

1 **Ghost in the Machine: Evidence for Non-Random Errors During Direct RNA**

2 **Nanopore Sequencing Due to Post-Translocated RNA Folding**

3

4 Jason M Needham¹, Philip Z Johnson^{1,2}, and Anne E Simon^{1*}

5 jneedham@umd.edu

6 pjohnson@silvec.com

7 simona@umd.edu

8

9 ¹: *University of Maryland at College Park, College Park, United States*

10 ²: *Silvec, Inc, Gaithersburg, Maryland, USA*

11 *: Corresponding author

12

13

14

15

16

17

18

19

20

21

22

23

24 ABSTRACT

25 Direct RNA nanopore sequencing allows for the identification of full-length RNAs with a
26 ~10% error rate consisting of mismatches and small deletions. These errors are thought
27 to be randomly distributed and structure-independent since RNA/cDNA duplexes are
28 generated to prevent RNA structure formation prior to sequencing. When analyzing
29 citrus yellow vein associated virus (CY1) reads during infection of *Nicotiana*
30 *benthamiana*, viral (+/-)foldback RNAs (i.e., viral plus [+] -strands joined to [-] -strands)
31 showed significantly higher error rates (mismatches and deletions) in the 5' (+)RNA
32 portion with errors that were relatively evenly distributed, while errors in the attached
33 (-)RNA portion were less frequent and unevenly distributed. Non-foldback CY1 (+)RNAs
34 from infected plants also showed an uneven distribution of errors, which correlated with
35 errors in *in vitro* transcribed CY1 (+)RNA reads in both position and frequency. Hotspot
36 errors in non-foldback CY1 (+)RNA and (-)RNA reads only weakly correlated, and
37 hotspots were frequently located 5' of known structural elements. Since nanopore
38 sequencing is also used to identify RNA modifications, which depend on base-specific
39 sequencing errors, algorithms for RNA modification detection were also examined for
40 bias. We found that multiple programs predicted RNA modifications in *in vitro*
41 transcribed CY1 RNA at the same positions and with similar confidence levels as with *in*
42 *planta* CY1 RNA. These data suggest that direct RNA sequencing contains inherent
43 error biases that may be associated with post-translocation RNA folding and low
44 sequence complexity, and therefore extrapolations based on sequencing error require
45 special consideration.

46

47 Keywords (5-10): RNA folding, Direct RNA Sequencing, Oxford Nanopore, Umbra-like
48 virus, Foldbacks, RNA modifications

49

50 INTRODUCTION

51 During nanopore sequencing, either DNA or RNA is directly sequenced by threading
52 individual nucleic acids through a protein pore and measuring the change in voltage as
53 each base translocates¹. For direct RNA sequencing (DRS), the prior generation of an
54 RNA/cDNA duplex is required to prevent secondary and tertiary RNA structures from
55 forming prior to translocation that could vary the translocation speed². Although more
56 costly than traditional sequencing methods, DRS has many advantages. For example,
57 amplification of the genetic material is not required^{3,4}, and thus relative quantification of
58 DNA and RNA is less affected by possible amplification bias⁵. Furthermore, the entire
59 length of the nucleic acid is read continuously, allowing for confident assemblies of
60 traditionally troublesome regions such as GC-rich and repetitive elements^{6,7}. However,
61 DRS results in a higher error rate than other sequencing methods⁸, which occurs when
62 the voltage signature of a translocating base is not correctly identified. For example, an
63 incorrect base may be called if the voltage too closely resembles another base, or if the
64 base signal cannot be distinguished from the signal of the previous base. Alternatively,
65 if a voltage shift occurs too rapidly to be identified, the base may be missed, resulting in
66 an apparent deletion of the translocating base. While errors have been found to occur at
67 higher frequency in homopolymeric stretches⁹, errors during nanopore sequencing are
68 generally considered to be randomly distributed¹⁰.

69 Since each base is analyzed directly, DRS has also been reported to detect RNA
70 base modifications^{11,12}. Over 170 RNA modifications are known¹³, with functions that
71 include crucial roles in RNA stability¹⁴, protein interaction¹⁵, translation efficiency¹⁶, and
72 plant RNA intercellular movement^{17,18}. While the gold standard for RNA modification
73 detection is RNA pulldowns using antibodies specific to the modification¹⁹, this often
74 deters exploratory analyses where RNA modification is not suspected. Antibody-based
75 sequencing techniques can also fail to detect low-frequency modifications or produce
76 nonspecific capture of unmodified RNA resulting in false positives. While antibody-
77 independent assays have been developed using next-generation sequencing¹⁹, these
78 techniques still include the inherent biases and limitations of short read sequencing.
79 Thus, uncovering RNA modifications via DRS through detection of signal intensity
80 perturbations caused by modified bases has the potential to significantly expand the
81 identification and localization of RNA modifications in a wide variety of cellular and viral
82 RNAs.

83 The advantages of DRS have been especially useful in the study of RNA
84 viruses²⁰⁻²³. Umbra-like viruses (ULVs) are a newly discovered group of single-stranded
85 plus-sense RNA ([+]RNA) viruses found in wild and agricultural plants worldwide²⁴.
86 While most plant viruses either encode movement proteins and one or more silencer
87 suppressors, or are associated with a helper virus that provides those functions, some
88 ULVs do not encode either a movement protein or silencer suppressors and are
89 frequently found in plants without an accompanying virus²⁵. The simplest ULV is citrus
90 yellow-vein associated virus 1 (CY1; 2692 nt), which only encodes a replication-
91 associated protein and the RNA-dependent RNA polymerase (RdRp) frameshift

92 extension product, and yet is able to infect a variety of unrelated plants²⁶. We recently
93 leveraged the power of direct RNA nanopore sequencing to analyze the transcriptome
94 of a CY1 infection in *Nicotiana benthamiana* and found evidence of undescribed long
95 non-coding (lnc)RNAs, defective (D)-RNAs, and (+/-)foldback RNAs^{2,27}. CY1 foldback
96 RNAs are hypothesized to form during the transcription of plus-strand (+)RNA, when the
97 RdRp releases the (-)RNA template but continues transcription using the newly
98 synthesized (+)RNA as template, thus generating a single-stranded RNA with a 5'
99 (+)RNA segment attached to a nearly perfectly complementary 3' (-)RNA segment^{2,28}.
100 RNA foldbacks, which are predicted to form long, dsRNA helical structures with a
101 single-stranded apical loop, have unknown functions during viral infection.

102 For the current study, we further analyzed CY1 foldback RNAs, finding that the
103 (+)RNA portions were basecalled with significantly higher mismatches and deletions
104 than the already threaded (-)RNA portion in the same read. Additionally, non-foldback *in*
105 *planta* (+)RNA reads and *in vitro* transcribed (IVT) (+)RNA reads showed a similar,
106 nonrandom distribution of mismatches and deletions that were enriched in stretches of
107 purines or pyrimidines and often appeared upstream of known stable RNA structures.
108 Examination of IVT and *in planta* CY1 (+)RNA reads using a variety of RNA modification
109 detection software predicted modifications at the exact same positions, and with
110 similarly high confidences, despite IVT reads being devoid of any modifications. These
111 data suggest that regions of low nucleotide complexity as well as post-translocation re-
112 folding of RNA structures cause perturbations in the nanopore sequencing signal
113 resulting in inherent, nonrandom basecalling errors. Furthermore, since RNA

114 modification prediction software also relies on signal perturbation during DRS, these
115 predictions should be viewed with caution without additional confirmatory evidence.

116

117 MATERIALS AND METHODS

118 Growth of *N. benthamiana*

119 Laboratory strain *N. benthamiana* seeds, originally collected by Benjamin Bynoe and
120 housed at the Royal Botanic Gardens²⁹, were initially seeded onto damp soil and
121 germinated at 25°C with a 12 h light cycle and 70% humidity. After approximately 2
122 weeks, seedlings were transplanted into individual pots and grown at 25°C with a 12 h
123 light cycle and 70% humidity until vacuum infiltration.

124

125 Agroinfiltration of *N. benthamiana* with CY1

126 *Agrobacterium tumefaciens* strain GV3101 was transformed by electroporation with
127 binary vector pCB301 containing full-length CY1 (NC_040311.1) immediately
128 downstream of duplicated cauliflower mosaic virus 35S promoters and immediately
129 upstream of a hammerhead ribozyme sequence. Transformed *A. tumefaciens* cultures
130 were grown to an OD between 1.0 and 1.2 in 0.5 L of Luria-Bertani broth supplemented
131 with antibiotics [rifampicin (20 µg/mL) and kanamycin (50 µg/mL)] over the course of
132 ~18 h, along with *A. tumefaciens* cultures transformed with standard RNA silencing
133 suppressor p19. *A. tumefaciens* cultures were centrifuged at 5K rpm for 10 min using a
134 Sorvall SLA-1500 rotor, resuspended in infiltration buffer (10 mM MgCl₂; 10 mM MES;
135 100 ng/mL acetosyringone) at an OD of 1.2 for viral cultures and 0.4 for RNA silencing
136 suppressor cultures, mixed in a 1:1 ratio of viral culture to RNA silencing suppressor

137 culture, and incubated for 2 h at room temperature. *N. benthamiana* containing six true
138 leaves were then submerged inverted in the mixed *A. tumefaciens* cultures and vacuum
139 infiltrated using a negative pressure of -25 inHg for 30 sec. Plants were grown at 25°C
140 with a 12 h light cycle. Systemic leaf and primary root stalk samples were harvested
141 from infiltrated plants at 2 or 6 wpi.

