stitch
unit.

Tracy starts a new stitch unit
as if testing whether she
correctly identified the
prior stitch.

A\A“’.A

Tracy: "And then yarn over Tracy: "Yeah, yarn over."

again.”

Tracy turns Elena’s project
toward her.

Tracy lets go of the project
and Elena takes it.

Tracy continues to help
Elena with the next stitch
unit.

Tracy seems satisfied with
her identification of the
prior stitch unit.

crochet hook) and the crafter’s tension when holding the yarn, all the while performing the same
overall routine steps.

To increase the circumference of her circle, Tracy had to identify what a stitch unit looked
like and where it was located as well as the location within a stitch where another stitch could be
connected to and how (see Table 3). She explained how she identified a stitch unit to one of her
neighbors: “You see, the two parallel lines make a V or a teardrop.” As Tracy explained she
pointed to the place in the project where the stitch unit was in her neighbor Elena’s project (see
Table 3, panel 1). Tracy identified a stitch unit by looking at the shape the stitch produced when
combined with other stitches in a unit. However, rather than looking at a stitch as a flat shape
from the top down, her description of “a V or a teardrop” suggests that Tracy identified stitches
as 3-dimensional shapes. The “V or (...) teardrop”-like shape is the top of the stitch that is
exposed at the rim of the project (see Figure 3(a)). Tracy continued to explain and show in more
detail how exactly this unit related to the larger project: “And you go only under those two.” To
illustrate, she moved the crochet hook through a V shaped stitch unit to create another one (see
Table 3, panel 2 to 4). The recognition that stitch units in crochet were three-dimensional made
it possible for Tracy to single out interconnected stitch units, to identify their locations, and to
point to locations where to attach a new stitch unit. The epistemic engagement with stitch units
supported her in continuously producing stitch units and combining them in multiplicative ways.

In a way similar to knitting, Tracy’s crochet stitches were multiplied to produce a pattern unit,
nested within each row and sector. Once she progressed to the second row, Tracy increased the
flat circle’s circumference by crocheting two stitch units through each of the stitch units in the
prior row (a 2:1 ratio). Typically, to crochet the second row of a flat circle, crocheters build out-
wards by crocheting two stitches into each stitch on the outer edge of the magic circle, generating
a per-relationship (i.e., two stitches per sector), suggesting a proportional relationship. The second
row of the flat circle, once completed, should include a total of 12 stitches with 2 stitches in each
of the six original sectors. The total number of stitches per row and the number of stitches per
sector becomes multiplied by 2. Interestingly, to continue to crochet a flat circle, the third row
needs to increase by a factor of 3. In practice, this means that the crafter crochets three stitches
per sector (instead of two in the previous row).
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Figure 3. Photograph of Tracy’s project highlighting each row.

Though visually the circumference of the circle did indeed increase in Tracy’s project, Tracy
actually crocheted two stitch units into five of the stitch units of her magic circle (i.e., 2:1 ratio)
but only one stitch into the last remaining stitch unit of her magic circle (i.e., a 1:1 ratio; Figure
3(a)). Yet, it was possible for her circle to evenly increase in circumference because she made up
for the last missing stitch by producing one stitch unit that was crocheted looser than the prior
ones. Although the resulting outcome was not the intended pattern unit (i.e., two stitch units
into all six of the stitches of the magic circle), to maintain the evenly increased circumference of
the circle toward a flat circular shape, Tracy reformulated her actions to resemble that outcome
(i.e., by producing one stitch that was crocheted in a looser way). Had she not done that, the
number of stitch units would not have accommodated the even increase in the circumference.

