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ABSTRACT 
This article examines how fiber crafting as a category of activity can develop mathematics learning 
and the conditions under which various fiber crafting traditions differentially cultivate mathematical 
understanding. Modifying the constructionist paradigm with relational materialist principles, this 
paper advances the notion of “materialized action,” which describes the natural inquiry process 
that results through emergent patterns between learners and the materialized traces of their 
actions. This paper takes a qualitative approach, combining a design and intervention phase to 
look closely across a set of materials (i.e., three fiber crafts, knitting, crochet, and pleating) and 
engagement in a “powerful idea” (i.e., the role of unitizing in multiplicative proportional reasoning), 
as instantiated across three youth case studies, and as an illustration of how we can better under
stand micro-developmental learning processes. We identified three levels of unitizing that make up 
the larger idea of enacting proportional reasoning (PR) through materialized action, which build 
and catalyze toward one another and support emergent understanding of PR from the intra-action 
of the material and the learner. In their engagement with PR, youth employed different strategies 
based on personal choice, affordances of the materials, and practices of the crafting traditions. 
Materialized actions as a theoretical advancement has the potential to reformulate what counts as 
mathematics and can guide the design of mathematics learning that is embracing (rather than 
reducing) worldly concreteness in learning key domain ideas, with implications for the design of 
more equitable learning environments.

Introduction

Fiber crafting concerns represents a complex process of translating abstract patterns into embod
ied, systematic actions that dynamically integrate multiple sensory and physical elements: hands, 
needles, fiber (e.g., yarn), visual perception, muscular tension, and rhythmic movement. These 
intertwined actions involve the continuous construction and reconstruction of discrete units that, 
when strategically assembled, generate intricate patterns (e.g., Wertheim, 2005). Crafters sustain 
and explore their patterned action through deeply personally material choices—carefully choosing 
fabric, thread characteristics, thickness, color, and myriad other esthetic or functional variables. 
While constructionism (Harel & Papert, 1991) offers valuable insights into learning through arti
fact creation and “objects to think with,” the nuanced processes through which materials, actions, 
and development intertwine remain under-developed and under-theorized.

Traditional constructionist perspectives have acknowledged bodily engagement through what 
Papert called body syntonicity, which posits that individuals imaginatively embody the objects 
they manipulate and design (Papert, 1980). Connecting physically with ideas that came from their 
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mind, learners deepen their conceptual understanding as well as multiple epistemological ways in 
which concepts can express themselves in the world (Keune, 2022a).

In this study, we extend constructionist material perspectives by introducing the concept of 
materialized action—a novel analytical framework that foregrounds the generative power of 
materiality. Materialized action creates a developmental environment where learners generate 
multiple conceptual understandings by actively constructing knowledge through hands-on project 
work. This approach necessitates learners’ exploration, deduction, and performative engagement 
with domain-specific ideas across interconnected modalities. We conceptualize materialized action 
as a micro-developmental condition that generates diverse epistemological approaches to under
standing. Through materialized actions—defined by the crafted production of projects that 
demand constructive and deductive engagement with domain ideas—a rich spectrum of epistemic 
approaches emerges. In this paper, we illustrate this process through the specific domain of multi
plicative proportional reasoning, demonstrating how material practices can transform abstract 
conceptual learning.

At its core, materialized action can be conceptualized as the patterns of intra-action (Barad, 
2003) of learner(s) and material(s) in the construction of an artifact. While deeply rooted in the 
constructionist paradigm—which posits that creating and sharing externalized artifacts is particu
larly conducive to learning—materialized action critically extends this perspective by moving 
beyond individual cognitive processes. Instead, it focuses on the emergent, dynamic interactions 
that unfold between learners and the material traces of their actions. This theoretical approach 
bridges constructionism with new materialist perspectives, revealing how learning is not solely an 
individual cognitive process, but a collaborative negotiation between human agency and material 
affordances. Fiber crafting becomes a particularly rich site for investigating this dynamic, as 
it exemplifies how material properties actively shape and transform learning processes. 
The materialist lens challenges traditional educational approaches by positioning materials not as 
passive tools, but as active co-constructors of knowledge.

Mathematics learning, often perceived as an abstract, purely cognitive endeavor, becomes 
reimagined through materialized action as an embodied, material-discursive practice. Fiber crafts 
offer a unique lens for this investigation because they inherently involve mathematical concepts 
such as proportionality, spatial reasoning, and pattern generation. The very act of crafting—with 
its precise measurements, repeated units, and structural transformations—becomes a mode of 
mathematical thinking that is simultaneously concrete and conceptual. For instance, in the open
ing vignette, though both projects made use of the same type of yarn fiber (i.e., cotton) and fol
lowed the same exact pattern, it was the weight or thickness of the yarn and the differently sized 
crochet hooks that contributed to the difference in size. It is in fact the materials that shape the 
size and look of the final product and, as such, in tandem with the crafter, create the final prod
uct. Our study is motivated by a critical gap in understanding how learning—particularly math
ematical learning—emerges through material engagement. By examining three distinct fiber 
crafting traditions, we seek to illuminate the generative potential of material practices in mathem
atical understanding, demonstrate how different crafting traditions differentially cultivate mathem
atical reasoning, and challenge traditional cognitive models of learning by foregrounding material 
agency. Specifically, we address two interrelated research questions:

1. How does fiber crafting develop opportunities for mathematics learning?
2. What are the conditions under which disparate fiber crafting traditions differentially culti

vate opportunities for mathematical understanding?

This qualitative study captures a range of three fiber crafting activities that engage young 
learners in mathematical learning through personally meaningful design. This effort combines 
research on the use of textile crafts for learning advanced mathematics (e.g., Belcastro & Yackel, 
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2011; Greenfield & Childs, 1977; Harris, 1997; Peppler et al., 2022; Wertheim, 2005) with a rela
tional materialist lens on learning and development (Hultman & Lenz Taguchi, 2010) to capture, 
analyze, and theorize how materials prompt human development and learning. As part of a lon
ger-term qualitative study that focused on capturing evidence of learning via fiber crafts (Keune, 
2024; Peppler et al., 2020; Saxena et al., 2023; Thompson, 2024), this paper presents close analysis 
of the entangled micro-developmental engagement of fiber crafts and three youth case studies to 
show how material changes led to engagement in powerful mathematical ideas of unitizing and 
proportional relationships during an introductory workshop experience. We chose three fiber 
crafts (i.e., knitting, crochet, and pleating) to illustrate how materialized actions across the crafts 
demonstrated similar patterns of emergence, yet engaged the youth differently in terms of math
ematical engagement, and encouraged us to reconsider how we recognize mathematical under
standing and enacting. Through this examination, we aim to reframe mathematics learning as 
an embodied, material process—one where knowledge is not transmitted, but dynamically co- 
constructed through the intricate dance of human intention and material responsiveness, with the 
potential to disrupt inequitable mathematics education assumptions and practices.

Discerning what remains the same and what changes is a key mathematical practice. The 
Japanese art and craft ofamigurumi, the creation of small hand-knitted or crocheted toys, reflects 
this tenet by illuminating the importance of materialsand their impact on the overall look and 
dimension of the final product. In her amigurumi explorations toward the creation oftoys for her 
cat, one of the authors felt firsthand this material importance. Figure 1 shows an example of two 
amigurumiprojects, which are different in size, but appear to represent the same object, a hand- 
crafted whale. At first glance, it mightappear that what is different is the pattern that was used to 
create the toys; one is evidently larger in size and appears to havea greater number of stitches in 
its respectively lengthier circumference. However, both toys followed the same instructions and
pattern: A magic circle (MC) with 6 single-crochet (SC) stitches, followed by an increasing and 
then decreasing number of SCstitches in subsequent rows to maintain the spherical shape of the 
toy (12 in the second row and 18 in the third), exemplifying proportional growth. Why is it, 
then, that one ended up significantly larger than the other?

Figure 1. Hand-crafted whales that are different in size.
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Background

Math and craft

Historically, math learning and fiber craft learning were placed in opposition to each other in 
European and American schools, with boys learning higher math while girls learned textile crafts, 
such as sewing and embroidery (Harris, 1997). However, researchers have observed ample con
nections between textile crafts and math that belie this socio-cultural and historical separation, 
such as in knitting, crochet, cross-stitch, quilting, needlepoint, and tatting, among others (e.g., 
Belcastro & Yackel, 2007; 2011; Harris, 1997). The first technique to successfully model hyper
bolic planes in physical space was crochet (Taimina, 2009; Wertheim, 2005) and the first modern 
computer was based on Jacquard’s automatic punch-card loom (e.g., Essinger, 2004). In fact, it 
has been argued that weaving leads to highly mathematical engagement in cultural and educa
tional contexts (Greenfield & Childs, 1977; Peppler et al., 2020; Saxe & Gearhart, 1990; 
Thompson, 2019, 2020). For example, through ethnographic research, Greenfield and her team 
presented that weaving can be a tool for developing cognitive skills related to pattern recognition, 
spatial transformation, and meta-representational skills (Greenfield et al., 2003; Maynard & 
Greenfield, 2003).

Other work has demonstrated mathematical learning through textile craft engagement, such as 
sewing of tents and costumes, knitting, crochet, and weaving in both in-school (Peppler et al., 
2018; 2019) and out-of-school contexts (Bender & Peppler, 2019; Peppler et al., 2020). Beyond 
mathematics, fiber crafts have been an inspiration for technological inventions (e.g., Hofmann 
et al., 2019; Igarashi et al., 2008; Keune et al., in progress) and computer science learning (e.g., 
Keune, 2023, 2022a). Particularly the repeated and rhythmic movements of people and craft 
materials that are connected to mathematical “doing” present opportunities for reimagining edu
cation (Keune, 2022b).

Inclusive materialism, proportional reasoning, and unitizing in mathematics

In the constructionist tradition, researchers look for powerful ideas that are part of the domain 
that are persistently difficult as taught using traditional approaches. One such powerful idea, 
which we examine in this study, is the role of unitizing in multiplicative proportional reasoning 
(PR). Proportional reasoning is the understanding of the multiplicative part-whole relations 
between rational quantities (de la Torre et al., 2013) and is a predictor of future mathematics 
achievement (Behr et al., 1992; Boyer & Levine, 2015). While PR has applications in a range of 
professions, with practitioners using it in their daily practice (Noss et al., 2000), it has persistently 
been challenging to learn (Lobato & Thanheiser, 2002); often, young learners try to use additive 
instead of multiplicative strategies (e.g., incorrectly solving for x in 2

3 ¼ x
6 by adding 3 to both 

numerator and denominator instead of multiplying both numerator and denominator by 2; Hart, 
1981; Lin, 1991; Tourniaire & Pulos, 1985; Van Dooren et al., 2010). Nonetheless, children as 
young as 5 or 6 can reason proportionally, as well as develop intuitive proportional reasoning 
strategies, if spatial-perceptual representational problem formats are used (Boyer & Levine, 2015).