142

143 **Extraction of RNA from infected plant samples**

144 Total RNA was extracted from infected plant samples using 1 mL of TRIzol reagent
145 (#15596026, Invitrogen) following the manufacturer's instructions. Root samples were
146 thoroughly ground with a mortar and pestle after being frozen in liquid nitrogen
147 immediately prior to TRIzol extraction. Following TRIzol extraction, extracted root RNA
148 samples were precipitated twice with equal volumes of 5M LiCl to remove excess
149 polysaccharides in the RNA samples. All extracted RNA samples were purified using 65
150 µL of RNAClean XP beads (#A63987 Beckman Coulter) and analyzed by ethidium
151 bromide-stained agarose gel electrophoresis prior to any downstream procedures.

152

153 **In vitro transcription of CY1 RNA**

154 pET17b plasmid containing full-length CY1 gRNA sequence (GenBank: JX101610)
155 immediately downstream of a T7 promoter was linearized with HindIII (#R0104M New
156 England Biolabs) and used as template for in vitro transcription using T7 polymerase. In
157 vitro transcribed CY1 gRNA sample volume was raised to 100 µL with ddH₂O followed
158 by addition of 100 µL of 5M LiCl and incubation at -20°C for 30 min. Samples were

159 centrifuged at top speed for 30 min at 4°C followed by a 75% ethanol wash, air drying,
160 and resuspension in ddH₂O.

161

162 **Poly(A) tailing of RNA**

163 Approximately 500 ng of RNA was mixed with ddH₂O to a volume of 15.5 μL. Two
164 microliters of 10X buffer (#B0276S New England Biolabs), 2 μL of 10 mM ATP
165 (#B0756A New England Biolabs), and 0.5 μL of *E. coli* poly(A) polymerase (# M0276S
166 New England Biolabs) were then added. Reactions were incubated at 37°C for 3 to 5
167 min and then terminated by addition of 5 μL of 50 mM EDTA. Poly(A) tailed RNA was
168 purified using 65 μL of RNAClean XP beads (#A63987 Beckman Coulter) following
169 manufacturer's instructions and resuspended in 12 to 16 μL of ddH₂O.

170

171 **Direct RNA and cDNA nanopore sequencing**

172 For all DRS sequencing runs, sequencing libraries were prepared from poly(A)-tailed
173 RNA samples using the direct RNA sequencing kit (SQK-RNA002) following
174 manufacturer's instructions and including the reverse transcription step to generate
175 RNA/cDNA hybrids. Sequencing runs (6 to 18 h) were performed using version R9.4.1
176 flow cells and a MinION Mk1B device. Used flow cells were cleaned between runs using
177 the flow cell wash kit (EXP-WSH004) following the manufacturer's instructions. The
178 MinKNOW desktop application (Oxford Nanopore) was used for basecalling of
179 nanopore sequencing reads using the standard quality score threshold of 7 for direct
180 RNA sequencing (corresponding to at least 80% read accuracy). For cDNA sequencing,
181 500 ng of poly-A tailed IVT CY1 RNA were used to generate a cDNA using oligo dT

182 (IDT) using SuperScript III reverse transcriptase (#56575 Invitrogen) following the
183 manufacturer's instructions. The sequencing library was generated from the cDNA using
184 the ligation sequencing kit (SQK-LSK114) and sequenced using a FLO-MIN114 R10
185 flowcell and a MinION Mk1B device. DNA reads were basecalled using the MinKNOW
186 desktop application using the standard quality score threshold of 8 for DNA sequencing.

187

188 **Analysis of nanopore reads**

189 Direct RNA and cDNA sequencing reads were aligned to the CY1 reference genome
190 (NC_040311.1) or the *N. benthamiana* 5S ribosomal RNA (KP824744.1) using a locally
191 run blast search (BLAST 2.12.0+) using the default parameters to a JSON output format
192 expect for the foldback RNA, which were analyzed using the 'blastn' task parameter.

193 JSON output files were analyzed using the custom analysis scripts deposited in the
194 following GitHub repository:

195 github.com/gr3nd31/Simon_lab/tree/main/nanopore_data_analysis. Using the blast
196 alignments, positional abundance and relative error rates were calculated. Mismatch or
197 deletion hotspots are defined as bases with error more than 2 standard deviations from
198 the median IVT error, except for (-)RNA hotspots that are more than 2 standard
199 deviations from the (-)RNA median. Data was visualized using R (4.4.3) in RStudio
200 (2024.12.1.563). Error-prone positions were mapped onto structures published for
201 CY1²⁶ or 5S rRNA (<http://combio.pl/rrna/>).

202

203 **RNA modification analysis**

204 Tentative RNA modification predictions were performed using tombo 1.5.1
205 (<https://nanoporetech.github.io/tombo/>), NanoPsu
206 (https://github.com/sihaochuanguc/Nanopore_psU), and m6Anet v-2.1.0
207 (<https://github.com/GoekeLab/m6anet>) to detect 5mC, Ψ, and m6A, respectively. For
208 each prediction algorithm, the developer's protocol was followed.

209

210 **Statistical analysis and data availability**

211 Statistical analyses were performed using R (4.4.3) in RStudio (2024.12.1.563) as
212 described in the figure legends.

213

214 **RESULTS AND DISCUSSION**

215 **CY1 foldback RNAs have an uneven distribution of errors**

216 We previously reported that over 30% of the (-)-strand reads generated from DRS of
217 samples from CY1-infected *N. benthamiana* were from (+/-)foldbacks, with the (-)RNA
218 portion always downstream of the complementary (+)RNA². While these (+/-)foldbacks
219 varied in length (likely due to premature transcription termination by the RdRp during
220 (+)RNA synthesis), the (-)RNA aligned portion consistently spanned 50% of the read
221 (Fig. S1 A-C). While the (-)RNA portion of the (+/-)foldbacks aligned with high identity to
222 CY1 reference sequence by BLASTn, the (+)RNA portion often failed to align unless a
223 less stringent alignment algorithm was used (Fig. 1A, Fig. S1). The alignment failure
224 was caused by the (+)RNA portion having an average mismatch/deletion frequency for
225 all residues that was ~3-fold higher than for the downstream (-)RNA portion (Fig. 1B and
226 C, Fig. S1D and E). DRS has been reported to produce an error rate of ~10%³⁰, and all

227 other CY1 (+)RNA reads (full-length gRNA, D-RNAs, lncRNAs, etc.) conformed to this
228 error rate, as did reads generated from IVT CY1 gRNA (Fig. 1B and C). Thus, the
229 elevated error rate in the (+)RNA portion of the (+/-)foldback was not due to any intrinsic
230 characteristic of nanopore sequencing of CY1 (+)RNA.

231 To determine if basecalling errors in the (+)RNA region of (+/-)foldbacks occurred
232 at identical locations in the (-)RNA portions (i.e., the errors reflect natural *in vivo*
233 generated alterations since the [+]RNA segment was the template for the [-]RNA
234 segment), the error rate at each residue was normalized to non-foldback RNA. As
235 shown in Fig. 1D, no correlation of mismatch/deletion errors was found between the
236 (+)RNA and (-)RNA portions, indicating that errors were likely generated during
237 sequencing. In addition, the (+)RNA portions showed a more even distribution of errors
238 while distinct error hotspots were common for the (-)RNA portions (Fig. 1E and 1F).
239 Whereas the average error rate for the (-)RNA portions was lower than the error rate for
240 the (+)RNA portions, error hotspots within the (-)RNA portions occurred at similar rates
241 as the average residue error rate for the (+)RNA portions. These findings suggest that a
242 similar mechanism induced nanopore sequencing errors on both (+)RNA and (-)RNA
243 portions of (+/-)foldbacks, but these errors occurred at a higher frequency consistently
244 across the (+)RNA portion.

