
<Society logo(s) and publica-
tion title will appear here.>

Received XX Month, XXXX; revised XX Month, XXXX; accepted XX Month, XXXX; Date of publication XX Month, XXXX; date of

current version XX Month, XXXX.

Digital Object Identifier 10.1109/XXXX.2022.1234567

Parameter-efficient Multi-Task and

Multi-Domain Learning using

Factorized Tensor Networks

Yash Garg1, Nebiyou Yismaw1, Rakib Hyder1,

Ashley Prater-Bennette2, Amit Roy-Chowdhury1, and M. Salman Asif1

1
University of California Riverside, CA 92508, USA

2
Air Force Research Laboratory, Rome, NY 13441, USA

Corresponding author: M. Salman Asif (email: sasif@ucr.edu).

This work is supported in part by NSF CAREER award CCF-2046293, AFOSR award FA9550-21-1-0330, ONR award N00014-19-1-2264,

and USDA award 2023-67021-40629.

ABSTRACT Multi-task and multi-domain learning methods seek to learn multiple tasks/domains, jointly or
one after another, using a single unified network. The primary challenge and opportunity lie in leveraging
shared information across these tasks and domains to enhance the efficiency of the unified network.
The efficiency can be in terms of accuracy, storage cost, computation, or sample complexity. In this
paper, we introduce a factorized tensor network (FTN) designed to achieve accuracy comparable to that
of independent single-task or single-domain networks, while introducing a minimal number of additional
parameters. The FTN approach entails incorporating task- or domain-specific low-rank tensor factors into a
shared frozen network derived from a source model. This strategy allows for adaptation to numerous target
domains and tasks without encountering catastrophic forgetting. Furthermore, FTN requires a significantly
smaller number of task-specific parameters compared to existing methods. We performed experiments
on widely used multi-domain and multi-task datasets. We show the experiments on convolutional-based
architecture with different backbones and on transformer-based architecture. Our findings indicate that FTN
attains similar accuracy as single-task or single-domain methods while using only a fraction of additional
parameters per task. The code is available at https://doi.org/10.24433/CO.7519211.v2.

INDEX TERMS Low-rank Adaptation, Multi-domain/Multi-task learning, Tensor Decomposition

I. Introduction

The primary objective in multi-task learning (MTL) is to
train a single model that learns multiple related tasks, ei-
ther jointly or sequentially. Multi-domain learning (MDL)
aims to achieve the same learning objective across multi-
ple domains. MTL and MDL techniques seek to improve
overall performance by leveraging shared information across
multiple tasks and domains. On the other hand, single-task
or single-domain learning does not have that opportunity.
Likewise, the storage and computational cost associated with
single-task/domain models quickly grows as the number
of tasks/domains increases. In contrast, MTL and MDL
methods can use the same network resources for multiple
tasks/domains, which keeps the overall computational and
storage cost small [1], [2].

In general, MTL and MDL can have different input/output
configurations, but we model them as task/domain-specific
network representation problems. Let us represent a network
for MTL or MDL as the following general function:

yt = Ft(x) → F(x;Wt, ht), (1)
where Ft represents a function for task/domain t that maps
input x to output yt. We further assume that F represents a
network with a fixed architecture and Wt and ht represent
the parameters for task/domain-specific feature extraction
and classification/inference heads, respectively. The function
in (1) can represent the network for specific task/domain
t using the respective Wt, ht. In the case of MTL, with
T tasks, we can have T outputs y1, . . . ,yT for a given
input x. In the case of MDL, we usually have a single
output for a given input, conditioned on the domain t. Our
goal is to learn the Wt, ht for all t that maximize the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 1

https://doi.org/10.24433/CO.7519211.v2


Author et al.:

Layer 1

Layer 2

Head 1

Input 1

Output 1

Layer 1

Layer 2

Head 2

Input 2

Output 2

(b) Feature-Extractor

Head 1

Output 1

Head 2

Input 1 or Input 2

Output 2

Shared

shared

(c) Factorized Tensor Network (FTN)

Head 1 Head 2

Input 1 or Input 2

shared

shared

21

21

Frozen 
backbone 

weight

Low-rank tensor BN

Wl

Relu

Cout

Cin

k2 k2

Cin

Cout

rank,1 rank,r

Cout

Cin

k2 k2

Cin

Cout

rank,1 rank,r

Cout

Cin

k2 k2

Cin

Cout

rank,1 rank,r

Frozen 
backbone 

weight

Low-rank tensor

Wl+1

Cout

Cin

k2 k2

Cin

Cout

rank,1 rank,r

Cout

Cin

k2 k2

Cin

Cout

rank,1 rank,r

Cout

Cin

k2 k2

Cin

Cout

rank,1 rank,r

Head

Output 1 Output 2

(d) Detailed overview of FTN architecture.

Low-rank tensors 
for task 1

Low-rank tensors 
for task 2

(a) Fine-Tuning

FIGURE 1: Overview of different MTL/MDL approaches and our proposed method. (a) Fine-Tuning trains entire network
per task/domain. (b) Feature-Extractor trains a backbone network shared by all tasks/domains with task/domain-specific
heads. (c) Our proposed method, Factorized Tensor Network (FTN), adapts to a new task/domain by adding low-rank factors
to shared layers. (d) Detailed overview of FTN. A single network adapted to three downstream vision tasks (segmentation,
depth, and surface normal estimation) by adding task-specific low-rank tensors (!Wt). Task/domain-specific blocks are
shown in same colors.

performance of MTL/MDL with minimal computation and
memory overhead compared to single-task/domain learning.

Figure 1(a),(b),(c) illustrate three typical approaches for
MTL/MDL. First, we can start with a pre-trained network
and fine-tune all the parameters (Wt) to learn a target
task/domain, as shown in Figure 1(a). Fine-Tuning ap-
proaches can transfer some knowledge from the pretrained
network to the target task/domain, but they effectively use
an independent network for every task/domain [1], [3].
Second, we can reduce the parameter and computation
complexity by using a completely shared Feature-Extractor
(i.e., Wt = Wshared for all t) and learning task/domain-
specific heads as last layers, as shown in Figure 1(b).
While such approaches reduce the number of parameters,
they often result in poor overall performance because of
limited network capacity and interference among features
for different tasks/domains [1], [3], [4]. Third, we can divide
the network into shared and task/domain-specific parameters
or pathways, as shown in Figure 1(c). Such an approach
can increase the network capacity, provide interference-
free paths for task/domain-specific feature extraction, and
enable knowledge sharing across the tasks/domains. In recent

years, a number of such methods have been proposed for
MTL/MDL [1], [5], [6]. While existing methods can provide
performance comparable to single-task/domain learning, they
require a significantly large number of additional parameters.