At the project unit level, the proportional relationships from the stitch and pattern units are
even more prominent, indicating how the act of crochet involves the execution of three things
simultaneously: a) Recognizing stitches as stitch units, b) identifying combinations of stitch units
as sectors or pattern units, and c) seeing them in relationship to one another (e.g., seeing sectors
inside of sectors). In Tracy’s project, the repetition of the stitch unit in connection with other
units changed the shape of the stitch unit and of the project unit, showing the interconnectedness
of the different layers. The distribution and increase of rectangular stitch units around the flat
circle changed the shape of the stitch unit from a rectangle to a trapezoid, where the edge that
was connected to the previous stitch was slightly shorter than the opposite edge. Reproducing
stitch units in patterned ways also changed the shape of the larger project unit, from a flat circle
to a cylinder. To create the walls of her circular bag, Tracy distributed a stable number of stitch
units on a circle, rather than increasing the number of stitches per row. To this end, for her third
and fourth row (Figure 3(b,c), respectively), Tracy built each stitch unit directly on top of the
one below, resulting in walls rising straight up (i.e, 1:1 ratio). Through her implementation of
various rates of increase that either maintained the shape of a flat circle to later adjusting it to a
cylinder, Tracy arguably developed a sense of multiplicative proportions in crochet as part of her
vision of her project unit. This illustrates how different ratios interact uniquely in three-dimen-
sional space and could just as well pull stitch units upward rather than outward, depending on
the desired shape of the project unit. Producing and reproducing stitches in patterned ways as
part of materialized actions in crochet allowed Tracy to interact with and manipulate the number
of stitches per row, and in consequence, the shape of her project unit in three-dimensional space.

In this vignette, materialized action became mathematical engagement as youth got a sense for
the number of stitch units per row by 1) identifying a stitch unit and its location in a project
unit, 2) distributing an increasing and a stable number of stitches on a circle, 3) shifting between
stitch unit, pattern unit (the distribution of stitches per row and sector) and project units, and 4)
manually adjusting the tension of stitch units. In the instance of Tracy’s crocheted bag, we can
see that crochet made it possible for Tracy to explore how different rates of increase materialized
in the shape of individual stitch units and the material form of the larger project. In the case of
Tracy, learning about the epistemic idea involves shifting between stitch unit, pattern unit (the
distribution of stitches per row and sector), and project units, but it also risks inaccuracy, because
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the crafter can adjust the size of the stitch to make up for an error in the pattern. Yet, it is
exactly the need for intentional adjustment in the tension of stitch units that can highlight
whether a multiplicative proportional relationship was accurately implemented in crochet.

Margaret’s pleated bag: Folding a unit and PR as inches per pleat

For the pleating activity, participants learned to fold pleats with paper and fabric. Unlike knitting
and crochet, ratio and proportion manifested within each pleat as inches per pleat, or within each
individual unit, which captured the relationship between the hidden layers of fabric that were
folded and the top layer that was visible. First, in learning the structure of a pleat, participants
folded pleats into paper. This made it possible to practice the routine actions needed to produce
a pleat while also making it possible for the material to easily remain in place. Second, partici-
pants folded and sewed pleats into fabric and then sewed their pleated fabric into a bag. To sup-
port participants in this activity we provided irons and sewing machines. Lastly, participants
could create a strap for their bag to complete the projects.

In pleating, the building of a unit and proportional relationship is produced differently com-
pared to knitting and crochet. In place of a stitch unit, in pleating, the folding of fabric becomes
the unit (i.e., fold unit). A pleated unit consists of a series of folds, which produce layers of fabric
and the three-dimensional shape. To produce a fold unit, pleaters mark the width of the pleat on
the fabric, draft score marks at half width of the pleat on both sides of the pleat, and then fold
the fabric at four markers. Yet, the soft foldability of the fabric makes personalized unitizing pos-
sible. In action, pleaters do not always use measuring tools to pinpoint the locations of each fold
and to measure the distance between each fold to produce alignment. Instead, they adjust the size
of their pleats by pulling up and flattening down more or less fabric.