245 Single-stranded (+/-)foldback RNAs are unusual in that they fold into fully base-
246 paired hairpins. Prior to nanopore sequencing, all intramolecular RNA structure is
247 eliminated since RNAs are reverse transcribed to generate RNA/cDNA duplexes¹⁰.
248 Once the RNA separates from the cDNA and is translocated through the membrane
249 pore, intramolecular folding can then place. Since the (-)RNA portion of a (+/-)foldback

250 is sequenced first, the translocated (-)RNA sequence should initially adopt structures
251 comparable with non-foldback sequenced (-)RNA. However, once the complementary
252 (+)RNA portion begins translocation, the foldback RNA should adopt a highly stable,
253 double-stranded conformation. We hypothesize that the enhanced (+)RNA error rate is
254 due to either torsional stress across the membrane pore or rapid shifts in translocation
255 speed induced by the elongated dsRNA helix that forms when the (+)RNA segment
256 translocates. Another possibility is that, similar to dsDNA, the dsRNA helix undergoes
257 supercoiling³¹, which would induce novel torque and buckling pressures during (+)RNA
258 basecalling. Any of these possibilities would account for both the higher
259 mismatch/deletion frequencies during (+)RNA segment basecalling and the
260 accompanying more uniform error distribution as the translocated RNA would be
261 uniformly double-stranded.

262

263 **Non-foldback reads have a non-random distribution of**

264 **mismatch/deletion errors**

265 The apparently non-random nature of errors in the 3' (-)RNA foldback segment
266 suggested that initial secondary/tertiary structure folding within the translocated (-)RNA
267 portions might affect the base-calling of nearby upstream nucleotides. If correct, then
268 post-translocational RNA folding should also affect the sequencing error rate found for
269 non-foldback RNAs, with hotspots occurring at specific locations upstream of local
270 secondary/tertiary structure. Furthermore, these non-random hotspot errors should also
271 be found at identical locations in the same RNA sequence generated by IVT.

272 To determine if non-random error hotspots occurred in non-foldback CY1 RNA
273 reads, we analyzed CY1 reads from the same dataset as the (+/-)foldbacks as well as a
274 dataset generated from DRS of IVT CY1 transcripts². We selected reads that contained
275 only a single (+)sense alignment and compared the mismatch and deletion error rates of
276 individual bases between the two datasets (Fig. 2). A significant ($r^2 = 0.92$, $p < 0.001$)
277 positive correlation was found between the mismatch frequencies of *in planta* CY1
278 (+)RNA and IVT (+)CY1 RNA (Fig. 2A). While most bases were miscalled at a relatively
279 low rate (median=1.8%, SD=3.5%), 130 bases of *in planta* CY1 (+)RNA possessed
280 mismatch rates over 10%, which was more than 2 standard deviations from the
281 average, and IVT (+)CY1 RNA sequences had similar mismatch rates for the same
282 bases. We also compared the error rate of CY1 reads across multiple datasets
283 generated from different tissues and from different timepoints post-infiltration and found
284 remarkable consistencies in both the positions and rates of these errors (Fig. S2A and
285 B).

286 Both IVT and *in planta* reads showed a similar bias in the identity of miscalled
287 bases, with cysteine (C) and uracil (U) more likely to be miscalled than adenine (A) and
288 guanine (G), despite CY1 gRNA containing a relatively equal amount of each residue
289 (Fig. 2B). Since a previous study found that A-to-G/G-to-A transversions were 3 to 5
290 times more likely in nanopore sequencing of DNA⁹, our finding that C-to-U/U-to-C
291 transversion were more common in DRS suggests that the mismatch errors observed
292 for DRS are distinct from known DNA nanopore sequencing biases.

293 Rates of deletions also strongly correlated between the IVT and *in planta* DRS
294 reads, suggesting that deletion rates are also not randomly distributed across the CY1

295 sequence (Fig. 2C and F). As with mismatch errors, most bases exhibited a low deletion
296 rate (median=1.9%, SD=6.5%), however the same 182 positions in *in planta* and IVT
297 (+)RNA possessed a deletion rate of greater than 15%. These same positions and
298 deletion rates were present in *in planta* reads from multiple samples across time points
299 and tissue types (Fig. S2C and D).

300 Previous studies reported that deletions in nanopore reads are frequently near
301 homopolymer tracks, where inconsistent translocation speeds make it difficult to resolve
302 the homopolymer⁹. Since homopolymer deletions are limited to the length of the
303 homopolymer track and CY1 contains few homopolymer tracks longer than 3 nt, only
304 deletions of greater than 4 nt were compared to reduce deletion hotspots that may be
305 caused by homopolymer tracks and deletion hotspots occurring for other reasons (Fig.
306 2D). We found no differences in overall deletion size or in the distribution of deletion
307 lengths between IVT and *in planta* CY1 RNA, suggesting that deletions in the reads
308 resulted from nanopore error and were not legitimate deletions resulting from viral
309 replication during infection. Altogether, these results strongly suggest that CY1 DRS
310 mismatch and deletion sequencing errors are neither randomly distributed nor acquired
311 during *in planta* infection and thus are intrinsic to the CY1 sequence.

312

313 **Error hotspots were frequently located upstream of known structural
314 elements**

315 High frequency error hotspots were identified as bases with local mismatch or deletion
316 frequencies greater than 2 standard deviations from the median of all local frequencies
317 (calculated from the IVT data). To better characterize the positions and sequence

318 composition of these hotspots, the mismatch and deletion frequency for each residue in
319 non-foldback CY1 RNAs was calculated by averaging a 5-nt sliding scale of
320 mismatch/deletion frequencies (2 nt upstream and 2 nt downstream). As expected from
321 the single nucleotide correlation plots (Fig. 2A and C), averaging local frequencies of
322 mismatches (Fig. 2E) and deletions (Fig. 2F) showed a high correlation between IVT
323 and *in planta* CY1 reads, with 22 hotspots for mismatches and 29 hotspots for deletions
324 containing an average length of 7.8 ± 3 nt (Fig. 3). The average deletion rate for
325 hotspots was higher than mismatch frequencies ($17.9 \pm 3.9\%$ vs $9.6 \pm 2.5\%$, respectively).
326 While mismatch and deletion hotspots occasionally overlapped, different regions were
327 more prone to generate either a mismatch or a deletion error during sequencing.

328 To determine if DRS hotspot errors in non-foldback reads were more common in
329 purine or pyrimidine stretches, 4-nt stretches across the CY1 genome were evaluated,
330 with 32% (867) of all possible windows consisting of consecutive purines or pyrimidines.
331 Sixty three percent of these homopolymeric regions contained mismatch hotspots and
332 83% contained deletion hotspots, supporting the previous study's findings⁹. However,
333 many areas of low complexity did not present as error hotspots, suggesting that low
334 complexity alone is insufficient and other parameters, including post-translocation
335 structure folding, may also play a role. Since the elevated error rate of the (+/-)foldback
336 RNA was only observed upstream of the proposed hairpin, we hypothesized that error
337 hotspots arise from low complexity regions upstream of recently translocated RNA that
338 folds into stable local structures. Such a mechanism is known to exist for bacterial
339 terminators, where local hairpins form behind the RNA polymerase to terminate
340 transcription at a downstream run of uracil residues³².

341 Error hotspots for non-foldback (+)RNA reads (31 mismatch and 32 deletion
342 hotspots, a total of 51 unique hotspots) were mapped on the known secondary structure
343 of CY1 (+)RNA^{33,34} (Fig. 3). Of the unique hotspots, 29 (57%) regions were within
344 homopolymer stretches consisting of 6 or more purines or pyrimidines (Fig. 3, asterisk);
345 35 (69%) were within 11 nt upstream of a known structure that could be formed during
346 translocation of the hotspot (Fig. 3, circles); and 22 (43%) were both within a
347 homopolymer stretch and upstream of a known structure (Fig. 3, circles with asterisk).
348 Although the CY1 genome contains 55 homopolymer stretches (Fig. 3, black bases or
349 asterisk), only 5 (9%) of such stretches were upstream of a known structure and not
350 associated with an error hotspot (Fig. 3, squares). In contrast, 15 (27%) of low
351 complexity regions were neither upstream of a known structure nor associated with an
352 error hotspot further supporting the model that low complexity sequence is insufficient to
353 generate an error hotspot. Note that while RNA naturally folds co-transcriptionally 5' to
354 3', post-translocation folding is 3' to 5' and thus some local structures will likely differ.
355 Furthermore, structures may form transiently and not be present in the gRNA secondary
356 structure map, which could explain the presence of error hotspots without a downstream
357 structure (Fig. 3, triangles). Regardless, the association of the nonrandom mismatch
358 and deletion hotspots with known structural elements in CY1, combined with data for
359 the (+/-)foldbacks, suggest that DRS can be influenced by local folding of post-
360 translocated 3' RNA.