In this paper, we propose a parameter-efficient approach
to factorize a network into two distinct modules: a shared
frozen module and a task/domain-specific module. We refer
to this architecture as a factorized tensor network (FTN).
FTNs adapt a network to target domains or tasks by learning
low-rank tensors and normalization layers, such as batch nor-
malization. An illustration of our proposed method is shown
in Figure 1(d), where we represent network parameters as
Wt = Wshared +!Wt, where !Wt is a low-rank tensor.

Similar parameter-efficient methods such as [7], [8], use
low-rank matrix adaptations to fine-tune their network.
Our proposed method represents low-rank adaptations as
a summation of R rank-1 tensors, significantly reducing
the number of parameters in our network while achieving
better performance. LoRA [7] explores a similar approach
by using low-rank matrix factorization to adapt networks.
However, unlike LoRA, the low-rank tensor factorization in
FTN enables greater parameter reduction. Our experiments

2 VOLUME ,



<Society logo(s) and publication title will appear here.>

demonstrate that FTN achieves better results than LoRA.
While LoRA was originally designed for transformer ar-
chitectures, we have shown a natural extension of FTN to
convolutional architectures. The recent method SVFT [9]
updates weights as a sparse combination of outer products of
singular vectors, training only the coefficients of these sparse
combinations. Our experiments indicate that FTN achieves
superior performance using fewer parameters than SVFT.
FTN leverages tensor factorization to efficiently approximate
multi-dimensional data. Our main motivation is to exploit the
ability of tensor factorization to model complex interactions
and dependencies more effectively than traditional 2D matrix
representations [10], [11].

A prior work, TAPS [1], differentially learns which lay-
ers of a pre-trained network to adapt for a downstream
task/domain by learning an indicator function. The network
uses adapted weights instead of pre-trained weights if the
indicator score is above a certain threshold. This typically in-
volves adapting high-parameterized layers closer to the clas-
sifier/head, which uses significantly more parameters than
our FTN method. Existing parameter-efficient MTL/MDL
methods [3], [12], [13] introduce small task/domain-specific
parameters while others [4], [14] add many parameters to
boost the performance irrespective of the task complexity.
In our work, we demonstrate the flexibility of FTNs by
selecting the rank according to the complexity of the task.
Other approaches like RCM [5] adapt incrementally to new
tasks by reparameterizing the convolutional layer into task-
shared and task-specific parameters. However, unlike FTN
this architecture shows limitations in adapting based on the
complexity of the tasks and performs subpar along perfor-
mance and parameters. We demonstrate the effectiveness of
our method using different MTL and MDL datasets.

Contributions.
The main contributions of this paper are as follows.
• We propose a new method for MTL and MDL, called

factorized tensor networks (FTN), that adds task/domain-
specific low-rank tensors to shared weights. FTNs can
achieve similar performance as the single-task/domain
methods while using a fraction of additional parameters.

• Our proposed method utilizes tensor-factorization and
demonstrates superior parameter-efficiency compared to
matrix factorization methods such as LoRA [7] or indi-
cator based adaptation methods such as TAPS [1].

• Our proposed FTNs can be viewed as a plug-in module
that can be added to any pretrained network and layer. We
have shown this by extending FTNs to transformer-based
architectures.

• We performed empirical analysis to show that the FTNs
enable flexibility by allowing us to vary the rank of the
task-specific tensors based on the problem complexity.

II. Related Work

Multi-task learning (MTL) methods commonly leverage
shared and task-specific layers in a unified network to solve
related tasks [15], [16]. These methods learn shared and
task-specific representation through their respective modules.
Optimization-based methods [17], [18] devise a principled
way to evaluate gradients and losses in multi-task settings.
Branched and tree-structured MTL methods [19] enable
different tasks to share branches along a tree structure for
several layers. Multiple tasks can share computations and
features in any layer only if they belong to the same branch
in all the preceding layers. [5], [20] proposed MTL networks
that incrementally learn new tasks. ASTMT [20] proposed a
network that emphasizes or suppresses features depending on
the task at hand. RCM [5] reparameterizes the convolutional
layer into non-trainable and task-specific trainable modules.
We compare our proposed method with these incrementally
learned networks. Adashare [21] is another related work in
MTL that jointly learns multiple tasks. It learns task-specific
policies and network pathways [22].
Multi-domain learning (MDL) focuses on adapting one
network to multiple unseen domains or tasks. MDL setup
trains models on task-specific modules built upon the frozen
backbone network. This setup helps MDL networks avoid
negative transfer learning or catastrophic forgetting, which
is common among multi-task learning methods. The work
by [2], [23] introduces the task-specific parameters called
residual adapters. The architecture introduces these adapters
as a series or parallel connection on the backbone for a
downstream task. Inspired by pruning techniques, Packnet
[12] learns on multiple domains sequentially on a single task
to decrease the overhead storage, which comes at the cost
of performance. Similarly, the Piggyback [3] method uses
binary masks as the module for task-specific parameters.
These masks are applied to the weights of the backbone
to adapt them to new domains. To extend this work, WTPB
[24] uses the affine transformations of the binary mask on
their backbone to extend the flexibility for better learning.
BA2 [25] proposed a budget-constrained MDL network that
selects the feature channels in the convolutional layer. It
gives a parameter-efficient network by dropping the feature
channels based on budget but at the cost of performance.
DA3 [26] introduces a memory- and parameter-efficient
method with a specific focus on on-device applications. DA3
freezes multiplicative weights and masks and only updates
the additive bias terms. [27] paper learns the adapter modules
and the plug-in architecture of the modules using NAS. Spot-
Tune [14] learns a policy network, which decides whether to
pass each image through Fine-Tuning or pretrained networks.
It neglects the parameter efficiency factor and emphasises
more on performance. TAPS [1] adaptively learns to change
a small number of layers in a pretrained network for the
downstream task.
Domain adaptation and transfer learning. The work in
this field usually focuses on learning a network from a