Unitizing is a foundational concept for multiplicative and proportional reasoning. G€otze and 
Baiker (2021) found that a language-responsive introduction to multiplication as unitizing (e.g., 
introducing 3 ✕ 4 as “having 3 fours”) helped students to improve their multiplicative reasoning. 
Additionally, a study of children’s PR before formal instruction in ratio and proportion found 
that unitizing was essential for developing PR: “[I]t is useful to view a ratio as a unit, the result 
of multiple compositions of composite units” (Lamon, 1993, p. 58). Lamon (1996) continued her 
work on unitizing with a study that explored the development of unitizing in youths’ partitioning 
strategies; she found that more sophisticated unitizing (partitioning into composite units) occurs 
over time and is difficult for children to develop.
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Yet, there is an alternative way of looking at proportional reasoning. Within their work on 
Inclusive Materialism, de Freitas and Sinclair (2020) argue there is a powerful possibility in feel
ing and practicing units across multiple materialities as to “disturb narrow (and perhaps white, 
western, male) images of mathematics—and to open up opportunities for a more pluralist school 
mathematics,” that draws on different cultural experiences, materialities, and abilities (2020, p.2). 
For instance, in their crafting practices, the Yup’ik of Alaska make use of proportion in their ini
tial measurements by standing in a line and estimating measurements relative to one another’s 
height (de Freitas & Sinclair, 2020). Additionally, de Freitas and Sinclair (2020) bring into focus 
tangible materials that can streamline better understanding of these concepts (e.g., rope stretcher 
with knots at equal intervals). Adding to this work, we consider how units can be dynamic and 
tangibly produced (rather than being given pre-formed units by the teacher/problem) as well as 
how units sediment and build over time (e.g., stitch unit to patterning unit to project unit).

In sum, we aim to illuminate the processes of epistemic engagement that learners embark on 
during constructionist experiences, using the powerful idea of unitizing within PR to explore how 
disparate materials and their associated crafting practices differentially cultivate mathematical 
understanding. This work takes a view of unitizing as a production-centered process shaped by 
youth’s individual approach to the craft and the specific materials in use that affect the final 
product. In this paper, we seek to uncover whether a range of “materialized actions” resulting 
from co-constructions across various crafting traditions (e.g., knitting, crochet, and pleating) in 
relation to the same domain (e.g., proportional reasoning and unitizing) can present an under
standing of the domain concept as something that is anchored in the physical world, as well as 
surface new understandings about the domain and how it can be expressed.

Constructionism, objects-to-think-with, and body syntonicity

This study takes as a starting point the theory of constructionism, which posits that learning 
occurs best when individuals design physical (or digital) constructions that can be shared, and by 
that represent cognitive transformations that happen as learners actively engage with domain-rele
vant ideas. Working out reasons for why designs fail and adjusting designs to address such issues 
is one important way to deepen understanding of the mental models and concepts employed in 
design (Kafai, 2006; Kolodner et al., 2003; Litts et al., 2016; Papert, 1980). This iterative approach 
turns materials and tools–physical or digital–into objects-to-think-with that provide opportunities 
to improve upon and change mental models through design modifications and reflection 
(Bamberger, 2014; Papert, 1980).

Attention paid to the types of materials used for learning is not without consequence, as mate
rials, and the relative marginalization of other materials, have shown to shape domains in forma
tive ways. For instance, Michael Friedman (2018) detailed how the compass and straight-edge 
used since Greek antiquity produced a range of mathematical techniques and practices that sub
verted and marginalized other mathematical principles based on the folding of parchment. This 
has manifold consequences for how we conceive of mathematics today. Similarly, the epistemo
logical consequences of sidestepping Fr€obel’s folding, embroidery and sewing “gifts” as materials 
for exploratory patterning (Brosterman, 1997; Fr€obel, 1885; Kafai et al., 2010) looms large in our 
conception of the mathematics domain and how it is experienced by learners. As there is not 
“one way” to experience the domain of mathematics, such observations lead us to consider: a) 
The underexplored areas of the domain that rest on actions and practices afforded by non-dom
inant materials and their patterns of activity; b) the nuanced understandings of the domain that 
they can provide; and c) what is ignored within the domain by their absence. In short, the mater
ial aspect of objects-to-think-with is important for understanding learning processes, specifically 
in the ways in which co-creations between materials and learners lead to new understandings 
that are not seen as representative of how a domain is traditionally expressed.
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In addition to material considerations, constructionism has also taken the body and its move
ments into account through what Papert called body syntonicity, which considers the body (and 
its movements) as material by frequently imagining or mapping the body onto the object that is 
manipulated (Papert, 1980). As an illustrative and often cited example, Papert’s robotic LOGO 
turtle physicalized code in 3D environments. Children using the turtle could imagine the path it 
would take when instructed with certain code, and sometimes even enacted the path taken with 
their own bodies, connecting their programming notions to a host of epistemic understandings 
informed by physical movement. This is an important idea for developing ways to evidence mate
rialized actions, which in this paper means the body movements involved in the production of 
units and their multiplications. The present paper also seeks to account for the materialized doing 
that extends this idea by following the second author’s approach of merging constructionist ideas 
with material-focused theories and sharing this perspective next.

Materialized action for epistemic engagement

Correspondingly to body syntonicity, how learners interpret the traces that actions bear upon the 
materials they use (e.g., the tension of gears, the snap of magnets, the folds of origami) invites an 
investigation into material syntonicity: Recognizing how domain concepts are projected by the 
behaviors of material and their response to learner interaction (Keune, 2022b). Because of this, it 
is important to move beyond not just facilitating engaging learning experiences but understanding 
the opportunities for developing stronger epistemic understandings over time. These theoretical 
ideas (e.g., material syntonicity) stem from taking on dual theoretical perspectives that merge 
constructionist approaches to learning with posthumanist perspectives to understand how domain 
learning emerges and how the materials used are actively taking part in driving domain-specific 
learning (Keune, 2022b). This is important for the theoretical background of the present paper, 
because it begins to show that taking a dual theoretical perspective, which is combining construc
tionist ideas with material-focused theories, can advance our understanding of learning. This is 
especially important when we want to introduce nontraditional materials into mathematics learn
ing as a means for broadening participation (as we are doing in the present paper) because the 
dual theoretical lens provides an opportunity to evidence the process in which mathematical ideas 
are engaged so that they can be named and recognized beyond individual instances.

In the present study, we advance this trajectory by drawing on relational materialist views (c.f., 
Hultman & Lenz Taguchi, 2010; Lenz Taguchi, 2011) that call for lowering and, in the best case, 
flattening hierarchies between people and things and, thus, making it possible to interrogate the 
relationship between materials and learners by questioning typical assumptions in educational 
research that materials serve people through the mediation of concepts. This leads to a focus on 
intra-actions (Barad, 2003), the actions that emerge as people and things form relationships with 
one another. This contrasts with a focus on separate individual parts and shifts attention to the 
production of something more than the individual parts.

From this approach, learning can be considered the formation of relationships through which 
potentially unforeseen possibilities are being produced (Hultman & Lenz Taguchi, 2010; Lenz 
Taguchi, 2011; Keune & Peppler, 2019). Prior work that examined maker-centered learning in the 
context of additive manufacturing in out-of-school settings as well as fiber crafts as a context for 
computational learning showed that this view naturally expands constructionist notions toward 
acknowledging how people and things dynamically emerge together, and how learning trajecto
ries, learning activities, and learning environments expand beyond the planned (Keune & 
Peppler, 2019). The prior work in the domains of computing and additive manufacturing showed 
in larger scale and microanalytic ways that studying the forming of relationships among materials 
and people can shift not only theoretical understanding of learning in context but can also impact 
educational practice toward more inclusive and equitable approaches within domains that are still 
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marked by inequitable participation (e.g., Keune, 2022b; Keune & Peppler, 2019). The work 
presents that the study of domain learning should focus beyond learners’ and educators’ inten
tions–there is a field of research around the equal relationships between learner and material that 
can shift domain learning approaches.

Following this dual theoretical take, in this study we conceptualize the notion of materialized 
actions as a process of producing and constructing small elements that together make up the per
formance of what we can materially recognize as an epistemic idea. We show this by first aligning 
three crafts with the mathematical idea of multiplicative proportional reasoning and evidencing 
how this epistemic idea is engaged and constructed in the crafts. Then, we show how young peo
ple produce the idea in their own projects to evidence a way to understand and value mathemat
ical epistemic engagement in relation to relevant yet nontraditional tangible material contexts. 
Materialized action presents how knowledge engagement through crafting necessitates the per
formance of mathematical ideas that we aligned the crafts with (i.e., multiple proportional 
reasoning).

Methods

We designed crafting activities that built on a grounded understanding of the potential of crafts 
to cultivate mathematical learning, informed by prior embedded ethnographies as well as inter
views with educators and professional crafters (Peppler et al., 2022). Specifically, we considered 
which features of our designs (i.e., aspects of the tangible manipulatives and/or aspects of the 
supporting activity) appear to support mathematical learning. To accomplish this, we embarked 
on a qualitative study with the intention to inform activity design across three fiber crafts with 
considerations of what features of activities could lead to exploration of PR, and then evaluated 
these features as part of two iterations: 1) artifact analysis with a team of adult crafters to further 
align activities with PR learning formally, and 2) a three-day fiber crafts camp in which youth 
performed the three craft activities to understand how the crafts supported engagement with PR.

To support the engagement with PR through each crafting tradition, we co-designed activities 
with five adult crafters to craft artifacts, design activities, and analyze mathematical concepts 
within craft products. One crafter had been knitting for two years and had helped with different 
aspects of this project previously. The second crafter was an undergraduate researcher on the pro
ject who had been practicing all sorts of textile crafts for at least five years and had made many 
example projects for us. The third crafter was also an undergraduate researcher who was major
ing in fashion design and helped by sewing example projects. The remaining two crafters also 
had experience in mathematics; one had recently graduated with an MS in mathematics, and the 
other was in a mathematics education graduate program. Both mathematicians were also excited 
about craft, had experience with crafts, and made their own crafts to sell at local craft fairs.

