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SUMMARY

A key challenge in synthetic biology is achieving durable amplification of low-level inputs in gene regulation
systems. Current RNA-based tools primarily operate post-transcriptionally and often yield limited, transient
responses. An underexplored feature of lowly expressed long non-coding RNAs (IncRNAs) is their ability to
induce outsized effects on chromatin regulation across large genomic regions. Mechanistic insights from
basic research are bringing the field closer to designing IncRNAs for epigenetic engineering. We review foun-
dational studies on ectopic expression to uncover IncRNA-mediated epigenetic mechanisms and state-of-
the-art transgenic systems for studying IncRNA-driven epigenetic regulation. We present perspectives on
strategies for testing the composability of modular IncRNA elements to build rationally designed systems
with programmable chromatin-modifying functions and potential biomedical applications such as gene
dosage correction. Deepening mechanistic insights into IncRNA function, combined with the development
of IncRNA-based technologies for genome regulation, will pave the way for significant advances in cell state

control.

INTRODUCTION

Long non-coding RNAs (IncRNAs) are generally defined as RNA
molecules that lack protein-coding capacity and exceed 200 nu-
cleotides in length, although a recent consensus statement has
proposed a threshold of >500 nucleotides.” Once seen as tran-
scriptional noise due to their low abundance and lack of
sequence conservation,? INcRNAs are now recognized as critical
components of cellular pathways, including gene expression
regulation.® These include nuclear and cytoplasmic functions
such as regulating transcriptional, post-transcriptional, and
translational processes through base-pairing, scaffolding pro-
tein complexes, and acting as molecular decoys, among other
mechanisms.’

Given their abundance and stoichiometry relative to their tar-
gets, several nuclear IncRNAs have been found to exert outsized
effects through dynamic interactions that orchestrate protein
localization and macromolecular crowding,*” in contrast to stable
regulatory mechanisms such as scaffolding mediated by ribo-
somal and telomerase RNA.? For instance, with only 100-200 mol-
ecules per cell,®” human X-inactive specific transcript (XIST,
~19,000 nucleotides) is present at ~1 molecule per 1 megabase
(Mb) of DNA, yet it regulates the silencing of 96% of ~800 genes
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across the inactive X chromosome (170 Mb).%~"" Similarly, mouse
Airn, Kcnqiot1, and Meg3 also regulate large genomic regions
(~10.0, ~0.86, and ~1.0 Mb, respectively),'? with few molecules
of each being present in the cell. These examples highlight how
a few nuclear IncRNAs can regulate extensive genomic territories
despite low cellular abundance. Such large-scale regulatory influ-
ence arises from diverse modes of action where IncRNAs can act
in cis or in trans. Cis effects are mediated either by the RNA prod-
uct itself or by the act of transcription, often in combination, and
their functional roles have largely been defined through extensive
work in mouse models.'®'*

Synthetic biology has used functional non-coding RNA as a
design feature in transcription and translation control sys-
tems, ®'° while IncRNA-mediated regulation of chromatin has
only been recently leveraged in this field.'” A major goal for en-
gineered chromatin systems is to efficiently establish durable
regulatory memory at multiple genes,'®'° a feature exemplified
by XIST’s ability to induce chromosome-wide silencing.?® More
broadly, IncRNAs present a unique approach for signal amplifi-
cation where a transient, low-level input can trigger a large-scale
and persistent regulatory state. Considerable effort has been
devoted to achieving this type of control for engineered biolog-
ical systems.?"??
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Figure 1.

IncRNA engineering from foundational studies to rational design

Initial design insights: foundational discoveries include the research of Xist, where it was determined that ectopic silencing in cis could be accomplished by using
YACs to transfer Xist-encoding DNA (the XIC) from the sex chromosome X to an autosome.®**° Results showed that IncRNA function depends on genomic
context (integration site), copy number, and cellular context. Synthetic tools: the use of tools such as non-native promoters, targeted integration systems, RNA
and protein tags, and reporter genes has enabled facile generation of ectopic INcRNA systems.?*2¢ Modular design framework: experimental and compu-
tational studies of IncRNA sub-domains illuminate the potential, limitations, and open questions of using sub-domains as interchangeable parts.’®*” Disease
research and therapy outlook: engineered INcRNA systems have been used to explore the feasibility of gene dosage correction.?’ Studies of diverse chromatin-
modulating INcRNAs in different disease contexts set the stage for further development.®®'

Critical gaps remain in understanding how IncRNAs can be
harnessed as engineering components. Major challenges
include deciphering their modular domains,?*** achieving repro-
ducible activity across cellular and genomic contexts,?® and
designing IncRNAs with tunable activity.>'"?°° Synthetic
biology can address these gaps through iterative design, con-
struction, and testing.'”***! This review follows the develop-
ment of IncRNA-based chromatin engineering from foundational
studies to synthetic tools and a potential rational design frame-
work, with medical translation considered in concluding remarks
(Figure 1).

EMERGING DESIGN INSIGHTS FROM ECTOPIC IncRNA
STUDIES

The ability of lowly expressed IncRNAs to induce robust epige-
netic changes across large genomic domains presents an op-
portunity to engineer efficient genomic control systems,34242
Foundational studies, particularly those focused on the ectopic
expression of the X-inactivation center (X/C), have demonstrated
the feasibility of reprogramming chromatin states outside of the
native context of Xist IncRNA.**#4%® Critically, these experi-
ments, spanning from using large yeast artificial chromosomes
(YACs) to minimal cosmid inserts, have revealed constraints
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related to cellular context, IncRNA dosage, and genomic posi-
tion.®*44® Revelations from attempts to reconstitute XIC activity
have defined the conditions under which IncRNAs can or cannot
reprogram chromatin, providing transferable design principles
for synthetic IncRNA engineering.

The IncRNA XIST, the master regulator*” of X chromosome
inactivation in eutherian mammals,*® may be considered a
quintessential model for building large-scale epigenetic engi-
neering, given its unparalleled capacity to regulate the silencing
of approximately 96% of ~800 genes across the inactive X
chromosome (~170 Mb).>**%*9 Early efforts focused on trans-
ferring the full human XI/C or its murine homolog (Xic) into auto-
somes, testing whether the complex, multigenic region span-
ning approximately 350-480 kb could initiate silencing
elsewhere in the genome (Figure 2A). Autosomal insertion of
the Xic resulted in only partial silencing, weaker than that
observed on the X chromosome, suggesting that chromo-
somal/genomic context influences Xist expression and
silencing efficiency.®>3>44

Genomic context influences IncRNA functionality

A central question in understanding INcRNA portability is why
silencing by XIST appears to require its native chromosomal
environment. One explanatory model proposes that XIST



Cell Systems

Mouse

Human X chromosome Xq13.2

Embryonic stem cell

¢? CellPress

Figure 2. Transgene systems used to

A 156 Wb m)[im blestooyst  (ESC) transfection investigate X/IC-mediated epigenetic
[T S regulation outside of the X chromosome
"7 XIC 850 Kb Fea o',ég (A) lllustrations of the patural XIC at human
oo . = PLIES cytoband Xq13.2 and Xic at mouse cytoband
[ Transgenic codmmmm® o © XgD (enlarged) show the XIST gene and
_ K Sl ) ESC fine o2 surrounding genes. Regions that have been
YAC 19C12 ——— 480b » cocmmmn cloned into transgenes are marked with red bars.
YAC 19C12 ES'5 — 240Kb ¢ " codmmmmD ° '° (B) General structures of YAC, a BAC,* or a
Mouse X chromosome XTD - .“. Autssomes, cosmid vec'tor4 Etsjsed to deliver XIC fragments into
Y I EEil N BED the host cells.