VOLUME , 3



Author et al.:

given source domain to a closely related target domain. The
target domains under this kind of learning typically have the
same category of classes as source domains [28]. Due to
this, it benefits from exploiting the labels of source domains
to learn about multiple related target domains [29]. Some
work has a slight domain shift between source and target
data, like different camera views [30]. At the same time,
recent papers have worked on significant domain shifts like
converting targets into sketch or art domains [29], [31].
Transfer learning is related to MDL or domain adaptation
but focuses on better generalizing target tasks [32]. Most
of the work in this field uses the popular ImageNet as a
source dataset to learn feature representation and learn to
transfer to target datasets. The method proposed in [33] uses
a pretrained (multi-task) teacher network and decomposes
it into multiple task/knowledge-specific factor networks that
are disentangled from one another. This factorization leads
to sub-networks that can be fine-tuned to downstream tasks,
but they rely on knowledge transfer from a teacher network
that is pretrained for multiple tasks. Modular deep learning
methods [34] focus on transfer learning by avoiding negative
task interference and having parameter-efficient modules.
Factorization methods in MDL/MTL. The method in
[35] proposed a unified framework for MTL/MDL using
semantic descriptors, without focusing on parameter-efficient
adaptation. [36] performs MTL/MDL by factorizing each
layer in the network after incorporating task-specific in-
formation along a separate dimension. Both the networks
in [35] and [36] require retraining from scratch for new
tasks/domains. In contrast, FTN can incrementally learn low-
rank factors to add new tasks/domains. [37] proposed a
new parameter-efficient network to replace residual networks
by incorporating factorized tensors. The results in [37] are
limited to learning single-task networks, where the network
is only compressed by up to ↑ 60%. In [38], the authors pro-
posed a network for MDL using Tucker decomposition. [39]
paper focuses on solving inverse problems in computational
imaging applications. The method proposes to modulate the
weights of an unrolled pre-trained network for adaptation
to multiple domains, measurement models, and noise. The
multiplicative modulation is applied on DCNN (a small
parameter network) with only rank-1 tensors.
Transformer-based methods in MDL/MTL. COM-
PACTER [40] is a parameter-efficient fine-tuning method
designed for large-scale language models. It inserts task-
specific weight matrices into a pretrained model’s weights
as a sum of Kronecker products between shared low-rank
”slow” weights and task-specific ”fast” rank-one matrices.
Adaptformer [41] introduces an effective adapter-based ap-
proach for parameter-efficient fine-tuning of vision trans-
formers for a large variety of downstream visual recognition
tasks. The core idea is to insert the lightweight bottleneck
adapters into the feed-forward layer of a pretrained trans-
former. The adapter involves two fully connected layers, a
non-linear activation function, and a scaling factor. LoRA [7]

is a low-rank adaptation method proposed for large language
models, which freezes the pre-trained weights of the model
and learns low-rank updates for each transformer layer. It
updates weight matrices for query and value in every atten-
tion layer. Similarly, KAdaptation [8] proposes a parameter-
efficient adaptation method for vision transformers. It rep-
resents the updates of MHSA layers using the summation
of Kronecker products between shared parameters and low-
rank task-specific parameters. We compared both of these
methods and have shown that FTN outperforms along the
number of parameters. Scaling and shifting your features
(SSF) [42] is another transformer method for parameter-
efficient adaptation that applies element-wise multiplication
and addition to tokens after different operations. SSF, in
principle, is similar to fine-tuning the Batch Normalization
layer in convolutional layers, which has scaling and shifting
trainable parameters. FTN trains the Batch Normalization
layers and has the same effect as scaling and shifting
features when adapting to new tasks. [43] proposed inverted-
pyramid multi-task transformer, performs cross-task interac-
tion among spatial features of different tasks in a global con-
text. Our method, FTN, shares some high-level similarities
with other parameter-efficient adaptation methods such as
LoRA, as both approaches aim to introduce low-rank factors
to adapt networks for multiple tasks and domains. Our
method is a natural extension to higher-order tensors, and
we demonstrate its effectiveness across both transformer and
convolutional network architectures. In addition, our method
adds parameter and performance efficiency compared to
related methods, as shown by our experiments.

In summary, our proposed method (FTN) offers a
parameter-efficient approach to achieve performance com-
parable to or better than existing adaptation methods by
utilizing a fraction of additional parameters. Our primary
design consideration was to achieve efficient adaptation, en-
abling incremental learning with additive factors. To achieve
parameter efficiency, we introduce a small number of train-
able parameters through low-rank factorization applicable to
both convolutional and transformer-based networks. We uti-
lize frozen and trainable task-specific parameters to support
incremental learning without forgetting prior knowledge.

III. Technical Details

Notations. In this paper, we denote scalars, vectors, matrices
and tensors by w, w, W, and W, respectively. The collective
set of tensors (network weights) is denoted as W .

A. FTN applied to Convolutional layers
In our proposed method, we use task/domain-specific low-
rank tensors to adapt every convolutional layer of a pre-
trained backbone network to new tasks and domains. Let
us assume the backbone network has L convolutional layers
that are shared across all task/domains. We represent the
shared network weights as Wshared = {W1, . . . ,WL} and
the low-rank network updates for task/domain t as !Wt =

4 VOLUME ,



<Society logo(s) and publication title will appear here.>

{!W1,t, . . . ,!WL,t}. To compute features for task/domain
t, we update weights at every layer as Wshared + !Wt =
{W1 +!W1,t, . . . ,WL +!WL,t}.