One of the youth was Margaret, an 11-year-old, who did not have any prior experience with
sewing or pleating. However, over time she constructed a skillfully crafted project that included
two evenly shaped pleats she sewed onto another piece of fabric to create a bag. In the process of
making her project, she produced six segments by lifting layers of fabric up and folding them flat
onto the surface of the fabric, producing three layers of fabric composed of two parts of three
segments each. In pleating, proportional reasoning is called for every time one produces a pleat
(i.e., inches per pleat). A pleat’s proportional relationship is three is to one as six is to two (i.e.,
3:1 =6:2). The 3:1 ratio is found in the length of the unfolded pleat, which is three times the
length of the folded pleat, due to two layers that are folded underneath the top layer. Thus, the
pleat reduces the overall length of the fabric by two times the length of the pleat. Another way of
identifying the proportional relationship is to consider the amount of fabric needed to produce a
pleat of a certain size and identify the per-relationship between them. For example, if a crafter
wants to produce a pleat that is one inch wide, they would have to use three inches of fabric (ie.,
3 inches of fabric per 1-inch pleat). The calculation for the length of fabric needed for a rectangle
with vertical pleats that will be as large as a non-pleated rectangle, can be described as:
L=1+2np. Here, L stands for the total length of fabric required, I stands for the length of the
fabric in the outcome, # for the number of pleats, and p for the pleat width.

As she worked, Margaret produced fold units by repeatedly pinching fabric up and pressing it
down to fold open into the desired design. Margaret’s repeated engagement supported an experi-
mentation with a variation of sizes and positions of PR as she produced fold units (see Table 4).
She began by planning her project, writing the measurements of each pleat and its position on a
piece of paper (see Table 4, panel 1). This practice let Margaret record and store her mathemat-
ical engagement and return to it at a later time.

As Margaret turned to the fabric, her plan was to generate a fold unit consisting of three
layers, one on top that covered the visible area of the pleat and two folded beneath it. The routine
movement of pinching up and pressing down the fabric gave a material form and showed the
multiplicative relationship between the layers of fabric that were hidden and the top layer of
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Table 4. Transcript of Margaret’s changing pinching up and folding down strategies.

1

2

3

Margaret writes project
measurements on paper.

She plans her project unit
and captures it in place.

Margaret: “Ugh.”

Margaret breathes strongly
and slams her hands on
top of her fabric.

It is difficult to maneuver the

unfamiliar materials and
to fixate a fold unit.

Margaret pinches her fabric
and folds it down. She
lets go of the fabric. The
fabric folds flat. She
repeats this process five
times.

She is trying to hold the
fabric pleat (i.e., fold unit)
in place, similar to the
paper measurements
(materialized action 1
folding).

6

Margaret: “It’s so hard.”

Margaret tries to pin the
fabric down once more.
The fabric folds open
again. She slams her

hands on top of her fabric

again and cuts up her
project.

She is taking a break from
her problem of fixating
the fold unit.

Margaret: "It is hard to pin
them in place."

Margaret tries to pin the
pleat down. She takes the
pin off. The fabric flattens.

She explores alternative ways
to hold her fold unit in
place (materialized action
2 pinning).

Facilitator: “Ok, do you want
to take a look at the
iron?”

Margaret starts over with a
new piece of fabric. The
facilitator introduces her
to the iron.

She returns to the fixation
problem and introduces
the iron.

Margaret repeatedly pinches

up her fabric and folds it
down before she lets go
of the fabric and it folds
flat.

She continues to try to hold
the fold unit in place.

o
T ——

Margaret: “I think | need to

iron it.”

After several attempts of

pinching up and folding
down the fabric, Margaret
tries the pinning methods
once more. Then she asks
for the iron.

The iron becomes the third

method for fixating the
fold unit and the PR
(materialized action 3
ironing).

fabric that was visible (i.e., 3:1). However, when Margaret lifted her hand and let go of the fabric,
the fabric unfolded and quickly reverted into a flat layer without a trace of a fold (see Table 4,
panel 2). Material properties (e.g., thickness of the fabric and fabric memory) worked against eas-
ily folding, flattening, and creasing the fabric in sustained ways, with the fabric bouncing back
into its unfolded state. Thus, it was required to find ways to hold each fold unit in place (see
Table 4, panel 3).

