

1 **Host-independent persistence of the *Diadema antillarum* Scuticociliatosis *Philaster* clade in**
2 **coastal environments**

3

4 Michael W. Henson^{1*}, Axel J. Leon-Rodriguez¹, Christopher M. DeRito², Harilaos Lessios³,
5 Jean-Pascal Quod⁴, Brayan Vilanova-Cuevas², Ian Hewson^{2*}

6

7 ¹Department of Biological Sciences, Northern Illinois University, DeKalb IL USA

8 ²Department of Microbiology, Cornell University, Ithaca NY USA

9 ³Smithsonian Tropical Research Institution, Balboa, Panama

10 ⁴ARVAM, Réunion, France

11

12

13

14

15

16

17

18

19

20

21

22

23 *Correspondence:

24

25 Michael W. Henson
mhenson@niu.edu

26

27 Ian Hewson
hewson@cornell.edu

28

29

30

31

32

33

34

35 **Abstract**

36 The mass mortality of the keystone herbivore *Diadema antillarum* in the Caribbean was caused
37 by the pathogenic ciliate from the *Diadema antillarum* Scuticociliatosis *Philaster* clade
38 (DaScPc). Despite its confirmed pathogenicity, the environmental distribution and persistence
39 strategies of DaScPc outside its host remain poorly understood. We used quantitative PCR,
40 nested PCR, and Sanger sequencing across a 16-month time series and broad geographic surveys
41 to investigate its ecological dynamics and potential environmental reservoirs. Sequencing-
42 confirmed detections at a Florida coastal site devoid of *D. antillarum* show that DaScPc is a
43 natural, host-independent component of the reef environment. Molecular detection on coral and
44 macroalgal surfaces and in the plankton fraction indicates that multiple substrates can harbor the
45 ciliate. Temporal observations revealed emerging trends with macroalgal cover and reef
46 productivity, though no direct correlations were observed. Geographically, DaScPc was absent
47 from outbreak sites in Panama and Réunion. Together, this data suggests spatial patchiness and a
48 cryptic “boom-and-bust” lifestyle in which the organism persists at low abundance between
49 outbreaks. The co-occurrence of a related nonpathogenic ciliate (*Acropora/CHN/2009*) further
50 underscores the ecological complexity of the *Philaster* clade. These findings broaden
51 understanding of DaScPc ecology, confirming environmental persistence independent of its host
52 and suggesting that parasitism may be intermittent, triggered by changing environmental
53 conditions. This work highlights the need for higher-resolution surveillance and long-term
54 monitoring to link ecosystem processes with the reemergence of marine disease in vulnerable
55 coral reef systems.

56 **Importance**

57 The 2022 mass mortality of the sea urchin *Diadema antillarum* devastated Caribbean coral reefs,
58 yet little is known about how the pathogenic ciliate responsible for the event persists in nature.
59 We show that the *Diadema antillarum* Scuticociliatosis *Philaster* clade (DaScPc) occurs in reef
60 environments even where the host (*D. antillarum*) is absent, indicating that it can persist
61 independently of its host. Our findings suggest that DaScPc occupies a cryptic ecological niche
62 within reef microbial communities and may follow a “boom–bust” dynamic, fluctuating between
63 rare environmental states and occasional proliferation. Although direct environmental drivers
64 remain unresolved, emerging trends with macroalgal cover and reef productivity highlight the
65 potential influence of ecosystem conditions on ciliate abundance. This work broadens the

66 understanding of how marine pathogens persist between outbreaks and underscores the
67 importance of environmental surveillance for predicting and mitigating future disease events on
68 coral reefs.

69

70 **Introduction**

71 Marine ciliates are integral components of coastal and pelagic ecosystems, mediating
72 nutrient cycling and energy transfer through the microbial loop via diverse feeding strategies,
73 including bacterivory, herbivory, and detritivory (1–3). Their ecological significance has
74 received increasing attention in recent years, particularly as emergent ciliate taxa have been
75 implicated in mass mortality events among both invertebrates and vertebrates (4, 5). Despite
76 their recognized importance, comparatively little is known regarding the environmental
77 distribution, trophic behavior, and survival strategies of many ciliates outside of their hosts (6,
78 7). These knowledge gaps are particularly consequential when ciliates act as pathogens, as their
79 persistence and proliferation in the environment may influence both disease emergence and
80 virulence. Detection of ciliates outside their hosts does not necessarily indicate imminent
81 infection, but it raises critical questions regarding the ecological conditions under which
82 pathogenic activity may be triggered.