To keep our notations simple, let us only consider lth
convolutional layer that has k ↓ k filters, Cin channels for
input feature tensor, and Cout channels for output feature
tensor. We represent the corresponding Wl as a tensor of
size k

2↓Cin↓Cout. We represent the low-rank tensor update
as a summation of R rank-1 tensors as

!Wl,t =
R∑

r=1

wr
1,t ↔wr

2,t ↔wr
3,t, (2)

where wr
1,t,w

r
2,t,w

r
3,t represent vectors of length

k
2
, Cin, Cout, respectively, and ↔ represents the Kronecker

product.
Apart from low-rank tensor update, we also optimize over

Batch Normalization layers (BN) for each task/domain [44],
[45]. The BN layer learns two vectors ” and ω, each of
length Cout. The BN operation along Cout dimension can
be defined as element-wise multiplication and addition:

BN!,ω(u) = ”

(
u↗ E[u]√
Var[u] + ε

)
+ ω. (3)

We represent the output of lth convolutional layer for
task/domain t as

Zl,t = BN!t,ωt(conv(Wl +!Wl,t,Yl→1,t)), (4)

where Yl→1,t represents the input tensor and Zl,t represents
the output tensor for lth layer. In our proposed FTN, we
learn the task/domain-specific factors {wr

1,t,w
r
2,t,w

r
3,t}Rr=1,

and ”t, and ωt for every layer in the backbone network.
In the FTN method, rank R for !W plays an important

role in defining the expressivity of the adapted network. We
can define a complex !W by increasing the rank R of the
low-rank tensor and taking their linear combination. Our
experiments showed that this has resulted in a significant
performance gain.
Initialization. To establish a favorable starting point, we
adopt a strategy that minimizes substantial modifications to
the frozen backbone network weights during the initialization
of the task-specific parameter layers. To achieve this, we
initialize each parameter layer from the Xavier uniform
distribution [46], thereby generating !W values close to
0 before their addition to the frozen weights. This approach
ensures the initial point of our proposed network closely
matches the pretrained network closely.

To acquire an effective initialization for our backbone
network, we leverage the pretrained weights obtained from
ImageNet. We aim to establish a robust and capable feature
extractor for our specific task by incorporating these pre-
trained weights into our backbone network.
Number of parameters. In a Fine-Tuning setup with T

tasks/domains, the total number of required parameters at
convolutional layer l can be calculated as T · (k2 ↓ Cin ↓
Cout). Whereas using our proposed FTNs, the total number
of frozen backbone (Wl) and low-rank R tensor (!Wl,t)

parameters are given by (Cout↓Cin↓ k
2)+T ·R · (Cout+

Cin + k
2). In our results section, we have shown that the

absolute number of parameters required by our method is a
fraction of what the Fine-Tuning counterpart needs.
Effect of Batch Normalization. In our experiment sec-
tion, under the ‘FC and BN only’ setup, we have shown
that having task-specific Batch Normalization layers in the
backbone network significantly affects the performance of a
downstream task/domain. For all the experiments with our
proposed approach, we include Batch Normalization layers
as task-specific along with low-rank tensors and classifica-
tion/decoder layer.

B. FTN applied to Transformers
The Vision Transformer (ViT) architecture [47] consists a
series of MLP, normalization, and Multi-Head Self-Attention
(MHSA) blocks. The MHSA blocks perform n parallel
attention mechanisms on sets of Key K, Query Q, and
Value V matrices. Each of these matrices has dimensions
of S ↓ dmodel, where dmodel represents the embedding
dimension of the transformer, and S is the sequence length.
The i-th output head (Hi) of the n parallel attention blocks
is computed as

Hi = SA(QWQ
i ,KWK

i , VWV
i ), (5)

where SA(·) represents the self-attention mechanism,
WK

i ,WQ
i ,W

V
i ↘ Rdmodel↑d represent the projection weights

for the key, query, and value matrices, respectively, and
d = dmodel/n. The heads Hi are then combined using a
projection matrix Wo ↘ Rdmodel↑dmodel to result in the
output of the MHSA block as

MHSA(H1, . . . , Hn) = Concat(H1, . . . , Hn) ·Wo. (6)

Following the adaptation procedure in [8], we apply our
proposed factorization technique to the weights in the MHSA
block. We introduce two methods for applying low-rank
tensors to the attention weights:
Adapting query and value weights. Our first proposed
method, FTN (Query and Value), adds the low-rank tensor
factors to the query WQ and value WV weights. These
weights can be represented as three-dimensional tensors of
size dmodel ↓ d ↓ n. Using (2), we can define and learn
low-rank updates !Wq and !Wv for the query and value
weights, respectively.
Adapting output weights. Our second method, FTN (Output

projection), adds low-rank factors, !Wo, to the output
projection weights Wo ↘ Rdmodel↑d↑n. Similar to the
previous low-rank updates, the updates to the output weights
defined following (2).
Initialization. We initialize each low-rank factor by sam-
pling from a Gaussian distribution with µ = 0 and ϑ = 0.05.
This ensures near-zero initialization, closely matching the
pretrained network.
Number of parameters. The total number of parameters
needed for R low-rank tensors and L MHSA blocks in
FTN (Query and Value) is 2LR(dmodel + d + n). FTN

VOLUME , 5



Author et al.:

TABLE 1: Number of parameters and top-1% accuracy for baseline methods, comparative methods, and FTN with varying
ranks on the five domains of the ImageNet-to-Sketch benchmark experiments. Additionally, the mean top-1% of each
method across all domains is shown. The ‘Params’ column gives the number of parameters used as a multiplier of those for
the Feature-Extractor method, along with the absolute number of parameters required in parentheses. Bold and underline
indicate the best and second-best results, respectively.

Methods Params (Abs) Flowers Wikiart Sketch Cars CUB mean

Fine-Tuning 6→ (141M) 95.69 78.42 81.02 91.44 83.37 85.98

Feature-Extractor 1→ (23.5M) 89.57 57.7 57.07 54.01 67.20 65.11
FC and BN only 1.001→ (23.52M) 94.39 70.62 79.15 85.20 78.68 81.60

Piggyback [3] 6→ [2.25→] (141M) 94.76 71.33 79.91 89.62 81.59 83.44
Packnet ↑ [12] [1.60→] (37.6M) 93 69.4 76.20 86.10 80.40 81.02
Packnet ↓ [12] [1.60→] (37.6M) 90.60 70.3 78.7 80.0 71.4 78.2
Spot-Tune [14] 7→ [7→] (164.5M) 96.34 75.77 80.2 92.4 84.03 85.74
WTPB [24] 6→ [2.25→] (141M) 96.50 74.8 80.2 91.5 82.6 85.12
BA2 [25] 3.8→ [1.71→] (89.3M) 95.74 72.32 79.28 92.14 81.19 84.13
TAPS [1] 4.12→ (96.82M) 96.68 76.94 80.74 89.76 82.65 85.35