With regards to the crafts camp, we captured detailed accounts of the crafts through photo
graphs of projects. We also captured youths’ verbal expressions and detailed accounts of their 
physical engagement with the crafts and their materials through video recordings. We used quali
tative methods of artifact analysis (Pahl & Rowsell, 2010) of crafts to analyze activities for math
ematics alignment. We then performed modal analysis (Abrahamson, 2009) of how the youths’ 
bodies performed the craft activities and the PR embedded within to better understand educa
tional productions at play at the craft tables and to identify the materialized aspects of the craft 
related to units and shapes that added to PR engagement. We argue that these approaches are 
productive for better understanding mathematics learning and engagement with tangible tools 
and materials, as they support the understanding of aligning crafts with mathematics concepts as 
well as understanding emergent meaning-making with materials designed for mathematical 
engagement.
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Settings

The setting of this research was a public library of a midwestern college town, where we first piloted 
and later facilitated a three session-long math-based fiber-crafts summer camp in the summer of 
2017. To pilot the three activities of the craft camp—knitting, crochet, and sewing—we facilitated two 
drop-in sessions per craft at the library’s crafting space for 12–19-year-olds. The pilots supported the 
refinement of the facilitation strategies as well as participant recruitment for the summer camp, as the 
camp was facilitated in the same library. We offered the camp in the library’s activity room located 
on the ground floor. The room included tables and chairs that we arranged into small group table 
pods. The camp took place over the course of three consecutive days. Each day’s session was four 
hours long, and on each day, youth learned a new craft and created a project with the craft: 1) 
Crochet a circular bag, 2) knit a bag out of a rectangle, and 3) sew a pleated pattern into a bag. Time 
was given to learn the basics of the craft and then to make the project.

Participants

We targeted middle-school-aged youth for the crafting camp because this is the age at which PR is 
typically taught (Common Core State Standards Initiative, n.d.) as well as the age at which girls—and 
other underrepresented youth—begin to wind down on interest with STEM (Corbett & Hill, 2015). 
The library supported the recruitment efforts by designing and printing flyers that we distributed in 
local shops. A total of 15 participants registered for the workshop and two additional participants 
dropped in. Due to attendance variations, a total of 17 youth attended, but 15 per day. All registered 
participants were between 9–12 years old and of all participants, 16 were female and one was male. 
Two participants were joined by their parents to support language translation.

During the camp, we asked youth to form small groups and to distribute themselves across the 
arranged craft tables. Each craft table had a dedicated adult facilitator. Throughout the camp, the 
youth had to learn a new craft at the start of each session. During the crochet and knitting days, three 
facilitators worked with craft tables of 4–7 youth, and on the pleating day, four facilitators worked 
with craft tables of 3–4 youth. Additionally, during all three days, two adult facilitators were assigned 
to float around the room and to provide just-in-time help with crafting, checking of camera func
tions, as well as taking observational notes on the flow of the day’s activities.

For analytical purposes, we focused on three focal youth and their experiences with PR through the 
crafts. Across the data, we chose exemplary cases to understand the conditions under which PR arises. 
While we looked at the youths’ experiences across the crafts, we predominantly focused on one craft 
experience per youth. Youth had to actively participate in the crafts and create projects that met the 
instructional requirements so we could investigate their experiences with proportional reasoning. 
Another criterion for the focal youth selection was that youth had to work on projects with low to 
medium facilitation to ensure that most of their projects were created by them rather than the instructor. 
Youth with low facilitation needs could complete their project with initial instructions from an adult 
facilitator, while those with medium facilitation needs asked facilitators for instructions throughout the 
project progression but did not hand their project over to facilitators. Youth with high facilitation needs 
asked facilitators to start or complete youth projects and cases in which adult facilitators implemented 
most of the projects. Of all, 13 youth worked independently with low facilitation needs.

Given the early-stage explorations of the activities within educational settings, we aimed to 
analyze exemplary youth engagement because we were interested in investigating the conditions 
under which PR engagement was supported and came about. Of the 13 with low facilitation 
needs, eight youth followed the design activity instructions per craft.

For knitting, we selected a youth named Katie (all names are pseudonyms), who created a 
knitted bag with differently colored yarn and explored PR by restarting her project and compar
ing it to other knitting techniques. For crochet, we selected a youth named Tracy, who created a 

182 K. PEPPLER ET AL.



three-row circular bag with pink chunky yarn and engaged with PR through unitizing and stitch 
distribution. For pleating, we selected a youth named Margaret, who created a bag with two 
pleats using a fabric with a planetary print and engaged with PR through repeated engagement 
and by inventing strategies to make her proportional units permanent.

Data sources

We first created example projects with all three crafts that acted as proofs of concept for the ini
tial activities. The example projects served as reference materials that guided our explorations of 
the underlying math concepts and shaped our understanding of how PR was instantiated in each 
of the crafts. The fiber projects were used in this inquiry process to pull apart, look closely, and 
reconstruct soft constructions.

Additionally, the data sources included video recordings of the youth camp to observe the 
youth-produced proportional reasoning across projects through material unitizing and shaping. 
The cameras captured the youth working on their projects and any audio as the youth and adults 
spoke. We captured 40 hours of video data (i.e., four hours per camera per day). Following Derry 
et al. (2010), we set up video cameras facing the youth and captured their hands and faces as 
they worked on their projects, filming each table group. Thus, based on the number of table 
groups per craft, we captured the crochet and knitting days with three cameras and the pleating 
day with four cameras. Throughout the camp, at intermittent points in their design process, facil
itators asked youth about what they were doing and what else they could try.

Lastly, the data sources included 231 photographs of youth projects. We used phone or iPad 
cameras to capture pictures that showed the dimensionality of the artifacts and details of the 
youth’s projects to support reverse engineering of the steps the youth performed. The photo
graphs provided a more detailed view of the projects when videos did not support clear images. 
We linked the photographs of the projects to the youth participants who created them to keep a 
detailed record of the youths’ mathematics and craft engagement while also allowing us to return 
the project to youth at the end of every day.

Analytical techniques

We first analyzed the example projects generated by the research team with the adult crafters. Our 
analysis included three layers that carved out connections between crafts and PR: 1) Verbal 
descriptions, 2) visual representations, and 3) corresponding mathematical notation. The abstrac
tion supported the refinement of the activity design in that it helped narrow down which affor
dances and features of the designed activity were necessary to support the engagement with PR. 
For the verbal descriptions of PR, we generated step-by-step breakdowns of the process from the 
start to finish of the craft project. Next, we identified rules that could be abstracted, including 
steps that occurred several times in the same way or with slight variations. We created visual rep
resentations (e.g., illustrations or photographs) that showed the emergent material and craft pat
tern and further abstracted the activities toward symbolic mathematical representations. This 
layer of analysis focused on intersections of math and particular aspects of the crafts (e.g., distri
bution of crochet and knit stitch units) and how these aspects differed across crafts. Lastly, we 
represented the rules that governed the patterns we designed through mathematical notation 
which directly connected PR with the designed craft activities. In doing so, we took apart and 
reconstructed the material projects continuously to guide the translation to mathematical nota
tion. As per constructionist philosophy, the abstractions into mathematical notation were not a 
part of the camp experience—at no point during the workshop was the learning of PR an explicit 
goal of participation. Rather, to do each activity well, the learner had to successfully execute PR 
concepts, even if they were never described to the learner as such. Instead, we abstract the 
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learners’ projects into mathematical forms after the fact to illustrate the intersections of canonical 
mathematical doing with crafting, which is not canonical of mathematical doing (see also 
Keune, 2022b). Such translations rarely take place explicitly, and especially in our camp, the 
youth felt the materialized units and their proportional relationship as the units were multiplied, 
rather than calculating, for instance, amounts of stitches per row.

The analysis of the video recordings of the youth camp focused on how youth produce PR across 
fiber crafts through material unitizing and shaping. We were particularly interested in how crafters 
produced units in the materials—and the subsequent changes to the shape of their project—as well as 
how the unitizing and shaping added to the material unit and shape production. To identify relevant 
moments of the focal youths’ craft engagement, we viewed all four hours of video data for all focal 
youth. This included creating content logs of the video that summarized the focal youths’ practice in 
relation to the identified mathematics for every 5–10-minute-long blocks of video. We used the sum
maries to highlight where in the video the most relevant moments of proportional reasoning hap
pened. These were the moments that we focused on for further in-depth analysis. Our analytical 
process was inspired by relational materialist understanding that took into consideration the role of 
the body in mathematical learning experiences. Accordingly, our analysis shifted away from interpret
ing the children’s intentional design meanings, instead focusing on how the materials and bodily 
actions collaboratively produced proportional relationships through the crafting process.

Our analysis also drew on the photographs of youth projects, which showed their material pro
ductions of proportional relationships across crafts. The images provided the possibility to closely 
observe stitches and folds in order to reconstruct the mathematical doing that occurred to pro
duce the project. The photographs and detailed videos of completed projects were used to trace 
the production processes. We particularly focused on the differences between planned and imple
mented projects (e.g., in relation to stitch size) as reference for mathematical processes.

Findings

To uncover how fiber crafting develops mathematics learning, as well as the conditions under 
which disparate fiber crafting traditions differentially cultivate mathematical understanding, we 
present the three levels of unitizing that make up the larger idea of enacting PR through material
ized action. In this analysis, we present how unitizing levels build and catalyze toward the other 
through crafting, and how understanding emerges from the intra-action of the material and the 
learner. Our analysis centers on how participants reason with the stratification of personally 
defined units throughout the development of their crafts.

Unitizing and proportional reasoning per crafting tradition

In contrast to the use of established units as the basis for ratios and proportional relationships, 
fiber crafting begins with an initial stitch unit that users define through their choice of materials 
and their body’s relationship to their manipulation. As they knit, crochet, or pleat, crafters reason 
with multiplicative part-whole relations as rhythmic and repeated movements of people and 
materials arrange and multiply stitch units into pattern units, which are multiplied again into a 
project unit. In this study, we define three levels of unitizing:

Stitch unit (i.e., knitted stitch unit, crocheted stitch unit, fold unit)—The unit basis for a pro
ject, consisting of several small intra-actions between people and materials specific to each 
crafting tradition (see Table 1). Stitch units form the basis of proportional relationships when 
considering the number of stitches per row (i.e., knitting), stitches per sector in a circle (i.e., 
crochet), or inches per pleat (i.e., pleating). 
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Pattern unit—The repetition of stitches or folds into larger patterns to define the project’s 
overall size (e.g., the number of stitches per horizontal inch, crochet stitches per row, or inches 
per pleat). By bringing stitch units in relation, patterns emerge. Note: We define a pattern as a 
form or model used for imitation, not to be confused with a crafting “pattern,” which is craft
ing parlance for a physical diagram users follow (or pieces users trace, in sewing) to make a 
project. 