83 One pathogenic ciliate of increasing concern is the *Diadema antillarum* Scuticociliatosis
84 Philaster clade (DaScPc) (8, 9), which caused widespread mortality of sea urchins across the
85 Caribbean in spring and summer 2022 (8, 10). Experimental infection trials fulfilling Koch's
86 postulates have confirmed its pathogenicity, providing rare direct evidence of a causative agent
87 in a marine disease (8). Field surveys demonstrate that DaScPc is consistently associated with
88 scuticociliatosis in *D. antillarum* populations throughout the Caribbean (7, 11). The disease
89 appears to be restricted to urchins within the Diadematidae family, with no reports in other co-
90 occurring urchin families (12). Recent studies further indicate that DaScPc may affect a broader
91 range of Diadematidae species across geographically disparate regions, underscoring its
92 expanding ecological relevance (9, 13–20). Beyond its ecological impact, DaScPc represents a
93 rare and valuable system in marine disease research, as the causative pathogen has been
94 unequivocally identified and experimentally validated.

95 Despite this clarity regarding its pathogenicity, the environmental distribution of DaScPc
96 remains poorly understood. The ciliate has been detected on a range of invertebrates, marine
97 plants, and abiotic surfaces through swab surveys at both currently and recently affected sites (7).
98 Among these detections, corals, particularly the starlet coral (*Siderastrea siderea*), consistently
99 yielded DaScPc sequences, whereas turf algae and the sponge *Ircinia campana* exhibited more
100 sporadic occurrences. These patterns are thought to reflect the availability of dissolved organic

101 matter (DOM) on these surfaces rather than active infection by the ciliate (21). However, the
102 relationships among DOM concentration, bacterial abundance, and DaScPc proliferation have
103 not been empirically investigated. Accordingly, it remains uncertain whether the presence of
104 DaScPc on these substrates represents a potential environmental reservoir or a future risk to *D.*
105 *antillarum* or other Diadematidae species (7).

106 The present study investigates the ecological dynamics of DaScPc through two
107 complementary approaches. First, we conducted temporal sampling at a coastal site near the
108 location where the original DaScPc culture was isolated to test the hypothesis that DaScPc
109 abundance in the plankton and on coral surfaces varies with fluctuations in primary producer
110 biomass and dissolved organic carbon (DOC) concentration. Second, we examined associations
111 between DaScPc and sympatric surfaces, including corals, across two geographically distinct
112 sites: Panama, a region unaffected by the 2022 *Diadema antillarum* die-off but historically
113 significant as the epicenter of the species' initial mass mortality event in 1982 (22, 23); and
114 Réunion Island (Western Indian Ocean), the most geographically distant site from the Caribbean
115 where DaScPc-linked scuticociliatosis was reported in autumn 2023 (20). By combining high-
116 resolution temporal sampling with geographically broad surveys, this study aims to improve
117 understanding of DaScPc biogeography, environmental associations, and potential links to mass
118 mortality events.

119

120 **Methods**

121 Assessment of Swab Efficiency for DaScPc Recovery

122 To evaluate the detection threshold for DaScPc in swab surveys, we conducted an aquarium
123 experiment that mimics natural coral sampling conditions. Twelve fragments of *Astrangia*
124 *poculata* were maintained in artificial seawater (Instant Ocean) under a 12-hour light/dark cycle.
125 Fragments were transferred individually into 500 mL beakers containing artificial seawater and
126 inoculated in triplicate with 0 (media only), 30, 300, or 3,000 cells of DaScPc culture FWC2.
127 After a 2-hour incubation, coral surfaces were swabbed following the same procedure used in
128 field collections. Swabs were held in dry transport tubes for 30 minutes to simulate field
129 transport, then fixed in RNAlater for one hour prior to extraction. To compare swab recovery
130 efficiency to known cell counts, we quantified 28S rRNA gene copy number in a dilution series
131 of actively growing DaScPc FWC2 (6–600 cells) using quantitative PCR as described below.

132

133 Temporal Survey of DaScPc and Related Ciliates

134 A 16-month time series (August 2023–December 2024) was conducted at Sunset Park, Grassy
135 Key, FL, USA (24.759°N, 80.967°W), near the original site where the DaScPc FWC2 culture
136 was isolated (8). The site, characterized by shallow water (0.5–1.2 m) and abundant coral
137 colonies, was sampled every 2–3 months (n = 7).