FTN, R=1 1.004→ (23.95M) 94.79 73.03 78.62 86.85 80.86 82.83
FTN, R=50 1.53→ (36.02M) 96.42 78.01 80.6 90.83 82.96 85.76

(Output Projection) requires only LR(dmodel + d + n) to
add a similar number of factors. These additional parameters
are significantly fewer than the parameters required for
fully fine-tuning the four attention weights, which equals
4Ld2model. When compared to other parameter-efficient adap-
tation methods such as LoRA [7] and KAdaptation [8], our
methods show superior parameter efficiency. The primary
distinction is in the method of weight factorization and
decomposition. In LoRA, to introduce rank R factors in
the query and value weight matrices, 4LRdmodel parameters
are required. Our approach begins with a three-dimensional
representation of the attention weights, sized dmodel ↓ d↓n.
We chose this approach because it allows us to exploit the
relationship between the attention heads, further improving
parameter efficiency. Moreover, we have explored different
types of updates within the self-attention mechanism and
proposed two variants of our FTN (Query and Value and
Output projection). SSF [42] requires mLdmodel, where m

is the number of SSF modules in each transformer layer.
In Table 3, we report the exact number of parameters
and demonstrate that our proposed method, FTN (Output

Projection), has the best parameter efficiency.

IV. Experiments and Results

We evaluated the performance of our proposed FTN on
several MTL/MDL datasets. We performed experiments
for 1. Multi-domain classification on convolution and
transformer-based networks, and 2. Multi-task dense pre-

diction. For each set of benchmarks, we reported the perfor-
mance of FTN with different rank increments and compared
the results with those from existing methods. All experiments

are run on a single NVIDIA GeForce RTX 2080 Ti GPU with
12GB memory.

A. Multi-domain classification
1) Convolution-based networks

Datasets. We use two MTL/MDL classification-based
benchmark datasets. First, ImageNet-to-Sketch, which con-
tains five different domains: Flowers, Cars, Sketch, Caltech-
UCSD Birds (CUBs), and WikiArt, with different classes.
Second, DomainNet, which contains six domains: Clipart,
Sketch, Painting (Paint), Quickdraw (Quick), Inforgraph
(Info), and Real, with each domain containing an equal
345 classes. The datasets are prepared using augmentation
techniques as adopted by [1].
Training details. For each benchmark, we report the per-
formance of FTN for various choices for ranks, along with
several benchmark-specific comparative and baseline meth-
ods. The backbone weights are pretrained from ImageNet,
using ResNet-50 for the ImageNet-to-Sketch benchmarks,
and ResNet-34 on the DomainNet benchmarks to keep the
same setting as [1]. On ImageNet-to-Sketch we run FTNs
for ranks, R ↘ {1, 5, 10, 15, 20, 25, 50} and on DomainNet
dataset for ranks, R ↘ {1, 5, 10, 20, 30, 40}. In the supple-
mentary material, we provide the hyperparameter details to
train FTN.
Results. We report the top-1% accuracy for each domain and
the mean accuracy across all domains for each collection of
benchmark experiments. We also report the number of frozen
and learnable parameters in the backbone network. Table 1
compares the FTN method with other methods in terms
of accuracy and number of parameters. FTN outperforms
every other adaptation-based method in number of parame-

6 VOLUME ,



<Society logo(s) and publication title will appear here.>

TABLE 2: Performance of different methods with resnet-34 backbone on DomainNet dataset. Top-1% accuracy is shown
on different domains with different methods along with the number of parameters. Bold and underline indicate the best
and second-best results, respectively.

Methods Params Clipart Sketch Paint Quick Info Real mean

Fine-Tuning 6→ 74.26 67.33 67.11 72.43 40.11 80.36 66.93

Feature-Extractor 1→ 60.94 50.03 60.22 54.01 26.19 76.79 54.69
FC and BN only 1.004→ 70.24 61.10 64.22 63.09 34.76 78.61 62.00

Adashare [21] 5.73→ 74.45 64.15 65.74 68.15 34.11 79.39 64.33
TAPS [1] 4.90→ 74.85 66.66 67.28 71.79 38.21 80.28 66.51

FTN, R=1 1.008→ 70.73 62.69 65.08 64.81 35.78 79.12 63.03
FTN, R=40 1.18→ 74.2 65.67 67.14 71.00 39.10 80.64 66.29

ters while using 36.02 million parameters in the backbone
with rank-50 updates for all domains. The mean accuracy
performance is better than other adaptation-based methods
and is close to Spot-Tune [14] and Fine-Tuning, which
requires nearly 165M and 141M parameters respectively.
On the Wikiart dataset, we outperform the top-1 accuracy
with other adaptation-based methods. The performance of
baseline methods is taken from TAPS [1], as we are running
the experiments under the same settings.

Table 2 shows the results on the DomainNet dataset,
which we compare with TAPS [1] and Adashare [21].
Again, using FTN, we significantly outperform compari-
son methods along the required parameters (rank-40 needs
25.22 million parameters only). Also, FTN rank-40 attains
better top-1% accuracy on the Infograph and Real domain,
while it attains similar performance on all other domains.
On DomainNet with resnet-34 and Imagenet-to-Sketch with
resnet-50 backbone, the rank-1 low-rank tensors require only
16,291 and 49,204 parameters per task, respectively. We
have shown additional experiments on this dataset under a
joint optimization setup in section 4 of the supplementary
material.
Analysis on rank. We create low-rank tensors (!W ) as
a summation of R rank-1 tensors. We hypothesize that
increasing R increases the expressive power of low-rank
tensors. Our experiments confirm this hypothesis, where
increasing the rank improves the performance, enabling
more challenging task/domain adaptation. Figure 2 shows
the accuracy vs. ranks plot, where we observe a trend of
performance improvement as we increase the rank from
1 to 50 on the ImageNet-to-Sketch and from 1 to 40 on
the DomainNet dataset. In addition, we observe that some
domains do not require high ranks. Particularly, the Flowers
and Cars domains attain good accuracy at ranks 20 and 15,
respectively. We can argue that, unlike prior works [13],
[14], which consume the same task-specific module for easy
and complex tasks, we can provide different flexibility to
each task. Also, we can add as many different tasks as we

want by adding independent low-rank factors for each task
(with a sufficiently large rank). In supplementary material,
we present a heatmap that shows the adaption of the low-rank
tensor at every layer upon increasing the rank. Section 2 of
the supplementary materials shows an additional experiment
to demonstrate the effect on performance with different
numbers of low-rank factors.