Project unit—The combination of completed patterns that form the finished product. Where 
the mathematical characteristics of a materialized action begin to emerge from the two units 
above, the project unit shows the mathematical connections even more clearly.

In the next section, we walk through how each craft uniquely supports unitizing within PR, and 
investigate the processes of epistemic engagement that learners embark on within each crafting 
practice. Guided by de Freitas and Sinclair (2020) decolonial approach toward units to uncover dis/ 
abilities in curricular frameworks, we zoom in on the materiality of units within proportional rea
soning as practicing routines and how they build up a recognizable unit that can be chained to pro
duce a measurement, which, in turn can then be put into a proportional relationship.

How fiber crafts differentially develop mathematics learning

In the crafting camp, youth formed relationships with domain concepts (i.e., unitizing and propor
tional reasoning) through their iterative engagement with the materials as they crafted in preferred 
ways (e.g., by stitching and unraveling, by exploring the number of stitches per row). In our ana
lysis, we examine how the material construction as part of the craft brought about engagement 
with PR, which took a different form for the three youth and employed different strategies based 
on personal choice, affordances of the materials, and practices of the crafting traditions.

Katie’s knitted bag: Stitching a unit and PR as stitches and rows per inch
For the knitting activity, participants learned how to knit a bag composed of two individually 
knitted squares to be later sewn together, each approximately 4 � 4 inches in size. First, partici
pants learned how to cast on stitches as well as execute knit and purl stitches (i.e., the fundamen
tal knit stitches). Second, with their choice of yarn and knitting needles, participants practiced 
casting on a set number of stitches and knitting for a few rows to get a sense of the proportional 
relationship between stitch length and stitch height in order to define their gauge (i.e., a small 
knit that gives a sense of the proportional relationship produced by knitter, needle size, yarn 
thickness, stitch unit, pattern unit, and the resulting tension from the interplay of the human and 
non-human parts). Third, participants completed their projects by being taught how to cast off 
stitches, which provided a smooth edge to their knit.

When knitting, stitches become routines that form a unit from which the proportional rela
tionship can emerge. One stitch unit consists of the following actions that involve the coordin
ation of hands, needles, yarn, eyes, tension, and speed: Go through stitch, wrap-around, pick up 
yarn, drop yarn, and tighten (see Table 1). The action that the hand, yarn, needle, eyes, etc., per
form together to produce a unit has an imprint on the material (e.g., how the materials respond 
to manipulation) and the crafter (e.g., how their hands develop muscle memory and the consist
ent tension of yarn when wrapped around fingers). Stitches’ dimensions can vary in proportion 
because the length and height of one stitch depends on the knitter’s personal tension or grip of 
the yarn, the selected needle, and the yarn itself. It is an interplay of people and materials that 
produces a stitch unit, although the steps of the routine stay largely the same.
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One of the youth was Katie, a 10-year-old experienced knitter who showed others how to knit. Katie 
produced stitch units only to unravel them and to restart a total of 12 times, working to establish a con
sistent and intuitive feel for her stitch units, including determining which yarn thickness and needle size 
to use. The size and tension of her stitch unit varied across iterations. Where initial stitch units were 
loose and irregularly shaped, as Katie got into a routine, her stitch units became tighter and more uni
form. Katie and a neighboring youth also explored stitch units through a conversation about arm knit
ting, a knitting technique that uses the arms of the crafter in place of knitting needles (see Table 2). 
Together, the youth determined that the stitches would be gathered on one arm and picked up by the 
other arm (see Table 2, panel 1 and 2). Through gestures, the youth compared the effects of using differ
ent materials (i.e., wooden needles vs. arms as needles) on one’s personal stitch unit (see Table 2, panel 3 
to 5). Through her body posture and arm gestures, Katie expressed how the size of a needle affected the 
amount of yarn needed for a stitch as well as the size of a stitch unit (see Table 2, panel 6).

Starting over also made it possible for Katie to practice and develop a sense of her personal 
gauge, reflective of pattern units. With an increasing number of unraveled projects, Katie began 
to consider how the number of stitches she cast on would relate to the end product’s size, count
ing the stitches she cast on her needle. Additionally, Katie also compared knitting techniques to 

Table 2. Transcript of a conversation about arm knitting that involves stitch units and pattern units.

1 2 3 4

Katie: “Your arms are like 
needles.” 

Katie turns to Sarah and lifts 
her arms. 

Katie’s arms become needles.

Sarah: "Like this?"  

Sarah lifts her project. Katie 
drops her arms and nods. 

Sarah introduces her project 
as a comparison.

Katie: "I don’t know how 
exactly." 

Katie lifts her arms and 
twists them. 

With arms as needles, Katie 
explores how arm knitting 
would work.

Katie: "Now that I think about 
it, it’s like the needles." 

Katie picks up her project 
and points at the needles. 

Katie suggests that arm- 
needles would act 
similarly to wooden 
needles.

5 6 7 8

Sarah: "Ah." 
Katie: "Yes." 
Sarah lifts her left arm and 

grabs it with her right 
hand at three places. 
Katie nods. Both knit on. 

Sarah’s arm becomes a 
needle and the grabbing 
motion become stitches 
gathering on the needle.

Katie: "If you used this arm, 
it’d be stitches that big." 

Katie holds her hands one 
foot apart.   

Katie shows how the size of 
the project becomes 
larger with arms as 
needles.

Katie: "Lalala"  

Singing, Katie waves her 
arms.   

The waves become stitches 
and Katie adds a few 
stitches to her imaginary 
project.

Katie: "Then you have that 
much." 

Katie holds her arm two feet 
apart.   

The imaginary project grew 
over twice in size and, 
thus, at a faster rate 
compared to using 
wooden needles.
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get a physical sense of the size of a stitch in relation to the created pattern unit in space, and, 
more specifically, the length of a row of stitches (see Table 2, panel 7 and 8). For example, Katie 
discovered that six stitches in regular knitting is shorter than six stitches done in arm knitting. 
This is relevant because needle size is one aspect of how knitters conceive of their personal pat
tern unit, which ultimately shapes the look and size of a stitch unit (i.e., how big or how loose it 
is). As she worked, each stitch reconstructed the rectangular stitch unit that became the basis for 
a proportional relationship while this reconstruction was a part of forming the pattern unit. Each 
pattern of stitches thus formed another unit of the mathematical materialized action that left an 
imprint on Katie as she repeated units and combinations of units and the yarn that formed into 
the visible pattern shape.

Where the mathematical characteristics of a materialized action began to emerge from the 
two-unit levels above, the project unit showed the mathematical connections even more clearly. A 
knitted stitch unit is rectangular in shape and, thus, the stitch height is unequal to (shorter than) 
stitch length. This produces a proportional relationship, which in knitting looks like a perform
ance centered on the gauge of a knit. As described above, to create a particular sized project, 
Katie first defined her stitch unit and then considered how many stitch units per row and how 
many rows she needed in total (see Figure 2). As she worked, Katie noticed the proportional rela
tionship at the level of the project unit, when she realized her project unit did not match the 
drawn pattern unit and that her stitch unit was not square as she had anticipated in her sketches. 
For instance, Katie’s pattern unit (i.e., project plan, see Figure 2) showed two squares of ten 
stitches per ten rows side by side, which assumed that a stitch unit is as tall as it is wide. 
Following her plan, Katie cast on 20 stitches.

By comparison, her implemented project unit included 8 rows: Two purple rows (one cast on, 
i.e., the stitches that Katie added to her needle at the start of the project and that defined the 
number of stitches each subsequent row would include), two pink rows, one blue row, and three 
green rows (one cast off). Even these eight knitted rows (instead of the planned 10 rows) pro
duced a rectangle rather than a planned square. She adjusted her pattern unit so the drawn plan 
would represent the project unit with the colors she implemented (Figure 2, bottom left). Yet, 

Figure 2. Sketched annotation of Katie’s knitted project (top left), adjusted sketched annotation of Katie’s knitted project 
(bottom left), and Katie’s project (right).
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when comparing the adjusted plan to her completed project, the plan included more rows per 
color than Katie actually knit and rows were drawn with less accuracy compared to the previous 
drawn pattern unit (see Figure 2, top left). This evidence shows that Katie discontinued consider
ing the squares of the graph paper as individual stitch units and rather seemed to use the squares 
to illustrate the space the pattern unit with its colors would take up. Further, it indicates that 
Katie noticed that the number of rows she knit produced a project unit that was rectangular 
rather than square in shape and, therefore, that the individual stitch units were taller than they 
were wide. Thus, by moving across her sketched annotation (i.e., pattern unit) and her completed 
project (i.e., project unit), Katie discovered that the ratio of stitch width to stitch height is not 
1:1. Instead of redoing her design, Katie adjusted her project unit based on the physical outcome 
that was different from the pattern unit; she said: “So this is going to be a little bit bigger than 
the square because this has a flap on it, too.” Katie decided to use the extra space, resulting from 
the produced proportional relationship as a feature in her bag project unit (i.e., the length of her 
stitch unit to the project’s length and the height of her stitch unit to the number of rows 
produced).

Repeated undoing and redoing of knitted stitch units and comparing how knitting techniques 
change the stitch unit’s size helped Katie get a sense of her own gauge (i.e., the pattern unit) and 
the aspects that drove it. Knitting presented an opportunity for Katie to explore how combina
tions of stitch units (i.e., pattern units) could be arranged into a larger whole (i.e., project unit). 
This combination and the comparison of a drawn pattern unit with an implemented knitted pro
ject unit led to the exploration of proportional relationships—that is, numbers of stitch units per 
row. Moving across three different units provided Katie with the space for iterative material 
exploration (i.e., through the undoing and redoing of stitch units) and to make sense of the rela
tionship across units, which brought about the implementation of proportional reasoning, but in 
greater complexity than what we would find in traditional classroom exercises.

Furthermore, we can see that learning about the epistemic idea is moving between units and is 
building toward larger constructions. This performative comparison of knitting with needles and 
knitting with arms was indicative of Katie’s developing sense of a key material aspect of the craft 
that affected the production of a stitch unit, the basic element for PR within knitting. Yet, when 
moving from stitch unit to pattern unit, we start to see intersections and moving back and forth 
across units. Katie’s stitch unit produced a new material that patterned units built on.