138 During each sampling event, 0.6–2.0 L of seawater was filtered through 47 mm, 2.7 μ m
139 GF/D filters (Whatman) to capture planktonic ciliates (>2.7 μ m). Filters were immediately
140 frozen on dry ice, transported to the laboratory, and stored at –80°C until extraction. Duplicate
141 filtrate samples (50 mL) were collected to quantify inorganic nutrient concentrations (NO₃[–] +
142 NO₂[–], NO₂[–], PO₄^{3–}, NH₄⁺, and Si) at the Chesapeake Bay Laboratory Nutrient Analytical Services
143 Laboratory. Water temperature, salinity, pH, and dissolved oxygen were recorded *in situ* using a
144 handheld YSI ProDSS (Xylem Inc.). Additional filtrate samples were collected into pre-
145 combusted glass vials (1.2 μ m GF/F pre-filtration), acidified with 150 μ L HCl, and analyzed for
146 dissolved organic carbon (DOC) at the same facility (24).

147 Concurrent with water sampling, a ~0.39 km² area was surveyed by two snorkelers for 1–
148 2 hours to collect swabs from coral, sponge, and macroalgal surfaces. Between 18–76 swabs
149 were collected per event (total n = 252; Table 1), depending on local substrate abundance. Each
150 specimen was photographed *in situ* using a GoPro camera for identification. Swabs (Puritan Dry
151 Transport Systems) were rubbed gently over ~2 cm² of each surface and returned to dry transport
152 tubes. Onshore, swab tips were clipped into cryovials containing RNAlater and transported to
153 Cornell University at ambient temperature for molecular analysis.

154

155 Survey of Sympatric Reservoirs at Affected and Unaffected Sites

156 To evaluate broader biogeographic patterns, we sampled additional coastal sites in Panama—
157 Galeta (9.40°N, 79.86°W) and Taboga (8.78°N, 79.53°W)—and at Réunion Island, France (Port
158 Sainte-Rose, 21.12°S, 55.79°E; Étang-Salé, 21.26°S, 55.33°E). Swabs were collected in August
159 2023 (Panama) and December 2023 (Réunion) following the protocol described in (7). In
160 Panama, samples were stored at –80°C for approximately eight months prior to shipment at room
161 temperature. Samples from Réunion were shipped in RNAlater and processed immediately upon
162 arrival at Cornell University. In total, 44 specimens were collected from Galeta (Panama), 25

163 from Taboga (Panama), and 35 from Réunion (France) (Table S2). Swabbed substrates varied
164 among sites depending on local benthic assemblages.

165

166 DNA Extraction

167 All swab samples (from Grassy Key, Panama, and Réunion) were processed identically. Swabs
168 were removed from RNAlater, transferred into Bead Basher tubes (Zymo Research), and
169 homogenized by bead beating as part of the Quick-DNA Tissue/Insect Miniprep Kit (Zymo
170 Research), followed by extraction per the manufacturer's instructions.

171 For planktonic samples, thawed GF/D filters were sectioned with heat-sterilized razor blades,
172 and half of each filter was extracted using the same Zymo protocol. DNA concentrations were
173 quantified by the Quant-iT PicoGreen dsDNA Assay Kits (Invitrogen) using an ABI StepOne
174 Real-Time PCR instrument.

175

176 DaScPc Detection

177 DaScPc presence was determined using a combination of quantitative PCR (qPCR), nested PCR,
178 and phylogenetic validation.

179 *Quantitative PCR (qPCR)*: Each reaction contained 1 µL of template DNA, 1× SSO Probes
180 Supermix (Bio-Rad), and 200 nM each of primers Phil-28SF and Phil-28SR and probe Phil-28S-
181 Pr (FAM-TAMRA labeled), targeting the DaScPc 28S rRNA gene (7, 8). Duplicate reactions per
182 sample were compared against 28S rRNA oligonucleotide standards (10–10⁸ copies per
183 reaction). Samples were considered positive when both replicates exceeded the detection
184 threshold (>10² copies per reaction) based on the detectability of the oligonucleotide standards
185 (Fig. 1) and (7).