eeeemome e (C-E) Various transgenes have been used to
YT ERSIIEEE D Temseeic Chimeric Chimeric mouse generate ectopic insgrts into autgsomes or the'Y
1 ESC line blastocyst chromosome. Their expression and cis-
Naptiz  Caxd Chict | (Toi o Jpx P /— \\ ‘ - regulatory activity have been monitored in
- 25 Xist Fix ‘ 1 — & undifferentiated and differentiated ESCs®**%°"%2
YAC Y116 | 350 kb (C), chimeric mice generated from transgenic
YAC yxistt | 350 kb Qe embryonic stem cells (ESCs) injected into
YAsAF?;fA(;gff )b ggg :E <L blastocysts®> (D), or transgenic mice*® (E).
BAC Tg-BAcg —_ 200 kb coammmm c ¢ Details and references for each transgene are

Cosmid BGEO — 38 kb i o 1 provided in Table 1.

h Autosomes
(unmapped)

E

Pronuclear
injection

Yeast artificial
chromosome (YAC) — >

XIC fragment

480-450 Kb insert (@ l}———f H TS -

Telomere | yg, Reporter pgk-Neo Telomere

Zygote
: Cosmid
~=-» 40-50 Kb insert

: Bacterial Artificial
~~"» Chromosome (BAC)
100-300 Kb insert

XIC fragment XIC fragment

-

Reporter Reporter

Cos
site

Cos

PPgk-
site

bsd

v Human XIC e Mouse Xic

spreading depends on genomic “way stations” or “entry
points,” which are long interspersed nuclear element-1
(LINE-1) -enriched native DNA sequences along the X chro-
mosome that act as docking hubs for XIST and its effector
proteins.'"%*** This idea was tested by deleting a LINE-1
cluster near Firre on the mouse X chromosome. This deletion
did not lead to detectable changes in local X-inactivation pat-
terns in vivo.”® Although this experiment did not demonstrate
the necessity of LINE-1 elements, the model may still be appli-
cable to other loci, such as ectopic XIST inserts that fail to
reorganize chromatin effectively. The spread of IncRNA/chro-
matin-mediated regulatory states could also be limited by
boundaries of topologically associating domains (TADs)
demarcated by the CCCTC-binding factor (CTCF) protein.®®

Relocation using YACs and bacterial artificial chromosomes
(BACs) carrying the Xic suggests that the absence of extensive
flanking sequences compromises distal silencing activity
(Table 1).2%8450:57:58 For instance, ectopic inserts on auto-
somes and the Y chromosome expressed Xist transcripts yet
failed to silence neighboring genes,®**° highlighting the need
for local chromatin architecture. A cosmid containing Xist plus
6 and 9 kb flanking sequences silenced a reporter gene but
failed to achieve broader repression (Figure 2B).*° It is impor-
tant to note that the effectiveness of Xist in silencing genes
on autosomes is not uniform, and its success depends on the
underlying structural organization of the chromosomes, i.e.,
genomic context.>® Similarly, imprinting IncRNAs like Airn and
Kcnglot1 appear to require their native chromosomal neigh-
borhoods.%%%%
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strong. At the same time, the inherent

constraint of cis-limited regulation can
be exploited as a design feature when the goal is to silence
genes within a defined genomic range while leaving distal loci
unaffected.

Copy number modulates but does not guarantee
IncRNA-mediated silencing

In addition to genomic position, the copy number of IncRNA-
expressing loci strongly influences cis-regulatory outcomes.
Early studies demonstrated a dosage requirement for ectopic
activity, Xic fragments of 460 and 210 kb could trigger
silencing when present as multi-copy arrays but failed as sin-
gle-copy inserts.** Therefore, insufficient expression dosage
might constrain functionality. However, in some cases, high
copy numbers were not sufficient to induce robust silencing.
In in vivo studies, the tg04 autosomal transgene carrying
four copies showed no Xist expression and DNA hypermethy-
lation in adult males, consistent with failure to establish an
inactive-X-like state.®*®® Other ectopic multi-copy inserts ex-
pressed Xist transcripts on autosomes and the Y chromo-
some, but with no evidence of local gene repression.®**
Together, these findings suggest that while increased IncRNA
dosage can enhance ectopic silencing, genomic context may
introduce another layer of regulation that overrides the dosage
effect.

Cellular context as a design constraint

A central question for IncRNA engineering is the extent to which
cellular context shapes regulatory outcomes. A leading idea
from XIST studies is that silencing is only effective within an
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Table 1. Specific applications of ectopic systems used to investigate XIC- and Xist-mediated epigenetic regulation outside of the X

chromosome
Transgene
Citation Cloned locus Size (Mb) system Integration site(s) and context Key outcome(s)
Lee et al.*? mouse Xic 0.45 YAC: Y116, autosomes; male increased Xist expression during
B-gal reporter mESCs (J1 cell line) differentiation, coating of autosome
in cis (FISH)
autosomes; chimeric male lacZ cis-silencing
mouse fibroblasts
Matsuura et al.>*  mouse Xic 0.35 YAC: yXist1 autosome and chr. Y; transgenic  Xist hypermethylation and
mice no expression on the autosome
Heard et al.*® mouse Xic 0.21,0.46 YAC: PA-2 autosomes; transgenic mice Xist RNA expression,
but no cis-silencing
Lee and mouse Xic 0.45 YAC: Y116 chr. 12 (pericentromere); chimeric  Xist coating of chr. 12 in cis,
Jaenisch® (20 copies) male mouse fibroblasts endogenous gene repression,
histone hypoacetylation
Herzing et al.*® mouse Xist 0.04 cosmid, p-gal autosome; male m Xist sufficient for p-gal silencing,
(+9 kb upstream, reporter ESCs (CCE cell line) no distal silencing
6 kb downstream)
Heard et al.** mouse Xic 0.46,0.32 YAC: PA-2, autosome; male mouse ESCs multi-copy arrays but not
PA-3 single-copy Xist transgenes
induced repression
Heard et al.*® human XIC 0.48 YAC: 19C12 chr. 2, 13, other unmapped XIST shows pre-differentiation
autosome sites; male coating and unstable silencing
mESCs
Migeon et al.*>*”  human XIC 0.24 YAC: 19C12 chr. 6; male mESCs XIST fails to induce silencing
truncated (differentiated)
(ES-5) chr.6; chimeric male mouse high XIST expression but no
fibroblasts cis-repression in somatic cells
Augui et al.*° mouse Xic 0.136, 0.20 BAC: BAC5, autosomes; male mESCs Xist region (BAC8) and distal
BAC8 Xpct (BAC5) physically pair
with endogenous Xic
Sun et al.®* mouse Xic 0.20 BAC: tgBAC8°° autosomes; transgenic mice ectopic, unpaired, paternal Xist
shows imprinting in female progeny
Loda et al.”® mouse Xic 0.30 BAC:CH26- X chromosome and autosome efficient X-linked silencing and
171B21 (chr 6); male mESCs chromatin changes; limited gene

silencing from autosomal insertions
due to lower LINE-1 density and
insulating chromatin domains

mESCs, mouse embryonic stem cells; YAC, yeast artificial chromosome; BAC, bacterial artificial chromosome; Tg, transgene; XCR, X chromosome

repeat; XIC, X-inactivation center; FISH, fluorescence in situ hybridization.

early developmental window when the global cellular state,
including transcriptional programs and the availability of RNA-
binding proteins (RBPs), is primed to engage in X inactiva-
tion.®™:%® Therefore, INcRNAs might display reduced or altered
activity depending on host cell type, differentiation stage, and
species-specific genomic and protein variations. To illustrate,
in mouse embryonic stem cells (MESCs), Xist expressed
ectopically from an autosomal transgene formed nuclear
clouds but silenced neighboring genes only after differentia-
tion, demonstrating a direct before/after cell-state dependency
(Figure 2C).**°"52 Likewise, an autosomal 450-kb Xic trans-
gene was inactive in undifferentiated mESCs but induced Xist
and cis repression upon differentiation.*?