361 Aside from CY1 reads, the sequencing data also contained a high number of
362 ribosomal RNAs, which are known to fold into stable structures necessary for their
363 function^{35,36}. As with CY1 reads, we found that 5S rRNA sequences had similar

364 mismatch and deletion error rates between multiple datasets (Fig. S3). Many of these
365 error hotspots also occurred near known structural elements, suggesting that 5S DRS
366 errors are also nonrandomly distributed based in part on post-translocation folding. Like
367 the CY1 error hotspots, mismatch and deletion hotspots did not occur at the same
368 positions suggesting that these errors are generated by similar, yet distinct,
369 mechanisms. A mismatch theoretically occurs when the electrical signal of the base is
370 altered such that it mimics the signal of alternative bases. In contrast, a deletion likely
371 occurs when the basecalling is unable to identify the signal transition between adjacent
372 bases and thus only the initial base is identified. Therefore, it is likely that mismatch and
373 deletion errors are associated with distinct sequence or structural elements that perturb
374 base and transition signals, respectively. While the CY1 and 5S rRNA support this
375 model, additional DRS data and solved structures are needed to further refine the
376 hypothesis.

377

378 **cDNA sequencing does not recapitulate DRS error hotspots**

379 Due to G/U and other non-canonical base-pairings, single-stranded (ss)RNA readily
380 forms more complex secondary and tertiary structures than ssDNA³⁷. If DRS error
381 hotspots are due to folding of post-translocated RNA, then the distribution of errors from
382 sequencing an RNA should differ from its cDNA version. Alternatively, if nanopore
383 sequencing errors are solely a consequence of sequence complexity, then sequencing
384 errors should correlate between (+)RNA, (-)RNA, and cDNA generated from IVT
385 (+)RNA. To distinguish between these possibilities, cDNA was generated from IVT CY1
386 RNA using random hexamers and sequenced using the direct DNA ligation kit and a

387 DNA flow cell. DRS reads of *in planta* CY1 from 6 weeks-post-infiltration (wpi) plants
388 were split into (+)RNA and (-)RNA reads and compared with the positional
389 mismatch/deletion error rates for the cDNA (Fig. 4). Unlike the high correlation of
390 positional errors between *in planta* (+)RNA and IVT (+)RNA, there was no correlation
391 between the mismatch error rates (Fig. 4A and 4B) nor deletion error rates (Fig. 4D and
392 4E) for *in planta* CY1 (+)RNA and (-)RNA, despite the RNA possessing similar regions
393 of low complexity. Furthermore, there was no correlation between the error rate of the
394 cDNA and the (-)RNA (Mismatches: Fig. 4A and 4C, Deletions: Fig. 4D and 4F). Since
395 cDNA and (-)RNA share the same nucleotide complexity, this further supports the
396 hypothesis that low nucleotide complexity alone is not causing error hotspots. While this
397 distinction may be due to differences in DNA and RNA basecalling algorithms, the
398 (+)RNA and (-)RNA also do not show the same error distributions despite possessing
399 the same regions of low complexity and being generated from the same sequencing run
400 (Fig. 4B and 4E). While cDNA and RNA sequences showed no correlation in positional
401 error, a slight positive correlation was found between (-)RNA and (+)RNA positional
402 errors (note linear regression marked by the hatched red lines in Fig. 4B and 4E relative
403 to 4C and 4F, respectively), suggesting that some errors occur in similar regions.
404 Interestingly, unique (+)RNA and (-)RNA error hotspots were found more than expected
405 on opposing sides of complimentary regions (Fig. 4G and Fig. S4). Since DRS
406 sequences RNA from the 3' to 5' direction, this further supports a model in which local
407 folding of RNA post-translocation affects the sequencing fidelity of DRS.
408

409 **RNA modification detection programs did not distinguish between IVT**
410 **and *in planta* CY1 (+)RNA reads**

411 In addition to providing long read data, DRS is frequently used to predict DNA
412 nucleotide modifications³⁸ and, more recently, RNA modifications such as 5-
413 methylcytosine (5mC), pseudouridine (Ψ), and N6-methyladenosine (m6A)^{11,30}. These
414 RNA modifications are predicted with high confidence in *in vivo* RNA samples by
415 analyzing either the electrical signal generated during sequencing or the relative
416 mismatch rates of specific nucleotides. Since mismatches are predicted based on
417 variation in the electrical signal, and there is a high correlation between the mismatch
418 frequencies of IVT and *in planta* (+)RNA CY1 reads (Fig. 2), we hypothesized that RNA
419 modification detection programs may be incorrectly reporting modified nucleotides due
420 to the nonrandom error distribution.

421 To determine if RNA modification software mis-identifies modified residues, we
422 analyzed IVT and *in planta* (+)RNA reads for three modifications: 5mC using Tombo³⁹
423 (Fig. 5A and B), Ψ using NanoPsu⁴⁰ (Fig. 5C and D), and m6A using m6Anet⁴¹ (Fig. 5E
424 and F). For each modification calling system, the IVT and 6 wpi CY1 reads were
425 independently analyzed to predict modified residues.

426 Within the IVT reads, which could not legitimately contain 5mC modifications,
427 Tombo identified 198 residues as containing 5mC with an average probability of 38%,
428 and 215 residues in the *in planta* reads with an average probability of 39% (Fig. 5A). Of
429 these positions, a substantial majority (190) were identified in both the IVT and *in planta*
430 reads. Direct comparison of the modification probability from the 190 positions identified
431 in both sets of reads revealed a high correlation (Fig. 5B, $r^2 = 0.86$, $p < 0.001$). Although

432 it is possible that the 25 positions identified only in the *in planta* reads may be legitimate
433 5mC modifications, the average probability of these *in planta* specific positions (19.2%)
434 was both lower than the overall probability of the *in planta* positions and similar to the
435 average probability of the IVT-specific positions (15.5%). While this suggests these *in*
436 *planta*-specific positions are false-positives, we did note several positions identified in
437 both the IVT and *in planta* reads that had a higher 5mC probability in the *in planta* reads
438 than in the IVT reads. The high degree of correlation between IVT and *in planta*
439 positions for predicted modifications, including several with confidence levels close to
440 100%, suggests that 5mC calling using Tombo is biased by nonrandom nanopore
441 sequencing errors.

442 While Tombo directly analyzes electrical signals to predict 5mC modification,
443 NanoPsu uses mismatch frequencies to calculate the probability of Ψ modification of
444 uracils. Since NanoPsu generates modification probabilities for every uracil in an RNA,
445 we limited our initial analysis to uracils with modification probabilities of at least 2
446 standard deviations from the mean (Fig. 5C). This resulted in a roughly equal number of
447 hits in the IVT and *in planta* reads (57 and 53 hits, respectively) with 32 residues being
448 selected in both read sets. Since the respective hit sets showed similar modification
449 probabilities, we performed a linear regression analysis on all positions and found a
450 strong positive correlation between the modification probabilities of IVT and *in planta*
451 uracils (Fig. 5D, $r^2=0.57$, $p < 0.001$) despite the lack of Ψ modification in IVT RNA.
452 Although there were several positions in the *in planta* data with a higher probability than
453 the same positions in the IVT data, the majority of Ψ probabilities demonstrated a strong
454 correlation, suggesting that NanoPsu Ψ calling is also affected by nonrandom error.

455 As with Tombo, m6anet directly analyzes the electrical signal to predict m6A
456 modifications but relies on Nanopolish to extract and analyze the electrical data. Since
457 the RRACH motif for m6A modification has been well established, modification
458 probabilities were only generated for the 46 possible RRACH motifs found in the CY1
459 genome⁴². Again, the overall probability of m6A modification was similar between the
460 IVT and *in planta* reads (Fig. 5E), although the average probability of an m6A
461 modification (~9%) was much lower than that generated for 5mC (~39%) and Ψ (~20%).
462 Linear regression analysis of m6A probabilities for IVF and *in planta* CY1 reads again
463 showed a positive correlation (Fig. 5F, $r^2=0.56$, $p < 0.001$). Altogether, these results
464 suggest that all three modification detection software generate significant correlations
465 for IVT and *in planta* CY1 RNA, indicating a strong bias in various modification-calling
466 algorithms. Since we found that DRS results in consistent, nonrandom errors, we
467 hypothesize that current base modification algorithms may fail to discriminate between
468 legitimate RNA base modifications and nonrandom nanopore errors caused by
469 properties intrinsic to the RNA.

470

471 **Conclusions**

472 DRS is increasingly being used for long-read sequencing and identification of RNA base
473 modifications^{11,19}. Although DRS is associated with a 10% error rate, these errors are
474 generally considered to be random with the exception of a general prevalence for
475 homopolymeric stretches⁹. We show here that CY1 (+/-)foldbacks identified during DRS
476 of infected *N. benthamiana* have an elevated frequency of mismatches and deletions in
477 the 5' (+)RNA segment only. This suggests that the increased error rate is driven by the

478 fully complimentary structure of the foldback RNA. This hypothesis is supported by the
479 observation that non-foldback CY1 RNAs from multiple sequencing runs have
480 comparable error rates for the same nucleotides regardless of IVT or *in planta*
481 generation. Furthermore, nucleotides with the highest error rates were frequently found
482 in purine or pyrimidine stretches just upstream of known RNA structures. We therefore
483 propose a model whereby transient torsional stress of local stable RNA structures that
484 form just after translocation contribute to upstream sequencing errors by affecting either
485 the electrical signal or translocation speed (Fig. 6A and B). While this stress may
486 contribute generally to errors in upstream sequences, problematic sequences such as
487 homopolymer stretches would be especially prone to increased error during basecalling.
488 For a perfectly complementary sequence, such as the CY1 foldbacks, this results in an
489 increased rate of evenly distributed errors during basecalling of the 5' portion (Fig. 6C).
490 While DRS technology possesses many benefits over traditional or next generation
491 sequencing, these findings suggest caution in drawing conclusions from DRS data
492 based solely on error rates as currently used by some RNA modification prediction
493 programs.