186 *Nested PCR and Sanger Sequencing*: All qPCR-positive samples were amplified using primers
187 384F/1147R (25), followed by a nested reaction with primers scutico-634F (7) and 1147R.
188 Amplicons were visualized on agarose gels, purified with Clean & Concentrator-5 columns
189 (Zymo Research), and sequenced at the Cornell Biotechnology Resource Center.

190 *Phylogenetic Analyses*: Sequences were trimmed and compared to the NCBI non-redundant (nr)
191 database using BLASTn (26). Sequences with >92% identity to known scuticociliates were
192 aligned with reference taxa using MUSCLE (Edgar 2004). Phylogenetic reconstruction
193 employed neighbor-joining analysis with the Kimura 2-parameter model and gamma-distributed

194 rate variation in MEGA X (27). Samples clustering within the DaScPc FWC2 clade were
195 classified as DaScPc-positive; those clustering within the *Acropora*/CHN/2009 lineage
196 (HM030718.1, HM030719.1) were designated as *Philasteridae* sp. (28).

197

198 Estimation of Macroalgal Cover, algal identification, and Coral Proximity
199 GoPro photographs of swabbed sites were analyzed to estimate macroalgal cover and proximity
200 to coral tissue. Ten images per sampling event were randomly selected and scored according to
201 algal contact: (1) overlapping coral, (2) within 5 cm but not touching, or (3) >5 cm away or
202 absent. Percent algal cover was calculated for all algae combined and by individual morphotypes
203 where discernible. Dominant algae from December 2024 were collected for taxonomic
204 identification by snorkeling. Briefly, algal pieces were clipped and placed into Whirl-Pak bags
205 (Whirl-Pak) until processing. After surveying, algal pieces were placed into 5 mL cryovials
206 (VWR), placed in 2 mL of RNAlater, and immediately frozen until further processing. Snippets
207 were extracted using the Quick-DNA Fecal/Soil Miniprep Kit (Zymo Research) and amplified
208 with eukaryotic 18S rRNA primers eukA and eukB (29). Amplicons were Sanger-sequenced and
209 taxonomically classified via BLASTn searches against the NCBI nr database. Phylogenetic
210 reconstruction was done first by aligning the 18S rRNA gene (MUSCLE (53)), then using
211 neighbor joining and the Kimura-2 model of substitution and gamma-distributed sites in
212 MEGAX (27).

213

214 Statistical Analyses

215 All statistical analyses were performed in R (v4.3.1) (30). Data visualization employed the
216 package ggplot2 (31, 32). Nonparametric comparisons between sample groups were conducted
217 using Wilcoxon rank-sum tests implemented in the stats package (v3.6.2). Linear regression lines
218 were generated using *geom_smooth* and the method *lm* within the *ggplot* function (31, 32).

219

220 **Results**

221 Swab Recovery Efficiency

222 Of the twelve *Siderastrea siderea* fragments incubated with the DaScPc culture FWC2,
223 three produced positive qPCR amplicons (Fig. 1). The mean 28S rRNA copy number across the
224 culture dilution series was $3.33 \pm 0.37 \times 10^5$ copies cell⁻¹ during exponential growth. In contrast,

225 total copies detected from coral fragment swabs ranged between 0.10 and 2.48×10^5 , indicating
226 that only single cells or cell fragments were recovered. Because ribosomal copy number can vary
227 substantially between cultured and environmental cells (33), cell-based quantification was not
228 attempted. Nonetheless, these data suggest that field-based swab surveys likely underestimated
229 the true environmental abundance of DaScPc.

230

231 Environmental Conditions at Grassy Key

232 Environmental monitoring at Grassy Key spanned from August 2023 to December 2024.
233 Water temperature showed strong seasonality, ranging from winter lows near 21 °C to summer
234 highs above 33°C. Salinity remained stable (33–36), consistent with euhaline conditions. pH was
235 relatively constant (8.3–8.4) through mid-2024 but declined to 7.65–7.93 in late 2024. Dissolved
236 oxygen (DO) remained supersaturated (117–167%), likely reflecting persistent wind-driven
237 mixing (Fig. 2; Table S1).