Similar effects were observed in chimeras, a mouse Xic insert
induced Xist-mediated repression detectable in mouse fibro-
blasts,** whereas a low-copy human XIC inserted on chromo-
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some 6 was transcriptionally active in mESCs but failed to
induce cis-inactivation in somatic cells of chimeric mice
(Figures 2D and 2E),*° revealing design challenges across spe-
cies. Host-specific context dependency was further supported
when human XIST was engineered to coat the host chromo-
some (in mESCs) in cis and partially silenced nearby genes,*®
yet its accumulation occurred prematurely before differentia-
tion, and the replication kinetics of the coated autosomes devi-
ated from the late-replicating Xi pattern, contrasting native
mouse Xist.?>>® In another cross-species study, marsupial
Rsx exhibiting XIC-like properties displayed only partial cis-
based repression in mESCs.?*° Together, these findings sug-
gest that cellular context can dampen the efficacy of ectopic
IncRNA function, but silencing remains achievable under
certain conditions, albeit often with altered dynamics or incom-
plete fidelity.
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Figure 3. Synthetic constructs derived from
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Discrete IncRNA sequences serve as transferable units
for synthetic regulation
While ectopic studies using large XIC transgenes underscore the
importance of genomic context, dosage, and cellular environ-
ment for broad-scale silencing, subsequent work revealed that
IncRNAs also contain smaller domains with transferable regula-
tory activity. Indeed, dissection of IncRNA sub-regions revealed
features that can be repurposed for epigenetic engineering,
demonstrating that silencing and localization functions are en-
coded within discrete RNA sequences.?®*°°” However, previ-
ous studies using these fragments showed sufficient but limited
activity outside of their native context. For example, fragments of
human XIST containing the ~600 nt 5’ repeat A (Rep A) domain
alone, or in combination with domains F and E, were sufficient
to silence an adjacent GFP reporter when expressed from an
autosomal locus.?*?° This domain is additive, and just two tan-
dem consensus repeats initiated gene silencing, whereas nine
copies achieved the full silencing efficacy comparable to the
native 5' region.?* Furthermore, adding the mouse Xist Poly-
comb-interacting domain (PID) enhanced repression, showing
that modular silencing domains (SDs) can be successfully re-
combined across species.?®

Analogous results were found for imprinting INcRNAs. The
~890 nt 5’ SD of Kcnq1ot1 was validated as sufficient to recruit
DNA (cytosine-5) methyltransferase 1 (DNMT1) and repress
flanking reporter genes.®® The modular activities of these
IncRNAs allow for mixing and matching, and combining the
Kcnqg1ot1 SD with the 5’ Xist Rep A in an episomal system re-
sulted in improved repression.®® Similarly, a hybrid construct
combining Xist Rep A with full-length Airn at an ectopic locus
successfully induced Polycomb accumulation and gene
silencing across chromosome 6, an activity that Airn alone could
not achieve, suggesting these modules mediate distinct,
sequential steps.®” Silencing by the Airn domain has been shown
to correlate with RNA abundance, indicating that expression
level may modulate its repressive potency.” In summary, exper-
iments where sub-domains of IncRNAs, like XIST, Kcnq1ot1, and
Airn are isolated and combined (as illustrated in Figure 3), mark a
turning point where synthetic approaches treat IncRNA se-
quences as composable parts rather than indivisible units.

Overall, efforts to recreate stable IncRNA-mediated epigenetic
states outside their native context have revealed persistent chal-
lenges. Transgene position, insufficient LINE-1 density, and

insulating chromatin boundaries may have limited the spreading
of facultative heterochromatin from ectopic sites.’*°%"2 These
outcomes and their mechanistic underpinnings are summarized
in Box 1, which distills the general design principles, risks, and
failure modes that have emerged from ectopic XIST/Xic systems
that have been reported so far. An important consideration is
that these studies have not yet sampled the genome or cell
states in a comprehensive way. YAC, BAC, and cosmid experi-
ments remain low throughput and have been largely restricted
to fibroblasts and ESCs, leaving open the possibility that
broader, systematically designed synthetic approaches could
uncover permissive contexts and achieve more durable, pro-
grammable epigenetic states.

SYNTHETIC TOOLS TO EXPRESS, TRACK, AND DEPLOY
IncRNA FUNCTIONS

Previous research on XI/C function often employed YACs to
transfer large XIC sequences into mESC genomes via random
integration. Although informative, these YAC-based studies
were limited in resolution and flexibility.?*>****"* Streamlined
transgenes with customizable promoters and pre-determined
integration sites surpass YAC-based studies by enabling cus-
tomization of genetic regulatory elements, offering a more
controlled system to rigorously investigate IncRNA-mediated
chromatin organization (Figure 4A).

Programmable promoters for controlling IncRNA
expression magnitude and timing

Promoters and enhancers are non-coding DNA sequences that
recruit the transcriptional machinery and modulate the initiation,
rate, and magnitude of INcRNA production.”>™” In studies that
used large regions from the XIC, XIST transcript levels increased
during ESC differentiation, suggesting the importance of
dynamic regulation by adjacent promoter and enhancer ele-
ments.®* Several studies have demonstrated the efficacy of
different RNA polymerase Il (RNA Pol Il) promoters for IncRNA
expression, including constitutive and engineered inducible sys-
tems. Constitutive promoters continuously drive the expression
of a gene without external stimuli (Figure 4B). In Drosophila,
non-native constitutive promoters Hsp83 or Hsp70 were used
to express transgenic INcRNAs roX1 or roX2, respectively, which
partially restored dosage compensation observed as survival
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Box 1. Design principles, risks, and failure modes for synthetic IncRNA systems

Ectopic XIC/XIST studies reveal that custom IncRNA-mediated epigenetic regulation is constrained by genomic position, dosage,
and cellular environment. Genomic context: IncRNA activity is often influenced by flanking regulatory DNA and chromatin
architecture. Inserts lacking X-specific repetitive elements (e.g., LINE-1 way stations) or placed within restrictive chromatin might
fail to propagate silencing, yielding unstable, or partial repression.?>**>:°%:58 Dosage effects: Xist fragments induced repression
mostly as multi-copy arrays, whereas single-copy or low-copy inserts were inactive.** In some cases multiple copies of Xist at
autosomal and Y chromosomes (tg04 and tg15, respectively) failed to induce repression, suggesting that genomic context can
override high dosage.®* Cellular context: host-specific factors can influence activity. Human X/ST in mESCs caused premature
accumulation and incomplete silencing, while mouse Xist functioned more as expected in their native context.?>***> Sequence
modularity: functional domains (e.g., Rep A and PID) retain partial activity when transplanted outside their native locus, enabling
modular design, but the activity is cis-limited unless supported by broader genomic context.?*2%:57:46.68.73 Key failure modes:
improper chromosomal context, unbalanced expression dosage, and mismatched host species. Design insights: (1) optimize
IncRNA dosage (expression levels), (2) ensure appropriate developmental windows, and (3) integrate within receptive chromatin

to ensure robust IncRNA function.