494

495 **CONFLICT OF INTEREST**

496 The authors declare no conflict of interest

497

498 **ADDITIONAL INFORMATION**

499 **Funding**

500 Funding for this project was supported by United States Department of Agriculture NIFA

501 Emergency Citrus Disease Research and Extension Program 2022-06726 to AES and

502 National Science Foundation 312990-00001 to AES. PZJ was partially supported by

503 National Science Foundation Graduate Research Fellowship Award DGE-1840340.

504

505 **Author Contributions**

506 JM Needham contributed to this work through conceptualization, data curation, software

507 development, formal analysis, validation, investigation, visualization, methodology,

508 writing the original draft and editing. PZ Johnson contributed by investigation of the

509 original dataset. AE Simon contributed by providing resources, supervision, funding

510 acquisition, project management, and reviewing and editing of the manuscript.

511

512 **Data Availability**

513 Datasets used to generate figures can be found at

514 <https://zenodo.org/records/15255459> and scripts used to generate figures from the

515 nanopore sequencing data can be found at

516 https://github.com/gr3nd31/Simon_lab/tree/main/nanopore_data_analysis.

517

518 **References**

519 1. Rhee M, Burns MA. Nanopore sequencing technology: research trends and
520 applications. *Trends Biotechnol* 2006; 24:580–6.

521 2. Johnson PZ, Needham JM, Lim NK, Simon AE. Direct nanopore RNA sequencing
522 of umbra-like virus-infected plants reveals long non-coding RNAs, specific
523 cleavage sites, D-RNAs, foldback RNAs, and temporal- and tissue-specific profiles.
524 *NAR Genom Bioinform* 2024; 6:lqae104.

525 3. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by
526 primed synthesis with DNA polymerase. *J Mol Biol* 1975; 94:441–8.

527 4. Bustin SA. Absolute quantification of mRNA using real-time reverse transcription
528 polymerase chain reaction assays. *J Mol Endocrinol* 2000; 25:169–93.

529 5. Martínez M, Harms L, Abele D, Held C. Mitochondrial Heteroplasmy and PCR
530 Amplification Bias Lead to Wrong Species Delimitation with High Confidence in the
531 South American and Antarctic Marine Bivalve *Aequiyooldia eightsii* Species
532 Complex. *Genes (Basel)* 2023; 14:935.

533 6. Warburton PE, Sebra RP. Long-Read DNA Sequencing: Recent Advances and
534 Remaining Challenges. *Annu Rev Genomics Hum Genet* 2023; 24:109–32.

535 7. Nomburg J, Zou W, Frost TC, Datta C, Vasudevan S, Starrett GJ, Imperiale MJ,
536 Meyerson M, DeCaprio JA. Long-read sequencing reveals complex patterns of
537 wraparound transcription in polyomaviruses. *PLOS Pathogens* 2022; 18:e1010401.

538 8. Liu-Wei W, van der Toorn W, Bohn P, Hölzer M, Smyth RP, von Kleist M.
539 Sequencing accuracy and systematic errors of nanopore direct RNA sequencing.
540 *BMC Genomics* 2024; 25:528.

541 9. Delahaye C, Nicolas J. Sequencing DNA with nanopores: Troubles and biases.
542 *PLOS ONE* 2021; 16:e0257521.

543 10. Marinov GK. On the design and prospects of direct RNA sequencing. *Briefings in
544 Functional Genomics* 2017; 16:326–35.

545 11. Abebe JS, Verstraten R, Depledge DP. Nanopore-Based Detection of Viral RNA
546 Modifications. *mBio* 2022; 13:e03702-21.

547 12. Zhao L-Y, Song J, Liu Y, Song C-X, Yi C. Mapping the epigenetic modifications of
548 DNA and RNA. *Protein & Cell* 2020; 11:792–808.

549 13. Boccaletto P, Stefaniak F, Ray A, Cappannini A, Mukherjee S, Purta E, Kurkowska
550 M, Shirvanizadeh N, Destefanis E, Groza P, et al. MODOMICS: a database of RNA
551 modification pathways. 2021 update. *Nucleic Acids Res* 2022; 50:D231–5.

552 14. Boo SH, Kim YK. The emerging role of RNA modifications in the regulation of
553 mRNA stability. *Exp Mol Med* 2020; 52:400–8.

554 15. Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation.
555 *Nat Rev Mol Cell Biol* 2019; 20:608–24.

556 16. Shi H, Chai P, Jia R, Fan X. Novel insight into the regulatory roles of diverse RNA
557 modifications: Re-defining the bridge between transcription and translation.
558 *Molecular Cancer* 2020; 19:78.

559 17. Maizel A, Markmann K, Timmermans M, Wachter A. To move or not to move: roles
560 and specificity of plant RNA mobility. *Current Opinion in Plant Biology* 2020; 57:52–
561 60.

562 18. Wilkinson E, Cui Y-H, He Y-Y. Roles of RNA Modifications in Diverse Cellular
563 Functions. *Front Cell Dev Biol* 2022; 10:828683.

564 19. Zhang Y, Lu L, Li X. Detection technologies for RNA modifications. *Exp Mol Med*
565 2022; 54:1601–16.

566 20. Xu L, Berninger A, Lakin SM, O'Donnell V, Pierce JL, Pauszek SJ, Barrette RW,
567 Faburay B. Direct RNA Sequencing of Foot-and-mouth Disease Virus Genome
568 Using a Flongle on MinION. *Bio Protoc* 2024; 14:e5017.

569 21. Donovan-Banfield I, Milligan R, Hall S, Gao T, Murphy E, Li J, Shawli GT, Hiscox J,
570 Zhuang X, McKeating JA, et al. Direct RNA sequencing of respiratory syncytial
571 virus infected human cells generates a detailed overview of RSV polycistronic
572 mRNA and transcript abundance. *PLoS One* 2022; 17:e0276697.

573 22. Viehweger A, Krautwurst S, Lamkiewicz K, Madhugiri R, Ziebuhr J, Hölzer M, Marz
574 M. Direct RNA nanopore sequencing of full-length coronavirus genomes provides
575 novel insights into structural variants and enables modification analysis. *Genome*
576 *Res* 2019; 29:1545–54.

577 23. Keller MW, Rambo-Martin BL, Wilson MM, Ridenour CA, Shepard SS, Stark TJ,
578 Neuhaus EB, Dugan VG, Wentworth DE, Barnes JR. Direct RNA Sequencing of the
579 Coding Complete Influenza A Virus Genome. *Sci Rep* 2018; 8:14408.

580 24. Simon AE, Quito-Avila DF, Bera S. Expanding the Plant Virome: Umbra-Like
581 Viruses Use Host Proteins for Movement. 2024 [cited 2024 Jul 31]; Available from:
582 <https://www.annualreviews.org/content/journals/10.1146/annurev-virology-111821-122718>

584 25. Ying X, Bera S, Liu J, Toscano-Morales R, Jang C, Yang S, Ho J, Simon AE.
585 Umbravirus-like RNA viruses are capable of independent systemic plant infection in
586 the absence of encoded movement proteins. *PLOS Biology* 2024; 22:e3002600.

587 26. Kwon S-J, Bodaghi S, Dang T, Gadhav KR, Ho T, Osman F, Al Rwahnih M,
588 Tzanetakis IE, Simon AE, Vidalakis G. Complete Nucleotide Sequence, Genome
589 Organization, and Comparative Genomic Analyses of Citrus Yellow-Vein
590 Associated Virus (CYVaV). *Front Microbiol* 2021; 12:683130.

591 27. Johnson PZ. Translation, Replication and Transcriptomics of the Simplest Plus-
592 Strand RNA Plant Viruses [Internet]. ProQuest Dissertations and Theses2024;
593 Available from: <https://www.proquest.com/dissertations-theses/translation-replication-transcriptomics-simplest/docview/3108156930/se-2?accountid=14696>

595 28. Richards OC, Hey TD, Ehrenfeld E. Poliovirus snapback double-stranded RNA
596 isolated from infected HeLa cells is deficient in poly(A). *J Virol* 1987; 61:2307–10.

597 29. Goodin MM, Zaitlin D, Naidu RA, Lommel SA. Nicotiana benthamiana: Its History
598 and Future as a Model for Plant–Pathogen Interactions. *MPMI* 2008; 21:1015–26.