238 Chlorophyll *a* followed a seasonal trend, with lowest concentrations in winter and peaks
239 between spring and fall. The highest recorded value occurred in November 2023 (1.5 $\mu\text{g L}^{-1}$),
240 coinciding with elevated phycoerythrin (2.55 $\mu\text{g L}^{-1}$; Fig. 2). A pronounced DOC spike (28 mg
241 L^{-1}) was also observed that month, consistent with storm-related runoff and sediment
242 resuspension documented in field notes (Table S1). Outside this event, DOC remained below 4
243 mg L^{-1} . Dissolved inorganic nutrients ($\text{NO}_2^- + \text{NO}_3^-$ and Si) were generally low (0.003–0.012 mg
244 L^{-1}), while NO_3^- and PO_4^{3-} were below detection limits throughout the study period (Table S1).

245

246 Temporal Dynamics of DaScPc at Grassy Key

247 A total of 65 swab specimens collected between August 2023 and December 2024
248 yielded 28S rRNA qPCR amplicons, the vast majority of which ($n = 60$) were collected from
249 *Siderastrea siderea*, while the rest were from turf algae (Table S2). No positive detections were
250 obtained from sponge, seagrass, or other substrates.

251 Sequencing of qPCR-positive amplicons identified 10 specimens clustering with DaScPc,
252 44 with the *Acropora*/CHN/2009 clade, and one unrelated ciliate (Fig. 3). DaScPc was first
253 detected in February 2024 and persisted intermittently through December 2024, absent only in
254 June 2024. Plankton samples yielded qPCR amplicons in four months, but 18S rRNA sequencing

255 confirmed DaScPc in only two instances (November 2023 and February 2024). An additional
256 plankton amplicon from June 2024 clustered with *Acropora*/CHN/2009 (Fig. 2).

257 Median qPCR copy numbers did not differ significantly among DaScPc-positive,
258 *Acropora*/CHN/2009-positive, and other ciliate sequences (Wilcoxon $P > 0.05$; Fig. 4).
259 Correlations between DaScPc prevalence and measured environmental parameters were not
260 statistically significant. However, qualitative trends were observed: DOC and chlorophyll *a* both
261 peaked in November 2023, coincident with the first DaScPc detection in the planktonic fraction,
262 while *Acropora*/CHN/2009 prevalence increased through spring 2024 and declined after summer
263 (Fig. 2).

264

265 Macroalgal Associations

266 Dominant macroalgae at the site were identified by 18S rRNA sequencing as *Laurencia*
267 *filiformis*, *Spyridia filamentosa*, *Dasya hutchinsiae*, *Asparagopsis taxiformis*, and the green alga
268 *Caulerpa verticellata* (Fig. 5). Algal proximity scores did not differ significantly between
269 DaScPc-positive and negative corals ($P > 0.05$; Fig. 6). Nevertheless, seasonal fluctuations in
270 percent cover of *L. filiformis* corresponded with temporal variation in both DaScPc and
271 *Acropora*/CHN/2009 detection (Fig. 7), suggesting potential indirect links between algal bloom
272 dynamics and ciliate occurrence (Fig 7B; *Acropora*/CHN/2009 $r=0.6$, DaScPc $r=0.63$).

273

274 Surveys from Réunion and Panama

275 Swab surveys from Réunion and Panama yielded four qPCR-positive specimens: two
276 *Siderastrea siderea* and one *Pseudodiploria labyrinthiformis* from Galeta (Panama), and one
277 *Lepastrea purpurea* exhibiting black band disease from Étang-Salé (Réunion) (Table S1).
278 Sequencing clustered all four sequences with *Acropora*/CHN/2009 rather than DaScPc,
279 indicating the absence of confirmed DaScPc detections at either location (Fig. 3).

280

281 **Discussion**

282 The finding that DaScPc, a ciliate responsible for the mass mortality of the keystone
283 herbivore *Diadema antillarum*, can persist in marine environments independently of its known
284 host is an important step in understanding its disease ecology. Ciliates are fundamental
285 components of the microbial loop, serving as essential energy conduits in marine food webs (2).

286 3). However, this ecologically vital group also includes significant pathogens, whose
287 environmental presence dictates the reemergence of marine diseases (34). Our positive detections
288 confirmed by Sanger sequencing at Grassy Key (FL, USA), a site absent of *D. antillarum*,
289 demonstrates that *DaScPc* is a natural presence in coastal and coral reef ecosystems, challenging
290 the assumption that it is solely dependent on its urchin host. By utilizing molecular methods like
291 qPCR and nested PCR, we were able to survey multiple putative environmental niches and
292 improve detection confidence. The detection of *DaScPc* on coral surfaces, macroalgae, and in the
293 water column shows that *DaScPc* can utilize multiple environmental reservoirs (7). This finding
294 supports the emerging consensus that the environmental persistence and dispersal of protistan
295 pathogens are critical, often cryptic, factors in disease dynamics (34, 35), and establishes a
296 foundation and key considerations for effective disease monitoring and reef conservation.