(28% and 47%) of roX1/2-null males.”® A major limitation of
constitutive promoters is that IncRNA overexpression can cause
hyperactivity and gene dosage-associated lethality, hindering
analysis of many otherwise informative cell and mouse lines.®’

Engineered inducible promoters, typically activated by a tran-
scription factor that is allosterically controlled with a ligand such
as doxycycline (dox), have been used to precisely control the
timing and levels of IncRNA transcripts. Wutz et al. performed
experiments with full-length Xist under the control of a dox-
inducible promoter®® where dox was added to transgenic
ESCs and then washed out.*®>" They discovered that repression
required constant induction of Xist in early stem cell stages and
became stable and independent of dox at 72 h of differentiation.
Engreitz et al. used a similar inducible system®® inserted at the
endogenous Xist in male ES cells, along with RNA antisense pu-
rification (RAP) and RNA-FISH (fluorescence in situ hybridization)
to investigate the spatial dynamics of Xist spreading. From 1 to 6
h, Xist formed RNA clouds near the transcription site before ex-
panding and spreading to distant regions, guided by 3D chromo-
some architecture.'" Minks et al. used a dox-inducible pcDNA5/
FRT/TO system to express XIST constructs from an autosome in
human HT1080 cells. This inducible system’s cytomegalovirus
promoter (pCMV) enabled tight control over both the timing
and level of XIST transcript production. Upon addition of dox,
XIST RNA rapidly accumulated at the site of transcription as visu-
alized by RNA-FISH. They monitored the levels of expression of
the downstream reporter (EGFP), which decreased with the
increasing levels of XIST transcripts until 5 days after induction.**
Overall, these studies demonstrate that non-native constitutive
and inducible RNA Pol Il promoters are effective tools for inves-
tigating INcRNA activity (Table 2).2#36:78.79

Targeted chromosomal insertion strategies to control
IncRNA context and effects

The insertion of IncRNA-expressing transgenes into different
chromosomal sites allows scientists to systematically test the in-
fluence of local chromatin context on IncRNA activity (Table 2).
The targeted approach integrates the IncRNA transgene at a sin-
gle genomic site, guided by homology between a sequence in
the transfected plasmid and a pre-installed landing pad (FRT
or loxP)."":24:29.36:49.51,80.86 This method reduces the occurrence
of multiple insertions and avoids position-dependent variations
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in INcRNA expression and activity. Wutz et al. used such a tar-
geted strategy in the IncRNA installation system by first inserting
a loxP site and fluorescent reporter (Hprt-pBl-EGFP-lox-neo) at
the Hprt locus, then inserting various small CMV-Xist constructs
via Cre recombinase (Figure 4C).%° This streamlined strategy al-
lows for efficient and flexible generation of Xist transgenes with
controlled expression. FRT landing pads have been introduced
into human autosomes, chromosomes 3 and 8, and were used
to generate single-copy insertions of XIST sequence-expressing
transgenes in HT1080 cells.?*%4°

Artificial reporter genes to visualize IncRNA-mediated
regulation dynamics

Traditionally, cis-restricted effects have been determined by
changes in expression levels of endogenous chromosomal
genes near the transgene insertion site. Artificial reporter genes,
such as luciferase, EGFP, and p-galactosidase, have provided a
means to consistently quantify the impact of IncRNAs on gene
expression (Figure 4D). Minks et al. used an elegant system in
human HT1080 cells, where an EGFP reporter was inserted
~7.7 kb downstream of the XIST transgene integrated via FRT
sites.?* Upon dox-induced expression of full-length or truncated
XIST constructs, EGFP expression was efficiently silenced,
enabling quantitative comparisons between full-length and trun-
cated versions of XIST. In Drosophila, roX1 and roX2 (Hsp83
driven) were placed upstream of an insulated lacZ reporter
gene to assess dosage compensation.?® The roX-expressing
transgenes functioned as chromatin entry sites by recruiting
the male-specific lethal (MSL) complex and activated the lacZ re-
porter and nearby genes in a sex-specific, cis-acting manner.
Collectively, these reporter-based systems allow researchers
to consistently and sensitively measure the regulatory potential
of IncRNAs, providing a versatile platform for dissecting struc-
ture-function relationships and validating synthetic constructs.

RNA and protein tagging methods for tracking IncRNA
abundance and localization

Another customizable feature is the addition of nucleic acid and
protein tags onto nuclear IncRNAs and proteins to quantify their
expression levels and track their localization in living cells
(Figure 4E). Compared with fluorescence cytology that uses nu-
cleic acid probes and antibodies in fixed cells, tagging readily
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Figure 4. Customizable elements of streamlined IncRNA transgenic systems

(A) General structure of IncRNA-expressing constructs containing a promoter, INcRNA or region of interest (ROI) within the full-length sequence, an RNA
sequence tag, and a reporter gene, with targeted insertion elements at either end.

(B) Promoter systems for IncRNA expression. Top: constitutive promoters drive continuous expression of the IncRNA. Bottom: a dox-inducible system (Tet-On)
uses the CMV-TetO promoter activated by the reverse tetracycline transactivator (tTA) in the presence of dox, which binds to the Tet operator sites (binding
region), allowing temporal control of IncRNA expression.

(C) Targeted integration of a transgene in cells. A vector carrying FRT or loxP sites is randomly integrated into the host genome to create a genomic landing pad.
These recombination sites enable targeted insertion of an expression vector containing an INcRNA transgene flanked by matching FRT and /oxP sites. Site-
specific integration is facilitated by Flp or Cre recombinase.

(D) Reporter gene systems to monitor INcRNA expression or activity. Fluorescent (eGFP), luminescent (GLuc), or enzymatic (3-galactosidase) reporters enable
detection through microscopy, luminometry, or colorimetric assays, respectively.

(E) RNA and protein tagging systems: RNA sequential pulse localization imaging over time (RNA-SPLIT), based on Bgl stem loops,® and an MS2 stem-loop system

that was used in an IncRNA and protein colocalization study.®

enables time-resolved studies of nucleoprotein complex
behavior. To label IncRNAs, stem-loop arrays such as Bgl and
MS2 have been inserted into the endogenous IncRNA gene or
into a transgenic INcRNA locus. A stem-loop-specific protein
fusedto afluorescent tag is allowed to bind, enabling visualization
of the amount and location of IncRNA. For instance, a system
called RNA sequential pulse localization imaging over time
(RNA-SPLIT) and super-resolution 3D structured illumination mi-
croscopy (3D-SIM) has been used to visualize Xist RNA dynamics
in MESCs.? An 18 Bgl stem-loop array was inserted into exon 7
of an Xist transgene, and expressed IncRNA was detected with a
stem-loop-binding BgIG protein fused to a HaloTag-fluorophore
conjugate.?” Pulsed addition of different colored fluorophores

was used to distinguish early versus late transcribed RNA. The
data revealed that upon dox induction, Xist RNA initially spreads
but later becomes confined into well-defined “Xist territories,”
consistent with a two-phase model of spreading and turnover.®
In a similar strategy, MS2 RNA hairpin arrays were inserted into
the endogenous Xist gene, and an MS2 coat protein (MCP)-
GFP fusion protein was used for high-resolution tracking of Xist
foci.® RBPs or histone H2B were tagged with Halo and conjugated
with a far-red fluorophore. Dual-tagging of Xist and H2B enabled
quantitative spatial analyses revealing ~50 discrete foci, called
supramolecular complexes (SMACs), which contained two Xist
transcripts each and were significantly more compact near Xist
RNA than in the surrounding area. These results support a
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(B) Two different configurations were used to test the engineered sgRNAs with
IncRNA extensions. TOP1 carries the IncRNA sequence at the 3’ of the sgRNA
scaffold, while the INT configuration carries it internally.