2) Transformer-based networks

We compared our FTN method with several domain adapta-
tion techniques for supervised image classification. Our task
is to adapt a pretrained 12-layer ViT-B-224/32 (CLIP) model
obtained from [8] to new domains.
Datasets. We conducted experiments on the CIFAR10, CI-
FAR100, DTD, FER2013, and STL10 classification datasets,
using the official dataset splits.
Training details. For all experiments except SVFT [9], we
set the rank to R = 4. We followed a similar hyper-parameter
tuning procedure and implementation as outlined in [8],
which utilizes grid-search to obtain the optimal learning rate
for each dataset. We found that 5 ↓ 10→6 was the optimal
learning rate. Following the approach in [7], we scaled the
low-rank factors by ε

R , where ϖ is a hyper-parameter, and
R is the number of low-rank factors. We set ϖ = 10 and
ϖ = 100 for FTN (Query and Value) and FTN (Output
projection), respectively. We used a batch size of 64 and
trained for 100 epochs. For SVFT, we used its Plain variant
from their codebase to maintain a comparable number of
additional parameters and performed hyper-parameter tuning
to determine optimal learning rates for a fair comparison.
Results. In Table 3, we present the classification accuracy
and the total number of parameters for our proposed FTN
methods, along with related model adaptation methods.
Results for Fine-tuning, Feature extractor (Linear-probing),
LoRA [7], and KAdaptation [8] are obtained from [8]. The
first proposed method, FTN (query and value), surpasses
LoRA in terms of average performance and requires fewer
additional parameters. FTN (query and value) requires a

VOLUME , 7



Author et al.:

(a) Imagenet-to-sketch dataset (b) DomainNet dataset

FIGURE 2: Accuracy vs Low-ranks: We show the top-1% accuracy against different low-ranks used in our method for
different domains. We start with ‘only BN’ setup where without any low-rank we keep the Batch Normalization layers as
task-specific. Then we show the performance improvement through our approach upon increasing the rank-R.

TABLE 3: We compared performance across five datasets in terms of accuracy and total parameters. FTN (O) uses low-
rank factors for output projection weights, while FTN (Q&V) applies them to query and value weights. Note that the
parameters mentioned exclude task-specific heads, and 5↓ (439.5M) denotes a fivefold increase from the base network’s
87.9M parameters. Bold and underline indicate the best and second-best results, respectively.

Method Params (Abs) # additional params FLOPS Wall-clock time CIFAR10 CIFAR100 DTD STL10 FER2013 mean

Fine-tuning 5→ (439.5M) 5→ 87.9M 4.368G 168.62 97.7 85.4 79.0 99.7 69.8 86.3

Feature extractor 1→ (87.9M) - 4.368G 81.40 94.8 80.1 75.4 98.4 67.3 83.2
LoRA [7] 1.008→ (88.6M) 5→147.2K 4.421G 164.83 95.1 78.1 78.1 99.2 67.7 83.6
KAdaptation [8] 1.005→ (88.3M) 5→80.7K 5.349G 158.69 95.9 84.8 78.1 99.2 69.0 85.4
SVFTP [9] 1.003→ (88.1M) 5→55.3K 69.59G 221.21 97.1 83.6 73.3 98.1 69.5 84.3

FTN (Q & V) 1.005→ (88.3M) 5→ 81.0K 5.178G 146.89 95.8 83.4 77.1 98.7 68.5 84.7
FTN (O) 1.002→ (88.1M) 5→40.5K 4.442G 129.82 96.6 84.3 76.0 98.6 69.5 85.0

comparable number of parameters to KAdaptation and per-
formance is 0.8% lower. In contrast, FTN (output projection)
requires approximately half as many additional parameters
as KAdaptation but achieves comparable performance. Ad-
ditionally, FTN outperforms SVFT [9] on average while
using fewer parameters. Fine-tuning and Feature extractor
methods require the least FLOPS due to the absence of
architectural modifications. Among the others, LoRA and
FTN (O) achieve comparable and second-best FLOPS. We
calculate Wall-clock time as the total duration, in seconds,
required to complete a single training epoch. The Feature
extractor approach had the shortest wall-clock time, as
expected due to the frozen backbone. FTN (O) achieves the
best wall-clock performance among the remaining methods,
highlighting its training efficiency.

B. Multi-task dense prediction
Dataset. The widely-used NYUD dataset with 795 training
and 654 testing images of indoor scenes is used for dense
prediction experiments in multi-task learning. The dataset

contains four tasks: edge detection (Edge), semantic seg-
mentation (SemSeg), surface normals estimation (Normals),
and depth estimation (Depth). We follow the same data-
augmentation technique as used by [5].
Metrics. On the tasks of the NYUD dataset, we report
mean intersection over union for semantic segmentation,
mean error for surface normal estimation, optimal dataset
F-measure [48] for edge detection, and root mean squared
error for depth estimation. We also report the number of
parameters used in the backbone for each method.
Training details. ResNet-18 is used as the backbone net-
work, and DeepLabv3+ as the decoder architecture. The
Fine-Tuning and Feature-Extractor experiments are imple-
mented in the same way as in the classification-based ex-
periments above. We showed experiments for FTNs with
R ↘ {1, 10, 20, 30}. Further details are in the supplementary
material.
Results. Table 4 shows the performance of FTN with various
ranks and of other baseline comparison methods for dense
prediction tasks on the NYUD dataset. We observe perfor-

8 VOLUME ,



<Society logo(s) and publication title will appear here.>

mance improvement by increasing flexibility through higher
rank. FTN with rank-30 performs better than all comparison
methods and utilizes the least number of parameters. Also,
we attain good performance on the Depth and Edge task
by using only rank-20. We take the performance of baseline
comparison methods from the RCM paper [5] as we run our
experiments under the same setting.
Section 6 of the supplementary materials presents additional
experiments on the multi-domain image generation applica-
tion using the FTN method.