Margaret selected where to place the fold units, their size, and the combination of units (i.e.,
pattern unit). Margaret deliberately chose the position of the pleats in relation to her fabric’s
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Figure 4. Photograph of Margaret’s project.

print pattern, as she produced her own unique fold and pattern units (see Figure 4). She pinched
a piece of fabric up, rotated her hands, pressed the fabric down, then let go, watching the pleat
unravel. She experimented with her movements, altering the combination of fingers that would
hold down the fabric and the pressure applied on the fabric, which also configured her personalized
fold unit. Rather than employing exact measurements, Margaret seemingly eyeballed her pleats, and
with the routine action of pulling up and pinching down, she demonstrated an understanding of
the 3D relationship that was inherent to how PR manifested in fabric. This materialized action of
folding was different from the measurements that were held in place on paper at the start; the
folded PR in fabric was difficult to permanently hold in place (see Table 4, panel 4 and 5). As she
let go of the pleated proportion, it unraveled, which called for other materialized actions.

Margaret first attempted to pin the fold units down with the provided pin needles, but this
materialized action of pinning also did not achieve the expected results because the needles did
not flatten the slippery fabric and merely presented support structures for further folding. As
Margaret pinned down one side, the other side of the fold unit became unfolded (see Table 4,
panel 6). As the conversation at the table turned to ironing, Margaret declared, “I'm gonna use
the iron to hold it in place when I pin it. After I iron it, it stays in place for a little time, and
then I can pin it.” This introduced a third action of ironing and was a turning point (see Table 4,
panel 7 and 8). Identifying solutions for holding fold units in place allowed Margaret to fix the
fold units in place (i.e., creating what’s called “fabric shape memory”) which held evidence of the
multiplicative proportional relationship between fabric layers. Having a reliable strategy for fixing
fold units allowed Margaret to move onto pattern units by adding more pleats in combination
with each other.

In pleating, the project unit consisted of the folding in fabric, the ironing of the fold and pat-
tern units in place, the sewing of the folds so they would not open again, and then combining
their fabric pattern unit with another piece of fabric to make a bag. Where the fold unit and the
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pattern unit could be replicated in paper, it was the durability and the finished project that could
be worn, used to carry other objects, and shown to family members outside of the course that
produced another layer of materializing mathematical actions.

In this example, materialized action became mathematical engagement as youth got a sense for
folded inches per pleat by testing multiple materialized actions to store fold units in place. In the
example of Margaret’s pleated bag, we can see that the practice of pinning and ironing expanded
the initial proportional practice of pinching-up and pressing-down and showed how epistemic
understandings can emerge through materialized actions. Initially, the routine practice of pinch-
ing-up and pressing-down increased her fluency with the craft as she repeatedly produced her
own fold unit, which fostered an understanding of the overarching proportional relationships
between visible and invisible folds. Pinning and ironing, however, contributed a more permanent
material representation of the inherent math concepts underlying the production of a fold unit.
Through ironing, creases were formed, which stayed intact even after unfolding and helped visu-
alize the sides and vertices within each pleat. The permanence of pleats also held the pleat in
place in case the youth let go of the fabric, freeing their hands and minds to move onto another
unit type (i.e., moving from fold unit to pattern unit). This made it possible to put fold units in
relation and combination with one another to produce pattern units. In turn, at the project unit
level, it was possible to produce a complete, functional, and usable project, which has the multi-
plicative relationships take material form as part of the design. On a fabric-material plain, the
ironed pleats were similar to the symbolized demarcations of the measurements that would make
up proportions on the piece of paper that Margaret used before starting her fabric PR
explorations.

Discussion: Materialized action in mathematical practice

We set out to understand how fiber crafting develops mathematics learning. Through our analysis
of knitting, crochet, and pleating across three types of units (stitch/fold unit, pattern unit, and
project unit) we can see how learners can engage epistemically in mathematical ideas across dif-
ferent levels and complexities. All three crafts promise ample opportunity to practice proportional
relationships: for example, in crochet by partitioning stitch units into sectors and multiplying
them in a set pattern. They can zoom in on the unit, creating a unit and deeply understanding a
unit’s characteristics (i.e., the steps it takes to make a stitch or a fold) as well as the aspects that
change a unit (e.g., different tension in knitting, different size of needles). The stitch and fold
units are not predetermined, but vary according to the idiosyncrasies of the crafters’ tension, yarn
type, the needle used, etc. The personalized stitch and fold unit becomes a materialized action
that crafters can recognize with both hands and eyes.