(C) Activation-associated eRNAs FALEC, TRERNA1, and ncRNAa3, and the
IncRNA HOTTIP, and repression-associated IncRNAs pRNA and Xist Rep A
were targeted to a chromosomally inserted reporter gene (GLuc) to compare
cis-regulatory effects.

mechanistic model where local RNA concentration drives effi-
cient recruitment and confinement of epigenetic silencers.

CRISP-Disp platforms to deploy IncRNAs for site-
directed trans-regulation

The transgenic methods discussed in the previous sections
recapitulate the cis-regulatory activity of IncRNAs in the vicinity
of the IncRNA transcription site. CRISPR-display (CRISP-Disp)
provides a means to decouple IncRNA function from its tran-
scription site by tethering INncRNAs to pre-defined genomic loci
for trans-regulation. Experimental evidence suggests that teth-
ering of INcRNA molecules at some genomic sites is mediated
by the proteins Yin Yang 1 (YY1), CTCF and heterogeneous nu-
clear ribonucleoproteins (hnRNPs) hnRNPU and hnRNPK."#8 |n
CRISP-Disp, IncRNA anchoring is mediated by a complex con-
taining a dead Cas9 protein (dCas9) and a modified single guide
RNA (sgRNA)."” The sgRNA consists of a dCas9-binding stem-
loop scaffold, a 20-nt DNA targeting region, and a 3’ extension
that includes the IncRNA sequence (Figure 5A). Two different to-
pologies were tested for the modified sgRNAs, where the
IncRNA sequence of interest was either inserted internally within
the engineered loop of the sgRNA (INT) or appended to its 3’ end
(TOP1) (Figure 5B). These hybrids, co-delivered with dCas9,
were targeted to a promoter-proximal region of a chromosomally
integrated Gaussia luciferase reporter (GLuc) in HEK293FT cells.
The Xist Rep A (1,461 nt), a conserved silencing module, when
fused to sgRNAs and directed to the luciferase promoter,
induced partial repression (~30%-50%), demonstrating RepA’s
intrinsic silencing capacity (Figure 5C).""

The repressive nucleolar remodeling complex (NoRC)-binding
pRNA stem-loop (pRNA) also induced transcriptional silencing
when targeted using CRISP-Disp. Putative transcription-acti-
vating IncRNAs have also been tested in this system. HOTTIP
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INcRNA (~4,799 nucleotides) significantly activated transcrip-
tion,®® achieving ~2- to 3-fold upregulation. Enhancer RNAs (eR-
NAs), including ncRNA-a3 (921 nt) and TRERNAT (~596 nt),*%°"
also promoted significant activation of GLuc, while FALEC (~566
nt) showed no significant effect, suggesting position-dependent
activity.'”° Potentially, co-expression of several site-specific
sgRNA-IncRNA hybrids could support multiplexing, enabling
simultaneous targeting of distinct genomic sites for complex
regulatory studies.®’

Considerations when using synthetic IncRNA

expression tools

One key design insight from the work summarized here is that tun-
ing transcript dosage has major consequences for IncRNA func-
tion and provides a useful handle for probing regulatory dynamics.
Second, the intrinsic properties of the affected promoter can influ-
ence sensitivity to IncRNA-mediated regulation: in an episomal
transgene system, the 5’ repeat region of mouse Xist induced
cis-silencing of luciferase reporters under the control of promoters
derived from X-linked genes Pgk1, Hprt, and G6pd, but not
autosomal promoters from Aprt, Ins, or viral promoter SV40,”°
consistent with silencing-resistant escape genes.?>** Addition-
ally, extrinsic factors such as cell state, tissue type, and age may
influence target gene sensitivity.>>°® Third, targeted landing
pads and tethering strategies allow “plug-in” style testing of
various INcRNA sequences at a single locus. Landing pads could
also be installed at different loci to test IncRNAs in different
genomic contexts. Finally, dynamic reporters and molecular tags
allow spatiotemporal tracking of regulation, while CRISP-Disp
demonstrates that IncRNA modules can be decoupled from their
transcription site and redeployed in trans. Together, these tools
lay the groundwork for systematic testing of IncRNA modularity
and the rational construction of synthetic regulators.

TOWARD A MODULAR DESIGN FRAMEWORK:
INTERCHANGEABLE PARTS DERIVED FROM
IncRNA-PROTEIN COMPLEXES

Approaching synthetic IncRNAs as substrates for rational design
requires the identification of modular parts that can be mixed,
matched, and redeployed in new contexts.?” In the following sec-
tions, we describe INcRNA composition as a structural hierarchy®®
that reflects how an engineer might build a synthetic construct
from first principles. At the most fundamental level, sequence
composition encodes baseline functional potential. Layered onto
this are functional motifs that dictate subcellular positioning,
such as nuclear retention sequences, and anchoring elements
that tether IncRNAs to chromatin or RNA targets. Higher-order
RNA structures provide scaffolding frameworks that stabilize inter-
actions, particularly with proteins. Finally, RNA-protein interfaces
function as recruitable effectors that execute regulatory outcomes.
This progression and/or complexity, which includes primary
sequence information through to multi-molecular interactions, il-
lustrates how natural INcRNA features might be repurposed as
interchangeable parts in programmable regulators of chromatin.

K-mer composition: A programmable sequence code?
One challenge with forward design of synthetic INcRNA at the
nucleotide level is that IncRNA function is evolutionarily maintained



Cell Systems

¢? CellPress

Table 2. Transgenic systems for IncRNA functional dissection

Transgene system?® IncRNA promoter®  IncRNA integration®  Reporter or tag Host cells IncRNA expressed
Hprt-pBI-EGFP-lox-neo  inducible: CMV, targeted: Cre/loxP EGFP fluorescence mESCs full-length and
(custom)6:°1:80 rtTA, dox(+) at Hprt chr. X truncated mXist' "¢
pcDNAS/FRT/TO inducible: CMV, targeted: FIp/FRT EGFP fluorescence human HT1080 hXIST (full length
(ThermoFisher) MTA, dox(+) chr. 3 and Rep A)***°
targeted: FIp/FRT none human HT1080 hybrid mXist (PID)
chr. 8 hXIST (AFE)*°
pTRE-tight vector inducible: core targeted: Cre/loxP halo-tag mESCs mXist with Bgl
(Takara Bio Europe/ CMV (TRE-tight),??  chr. 15 and X fluorescence stem loops®
Clontech)”**" MTA, dox(+) targeted: Cre/loxP  none mESCs mXist exons 1-8°°
chr. 3, 12 and 17
ptetOP-Xist-PA inducible: rtTA3, targeted: Cre/loxP halo-tag mESCs mXist (AA, AB/C
(custom)®’ dox(+) chr. 11 fluorescence mutants)®
pCaSpeR-h83T3, constitutive: random; P-element  none Drosophila roX1 or rox27%:8
pCaSpeR-hs’483 Hsp83 and autosome
Hsp70
pCaSpeR, constitutive: random: P-element  lacZ p-galactosidase Drosophila roX1 or rox2%48°
pCaspeR-hs®48° Hsp83 chr. 3 assay
pGL3-Pgk1 constitutive: non-integrated: luciferase mouse BALB/3T3 cell line  mXist conserved
(custom) Pgk1 episomal luminescence 5' repeats’®

2Transgene systems are plasmids into which IncRNA-encoding DNAs have been introduced. Custom-built (custom) plasmids are listed as named in

the cited report. Vendors are shown for commercially available plasmids.