297 Our molecular surveillance provides crucial insights into the ecological niche of *DaScPc*,
298 highlighting a strong benthic association and potential dependence on primary production. The
299 increased detection of *DaScPc* on coral surfaces and in the plankton fraction, often co-occurring
300 with the closely related ciliate *Acropora/CHN/2009* (28), suggests a presence in the benthic
301 microbial community that does not necessarily equate to host disease. This observation aligns
302 with the dual role of ciliates in marine systems, both as trophic links and potential cryptic
303 pathogens (3, 34).

304 The temporal patterns we observed, where *DaScPc* prevalence was associated with
305 periods of benthic primary production such as macroalgal blooms, supports the Dissolved
306 Organic Carbon (DOC), Disease, Algae, and Microbes (DDAM) model (21). The DDAM model
307 posits that DOC released by fleshy macroalgae drives the proliferation of opportunistic microbes,
308 including potential pathogens. Our finding that *DaScPc* was observed during these productive
309 periods, even without association with host disease, suggests the ciliate may be an opportunistic
310 heterotroph that leverages these nutrient pulses (36, 37). Detection in the plankton fraction
311 during the less productive fall and winter seasons is likely to reflect resuspension from these
312 benthic surfaces (38) or transient growth on free-living microbial prey, rather than suggesting
313 that sediments are a primary reservoir.

314 Our geographic findings emphasize the complexities of marine pathogen epidemiology,
315 particularly the concept of the environmental reservoir. The positive detections at Grassy Key
316 confirm the ability of *DaScPc* to persist in the absence of the host (*D. antillarum*), underscoring

317 the potential role of benthic substrates in disease maintenance. This is supported by the high
318 detection rates on *Siderastrea siderea*, corroborating earlier work that suggested corals can act as
319 reservoirs for DaScPc (Hewson et al., 2023; Vilanova-Cuevas et al., 2025b). However, the
320 absence of DaScPc from sites in Panama and Réunion, where previous outbreaks were
321 suspected, highlights spatial patchiness in its distribution or an opportunistic lifestyle.

322 This sporadic detection aligns with the predicted dynamics of protistan pathogens that
323 may follow a "boom and bust" lifecycle (39–43). Under this model, the pathogen maintains a
324 low, cryptic environmental abundance (a 'bust' phase) that is difficult to detect, interspersed with
325 rapid population explosions (a 'boom' phase) often triggered by environmental shifts. The lack of
326 detection outside our focal site may be due to this low cell abundance, suggesting a conservation
327 of detection effort is warranted when surveying the environmental pool of a potentially rare or
328 transient protist (40). The unresolved question of whether DaScPc is a stable component of the
329 coral microbiome or primarily a transient environmental occupant remains an area for future
330 research.

331 The lack of a clear, instantaneous relationship between DaScPc prevalence and measured
332 physicochemical factors (e.g., salinity, instantaneous temperature) suggests that the ciliate's
333 occurrence may be driven less by short-term water conditions and more by broader, chronic
334 environmental disturbances or productivity shifts (21, 40, 43). This aligns with the complex
335 ecological landscape of microbial pathogens, where multiple stressors often interact to facilitate
336 disease outbreaks (44–46). Thermal tolerance is a major constraint for many marine organisms
337 (47–50), and extreme events like the 2023 Caribbean heatwave could limit DaScPc abundance
338 (51, 52). However, our positive detections in subsequent high-temperature periods indicate that
339 temperature alone may not be the sole determinant of its presence. Instead, factors such as
340 nutrient loading, shifts in the microbial food web, and host density likely interact to dictate
341 whether the ciliate maintains a stable reservoir population or initiates an outbreak (8). Future
342 work should focus on longitudinal, high-frequency sampling to better link these broad
343 environmental shifts with changes in DaScPc's environmental abundance and subsequent disease
344 emergence.