Tracy’s crocheted bag: Stitching a unit and PR as stitches per sector and row
For the crochet activity, participants learned how to crochet a circular bag, which enacts ratio 
and proportion in a similar way to knitting by considering the number of stitches per row. 
However, the circular nature of the project in crochet also prompts a consideration of the num
ber of stitches across sectors and the within-sector relationship of proportional growth. To create 
a flat circular shape, crocheters first create a magic circle, which includes creating a slipknot and 
crocheting chain stitch units (e.g., a series of looped stitches forming a chain-like pattern) into 
the knot’s loop, with a desired number of stitches. The number of stitches that make up the 
magic circle defines the factor of multiplicative proportional growth, with each stitch representing 
one separate sector of the whole circle. By bringing stitches in relation with one another, patterns 
emerge that impact the material shape and dimensionality of the produced units. To maintain a 
flat circular shape, crafters produce and reproduce stitch units that are then uniformly distributed 
across sectors and rows. One of the youth, Tracy, a 9-year-old who was not very experienced 
with crochet at the start of camp, produced a magic circle composed initially of six crochet stitch 
units. Where in a rectangular crocheted project, stitch units resemble rectangles like in knitting, 
in a crocheted circle, inserting a stitch into the prior row’s stitches pulls the yarn to produce a 
stitch unit resembling a trapezoid. Similarly to knitting, the overall shape and size of individual 
stitch units is co-constructed as part of the interplay of the materials in use (e.g., yarn, size of 

COGNITION AND INSTRUCTION 189



crochet hook) and the crafter’s tension when holding the yarn, all the while performing the same 
overall routine steps.

To increase the circumference of her circle, Tracy had to identify what a stitch unit looked 
like and where it was located as well as the location within a stitch where another stitch could be 
connected to and how (see Table 3). She explained how she identified a stitch unit to one of her 
neighbors: “You see, the two parallel lines make a V or a teardrop.” As Tracy explained she 
pointed to the place in the project where the stitch unit was in her neighbor Elena’s project (see 
Table 3, panel 1). Tracy identified a stitch unit by looking at the shape the stitch produced when 
combined with other stitches in a unit. However, rather than looking at a stitch as a flat shape 
from the top down, her description of “a V or a teardrop” suggests that Tracy identified stitches 
as 3-dimensional shapes. The “V or ( … ) teardrop”-like shape is the top of the stitch that is 
exposed at the rim of the project (see Figure 3(a)). Tracy continued to explain and show in more 
detail how exactly this unit related to the larger project: “And you go only under those two.” To 
illustrate, she moved the crochet hook through a V shaped stitch unit to create another one (see 
Table 3, panel 2 to 4). The recognition that stitch units in crochet were three-dimensional made 
it possible for Tracy to single out interconnected stitch units, to identify their locations, and to 
point to locations where to attach a new stitch unit. The epistemic engagement with stitch units 
supported her in continuously producing stitch units and combining them in multiplicative ways.

In a way similar to knitting, Tracy’s crochet stitches were multiplied to produce a pattern unit, 
nested within each row and sector. Once she progressed to the second row, Tracy increased the 
flat circle’s circumference by crocheting two stitch units through each of the stitch units in the 
prior row (a 2:1 ratio). Typically, to crochet the second row of a flat circle, crocheters build out
wards by crocheting two stitches into each stitch on the outer edge of the magic circle, generating 
a per-relationship (i.e., two stitches per sector), suggesting a proportional relationship. The second 
row of the flat circle, once completed, should include a total of 12 stitches with 2 stitches in each 
of the six original sectors. The total number of stitches per row and the number of stitches per 
sector becomes multiplied by 2. Interestingly, to continue to crochet a flat circle, the third row 
needs to increase by a factor of 3. In practice, this means that the crafter crochets three stitches 
per sector (instead of two in the previous row).

Table 3. Transcript of Tracy identifying a stitch unit in her project unit.

1 2 3 4

Tracy: "You see, the two 
parallel lines make a V or 
a teardrop." 

Tracy shows Elena how to 
identify where on the 
project the next stitch 
unit goes. 

Tracy characterizes a stitch 
unit with a distinct shape 
and identifies it in Elena’s 
project.

Tracy: "And you go only 
under those two."  

Tracy maneuvers the crochet 
hook through the stitch 
unit.  

Tracy starts a new stitch unit 
as if testing whether she 
correctly identified the 
prior stitch.

Tracy: "And then yarn over 
again."  

Tracy lets go of the project 
and Elena takes it.   

Tracy seems satisfied with 
her identification of the 
prior stitch unit.

Tracy: "Yeah, yarn over."   

Tracy turns Elena’s project 
toward her.   

Tracy continues to help 
Elena with the next stitch 
unit.
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Though visually the circumference of the circle did indeed increase in Tracy’s project, Tracy 
actually crocheted two stitch units into five of the stitch units of her magic circle (i.e., 2:1 ratio) 
but only one stitch into the last remaining stitch unit of her magic circle (i.e., a 1:1 ratio; Figure 
3(a)). Yet, it was possible for her circle to evenly increase in circumference because she made up 
for the last missing stitch by producing one stitch unit that was crocheted looser than the prior 
ones. Although the resulting outcome was not the intended pattern unit (i.e., two stitch units 
into all six of the stitches of the magic circle), to maintain the evenly increased circumference of 
the circle toward a flat circular shape, Tracy reformulated her actions to resemble that outcome 
(i.e., by producing one stitch that was crocheted in a looser way). Had she not done that, the 
number of stitch units would not have accommodated the even increase in the circumference.

At the project unit level, the proportional relationships from the stitch and pattern units are 
even more prominent, indicating how the act of crochet involves the execution of three things 
simultaneously: a) Recognizing stitches as stitch units, b) identifying combinations of stitch units 
as sectors or pattern units, and c) seeing them in relationship to one another (e.g., seeing sectors 
inside of sectors). In Tracy’s project, the repetition of the stitch unit in connection with other 
units changed the shape of the stitch unit and of the project unit, showing the interconnectedness 
of the different layers. The distribution and increase of rectangular stitch units around the flat 
circle changed the shape of the stitch unit from a rectangle to a trapezoid, where the edge that 
was connected to the previous stitch was slightly shorter than the opposite edge. Reproducing 
stitch units in patterned ways also changed the shape of the larger project unit, from a flat circle 
to a cylinder. To create the walls of her circular bag, Tracy distributed a stable number of stitch 
units on a circle, rather than increasing the number of stitches per row. To this end, for her third 
and fourth row (Figure 3(b,c), respectively), Tracy built each stitch unit directly on top of the 
one below, resulting in walls rising straight up (i.e., 1:1 ratio). Through her implementation of 
various rates of increase that either maintained the shape of a flat circle to later adjusting it to a 
cylinder, Tracy arguably developed a sense of multiplicative proportions in crochet as part of her 
vision of her project unit. This illustrates how different ratios interact uniquely in three-dimen
sional space and could just as well pull stitch units upward rather than outward, depending on 
the desired shape of the project unit. Producing and reproducing stitches in patterned ways as 
part of materialized actions in crochet allowed Tracy to interact with and manipulate the number 
of stitches per row, and in consequence, the shape of her project unit in three-dimensional space.

In this vignette, materialized action became mathematical engagement as youth got a sense for 
the number of stitch units per row by 1) identifying a stitch unit and its location in a project 
unit, 2) distributing an increasing and a stable number of stitches on a circle, 3) shifting between 
stitch unit, pattern unit (the distribution of stitches per row and sector) and project units, and 4) 
manually adjusting the tension of stitch units. In the instance of Tracy’s crocheted bag, we can 
see that crochet made it possible for Tracy to explore how different rates of increase materialized 
in the shape of individual stitch units and the material form of the larger project. In the case of 
Tracy, learning about the epistemic idea involves shifting between stitch unit, pattern unit (the 
distribution of stitches per row and sector), and project units, but it also risks inaccuracy, because 

Figure 3. Photograph of Tracy’s project highlighting each row.
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the crafter can adjust the size of the stitch to make up for an error in the pattern. Yet, it is 
exactly the need for intentional adjustment in the tension of stitch units that can highlight 
whether a multiplicative proportional relationship was accurately implemented in crochet.

Margaret’s pleated bag: Folding a unit and PR as inches per pleat
For the pleating activity, participants learned to fold pleats with paper and fabric. Unlike knitting 
and crochet, ratio and proportion manifested within each pleat as inches per pleat, or within each 
individual unit, which captured the relationship between the hidden layers of fabric that were 
folded and the top layer that was visible. First, in learning the structure of a pleat, participants 
folded pleats into paper. This made it possible to practice the routine actions needed to produce 
a pleat while also making it possible for the material to easily remain in place. Second, partici
pants folded and sewed pleats into fabric and then sewed their pleated fabric into a bag. To sup
port participants in this activity we provided irons and sewing machines. Lastly, participants 
could create a strap for their bag to complete the projects.

In pleating, the building of a unit and proportional relationship is produced differently com
pared to knitting and crochet. In place of a stitch unit, in pleating, the folding of fabric becomes 
the unit (i.e., fold unit). A pleated unit consists of a series of folds, which produce layers of fabric 
and the three-dimensional shape. To produce a fold unit, pleaters mark the width of the pleat on 
the fabric, draft score marks at half width of the pleat on both sides of the pleat, and then fold 
the fabric at four markers. Yet, the soft foldability of the fabric makes personalized unitizing pos
sible. In action, pleaters do not always use measuring tools to pinpoint the locations of each fold 
and to measure the distance between each fold to produce alignment. Instead, they adjust the size 
of their pleats by pulling up and flattening down more or less fabric.

One of the youth was Margaret, an 11-year-old, who did not have any prior experience with 
sewing or pleating. However, over time she constructed a skillfully crafted project that included 
two evenly shaped pleats she sewed onto another piece of fabric to create a bag. In the process of 
making her project, she produced six segments by lifting layers of fabric up and folding them flat 
onto the surface of the fabric, producing three layers of fabric composed of two parts of three 
segments each. In pleating, proportional reasoning is called for every time one produces a pleat 
(i.e., inches per pleat). A pleat’s proportional relationship is three is to one as six is to two (i.e., 
3:1 ¼ 6:2). The 3:1 ratio is found in the length of the unfolded pleat, which is three times the 
length of the folded pleat, due to two layers that are folded underneath the top layer. Thus, the 
pleat reduces the overall length of the fabric by two times the length of the pleat. Another way of 
identifying the proportional relationship is to consider the amount of fabric needed to produce a 
pleat of a certain size and identify the per-relationship between them. For example, if a crafter 
wants to produce a pleat that is one inch wide, they would have to use three inches of fabric (i.e., 
3 inches of fabric per 1-inch pleat). The calculation for the length of fabric needed for a rectangle 
with vertical pleats that will be as large as a non-pleated rectangle, can be described as: 
L ¼ l þ 2np. Here, L stands for the total length of fabric required, l stands for the length of the 
fabric in the outcome, n for the number of pleats, and p for the pleat width.