599 30. Jain M, Abu-Shumays R, Olsen HE, Akeson M. Advances in nanopore direct RNA
600 sequencing. *Nat Methods* 2022; 19:1160–4.

601 31. Lipfert J, Skinner GM, Keegstra JM, Hengsens T, Jager T, Dulin D, Köber M, Yu Z,
602 Donkers SP, Chou F-C, et al. Double-stranded RNA under force and torque:
603 Similarities to and striking differences from double-stranded DNA. *Proceedings of
604 the National Academy of Sciences* 2014; 111:15408–13.

605 32. Santangelo TJ, Artsimovitch I. Termination and antitermination: RNA polymerase
606 runs a stop sign. *Nat Rev Microbiol* 2011; 9:319–29.

607 33. Liu J, Carino E, Bera S, Gao F, May JP, Simon AE. Structural Analysis and Whole
608 Genome Mapping of a New Type of Plant Virus Subviral RNA: Umbravirus-Like
609 Associated RNAs. *Viruses* 2021; 13:646.

610 34. Johnson PZ, Simon AE. RNACanvas: interactive drawing and exploration of nucleic
611 acid structures. *Nucleic Acids Research* 2023; 51:W501–8.

612 35. Vanden Broeck A, Klinge S. Eukaryotic Ribosome Assembly. *Annu Rev Biochem*
613 2024; 93:189–210.

614 36. Jang C, Needham JM, Johnson PZ, Gao F, Simon AE. Hairpin inserts in viral
615 genomes are stable when they conform to the thermodynamic properties of viral
616 RNA substructures. *Journal of Virology* 2025; 0:e01919-24.

617 37. Halder S, Bhattacharyya D. RNA structure and dynamics: A base pairing
618 perspective. *Progress in Biophysics and Molecular Biology* 2013; 113:264–83.

619 38. Lau BT, Almeda A, Schauer M, McNamara M, Bai X, Meng Q, Partha M, Grimes
620 SM, Lee H, Heestand GM, et al. Single-molecule methylation profiles of cell-free
621 DNA in cancer with nanopore sequencing. *Genome Medicine* 2023; 15:33.

622 39. Stoiber M, Quick J, Egan R, Eun Lee J, Celtniker S, Neely RK, Loman N,
623 Pennacchio LA, Brown J. *De novo Identification of DNA Modifications
624 Enabled by Genome-Guided Nanopore Signal Processing*. *bioRxiv* 2017; :094672.

625 40. Huang S, Zhang W, Katanski CD, Dersh D, Dai Q, Lolans K, Yewdell J, Eren AM,
626 Pan T. Interferon inducible pseudouridine modification in human mRNA by
627 quantitative nanopore profiling. *Genome Biology* 2021; 22:330.

628 41. Hendra C, Pratanwanich PN, Wan YK, Goh WSS, Thiery A, Göke J. Detection of
629 m6A from direct RNA sequencing using a multiple instance learning framework. *Nat*
630 *Methods* 2022; 19:1590–8.

631 42. Wang K, Peng J, Yi C. The m6A Consensus Motif Provides a Paradigm of
632 Epitranscriptomic Studies. *Biochemistry* 2021; 60:3410–2.

633

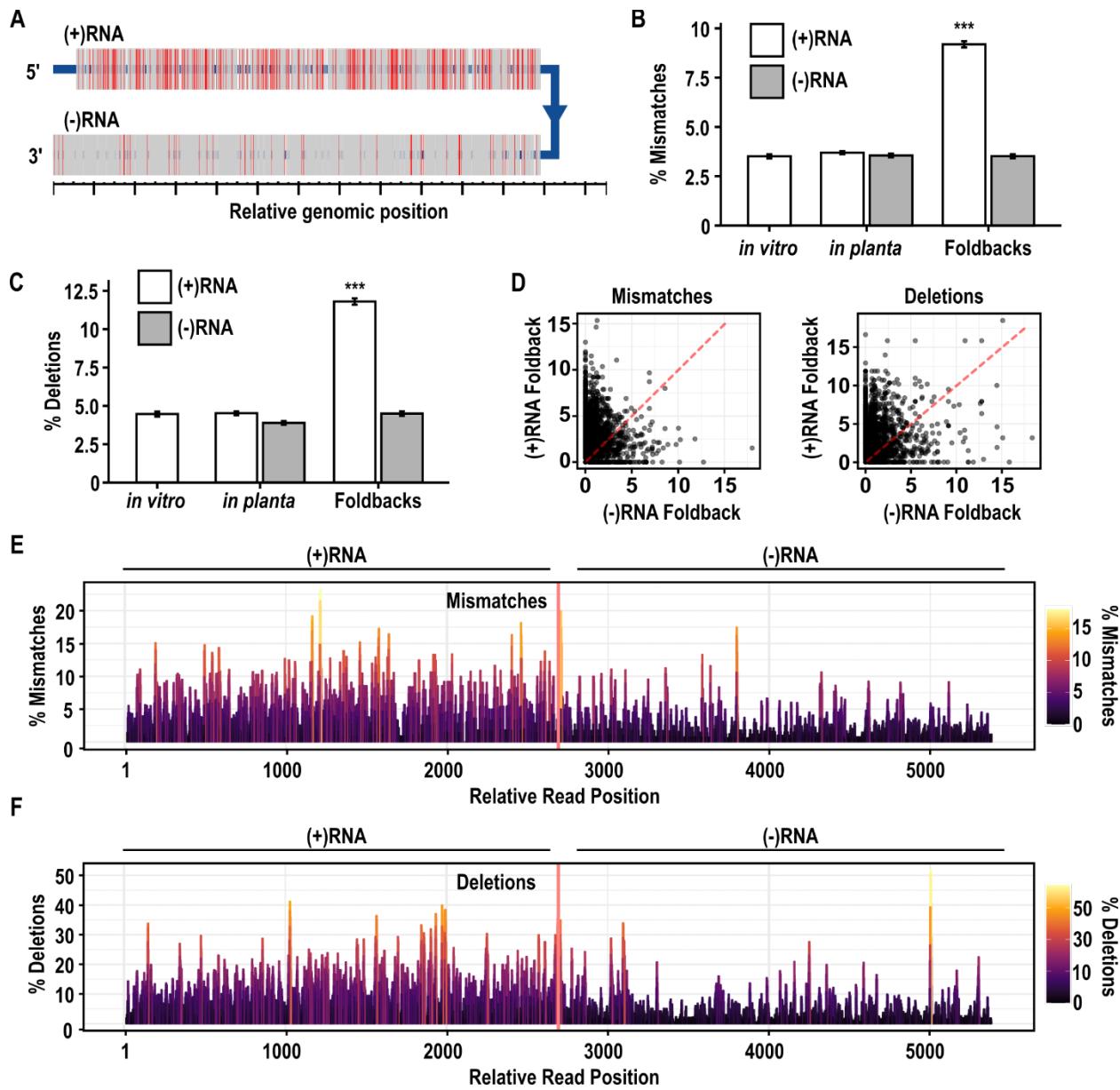


Figure 1. (+)-RNA portions of CY1 foldback RNAs analyzed by DRS have a high error rate. (A) Representative (+/-)foldback CY1 sequences (n=87) collected from systemically infected leaves at 6-weeks post-infiltration (wpi). Nanopore reads that contained both (+)-RNA and (-)-RNA were aligned to the CY1 genome using BLASTn. Mismatches are in red and deletions are represented by gaps. (B) Average frequency of mismatches for residues in (+)-RNA or (-)-RNA reads from IVT CY1 RNA (*in vitro*), and (+/-)foldback (Foldback) and non-foldback reads from CY1-infected leaves (*in planta*). Error bars represent standard error and statistical significance from the *in vitro* sample was determined by one-way ANOVA and a Tukey post-hoc (***) : $p < 0.001$. (C) Average frequency of deletions in the reads described in (B). (D) Dot plot correlation of mismatch and deletion frequency at nucleotide positions in (+)-RNA or (-)-RNA aligned sequences in (+/-)foldback reads. Red dotted line represents a perfect 1:1 correlation. (E-F)

Aggregate alignment of (+/-)foldback reads denoting mismatch frequency (E) or deletion frequency (F) normalized to the same position on the non-foldback reads in the same sample.