Beyond building units, crafters can simultaneously zoom in on the combination of units into
pattern units to think about what the combination of units can produce that’s larger than the
unit itself. For example, crochet makes it possible to bring basic stitch units into relation with
one another, producing pattern units (e.g., 6 stitches in row 1, 12 stitches in row two, 18 stitches
in row 3) as well as how these patterns need to be distributed in order to produce the kind of
project unit they desire.

At the level of the project unit, multiplicative proportional reasoning that is embedded in the
performance of the craft comes together most clearly. Especially in knitting and crochet, crafters
can engage in epistemic understanding with proportional reasoning by considering just how
many stitch and/or pattern units per row or per inch are needed to produce the kind of project
they are envisioning. By comparison, the proportional relationship is strongest at the level of the
fold unit in pleating. Yet, the pattern and project unit are placed for reinforcing material aspects
of the proportional relationship through repetition (pattern unit) as well as fixation (project unit).
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Taken together, this advances a notion of materialized action, resituating the “doing of” math-
ematics as a natural inquiry process that results through emergent patterns between learners and
the materialized traces of their actions. To illustrate these micro developmental processes of mate-
rialized actions, we designed three fiber crafts activities (crocheting, knitting, and pleating a bag)
that supported engagement with proportional reasoning (PR). Each of the craft activities pre-
sented unique affordances for PR engagement, which is a persistently challenging area of math-
ematics (Behr et al., 1992; Boyer & Levine, 2015). The findings showed that PR was produced
and performed differently across crafts, providing opportunities for youth to engage with the
mathematical concept in a range of ways. All three crafts supported the engagement with person-
alized units and experiences of different types of units (i.e., stitch and fold units, pattern units,
and project units), as well as produced differently shaped units and units that were composed of
a different set of steps.

In their own ways, the crafts called for the production, multiplication, and interconnectedness
of stitch and fold units that, through repetition (i.e., pattern units), made it possible to create pro-
ject units. In materialized action, learning about the epistemic idea is moving between types of
units and building toward larger constructions. Types of units can be simultaneously and separ-
ately engaged. Staying not only at the level of the project unit but simultaneously being aware of
more than one unit type highlights deep multi-level engagement with mathematical ideas. Depth
of engagement at each level can vary depending on what a person is working on and where in
the process of learning a craft one is. By working across units, crafters engage materialized actions
that provide opportunities to epistemically engage with proportional reasoning in different ways.
Table 5 shows an overview of materialized action as mathematical practice as observed across
crafts.

Pattern units evolved because stitch units materialized and sedimented, allowing patterns to
emerge instinctively as a consequence. In a constructionist sense, the new object for reflection
thus becomes the pattern unit (i.e., the new “object to think with” at this stage of the project) yet
it entails the stitch unit and holds space for this thought, highlighting the value of the production
of turning a straight line into countable elements for epistemic engagement.

Further, materialized actions integrate (rather than exclude) worldly concreteness, promising
another way to relate to math. Units do not have to stay the same within a mathematical activity.
Materialized actions recognize the fluidity of units and the production of units within mathemat-
ics and propose activities that make it possible to experience and practice this fluidity at a middle
school age. This includes introducing worldly qualities (e.g., needle size, tension etc.) to mathem-
atical practice that always underlie mathematical theorization but that all too often can disappear
in practice, making math appear more abstract than concrete. Materialized actions as a theoretical
idea can guide the design of mathematics learning that is embracing (rather than reducing) the
complex concreteness of the world as part of learning key domain ideas, such as proportional rea-
soning. This in turn holds the promise to engage people with diverse interests in mathematics

Table 5. Overview of materialized action in mathematical practice across crafts.

Knitted bag Crocheted bag Pleated bag
Materialized Getting a sense for the Getting a sense for the number of Getting a sense for folded

action in number of stitch units per stitch units per row by 1) inches per pleat by
mathematical row by 1) making, identifying a stitch unit and its testing multiple
practice unraveling, and remaking location in a project unit, 2) materialized actions to

stitch units and project distributing an increasing and a store fold units in place.

units, 2) comparing stitch stable number of stitches on a

units of knitting circle, 3) shifting between stitch

techniques, and 3) unit, pattern unit (the distribution

comparing project units of stitches per row and sector)

across paper and yarn. and project units, and 4)

manually adjusting the tension of
stitch units.
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learning and unsettle what has previously been conceptualized as a canonical source of mathema-
tics activity, with implications for the design of more equitable learning environments.