As she worked, Margaret produced fold units by repeatedly pinching fabric up and pressing it 
down to fold open into the desired design. Margaret’s repeated engagement supported an experi
mentation with a variation of sizes and positions of PR as she produced fold units (see Table 4). 
She began by planning her project, writing the measurements of each pleat and its position on a 
piece of paper (see Table 4, panel 1). This practice let Margaret record and store her mathemat
ical engagement and return to it at a later time.

As Margaret turned to the fabric, her plan was to generate a fold unit consisting of three 
layers, one on top that covered the visible area of the pleat and two folded beneath it. The routine 
movement of pinching up and pressing down the fabric gave a material form and showed the 
multiplicative relationship between the layers of fabric that were hidden and the top layer of 
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fabric that was visible (i.e., 3:1). However, when Margaret lifted her hand and let go of the fabric, 
the fabric unfolded and quickly reverted into a flat layer without a trace of a fold (see Table 4, 
panel 2). Material properties (e.g., thickness of the fabric and fabric memory) worked against eas
ily folding, flattening, and creasing the fabric in sustained ways, with the fabric bouncing back 
into its unfolded state. Thus, it was required to find ways to hold each fold unit in place (see 
Table 4, panel 3).

Margaret selected where to place the fold units, their size, and the combination of units (i.e., 
pattern unit). Margaret deliberately chose the position of the pleats in relation to her fabric’s 

Table 4. Transcript of Margaret’s changing pinching up and folding down strategies.

1 2 3 4

Margaret writes project 
measurements on paper.     

She plans her project unit 
and captures it in place.

Margaret pinches her fabric 
and folds it down. She 
lets go of the fabric. The 
fabric folds flat. She 
repeats this process five 
times. 

She is trying to hold the 
fabric pleat (i.e., fold unit) 
in place, similar to the 
paper measurements 
(materialized action 1 
folding).

Margaret: "It is hard to pin 
them in place." 

Margaret tries to pin the 
pleat down. She takes the 
pin off. The fabric flattens.    

She explores alternative ways 
to hold her fold unit in 
place (materialized action 
2 pinning).

Margaret repeatedly pinches 
up her fabric and folds it 
down before she lets go 
of the fabric and it folds 
flat.  

She continues to try to hold 
the fold unit in place.

5 6 7 8

Margaret: “Ugh.”   

Margaret breathes strongly 
and slams her hands on 
top of her fabric.     

It is difficult to maneuver the 
unfamiliar materials and 
to fixate a fold unit.

Margaret: “It’s so hard.”   

Margaret tries to pin the 
fabric down once more. 
The fabric folds open 
again. She slams her 
hands on top of her fabric 
again and cuts up her 
project. 

She is taking a break from 
her problem of fixating 
the fold unit.

Facilitator: “Ok, do you want 
to take a look at the 
iron?” 

Margaret starts over with a 
new piece of fabric. The 
facilitator introduces her 
to the iron.    

She returns to the fixation 
problem and introduces 
the iron.

Margaret: “I think I need to 
iron it.”  

After several attempts of 
pinching up and folding 
down the fabric, Margaret 
tries the pinning methods 
once more. Then she asks 
for the iron.  

The iron becomes the third 
method for fixating the 
fold unit and the PR 
(materialized action 3 
ironing).
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print pattern, as she produced her own unique fold and pattern units (see Figure 4). She pinched 
a piece of fabric up, rotated her hands, pressed the fabric down, then let go, watching the pleat 
unravel. She experimented with her movements, altering the combination of fingers that would 
hold down the fabric and the pressure applied on the fabric, which also configured her personalized 
fold unit. Rather than employing exact measurements, Margaret seemingly eyeballed her pleats, and 
with the routine action of pulling up and pinching down, she demonstrated an understanding of 
the 3D relationship that was inherent to how PR manifested in fabric. This materialized action of 
folding was different from the measurements that were held in place on paper at the start; the 
folded PR in fabric was difficult to permanently hold in place (see Table 4, panel 4 and 5). As she 
let go of the pleated proportion, it unraveled, which called for other materialized actions.

Margaret first attempted to pin the fold units down with the provided pin needles, but this 
materialized action of pinning also did not achieve the expected results because the needles did 
not flatten the slippery fabric and merely presented support structures for further folding. As 
Margaret pinned down one side, the other side of the fold unit became unfolded (see Table 4, 
panel 6). As the conversation at the table turned to ironing, Margaret declared, “I’m gonna use 
the iron to hold it in place when I pin it. After I iron it, it stays in place for a little time, and 
then I can pin it.” This introduced a third action of ironing and was a turning point (see Table 4, 
panel 7 and 8). Identifying solutions for holding fold units in place allowed Margaret to fix the 
fold units in place (i.e., creating what’s called “fabric shape memory”) which held evidence of the 
multiplicative proportional relationship between fabric layers. Having a reliable strategy for fixing 
fold units allowed Margaret to move onto pattern units by adding more pleats in combination 
with each other.

In pleating, the project unit consisted of the folding in fabric, the ironing of the fold and pat
tern units in place, the sewing of the folds so they would not open again, and then combining 
their fabric pattern unit with another piece of fabric to make a bag. Where the fold unit and the 

Figure 4. Photograph of Margaret’s project.
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pattern unit could be replicated in paper, it was the durability and the finished project that could 
be worn, used to carry other objects, and shown to family members outside of the course that 
produced another layer of materializing mathematical actions.

In this example, materialized action became mathematical engagement as youth got a sense for 
folded inches per pleat by testing multiple materialized actions to store fold units in place. In the 
example of Margaret’s pleated bag, we can see that the practice of pinning and ironing expanded 
the initial proportional practice of pinching-up and pressing-down and showed how epistemic 
understandings can emerge through materialized actions. Initially, the routine practice of pinch
ing-up and pressing-down increased her fluency with the craft as she repeatedly produced her 
own fold unit, which fostered an understanding of the overarching proportional relationships 
between visible and invisible folds. Pinning and ironing, however, contributed a more permanent 
material representation of the inherent math concepts underlying the production of a fold unit. 
Through ironing, creases were formed, which stayed intact even after unfolding and helped visu
alize the sides and vertices within each pleat. The permanence of pleats also held the pleat in 
place in case the youth let go of the fabric, freeing their hands and minds to move onto another 
unit type (i.e., moving from fold unit to pattern unit). This made it possible to put fold units in 
relation and combination with one another to produce pattern units. In turn, at the project unit 
level, it was possible to produce a complete, functional, and usable project, which has the multi
plicative relationships take material form as part of the design. On a fabric-material plain, the 
ironed pleats were similar to the symbolized demarcations of the measurements that would make 
up proportions on the piece of paper that Margaret used before starting her fabric PR 
explorations.

Discussion: Materialized action in mathematical practice

We set out to understand how fiber crafting develops mathematics learning. Through our analysis 
of knitting, crochet, and pleating across three types of units (stitch/fold unit, pattern unit, and 
project unit) we can see how learners can engage epistemically in mathematical ideas across dif
ferent levels and complexities. All three crafts promise ample opportunity to practice proportional 
relationships: for example, in crochet by partitioning stitch units into sectors and multiplying 
them in a set pattern. They can zoom in on the unit, creating a unit and deeply understanding a 
unit’s characteristics (i.e., the steps it takes to make a stitch or a fold) as well as the aspects that 
change a unit (e.g., different tension in knitting, different size of needles). The stitch and fold 
units are not predetermined, but vary according to the idiosyncrasies of the crafters’ tension, yarn 
type, the needle used, etc. The personalized stitch and fold unit becomes a materialized action 
that crafters can recognize with both hands and eyes.

Beyond building units, crafters can simultaneously zoom in on the combination of units into 
pattern units to think about what the combination of units can produce that’s larger than the 
unit itself. For example, crochet makes it possible to bring basic stitch units into relation with 
one another, producing pattern units (e.g., 6 stitches in row 1, 12 stitches in row two, 18 stitches 
in row 3) as well as how these patterns need to be distributed in order to produce the kind of 
project unit they desire.

At the level of the project unit, multiplicative proportional reasoning that is embedded in the 
performance of the craft comes together most clearly. Especially in knitting and crochet, crafters 
can engage in epistemic understanding with proportional reasoning by considering just how 
many stitch and/or pattern units per row or per inch are needed to produce the kind of project 
they are envisioning. By comparison, the proportional relationship is strongest at the level of the 
fold unit in pleating. Yet, the pattern and project unit are placed for reinforcing material aspects 
of the proportional relationship through repetition (pattern unit) as well as fixation (project unit).
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Taken together, this advances a notion of materialized action, resituating the “doing of” math
ematics as a natural inquiry process that results through emergent patterns between learners and 
the materialized traces of their actions. To illustrate these micro developmental processes of mate
rialized actions, we designed three fiber crafts activities (crocheting, knitting, and pleating a bag) 
that supported engagement with proportional reasoning (PR). Each of the craft activities pre
sented unique affordances for PR engagement, which is a persistently challenging area of math
ematics (Behr et al., 1992; Boyer & Levine, 2015). The findings showed that PR was produced 
and performed differently across crafts, providing opportunities for youth to engage with the 
mathematical concept in a range of ways. All three crafts supported the engagement with person
alized units and experiences of different types of units (i.e., stitch and fold units, pattern units, 
and project units), as well as produced differently shaped units and units that were composed of 
a different set of steps.

In their own ways, the crafts called for the production, multiplication, and interconnectedness 
of stitch and fold units that, through repetition (i.e., pattern units), made it possible to create pro
ject units. In materialized action, learning about the epistemic idea is moving between types of 
units and building toward larger constructions. Types of units can be simultaneously and separ
ately engaged. Staying not only at the level of the project unit but simultaneously being aware of 
more than one unit type highlights deep multi-level engagement with mathematical ideas. Depth 
of engagement at each level can vary depending on what a person is working on and where in 
the process of learning a craft one is. By working across units, crafters engage materialized actions 
that provide opportunities to epistemically engage with proportional reasoning in different ways. 
Table 5 shows an overview of materialized action as mathematical practice as observed across 
crafts.