TABLE 4: Dense prediction performance on NYUD dataset
using ResNet-18 backbone with DeepLabv3+ decoder. The
proposed FTN approach with R = {1, 10, 20, 30} and other
methods. Bold and underline indicate the best and second-
best results, respectively.

Methods Params Semseg↔ Depth↗ Normals↗ Edge↔

Single Task 4→ 35.34 0.56 22.20 73.5
Decoder only 1→ 24.84 0.71 28.56 71.3
Decoder + BN only 1.002→ 29.26 0.61 24.82 71.3

ASTMT (R-18) [20] 1.25→ 30.69 0.60 23.94 68.60
ASTMT (R-26+SE) [20] 2.00→ 30.07 0.63 24.32 73.50
Series RA [2] 1.56→ 31.87 0.60 23.35 67.56
Parallel RA [2] 1.50→ 32.13 0.59 23.20 68.02
RCM [5] 1.56→ 34.20 0.57 22.41 68.44

FTN, R=1 1.005→ 29.83 0.60 23.56 72.7
FTN, R=10 1.03→ 33.66 0.57 22.15 73.5
FTN, R=20 1.06→ 34.06 0.55 21.84 73.9

FTN, R=30 1.09→ 35.46 0.56 21.78 73.8

V. Conclusion

We have proposed a simple, parameter-efficient, architecture-
agnostic, and easy-to-implement FTN method that adapts
to new unseen domains/tasks using low-rank task-specific
tensors. Our work shows that FTN requires the least num-
ber of parameters compared to other baseline methods in
MDL/MTL experiments and attains better or comparable
performance. We can adapt the backbone network in a flexi-
ble manner by adjusting the rank according to the complexity
of the domain/task. We conducted experiments with differ-
ent convolutional backbones and transformer architectures
for various datasets to demonstrate that FTN outperforms
existing methods.
Future work. In our current approach, we used a fixed rank
for each layer. Moving forward, we can explore adaptively
selecting the rank for different layers, which may further re-
duce the number of parameters. MDL/MTL models are often
challenged by task interference or negative transfer learning
when conflicting tasks are trained together. Future work can
address this by investigating which tasks or domains should
be learned jointly to mitigate such drawbacks. Additionally,
while our method requires a separate forward pass for each
task due to the shared backbone, we could further explore

branched or tree-structured models that enable task-specific
layer sharing to reduce latency.

REFERENCES

[1] M. Wallingford, H. Li, A. Achille, A. Ravichandran, C. Fowlkes,
R. Bhotika, and S. Soatto, “Task adaptive parameter sharing for
multi-task learning,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2022, pp. 7561–7570.
[2] S.-A. Rebuffi, H. Bilen, and A. Vedaldi, “Efficient parametrization

of multi-domain deep neural networks,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2018, pp.
8119–8127.

[3] A. Mallya, D. Davis, and S. Lazebnik, “Piggyback: Adapting a single
network to multiple tasks by learning to mask weights,” in Proceedings

of the European Conference on Computer Vision (ECCV), 2018, pp.
67–82.

[4] J. O. Zhang, A. Sax, A. Zamir, L. Guibas, and J. Malik, “Side-tuning:
a baseline for network adaptation via additive side networks,” in
Computer Vision–ECCV 2020: 16th European Conference, Glasgow,

UK, August 23–28, 2020, Proceedings, Part III 16. Springer, 2020,
pp. 698–714.

[5] M. Kanakis, D. Bruggemann, S. Saha, S. Georgoulis, A. Obukhov,
and L. V. Gool, “Reparameterizing convolutions for incremental multi-
task learning without task interference,” in European Conference on

Computer Vision. Springer, 2020, pp. 689–707.
[6] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-stitch net-

works for multi-task learning,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2016, pp. 3994–4003.
[7] E. J. Hu, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen

et al., “Lora: Low-rank adaptation of large language models,” in
International Conference on Learning Representations, 2021.

[8] X. He, C. Li, P. Zhang, J. Yang, and X. E. Wang, “Parameter-efficient
model adaptation for vision transformers,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 37, no. 1, 2023, pp. 817–
825.

[9] V. Lingam, A. Tejaswi, A. Vavre, A. Shetty, G. K. Gudur, J. Ghosh,
A. Dimakis, E. Choi, A. Bojchevski, and S. Sanghavi, “Svft:
Parameter-efficient fine-tuning with singular vectors,” arXiv preprint

arXiv:2405.19597, 2024.
[10] S. Rabanser, O. Shchur, and S. Günnemann, “Introduction to tensor

decompositions and their applications in machine learning,” arXiv

preprint arXiv:1711.10781, 2017.
[11] T. G. Kolda and B. W. Bader, “Tensor decompositions and applica-

tions,” SIAM review, vol. 51, no. 3, pp. 455–500, 2009.
[12] A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a single

network by iterative pruning,” in Proceedings of the IEEE conference

on Computer Vision and Pattern Recognition, 2018, pp. 7765–7773.
[13] Y. Li, N. Wang, J. Shi, J. Liu, and X. Hou, “Revisiting batch

normalization for practical domain adaptation,” arXiv preprint

arXiv:1603.04779, 2016.
[14] Y. Guo, H. Shi, A. Kumar, K. Grauman, T. Rosing, and R. Feris, “Spot-

tune: transfer learning through adaptive fine-tuning,” in Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition,
2019, pp. 4805–4814.

[15] L. Zhang, Q. Yang, X. Liu, and H. Guan, “Rethinking hard-parameter
sharing in multi-domain learning,” in 2022 IEEE International Con-

ference on Multimedia and Expo (ICME). IEEE, 2022, pp. 01–06.
[16] L. Zhang, X. Liu, and H. Guan, “Automtl: A programming framework

for automating efficient multi-task learning,” Advances in Neural

Information Processing Systems, vol. 35, pp. 34 216–34 228, 2022.
[17] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, “Grad-

norm: Gradient normalization for adaptive loss balancing in deep
multitask networks,” in International conference on machine learning.
PMLR, 2018, pp. 794–803.