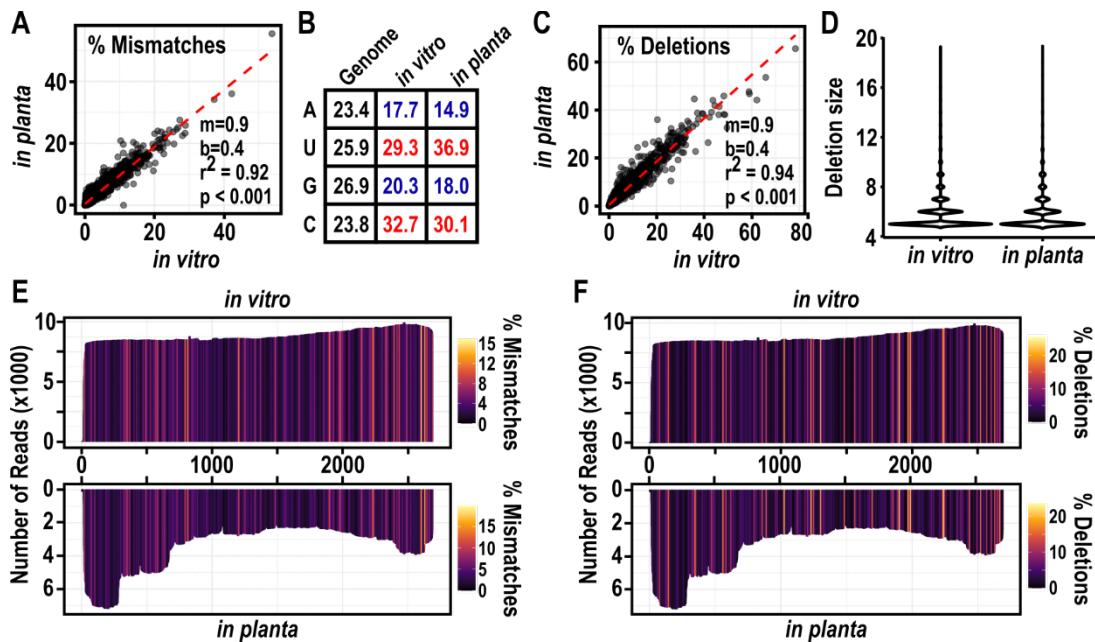


Figure 2. Mismatches and deletions reported for IVT and *in planta* CY1 RNA reads correlate in frequency and location. (A) Dot plot correlation of mismatch frequencies for each nucleotide of IVT RNA and RNA collected from 6 wpi leaves (*in planta*). Red dotted line represents a perfect 1:1 correlation and the statistics of the linear regression are shown. (B) The frequency of each nucleotide in CY1 gRNA (in black) compared to the frequency of that nucleotide being miscalled in *in vitro* or *in planta* (+)RNA reads (blue: less than expected based on composition, red: greater than expected based on composition). (C) Same correlation analysis as in (B) but comparing the deletion frequencies of each position within (+)RNA-aligned CY1 reads from *in vitro* and *in planta* reads. (D) Violin plot of the length of deleted stretches found for *in vitro* or *in planta* CY1-aligned reads. Since DRS frequently reports <4 nt deletions, deletions less than 4 nt in length were omitted from this analysis to enrich for less frequent deletion events. (E) Aggregate alignment of *in vitro* and *in planta* CY1-aligned reads colored by the average mismatch or deletion (F) frequency of a 4 nt sliding frame.

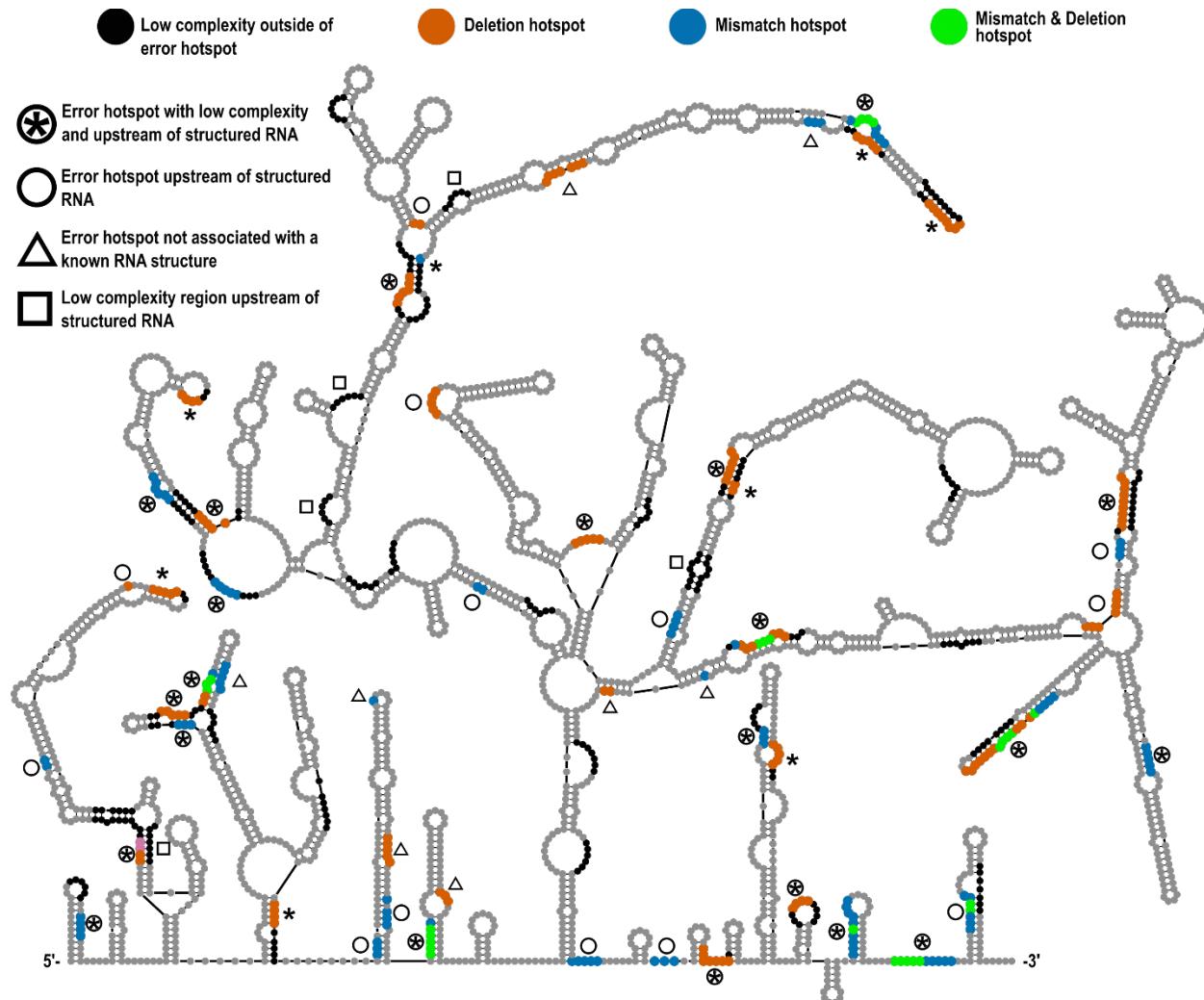


Figure 3. Deletion and mismatch hotspots mapped to CY1 secondary structure. Deletion and mismatch hotspots were identified by first averaging the deletion or mismatch frequency in a 4 nt sliding frame. Bases with an error rate greater than 2 standard deviations from the mean were classified as a deletion hotspot (orange), mismatch hotspot (blue) or both (green) and mapped back onto the solved secondary structure of CY1. Hotspots within a stretch of 6 or more purines/pyrimidine (low complexity regions) are indicated with an asterisk (*) for a pyrimidine stretch. Error hotspots that are less than 11 nucleotides upstream from a structure that could form during translocation are marked with a circle. In contrast, low complexity regions that were not associated with an error hotspots and were less than 11 nucleotides upstream from a structure are marked with a square. Error hotspots not associated with a known RNA structure or region of low complexity are marked with a triangle.