345 **Limitations**

346 Several methodological and logistical limitations must be considered when interpreting
347 these results. Swab-based qPCR detection requires a minimum cell threshold, meaning non-

348 detections cannot be taken as evidence of true absence. Confirmed positives via Sanger
349 sequencing provide stronger support for presence but are limited by sample size. Sample
350 preservation, nucleic acid extraction efficiency, and potential cell loss in RNALater may have
351 influenced detection rates. Additionally, qPCR can produce false positives, emphasizing the need
352 for sequencing-based confirmation in environmental surveys.

353 Spatial and temporal coverage was limited, potentially underestimating the full ecological
354 distribution of *DaScPc*. Limited detections at sites with previous putative outbreaks suggest that
355 the ciliate may be environmentally passive in some contexts, underscoring the need for
356 expanded, longitudinal surveys. While corals were the primary positive substrate, it remains
357 unclear whether *DaScPc* is a stable component of the coral microbiome or functions primarily as
358 a transient occupant within reef habitats.

359 **Conclusions**

360 This study shifts the understanding of *DaScPc* by demonstrating that this ciliate is a
361 naturally occurring component of the coral reef environment, capable of environmental
362 persistence independent of its host, *Diadema antillarum* (7). Molecular detection on benthic
363 surfaces and in the plankton fraction, particularly at urchin-free sites, confirms that corals and
364 macroalgae serve as crucial natural reservoirs, supporting the broader epidemiological concept
365 that protistan pathogens maintain populations between host-mortality events. Our findings reveal
366 a critical link between *DaScPc*'s presence and the microbial food web. Detection during
367 macroalgal blooms is consistent with the DDAM model, suggesting that environmental
368 productivity and dissolved organic carbon availability may be key factors governing population
369 dynamics. This environmental association, along with the co-occurrence of the non-pathogenic
370 ciliate *Acropora/CHN/2009*, underscores the ecological complexity of this microbial group and
371 the need to distinguish a ciliate's general ecological role from its pathogenic potential.
372 The demonstrated ecological flexibility of *DaScPc* implies that its parasitic interactions are
373 intermittent and governed by poorly constrained environmental or host-related circumstances.
374 This necessitates a transition to high-resolution surveillance. Future research must focus on
375 clarifying the feeding ecology of *DaScPc* and the specific environmental triggers that govern its
376 shift from an innocuous reservoir state to an outbreak phase. Expanded, longitudinal surveys of
377 macroalgal blooms, nutrient fluxes, and temperature anomalies are essential to forecasting ciliate
378 distribution and mitigating disease reemergence in vulnerable coral reef ecosystems.

379

380 **Acknowledgements**

381 A portion of this work was funded by the Simons Foundation Marine Microbiology Postdoctoral
382 Fellowship and the Department of Biological Sciences and College of Liberal Arts and Sciences
383 at Northern Illinois University to M.W.H. This work was supported by NSF award OCE-
384 2049225 awarded to I.H., and NSF award OCE- awarded to I.H. and M.W.H. Sampling was
385 performed at Grassy Key under permit SAL-23-2564-SR from the Florida Fish and Wildlife
386 Conservation Commission. Samples from Panama were collected under permit ARBG-073-2022
387 from the Ministerio de Ambiente, Panama. Samples from Réunion were collected with
388 permission from the Service Eau & Biodiversité, Direction de l'environnement de
389 l'aménagement et du logement, Prefet de la Région Réunion.

390

391 **Data Availability**

392 Physicochemical characteristics at the Grassy Key site are provided in Supplemental Table 1.
393 qPCR detection and Sanger sequence identities after provided in Supplemental Table 2.
394 Sequence data have been deposited at NCBI GenBank under accessions PV505242-PV505300.

395

396 **References**

- 397 1. Strom SL. 2000. Bacterivory: Interactions between bacteria and their grazers, p. . *In*
398 Kirchman, DL (ed.), *Microbial Ecology of the Oceans*. Wiley-Liss, New York.
- 399 2. Sherr EB, Sherr BF. 1994. Bacterivory and herbivory: Key roles of phagotrophic protists in
400 pelagic food webs. *Microb Ecol* 28:223–235.
- 401 3. Pierce, Richard W and Turner, Jefferson T. 1992. Ecology of Planktonic Ciliates in Marine
402 Food Webs. *Reviews in Aquatic Sciences* 6:139–181.
- 403 4. Fey SB, Siepielski AM, Nusslé S, Cervantes-Yoshida K, Hwan JL, Huber ER, Fey MJ,
404 Catenazzi A, Carlson SM. 2015. Recent shifts in the occurrence, cause, and magnitude of
405 animal mass mortality events. *Proc Natl Acad Sci U S A* 112:1083–1088.
- 406 5. Retallack H, Okihiro MS, Britton E, Van Sommeran S, DeRisi JL. 2019. Metagenomic
407 next-generation sequencing reveals *Miamensis avidus* (Ciliophora: Scuticociliatida) in the
408 2017 Epizootic of leopard sharks (*Triakis semifasciata*) in San Francisco Bay, California,
409 USA. *J Wildl Dis* 55:375–386.
- 410 6. Crosbie PB, Munday BL. 1999. Environmental factors and chemical agents affecting the
411 growth of the pathogenic marine ciliate *Uronema nigricans*. *Dis Aquat Organ* 36:213–219.