The kind of math learning process illustrated in these vignettes cannot be separated from the
craft, as it materializes through it. This suggests that we have to broaden our understanding of
how the storing of the proportion materializes and relates to epistemic engagement with domain
ideas. While Lamon (1996) found that unitizing in the form of viewing units as composites was
difficult for youth and developed over time, our work found that partitioning individual actions
into composite stitch or fold units happened naturally across the crafts.

Implications and future research

The intervention studied here represents a way to design and integrate math learning environ-
ments that are relevant to everyday life contexts, an approach ethno-mathematicians consider
highlighting how mathematics are infused across a diverse range of cultural contexts (e.g., Eglash,
2007; Eglash et al., 2006; 2011). It is notable, then, that this study is not intended to be represen-
tative of all learners and, as the activities were expressly designed to promote the exploration of
PR, this study does not set out to take youth perspectives actively into consideration in the design
of the activities. The case study approach here was meant to illustrate the possibilities for engag-
ing deeply in mathematical ideas like proportional reasoning through fiber crafts in preparation
for future work that seeks to test these designs with larger numbers of youth.

Overall, the findings of this study point toward the opportunities that crafts-based activities
open for math engagement and simultaneously suggest future research necessary to support fur-
ther design iterations toward wider adoption. Future research could include considerations of
ways of moving comfortably and fluently across a range of contexts that are explicitly created for
domain ideas, such as PR for the mathematics domain. This work offers encouraging ways to
think of textile crafts as new tangible manipulatives for engaging in advanced mathematical ideas
as well as approaches to designing educational activities to engage learners in persistently chal-
lenging areas in mathematics. The promise of this work is that it sets up learners to understand
that the ideas of mathematical productions apply in myriad ways in the world around us.
Through this activity, youth are producing mathematical works that have a life beyond their
workshops, and potentially can act as an artifact to share and remind the learner about some of
the big ideas of mathematics.

Materialized action promises opportunities to study further mathematical ideas within crafts
and how they are being supported across three levels of units. Where the present study explored
PR and considered conditions under which explorations with PR can be brought about through
crafts, future work could explore numerous other mathematical concepts through fiber crafts. For
instance, nearly every fiber craft involves measuring, and sewing makes use of fraction and deci-
mal operations in measuring (e.g., seam allowances are usually 3/5 inches). Other possibilities
include geometric concepts through quilting, algebra for determining final project length in weav-
ing, and graphing/area under the curve through cross-stitch. One math-adjacent concept present
in all three of the crafts explored in this paper, as well as in numerous others, is spatial visualiza-
tion—moving between 2D and 3D mental representations of space.

Further, performing the crafts with youth was insightful in that it advanced understandings of
how similarly and how differently the crafts supported important aspects of proportional reason-
ing. In the future, designing for engagement with proportional reasoning (or alternative areas of
mathematics or STEM fields) supported across a range of tangible fiber crafts could consider the
order in which crafts are facilitated to determine any potential benefits of a sequential facilitation.
Where the highlighted crafts supported the engagement with PR, other crafts (e.g., weaving and
quilting) could become the basis of craft activities related to proportional reasoning, as well.
Engaging with the design of additional fiber craft activities toward PR could be beneficial to
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support a broader range of interests than typically captured in the current K-12 mathematics
curriculum.

This work highlighted that teaching how to make units in each craft is important, and that
there is a need to streamline this teaching through facilitation strategies, appropriate to the learn-
ing audience, including considerations of the initial number of stitches. For example, where our
facilitation taught the magic circle with 6 stitches, the magic circle could start with any number
of stitches. In future iterations, facilitators can introduce variance and youth’s personal explor-
ation of PR as the stitch number of the magic circle sets the basis for the PR that can be explored
and multiplied with.
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