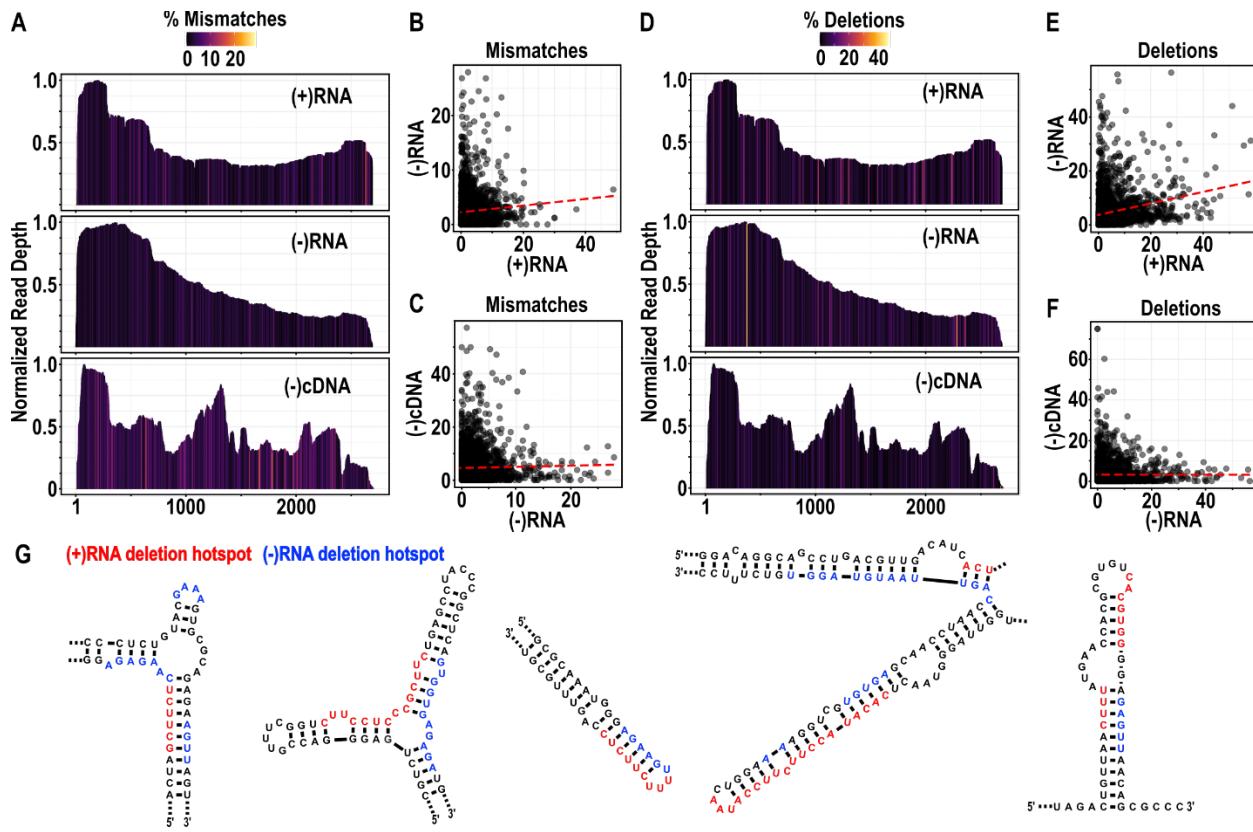


Figure 4. Error rates of (+)RNA and (-)RNA from DRS do not correlate with nanopore cDNA sequencing. (A) Aggregate alignment of the (+)RNA and (-)RNA reads from 6 wpi leaves and cDNA generated from reverse transcription of in-vitro transcribed CY1 (+)RNA using random hexamers. Positions are colored by the average mismatch frequency of a 4 nt sliding frame. (B) Dot plot and linear regression (red dotted line) of positions on the CY1 genome from (+)RNA and (-)RNA sequences shown in (A). (C) Dot plot and linear regression (red dotted line) of positions on the CY1 genome from (-)RNA and (-)cDNA sequences shown in (A). (D) Similar analysis as shown in (A) but colored by the average deletion frequency of a 4 nt sliding window. (E-F) Same dot plot and linear regression analysis as shown in (B-C) but comparing deletion frequencies. (G) Representative images of deletion hotspots for (+)RNA (red) and (-)RNA (blue) DRS reads mapped to secondary structure elements in the (+)CY1 genome.

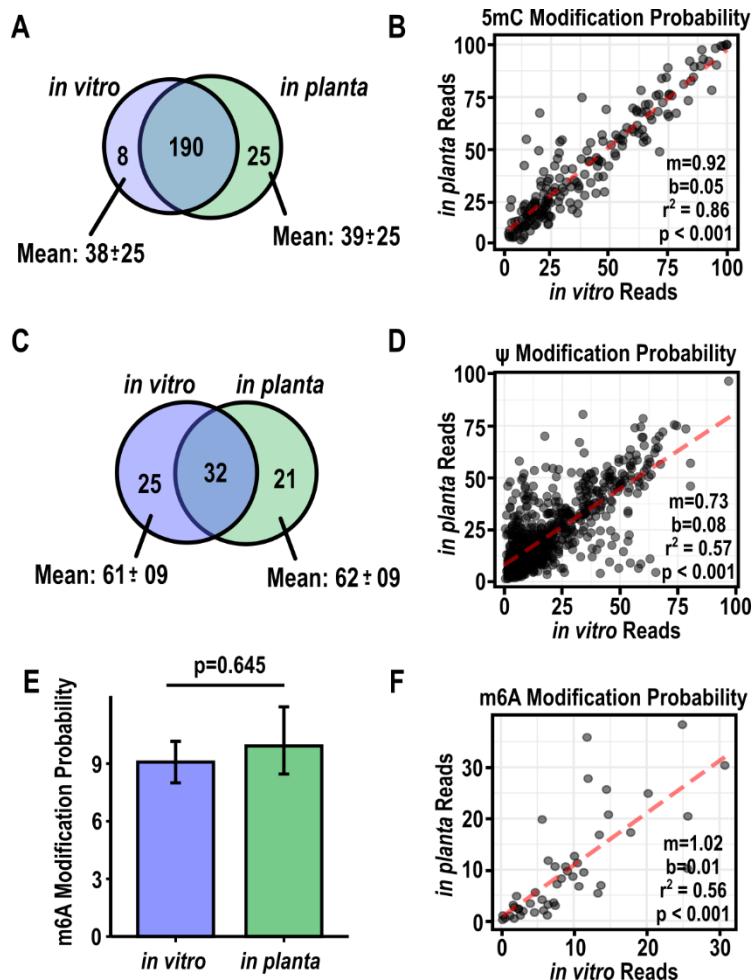


Figure 5. Predicted RNA modification in IVT CY1 reads mirror predictions in *in planta* reads. (A) Venn diagram of cytosine residues predicted to be methylated (5mC) in IVT (blue) or *in planta* (green) CY1 reads using Tombo. The mean 5mC probability and standard deviation for each set of cytosines is shown. (B) Dot plot and linear regression (red hatched line) of cytidine residues predicted to be 5mC. Statistics from a linear regression analysis are shown. (C) Venn diagram of predicted pseudouridine (Ψ) modifications in IVT (blue) or *in planta* (green) CY1 reads with probabilities at least 2 standard deviations above the mean modification probability. Mean Ψ probabilities and standard deviations for each set are indicated. (D) Dot plot and linear regression (red hatched line) of uracils predicted to be pseudouridines. Statistics from a linear regression analysis are shown. (E) Bar graph of the methylation probabilities of 46 adenosines in IVT and *in planta* reads in RRACH motifs. Error bars represent standard deviation and p-value was calculated by Student's t-test. (F) Dot plot and linear regression (red hatched line) of methylation probabilities of adenosines within a RRACH motif in IVT or *in planta* CY1 reads. Statistics from a linear regression analysis are shown.

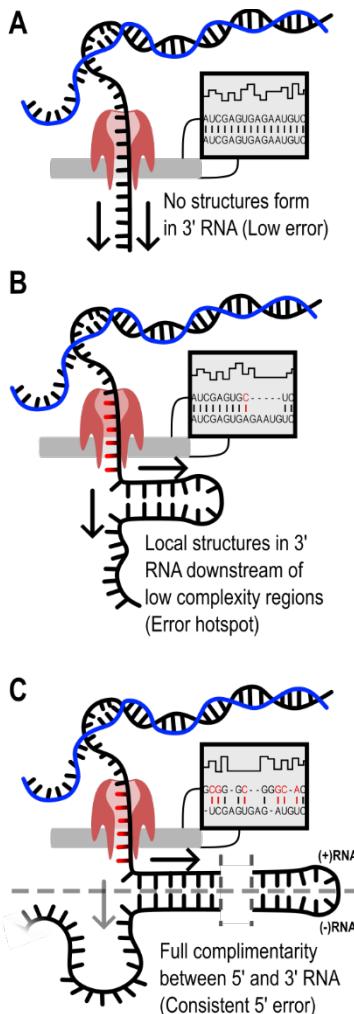


Figure 6. Model of 3' structure-induced Nanopore error. (A) RNA/cDNA duplex (black and blue helix) prevents secondary structures in an RNA from interfering with translocation. Duplex is unwound before translocation and the RNA translocates through the pore in the 3' to 5' direction. Electrical signals are basecalled and aligned to the reference genome with a relatively low frequency and errors are evenly distributed across the read if translocated RNA does not quickly fold into a stable structure. (B) If the just translocated RNA forms a stable local structure, this results in torsional stress and/or alters translocation speed, which impairs basecalling and results in a nonrandom increase in mismatch and deletion errors upstream of these elements. We suggest that these errors are more likely if a stretch of purines or pyrimidines is just upstream of the structure. (C) During the sequencing of (+/-)foldback RNAs, basecalling of the initial (-)RNA sequence is only affected by local structure. After the complementary (+)RNA sequence begins to translocate through the pore, the (-)RNA base pairs with the (+)RNA to form dsRNA (transition point between the (-)RNA and the (+)RNA is marked by grey dashed line). This results in constant torsional stress and/or translocation speed, which is basecalled as an even distribution of elevated mismatch and deletion errors.