Pattern units evolved because stitch units materialized and sedimented, allowing patterns to 
emerge instinctively as a consequence. In a constructionist sense, the new object for reflection 
thus becomes the pattern unit (i.e., the new “object to think with” at this stage of the project) yet 
it entails the stitch unit and holds space for this thought, highlighting the value of the production 
of turning a straight line into countable elements for epistemic engagement.

Further, materialized actions integrate (rather than exclude) worldly concreteness, promising 
another way to relate to math. Units do not have to stay the same within a mathematical activity. 
Materialized actions recognize the fluidity of units and the production of units within mathemat
ics and propose activities that make it possible to experience and practice this fluidity at a middle 
school age. This includes introducing worldly qualities (e.g., needle size, tension etc.) to mathem
atical practice that always underlie mathematical theorization but that all too often can disappear 
in practice, making math appear more abstract than concrete. Materialized actions as a theoretical 
idea can guide the design of mathematics learning that is embracing (rather than reducing) the 
complex concreteness of the world as part of learning key domain ideas, such as proportional rea
soning. This in turn holds the promise to engage people with diverse interests in mathematics 

Table 5. Overview of materialized action in mathematical practice across crafts.

Knitted bag Crocheted bag Pleated bag

Materialized  
action in  
mathematical  
practice

Getting a sense for the 
number of stitch units per 
row by 1) making, 
unraveling, and remaking 
stitch units and project 
units, 2) comparing stitch 
units of knitting 
techniques, and 3) 
comparing project units 
across paper and yarn.

Getting a sense for the number of 
stitch units per row by 1) 
identifying a stitch unit and its 
location in a project unit, 2) 
distributing an increasing and a 
stable number of stitches on a 
circle, 3) shifting between stitch 
unit, pattern unit (the distribution 
of stitches per row and sector) 
and project units, and 4) 
manually adjusting the tension of 
stitch units.

Getting a sense for folded 
inches per pleat by 
testing multiple 
materialized actions to 
store fold units in place.
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learning and unsettle what has previously been conceptualized as a canonical source of mathema
tics activity, with implications for the design of more equitable learning environments.

The kind of math learning process illustrated in these vignettes cannot be separated from the 
craft, as it materializes through it. This suggests that we have to broaden our understanding of 
how the storing of the proportion materializes and relates to epistemic engagement with domain 
ideas. While Lamon (1996) found that unitizing in the form of viewing units as composites was 
difficult for youth and developed over time, our work found that partitioning individual actions 
into composite stitch or fold units happened naturally across the crafts.

Implications and future research

The intervention studied here represents a way to design and integrate math learning environ
ments that are relevant to everyday life contexts, an approach ethno-mathematicians consider 
highlighting how mathematics are infused across a diverse range of cultural contexts (e.g., Eglash, 
2007; Eglash et al., 2006; 2011). It is notable, then, that this study is not intended to be represen
tative of all learners and, as the activities were expressly designed to promote the exploration of 
PR, this study does not set out to take youth perspectives actively into consideration in the design 
of the activities. The case study approach here was meant to illustrate the possibilities for engag
ing deeply in mathematical ideas like proportional reasoning through fiber crafts in preparation 
for future work that seeks to test these designs with larger numbers of youth.

Overall, the findings of this study point toward the opportunities that crafts-based activities 
open for math engagement and simultaneously suggest future research necessary to support fur
ther design iterations toward wider adoption. Future research could include considerations of 
ways of moving comfortably and fluently across a range of contexts that are explicitly created for 
domain ideas, such as PR for the mathematics domain. This work offers encouraging ways to 
think of textile crafts as new tangible manipulatives for engaging in advanced mathematical ideas 
as well as approaches to designing educational activities to engage learners in persistently chal
lenging areas in mathematics. The promise of this work is that it sets up learners to understand 
that the ideas of mathematical productions apply in myriad ways in the world around us. 
Through this activity, youth are producing mathematical works that have a life beyond their 
workshops, and potentially can act as an artifact to share and remind the learner about some of 
the big ideas of mathematics.

Materialized action promises opportunities to study further mathematical ideas within crafts 
and how they are being supported across three levels of units. Where the present study explored 
PR and considered conditions under which explorations with PR can be brought about through 
crafts, future work could explore numerous other mathematical concepts through fiber crafts. For 
instance, nearly every fiber craft involves measuring, and sewing makes use of fraction and deci
mal operations in measuring (e.g., seam allowances are usually 3=5 inches). Other possibilities 
include geometric concepts through quilting, algebra for determining final project length in weav
ing, and graphing/area under the curve through cross-stitch. One math-adjacent concept present 
in all three of the crafts explored in this paper, as well as in numerous others, is spatial visualiza
tion—moving between 2D and 3D mental representations of space.

Further, performing the crafts with youth was insightful in that it advanced understandings of 
how similarly and how differently the crafts supported important aspects of proportional reason
ing. In the future, designing for engagement with proportional reasoning (or alternative areas of 
mathematics or STEM fields) supported across a range of tangible fiber crafts could consider the 
order in which crafts are facilitated to determine any potential benefits of a sequential facilitation. 
Where the highlighted crafts supported the engagement with PR, other crafts (e.g., weaving and 
quilting) could become the basis of craft activities related to proportional reasoning, as well. 
Engaging with the design of additional fiber craft activities toward PR could be beneficial to 

COGNITION AND INSTRUCTION 197



support a broader range of interests than typically captured in the current K-12 mathematics 
curriculum.

This work highlighted that teaching how to make units in each craft is important, and that 
there is a need to streamline this teaching through facilitation strategies, appropriate to the learn
ing audience, including considerations of the initial number of stitches. For example, where our 
facilitation taught the magic circle with 6 stitches, the magic circle could start with any number 
of stitches. In future iterations, facilitators can introduce variance and youth’s personal explor
ation of PR as the stitch number of the magic circle sets the basis for the PR that can be explored 
and multiplied with.
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Derry, S. J., Pea, R. D., Barron, B., Engle, R. A., Erickson, F., Goldman, R., Hall, R., Koschmann, T., Lemke, J. L., 

Sherin, M. G., & Sherin, B. L. (2010). Conducting video research in the learning sciences: Guidance on selection, 

198 K. PEPPLER ET AL.

https://doi.org/10.1007/s10649-008-9137-1
https://doi.org/10.1007/978-3-319-06526-7_13
https://doi.org/10.1007/978-3-319-06526-7_13
https://doi.org/10.1086/345321
https://doi.org/10.1201/b11331
https://doi.org/10.1201/b11331
https://doi.org/10.1201/b10652
https://doi.org/10.3916/C58-2019-03
https://doi.org/10.1037/a0039010
https://www.thecorestandards.org/Math/Content/RP/
https://www.thecorestandards.org/Math/Content/RP/
https://files.eric.ed.gov/fulltext/ED580805.pdf
https://doi.org/10.1016/j.jmathb.2020.100796


analysis, technology, and ethics. Journal of the Learning Sciences, 19(1), 3–53. https://doi.org/10.1080/ 
10508400903452884

Eglash, R. (2007). Ethnocomputing with Native American Design. In L.E. Dyson, M. Hendriks, & S. Grant (Eds.), 
Information technology and indigenous people (pp. 210–219). IGI Global. https://doi.org/10.4018/978-1-59904- 
298-5.ch029

Eglash, R., Bennett, A., O’donnell, C., Jennings, S., & Cintorino, M. (2006). Culturally situated design tools: 
Ethnocomputing from field site to classroom. American Anthropologist, 108(2), 347–362. https://doi.org/10.1525/ 
aa.2006.108.2.347

Eglash, R., Krishnamoorthy, M., Sanchez, J., & Woodbridge, A. (2011). Fractal simulations of African design in 
pre-college computing education. ACM Transactions on Computing Education, 11(3), 1–14. https://doi.org/10. 
1145/2037276.2037281

Essinger, J. (2004). Jacquard’s web: How a hand-loom led to the birth of the information age. Oxford University Press.
Friedman, M. (2018). A history of folding in mathematics: Mathematizing the margins. Birkhauser. https://doi.org/ 

10.1007/978-3-319-72487-4
Fr€obel, F. (1885). The education of man (J. Jarvis, Trans.). A. Lovell & Company.
G€otze, D., & Baiker, A. (2021). Language-responsive support for multiplicative thinking as unitizing: Results of an 

intervention study in the second grade. ZDM—Mathematics Education, 53(2), 263–275. https://doi.org/10.1007/ 
s11858-020-01206-1

Greenfield, P. M., & Childs, C. P. (1977). Weaving, color terms and pattern representation: Cultural influences and 
cognitive development among the Zinacantecos of Southern Mexico. Teramerica Journal of Psychology, 11, 23–48.

Greenfield, P. M., Maynard, A. E., & Childs, C. P. (2003). Historical change, cultural learning, and cognitive repre
sentation in Zinacantec Maya children. Cognitive Development, 18(4), 455–487. https://doi.org/10.1016/j.cogdev. 
2003.09.004

Harel, I. E., & Papert, S. E. (1991). Constructionism. Ablex Publishing.
Harris, M. (1997). Common threads: Women, mathematics, and work. Trentham Books.
Hart, K. (Ed.) (1981). Children’s understanding of mathematics: 11–16. Murray.
Hofmann, M., Albaugh, L., Sethapakadi, T., Hodgins, J., Hudson, S. E., McCann, J., & Mankoff, J. (2019). 

KnitPicking textures: Programming and modifying complex knitted textures for machine and hand knitting. In 
M.L. Rivera & S. Zhao (Eds.), Proceedings of the 32nd annual ACM symposium on User Interface Software and 
Technology (pp. 5–16). Association for Computing Machinery. https://doi.org/10.1145/3332165.3347886

Hultman, K., & Lenz Taguchi, H. (2010). Challenging anthropocentric analysis of visual data: A relational material
ist methodological approach to educational research. International Journal of Qualitative Studies in Education, 
23(5), 525–542. https://doi.org/10.1080/09518398.2010.500628

Igarashi, Y., Igarashi, T., & Suzuki, H. (2008). Knitty: 3D modeling of knitted animals with a production assistant 
interface. In K. Mania & E. Reinhard (Eds.), Eurographics (pp. 17–20). The Eurographics Association.