PInducible promoters are listed as the promoter symbol followed by the artificial regulator protein (e.g., tTA) and its chemical modulator (e.g., dox).
CMV, cytomegalovirus promoter; rtTA, bacterial TetR (reverse tetracycline-controlled transactivator), VP16 fusion protein; dox(+), transcription acti-
vated by dox; tet, tetracycline; mXist, mouse Xist; hXIST, human XIST; halo-tag, synthetic protein fusion tag that binds to chemical ligands (detectable).
°IncRNA integration sites listing either random site or targeted integration, Cre/loxP or Flp/FRT, indicate the integration system used in the study and
are followed by the chromosome number. Random insertion was done via P-elements (transposon-mediated random insertion), and non-integrated

expression was done via episomal/extrachromosomal plasmid.

without obvious linear sequence conservation.® Instead, conser-
vation has been observed as frequencies of k-mers, nucleotide
substrings of length k that can appear in any order and may overlap
one another. '’ K-mer analysis provides a global statistical signa-
ture, where enrichments of k-mers correlate with repressive or acti-
vating activity. For instance, the sequence evaluation from K-mer
representation (SEEKR) method showed that IncRNAs with related
functions, such as cis-repressors or cis-activators, share distinct
k-mer frequency profiles.’®" This principle was validated using
synthetic INcRNAs that lacked linear homology to the repressive
murine Xist gene. The synthetic INcRNAs’ ability to silence a re-
porter gene correlated directly with their k-mer similarity to Xist, es-
tablishing that k-mer composition itself is a key functional determi-
nant independent of primary sequence alignment.’®" Many RBPs,
which we discuss under “RNA-protein interactions as recruitable
effectors,” bind to consensus k-mers, as well as non-consensus
sequences. K-mers could be applied to synthetic IncRNA design
by guiding sequence composition, i.e., for desired protein recruit-
ment, but they cannot yet substitute for mechanistic motifs (which
we describe in the following sections). Therefore, k-mers are more
suited as predictive design constraints rather than stand-alone,
composable building blocks.

Nuclear retention sequences as localization tags

Nuclear accumulation of many IncRNAs is a regulated outcome of
specific cis-acting sequence elements that function as nuclear
retention signals.'®” These sequences can be thought of as local-
ization tags, modular motifs that, when appended or deleted,

directly determine whether an RNA remains nuclear or diffuses
into the cytoplasm. Classic examples include the MALAT7 IncRNA
which contains two defined regions (E and M), whose loss led to
cytoplasmic redistribution and dispersal from nuclear speckles.’®
Likewise, tandem repeat domains (RRDs) within FIRRE can redi-
rect anormally cytoplasmic mRNA into the nucleus, and this reten-
tion is lost upon depletion of the RBP hnRNPU.'** More compact
motifs can function in a similar manner: AGCCC pentamers within
BORG serve as discrete nuclear retention signals, with even a sin-
gle copy sufficient to anchor a reporter RNA in the nucleus.'®® In
another case, SIRLOIN elements, pyrimidine-rich sequences often
derived from short interspersed nuclear element (SINE) repeats,
have been shown in JPX and PVTT to confer nuclear localization
through hnRNPK recruitment, with either motif mutation or RBP
knockdown resulting in cytoplasmic relocalization.'**'%” Trans-
posable element-derived sequences within IncRNAs, such as
mammalian-wide interspersed repeat (MIR) and L2b, also function
as nuclear retention domains. Their mutation within specific
IncRNAs results in a significant cytoplasmic shift.'%® Together,
these studies demonstrate that nuclear retention can be engi-
neered through short motifs, repeat elements, or tethering do-
mains, often acting via RBPs such as hnRNPU and hnRNPK.
From a design perspective, nuclear-targeting motifs operate
like address labels for synthetic IncRNAs, offering modular
handles to control nuclear residency. However, the modularity
of nuclear retention sequences should be viewed with caution:
their activity can depend on RNA context, unexpected sec-
ondary structure formation, and cell-specific differences in the
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availability of interacting RBPs. As a result, localization tags that
appear portable in reporter assays may not always function pre-
dictably in diverse cellular environments.

Triplexes, R-loops, and RNA-RNA interactions as
anchoring elements
Anchoring IncRNAs to specific genomic sites can be achieved
through sequence-encoded interactions with DNA or RNA that
form RNA-DNA triplexes, R-loops, and RNA-RNA interac-
tions. %1% RNA-DNA triplexes are structures where an RNA
strand associates with duplex DNA via Hoogsteen base-pairing.
These structures often arise at purine-pyrimidine-rich tracts and
can be predicted computationally and validated experimentally
using RNase H insensitivity, mutational controls, and biophysical
methods such as circular dichroism and NMR."""""2 Triplex
formation has been described for the INcRNA Fendrr, which reg-
ulates cardiac development potentially through polycomb
repressive complex (PRC2) recruitment.’’®'"* Other mecha-
nisms include recruiting p300, histone methyltransferase, and
other chromatin regulators to target genes (Sarrah,''®
GAU1,""® MEG3, and HOTAIR"""""®) and recruiting the HUSH
complex under hypoxia (Hiflalpha-AS''®). Khps1 contains a
triplex-forming sequence (TFS) that localizes to the sphingosine
kinase 1 (SPHK1) enhancer, and this TFS is portable to other
RNAs."2°

R-loops, by contrast, represent a distinct three-stranded struc-
ture in which an RNA strand invades duplex DNA and displaces
one DNA strand.'?"'?> These hybrids are formed primarily co-tran-
scriptionally, where nascent RNAs reanneal to the template DNAin
cis.'?® They are characterized by RNase H sensitivity and can be
detected by S9.6 antibody binding, which specifically recognizes
DNA:RNA hybrids rather than Hoogsteen triplexes.'"'%? The vi-
mentin antisense RNA1 (VIM-AS1) IncRNA exempilifies this mech-
anism, forming an R-loop at the VIM promoter. Disruption of this
structure diminishes its genomic association.'** It is important to
note that evidence for trans-acting R-loops is lacking, limiting the
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potential use of R-loops in synthetic systems to cis-regulatory con-
figurations. RNA-RNA interactions involve inter- and intra-molecu-
lar pairing that can reshape IncRNA structure to hinder or promote
protein binding to the IncRNA.'?>'2® HOTAIR forms double-
stranded RNA (dsRNA) with a target nascent RNA. Evidence sug-
gests that HOTAIR interacts with PRC2 proteins, which bridges
PRC2 with the chromatin near the nascent RNA to induce
repression.'?®

Systematic engineering of such interactions is still
nascent, representing an underexplored route to programmable
anchoring. From a design standpoint, triplexes, R-loops, and
RNA-RNA interactions have been defined at the sequence level
via genetic perturbation studies, suggesting potential utility as
modules for targeting INcRNAs to chromatin or transcripts. Their
portability, however, may be hampered by sequence context-
dependent function, unknown interactions with DNA- and
RBPs, and inconsistent structural stability in diverse cellular con-
texts. These are important limitations to consider when deploy-
ing these elements in synthetic constructs.