[18] Z. Chen, J. Ngiam, Y. Huang, T. Luong, H. Kretzschmar, Y. Chai, and
D. Anguelov, “Just pick a sign: Optimizing deep multitask models with
gradient sign dropout,” Advances in Neural Information Processing

Systems, vol. 33, pp. 2039–2050, 2020.
[19] L. Zhang, X. Liu, and H. Guan, “A tree-structured multi-task model

recommender,” in International Conference on Automated Machine

Learning. PMLR, 2022, pp. 10/1–12.

VOLUME , 9



Author et al.:

[20] K.-K. Maninis, I. Radosavovic, and I. Kokkinos, “Attentive single-
tasking of multiple tasks,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2019, pp. 1851–1860.
[21] X. Sun, R. Panda, R. Feris, and K. Saenko, “Adashare: Learning what

to share for efficient deep multi-task learning,” Advances in Neural

Information Processing Systems, vol. 33, pp. 8728–8740, 2020.
[22] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with

gumbel-softmax,” in International Conference on Learning Represen-

tations, 2017.
[23] S.-A. Rebuffi, H. Bilen, and A. Vedaldi, “Learning multiple visual

domains with residual adapters,” Advances in neural information

processing systems, vol. 30, 2017.
[24] M. Mancini, E. Ricci, B. Caputo, and S. Rota Bulo, “Adding new

tasks to a single network with weight transformations using binary
masks,” in Proceedings of the European Conference on Computer

Vision (ECCV) Workshops, 2018, pp. 0–0.
[25] R. Berriel, S. Lathuillere, M. Nabi, T. Klein, T. Oliveira-Santos,

N. Sebe, and E. Ricci, “Budget-aware adapters for multi-domain
learning,” in Proceedings of the IEEE/CVF International Conference

on Computer Vision, 2019, pp. 382–391.
[26] L. Yang, A. S. Rakin, and D. Fan, “Da3: Dynamic additive attention

adaption for memory-efficient on-device multi-domain learning,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2022, pp. 2619–2627.
[27] H. Zhao, H. Zeng, X. Qin, Y. Fu, H. Wang, B. Omar, and X. Li, “What

and where: Learn to plug adapters via nas for multidomain learning,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 33,
no. 11, pp. 6532–6544, 2021.

[28] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discrim-
inative domain adaptation,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2017, pp. 7167–7176.
[29] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan,

“Deep hashing network for unsupervised domain adaptation,” in
Proceedings of the IEEE conference on computer vision and pattern

recognition, 2017, pp. 5018–5027.
[30] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual cate-

gory models to new domains,” in European Conference on Computer

Vision (ECCV). Springer, 2010, pp. 213–226.
[31] Y. Zhao, H. Ali, and R. Vidal, “Stretching domain adaptation: How

far is too far?” arXiv preprint arXiv:1712.02286, 2017.
[32] B. Mustafa, A. Loh, J. Freyberg, P. MacWilliams, M. Wilson, S. M.

McKinney, M. Sieniek, J. Winkens, Y. Liu, P. Bui et al., “Super-
vised transfer learning at scale for medical imaging,” arXiv preprint

arXiv:2101.05913, 2021.
[33] X. Yang, J. Ye, and X. Wang, “Factorizing knowledge in neural

networks,” in European Conference on Computer Vision. Springer,
2022, pp. 73–91.

[34] J. Pfeiffer, S. Ruder, I. Vulić, and E. M. Ponti, “Modular deep
learning,” arXiv preprint arXiv:2302.11529, 2023.

[35] Y. Yang and T. Hospedales, “A unified perspective on multi-domain
and multi-task learning,” in 3rd International Conference on Learning

Representations, 2015.
[36] ——, “Deep multi-task representation learning: A tensor factorisation

approach,” in 5th International Conference on Learning Representa-

tions, 2017.
[37] Y. Chen, X. Jin, B. Kang, J. Feng, and S. Yan, “Sharing residual

units through collective tensor factorization to improve deep neural
networks.” in IJCAI, 2018, pp. 635–641.

[38] A. Bulat, J. Kossaifi, G. Tzimiropoulos, and M. Pantic, “Incremental
multi-domain learning with network latent tensor factorization,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 07, 2020, pp. 10 470–10 477.

[39] N. Yismaw, U. S. Kamilov, and M. S. Asif, “Domain expansion via
network adaptation for solving inverse problems,” IEEE Transactions

on Computational Imaging, 2024.
[40] R. Karimi Mahabadi, J. Henderson, and S. Ruder, “Compacter: Ef-

ficient low-rank hypercomplex adapter layers,” Advances in Neural

Information Processing Systems, vol. 34, pp. 1022–1035, 2021.
[41] S. Chen, C. Ge, Z. Tong, J. Wang, Y. Song, J. Wang, and P. Luo,

“Adaptformer: Adapting vision transformers for scalable visual recog-
nition,” Advances in Neural Information Processing Systems, vol. 35,
pp. 16 664–16 678, 2022.

[42] D. Lian, D. Zhou, J. Feng, and X. Wang, “Scaling & shifting your
features: A new baseline for efficient model tuning,” Advances in

Neural Information Processing Systems, vol. 35, pp. 109–123, 2022.
[43] H. Ye and D. Xu, “Inverted pyramid multi-task transformer for dense

scene understanding,” in European Conference on Computer Vision.
Springer, 2022, pp. 514–530.

[44] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International

conference on machine learning. pmlr, 2015, pp. 448–456.
[45] Q. Pham, C. Liu, and H. Steven, “Continual normalization: Rethinking

batch normalization for online continual learning,” in International

Conference on Learning Representations, 2022.
[46] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep

feedforward neural networks,” in Proceedings of the thirteenth inter-

national conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings, 2010, pp. 249–256.

[47] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” in International Conference on Learning Representations,
2020.

[48] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural
image boundaries using local brightness, color, and texture cues,” IEEE

transactions on pattern analysis and machine intelligence, vol. 26,
no. 5, pp. 530–549, 2004.

10 VOLUME ,


	Introduction
	Related Work
	Technical Details
	FTN applied to Convolutional layers
	FTN applied to Transformers

	Experiments and Results
	Multi-domain classification
	Convolution-based networks
	Transformer-based networks

	Multi-task dense prediction

	Conclusion
	REFERENCES