Kafai, Y. B. (2006). Constructionism. In R. K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 35– 
46). Cambridge University Press. https://doi.org/10.1017/cbo9780511816833.004

Kafai, Y. B., Peppler, K. A., Burke, Q., Moore, M., & Glosson, D. (2010). June) Fr€obel’s forgotten gift: textile con
struction kits as pathways into play, design and computation. In N. Par�es & M. Oliv�e (Eds.), Proceedings of the 
9th International Conference on Interaction Design and Children (pp. 214–217). Association for Computing 
Machinery. https://doi.org/10.1145/1810543.1810574

Keune, A. (2022a). Fabric-based computing: (Re) examining the materiality of computer science learning through 
fiber crafts. KI - K€unstliche Intelligenz, 36(1), 69–72. https://doi.org/10.1007/s13218-021-00747-1

Keune, A. (2022b). Material syntonicity: Examining computational performance and its materiality through weav
ing and sewing crafts. Journal of the Learning Sciences, 31(4-5), 477–508. https://doi.org/10.1080/10508406.2022. 
2100704

Keune, A. (2023). Sewing and weaving data: Analyzing fiber crafts as context for performing data processing and 
storing. In Blikstein, P., Aalst, J.V., Kizito., R., & Brennan, K. (Eds.), Proceedings of the 17th International 
Conference of the Learning Sciences - ICLS 2023 (pp. 1877–1878). International Society of the Learning Sciences. 
https://doi.org/10.22318/icls2023.980696

Keune, A. (2024). Learning within fiber-crafted algorithms: Posthumanist perspectives for capturing human-mater
ial collaboration. International Journal of Computer-Supported Collaborative Learning, 19(1), 37–65. https://doi. 
org/10.1007/s11412-023-09412-1

Keune, A., & Peppler, K. (2019). Materials-to-develop-with: The making of a makerspace. British Journal of 
Educational Technology, 50(1), 280–293. https://doi.org/10.1111/bjet.12702

Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., Puntambekar, S., & Ryan, M. (2003). 
Problem-based learning meets case-based reasoning in the middle-school science classroom: Putting learning by design 
(tm) into practice. Journal of the Learning Sciences, 12(4), 495–547. https://doi.org/10.1207/S15327809JLS1204_2

Lamon, S. J. (1993). Ratio and proportion: Connecting content and children’s thinking. Journal for Research in 
Mathematics Education, 24(1), 41–61. https://doi.org/10.5951/jresematheduc.24.1.0041

COGNITION AND INSTRUCTION 199

https://doi.org/10.1080/10508400903452884
https://doi.org/10.1080/10508400903452884
https://doi.org/10.4018/978-1-59904-298-5.ch029
https://doi.org/10.4018/978-1-59904-298-5.ch029
https://doi.org/10.1525/aa.2006.108.2.347
https://doi.org/10.1525/aa.2006.108.2.347
https://doi.org/10.1145/2037276.2037281
https://doi.org/10.1145/2037276.2037281
https://doi.org/10.1007/978-3-319-72487-4
https://doi.org/10.1007/978-3-319-72487-4
https://doi.org/10.1007/s11858-020-01206-1
https://doi.org/10.1007/s11858-020-01206-1
https://doi.org/10.1016/j.cogdev.2003.09.004
https://doi.org/10.1016/j.cogdev.2003.09.004
https://doi.org/10.1145/3332165.3347886
https://doi.org/10.1080/09518398.2010.500628
https://doi.org/10.1017/cbo9780511816833.004
https://doi.org/10.1145/1810543.1810574
https://doi.org/10.1007/s13218-021-00747-1
https://doi.org/10.1080/10508406.2022.2100704
https://doi.org/10.1080/10508406.2022.2100704
https://doi.org/10.22318/icls2023.980696
https://doi.org/10.1007/s11412-023-09412-1
https://doi.org/10.1007/s11412-023-09412-1
https://doi.org/10.1111/bjet.12702
https://doi.org/10.1207/S15327809JLS1204_2
https://doi.org/10.5951/jresematheduc.24.1.0041


Lamon, S. J. (1996). The development of unitizing: Its role in children’s partitioning strategies. Journal for Research 
in Mathematics Education, 27(2), 170–193. https://doi.org/10.5951/jresematheduc.27.2.0170

Lenz Taguchi, H. (2011). Investigating learning, participation and becoming in early childhood practices with a 
relational materialist approach. Global Studies of Childhood, 1(1), 36–50. https://doi.org/10.2304/gsch.2011.1.1.36

Lin, F. L. (1991). Understanding in multiple ratio and non-linear ratio. Proceedings of the National Science Council 
ROC (D), 1(2), 14–30.

Litts, B. K., Kafai, Y. B., Searle, K. A., & Dieckmeyer, E. (2016). Perceptions of productive failure in design proj
ects: High school students’ challenges in making electronic textiles. Proceedings of the International Conference 
of the Learning Sciences, 12(2), 498–505.

Lobato, J., & Thanheiser, E. (2002). Developing understanding of ratio as measure as a foundation for slope. In B. 
Litwiller & G. Bright (Eds.), Making sense of fractions, ratios, and proportions. 2002 Yearbook (pp. 162–175). 
National Council of Teachers of Mathematics.

Maynard, A. E., & Greenfield, P. M. (2003). Implicit cognitive development in cultural tools and children: Lessons 
from Maya Mexico. Cognitive Development, 18(4), 489–510. https://doi.org/10.1016/j.cogdev.2003.09.005

Noss, R., Hoyles, C., & Pozzi, S. (2000). Working knowledge: Mathematics in use. In A. Bessot & J. Ridgway (Eds.), 
Education for mathematics in the workplace (pp. 17–35). Springer. https://doi.org/10.1007/0-306-47226-0_3

Pahl, K., & Rowsell, J. (2010). Artifactual literacies: Every object tells a story. Teachers College Press.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.
Peppler, K., Keune, A., & Thompson, N. (2020). Reclaiming traditionally feminine practices and materials for 

STEM learning through the modern maker movement. In N. Holbert, M. Berland, & Y.B. Kafai (Eds.), 
Designing constructionist futures (pp. 127–139). MIT Press. https://doi.org/10.7551/mitpress/12091.003.0017

Peppler, K., Keune, A., Thompson, N., & Saxena, P. (2022). November) Craftland is Mathland: Mathematical 
insight and the generative role of fiber crafts in maker education. In K. Kumpulainen (Ed.), Frontiers in 
Education. (Vol. 7, p. 1029175). Frontiers Media SA. https://doi.org/10.3389/feduc.2022.1029175

Peppler, K., Sedas, M., Banks, T., Searcy, J., & Wallace, S. (2018). Design math: Middle-school youth making math 
by building yurts. In J. Kay & R. Luckin (Eds.), Proceedings of the 13th International Conference of the Learning 
Sciences - ICLS 2018 (pp. 1165–1168) International Society of the Learning Sciences.

Peppler, K., Sedas, R. M., Keune, A., & Uttamchandani, S. (2019). Balancing the scales: Implications of model size 
for mathematical engagement. In Lund, K., Niccolai, G. P., Lavou�e, E., Hmelo-Silver, C., Gweon, G., & Baker, 
M. (Eds.), Proceedings of the13th International Conference on Computer Supported Collaborative Learning—CSCL 
2019 (pp. 961–962). International Society of the Learning Sciences.

Saxe, G. B., & Gearhart, M. (1990). A developmental analysis of everyday topology in unschooled straw weavers. 
British Journal of Developmental Psychology, 8(3), 251–258. https://doi.org/10.1111/j.2044-835X.1990.tb00840.x

Saxena, P., Keune, A., Thompson, N., & Peppler, K. (2023). To quilt is to math: Investigating the breadth and 
depth of mathematics in fiber crafts. In Blikstein, P., Aalst, J.V., Kizito., R., & Brennan, K. (Eds.), Proceedings of 
the 17th International Conference of the Learning Sciences - ICLS 2023 (pp. 178–185). International Society of 
the Learning Sciences. https://doi.org/10.22318/icls2023.829130

Taimina, D. (2009). Crocheting adventures with hyperbolic planes. A. K. Peters, Ltd. https://doi.org/10.1201/b10669
Thompson, N. (2019). Weaving together: Exploring how pluralistic mathematical practices emerge through weaving. 

Proceedings of the International Conference on Computer Supported Collaborative Learning, 13(2), 1096–1097.
Thompson, N. (2020). Weaving together: Exploring how pluralistic mathematical practices emerge through weaving 

[Doctoral dissertation]. Indiana University. ProQuest Dissertations Publishing.
Thompson, N. (2024). Weaving in: Shifts in youth mathematical engagement through weaving. Educational 

Technology Research and Development, 72(1), 15–39. https://doi.org/10.1007/s11423-023-10316-y
Tourniaire, F., & Pulos, S. (1985). Proportional reasoning: A review of the literature. Educational Studies in 

Mathematics, 16(2), 181–204. https://doi.org/10.1007/PL00020739
Van Dooren, W., De Bock, D., & Verschaffel, L. (2010). From addition to multiplication … and back: The devel

opment of students’ additive and multiplicative reasoning skills. Cognition and Instruction, 28(3), 360–381. 
https://doi.org/10.1080/07370008.2010.488306

Wertheim, M. (2005). Crocheting the Hyperbolic Plane: An Interview with David Henderson and Daina Taimina. 
Cabinet, 16, 19–23.

200 K. PEPPLER ET AL.

https://doi.org/10.5951/jresematheduc.27.2.0170
https://doi.org/10.2304/gsch.2011.1.1.36
https://doi.org/10.1016/j.cogdev.2003.09.005
https://doi.org/10.1007/0-306-47226-0_3
https://doi.org/10.7551/mitpress/12091.003.0017
https://doi.org/10.3389/feduc.2022.1029175
https://doi.org/10.1111/j.2044-835X.1990.tb00840.x
https://doi.org/10.22318/icls2023.829130
https://doi.org/10.1201/b10669
https://doi.org/10.1007/s11423-023-10316-y
https://doi.org/10.1007/PL00020739
https://doi.org/10.1080/07370008.2010.488306

	Materialized Action: Reformulating the “Doing of” Math Through Fiber Crafting
	Abstract
	Introduction
	Background
	Math and craft
	Inclusive materialism, proportional reasoning, and unitizing in mathematics
	Constructionism, objects-to-think-with, and body syntonicity
	Materialized action for epistemic engagement

	Methods
	Settings
	Participants
	Data sources
	Analytical techniques

	Findings
	Unitizing and proportional reasoning per crafting tradition
	How fiber crafts differentially develop mathematics learning
	Katie’s knitted bag: Stitching a unit and PR as stitches and rows per inch
	Tracy’s crocheted bag: Stitching a unit and PR as stitches per sector and row
	Margaret’s pleated bag: Folding a unit and PR as inches per pleat


	Discussion: Materialized action in mathematical practice
	Implications and future research
	Disclosure statement
	Funding
	Orcid
	References