Stem-loop structures as modular scaffolds
RNA structure is hierarchical in nature: primary sequences that
comprise k-mers, for example, fold into secondary structured
elements, which in turn govern tertiary and quaternary structure
and interactions.’?” Among IncRNAs, several structured motifs
have been identified, including inverted repeat Alu element
stem loops, cloverleaf structures, right-hand turn motifs, 3’ end
triple helices, G quadruplexes, and extended duplexes (Figure
6A)."28713° These motifs facilitate interactions with other nucleic
acids, ligands, and proteins to carry out regulatory roles in the
cell (Figure 6B). Because many IncRNA-protein interactions
depend on the formation of specific secondary or tertiary RNA
structures, structural motifs often serve as scaffolds for effector
recruitment.

Among these, RNA G quadruplexes (rG4s) form a distinct
class of higher-order motifs stabilized by guanine tetrads and
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monovalent cations such as K*. Recent studies have identified
rG4 elements within several nuclear IncRNAs, including XIST,
MALAT1, and NEAT1, that mediate specific protein interac-
tions. '*¢*8 |n particular, PRC2 was shown to recognize folded
rG4 structures within XIST with higher affinity than non-G4 re-
gions, '*®"39 underscoring how discrete RNA folds can influence
recruitment of chromatin-modifying complexes.

Given that RNA function is fundamentally driven by structure,
these folded motifs represent potential modules that could
be rationally concatenated into arrays to tune the function of syn-
thetic IncRNAs. Little work has been reported on the systematic
construction of synthetic IncRNAs using structure as the primary
design principle.?*29:36:129.140.141 This  structure-centric app-
roach holds considerable promise. If we can definitively map
which structured domains confer specific functions, we could
in principle concatenate them together to engineer RNAs with
predictable, tunable activities.

Several key limitations must be addressed when considering
the concatenation of RNA structural motifs. Constructs designed
and screened in vitro may fold and behave differently in a cellular
environment: RBPs, ribonucleases, and even ionic conditions
may modulate the stability of individual structured domains
within a larger synthetic construct, leading to context-dependent
function that differs from the behavior of isolated motifs. There-
fore, we must ensure that the intended secondary and tertiary
structures actually fold as expected via, for instance, in-cell 2D
structural probing. Additionally, the spatial arrangement and
linker regions between motifs may significantly influence both
domain folding and inter-domain interactions, potentially
creating unexpected regulatory crosstalk or steric hindrance.
In-cell structural validation is critical for addressing these limi-
tations.129,142,143

RNA-protein interactions as recruitable effectors
LncRNAs exert much of their regulatory control through inter-
faces with chromatin proteins that can either recruit effectors
to genomic loci or block their activity to prevent repression. In
transcriptionally plastic domains, the best-studied mechanism
is Polycomb’s involvement with XIST, HOTAIR, and possibly
taurine up-regulated gene 1 (TUG1)’s function, which involves
PRC2/enhancer of zeste homolog 2 (EZH2) mediated
H3K27me3 accumulation and gene silencing.'**'“¢ Other
IncRNAs, including MEG3 and Chaer, have been linked to bind-
ing-mediated degradation of EZH2 and loss of PRC from chro-
matin to allow gene activation.®®*%"*" However, Polycomb
engagement remains controversial as several studies argue
that PRC2 exhibits largely promiscuous or low-specificity RNA
binding in vitro, that IncRNA-mediated silencing can be de-
coupled from PRC, and that many in-cell claims of direct
PRC2-RNA binding are artifactual.*~'*"

Constitutive silencing-associated chromatin protein SUV39H1
(which generates H3K9me3) is recruited to chromatin by a
200-nucleotide domain within IncRNAs hOCT4P3 (human) and
mOct4P4 (mouse).">? In transcriptionally active chromatin, the
IncRNA HOTTIP promotes transcription by recruiting mixed-line-
age leukemia protein (MLL)/WD repeat-containing protein 5
(WDR5) complexes.'®®'%* Others, such as MALAT? and
NEATT1, use repeat elements or stem-loop structures to scaffold
RBPs like hnRNPs, non-POU domain-containing octamer-bind-

¢? CellPress

ing protein (NONO), and serine/arginine-rich splicing factor
(SRSF) proteins to organize nuclear bodies and splicing assem-
blies.*"'*>"'>" These studies highlight the potential to harness
RNA-protein interfaces as modular switches to direct distinct
transcriptional outcomes, including repression, activation, and
nuclear organization.

Interactomes of individual IncRNAs dictate functional speci-
ficity using interactions that confer distinct activities.’>® These
include XIST interactions with split ends (SPEN) and RNA-bind-
ing motif protein (RBM15) via its RepA domain to modulate tran-
scriptional silencing, NEAT1’s interactions with NONO, para-
speckle component 1 (PSPC1), and splicing factor proline- and
glutamine-rich (SFPQ) to support paraspeckle nucleation, and
HOTAIR’s interactions that mediate its regulation of gene clus-
ters in trans, via lysine-specific histone demethylase 1A (LSD1)
(CoREST) to couple H3K4 demethylation with PRC2-mediated
H3K27 trimethylation. Individual IncRNAs frequently converge
on the same proteins (e.g., hnRNPK and hnRNPU) and may pro-
duce similar or divergent outcomes depending on sequence mo-
tifs, RNA structures, or protein partners engaged.”® %% For
example, hnRNPU binds Firre to guide its trans-chromosomal in-
teractions,'®" whereas hnRNPK binds lincRNA-p21 to facilitate
p53-dependent repression'®® and also binds the B-repeat of
Xist to help establish H3K27me3.'® Therefore, while some pro-
tein-IncRNA interactions are distinct and may support insulated
recruitment, others involve shared proteins whose activities may
create crosstalk, underscoring the need for strategies that can
selectively insulate or rewire these interfaces.

Data from efforts to characterize and predict protein recruit-
ment provide useful information for rational design. Technolo-
gies such as RNA ImmunoPrecipitation followed by deep
sequencing (RIP-seq), CrossLinking and ImmunoPrecipitation
followed by deep sequencing (CLIP-seq), Split and Pool Identifi-
cation of RBP targets (SPIDR), Oligonucleotide-mediated prox-
imity-interactome MAPping (O-MAP), and Comprehensive Iden-
tification of RNA-binding Proteins by Mass Spectrometry
(ChIRP-MS) have mapped thousands of IncRNA-protein interac-
tions, providing empirical data for predictive modeling.'%-163-167
Algorithms like Catalonia fast predictions of RNA And Protein In-
teractions and Domains (catRAPID) predict binding based on
sequence features and physicochemical properties, validated
with interactions between XIST, HOTAIR, and PRC2,"%® with sin-
gle-cell transcriptome-based RAPID (scRAPID) integrating sin-
gle-cell regulatory networks to refine predictions.'®® Machine
learning models such as Higher-Order Nucleotide Encoding
Convolutional Neural Network-Based Method (HOCNNLB) and
Bidirectional Encoder Representations from Transformers for
RNA-Binding Proteins (BERT-RBP), including those that use
k-mer encoding or transformer attention, have emerged as a
powerful approach to predict protein binding sites with high ac-
curacy.'’®"'"® Snail family transcriptional repressor 1 (SNAIL)-
binding motifs that have been identified within HOTAIR were
experimentally validated as sufficient to redirect protein occu-
pancy and modulate histone modification.?®'"%'7* Finally,
high-throughput approaches have expanded the resolution
and scale at which RNA-protein binding modules can be identi-
fied.’®” These tools frame IncRNA-protein binding as a design
space that can be computationally explored and experimentally
tested.166,168,169
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(A) A hierarchical assembly view of IncRNAs, with k-mer sequence codes underlying modular motifs for localization, anchoring, structural scaffolding, and

protein-recruiting effector functions.

(B) Schematic of how synthetic biology and quantitative analysis can be used to refine understanding of the biological function of chromatin-modulating IncRNAs.
(C) An example of emergent dynamical behaviors illustrated as a generic IncRNA circuit with feedback loops. This topology represents the regulatory relationships
between the IncRNAs Xist and Tsix and the protein Rnf12. Potentially, such a network could be built with a pair of mutually repressive INcRNAs (RNA1 and RNA2)
and a protein activator of RNA2 (P2). Inducible promoters could enable the control of component levels.

Synthetic and systems approaches to testing regulators
built from modular parts

Synthetic and systems-level strategies represent complemen-
tary paths for advancing IncRNA-mediated epigenetic engineer-
ing. At present, the synthetic constructs and design frameworks
discussed here are conceptual and largely theoretical, repre-
senting forward-looking ideas that could guide future experi-
mental realization. Synthetic biology defines and assembles
modular parts into custom regulators (Figures 7A and 7B), while
systems biology investigates how these parts interact dynami-
cally within gene networks to generate emergent behaviors
(Figure 7C). On the synthetic side, systematic testing of IncRNA
functional modules moves beyond the study of native transcripts
to the rational engineering of artificial effectors for programmable
epigenetic control. For instance, a repressor could be con-
structed by first encoding an SD based on the k-mer frequency
profile of a known repressive IncRNA like Xist,'°' or by using tan-
dem repeats of key motifs to achieve additive and potent
silencing effects.?* This functional domain could then be linked
to a genomic targeting module, such as a guanine and adenine
(GA)-rich, TFS designed to bind a specific promoter,’'”'"®
ensuring the repressive activity is directed to the intended locus.
To guarantee the synthetic IncRNA operates in the correct sub-
cellular compartment, a potent nuclear retention sequence, such
as the RRDs from FIRRE or the AGCCC motifs from BORG, could
be appended to the transcript, ensuring its accumulation in the
nucleus where it can engage with chromatin, 04105175176 Re_
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porter gene regulation assays could be designed to systemati-
cally test regulatory tunability, for instance, to determine the ad-
ditive effect of motif arrays, the impact of different RNA folds, or
the effects of weak or strong RBP affinity (Figure 7B).

At the systems level, functions of synthetic or natural IncRNAs
can be treated as modular components within larger regulatory
circuits, where their combinatorial activities drive emergent dy-
namics. Mathematical models have provided insights into such
behaviors of endogenous INcRNA networks. For example, Xist-
mediated repression of the antisense INcCRNA Tsix may generate
positive feedback (double-negative in this case), whereas Xist-
mediated repression of its activator Rnf12 may provide the link
for negative feedback (Figure 7C)."""'"® Mutzel et al. showed
that the combination of a negative feedback loop and a positive
feedback loop, both involving Xist, can produce a bistable switch
ensuring mono-allelic upregulation of Xist.'”® While their study
validated this architecture in the context of X chromosome inac-
tivation, an open question is whether such feedback circuits can
be reconstituted as independent, portable modules that toggle
large-scale chromatin repression. A second key question is
whether complex IncRNA circuits can be decomposed into
smaller functional modules, each contributing distinct dynamical
features such as bistability or oscillation.'®° These two questions
are well-suited for synthetic platforms where modular compo-
nents are used to build regulator IncRNAs, and synthetic
promoters and protein regulators are used as control points to
manipulate the system (Figure 7C). Ultimately, a combined
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synthetic and systems approach is needed to successfully utilize
IncRNA-based regulation systems for practical applications.

APPLICATION OUTLOOK: DISEASE RESEARCH AND
THERAPY

The ability to engineer INcRNA structure and expression presents
a new avenue for transformative biomedical applications. The
most compelling strategy is using ectopic XIST expression to
epigenetically correct chromosomal aneuploidies. By integrating
the XIST gene into chromosome 21, researchers successfully
silenced the extra chromosome copy in trisomy 21 (T21) induced
pluripotent stem cells (iPSCs), rescuing deficits and accelerating
neural rosette formation.?’?%'81-18% For this approach to be
viable, efficient delivery (e.g., via exosomes or nanoparticles) is
paramount.'®* "85 However, efficacy is generally highest in plurip-
otent cells, and induction in differentiated somatic cells often
yields only partial silencing, highlighting a key translational chal-
lenge.'®® Engineered variants with enhanced activity, or multi-
site tethering approaches such as CRISP-Disp, may help address
this limitation, though in practice the appropriate therapeutic win-
dow for T21 is likely restricted to early development. Furthermore,
X-linked disorders driven by gene dysregulation, such as Rett syn-
drome, highlight the therapeutic potential of reprogramming
X-chromatin to, for instance, restore MECP2 expression. 619"

Studies that have manipulated stress-responsive IncRNAs,
such as MEG3, Chaer, MALAT1, PAPAS, DRAIR, HOTAIR,
H19, and NEATT1, suggest that these molecules can modulate
chromatin complexes at target genes.®®**1927198 \While these
IncRNAs have not yet been integrated into the synthetic systems
discussed in this review, the research findings point to a potential
therapeutic avenue for altering chromatin organization through
cis- or trans-regulation in diseases such as cancer and neurode-
generation, '47:186:193

CONCLUSIONS

LncRNAs have emerged as potent epigenetic regulators and
programmable tools for synthetic biology. Foundational studies
on XIST, Airn, and KCNQ10OT1 demonstrated their capacity to
induce widespread chromatin silencing through long-range cis-
regulatory effects.*”"°°"%? Early efforts to study these functions
relied on megabase-scale BACs and YACs encoding full-length
XIC, which were technically cumbersome and context-depen-
dent.?®>**58 Advances in synthetic biology have since enabled
rational dissection of IncRNAs into smaller functional modules,
including repeat domains, triplex-forming motifs, and even min-
imal k-mers predictive of silencing activity.?*'°"""" These in-
sights have shifted the field toward constructing compact sys-
tems capable of replicating essential IncRNA functions,
allowing for ectopic expression and modular recombination
across contexts. Platforms incorporating inducible promoters,
targeted genomic integration (e.g., Cre/loxP and FIp/FRT), and
live-cell tagging now allow precise control and visualization of
IncRNA behavior in time and space.’***%8%56 The CRISP-Disp
system further extends this framework by enabling programma-
ble tethering of IncRNA-derived domains to specific loci,
revealing modular silencing or activating capacities of IncRNA
sub-regions.’?%1°1 | ooking ahead, the convergence of

¢? CellPress

modular IncRNA design with genome-targeting offers a path to-
ward programmable RNA-based regulators that not only deepen
mechanistic insight into chromatin biology but also lay the
groundwork for innovative therapeutic strategies.
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