412 7. Vilanova-Cuevas B, Philipp KH, Altera AK, Apprill A, Becker CC, Behringer DC, Brandt
413 ME, Breitbart M, Budd KA, DeRito CM, Duermit-Moreau E, Evans JS, Hopson-Fernandes
414 M, Fleischer JA, Gittens S Jr, Henson MW, Hylkema A, Kellogg CA, Maritan AJ, Meyer
415 JL, Pratte ZA, Ritchie IT, Sevier MLB, Souza M, Stewart FJ, Van Der Wal S, VonHoene S,
416 Hewson I. 2025. Detection of the *Diadema antillarum* scuticociliatosis Philaster clade on
417 sympatric metazoa, plankton, and abiotic surfaces and assessment for its potential
418 reemergence. *Mar Ecol Prog Ser* 753:19–35.

419 8. Hewson I, Ritchie IT, Evans JS, Altera A, Behringer D, Bowman E, Brandt M, Budd KA,
420 Camacho RA, Cornwell TO, Countway PD, Croquer A, Delgado GA, DeRito C, Duermit-
421 Moreau E, Francis-Floyd R, Gittens S Jr, Henderson L, Hylkema A, Kellogg CA, Kiryu Y,
422 Kitson-Walters KA, Kramer P, Lang JC, Lessios H, Liddy L, Marancik D, Nimrod S,
423 Patterson JT, Pistor M, Romero IC, Sellares-Blasco R, Sevier MLB, Sharp WC, Souza M,
424 Valdez-Trinidad A, van der Laan M, Vilanova-Cuevas B, Villalpando M, Von Hoene SD,
425 Warham M, Wijers T, Williams SM, Work TM, Yanong RP, Zambrano S, Zimmermann A,
426 Breitbart M. 2023. A scuticociliate causes mass mortality of *Diadema antillarum* in the
427 Caribbean Sea. *Sci Adv* 9:eadg3200.

428 9. Ritchie IT, Vilanova-Cuevas B, Altera A, Cornfield K, Evans C, Evans JS, Hopson-
429 Fernandes M, Kellogg CA, Looker E, Taylor O, Hewson I, Breitbart M. 2024. Transglobal
430 spread of an ecologically relevant sea urchin parasite. *ISME J* 18:wrae024.

431 10. Vega Thurber R, Hay M. 2023. Mystery solved? Disease detectives identify the cause of a
432 mass die-off in the sea. *Sci Adv* 9:eadh5478.

433 11. Vilanova-Cuevas BY, Reyes-Chavez B, Breitbart M, Hewson I. 2023. Design and
434 validation of a PCR protocol to specifically detect the clade of *Philaster* sp. associated
435 with *Diadema antillarum* scuticociliatosis. *bioRxiv*.

436 12. Hylkema A, Kitson-Walters K, Kramer PR, Patterson JT, Roth L, Sevier MLB, Vega-
437 Rodriguez M, Warham MM, Williams SM, Lang JC. 2023. The 2022 *Diadema antillarum*
438 die-off event: Comparisons with the 1983–1984 mass mortality. *Front Mar Sci* 9.

439 13. Gokoglu M, Çağiltay F, Gürdal M, Yıldız A. 2023. The last observation of the long-spined
440 exotic Sea Urchin (*Diadema setosum*) in the Gulf of Antalya. *Acta Aquat Aquat Sci J*
441 10:275–278.

442 14. Zirler R, Schmidt L-M, Roth L, Corsini-Foka M, Kalaentzis K, Kondylatos G, Mavrouleas
443 D, Bardanis E, Bronstein O. 2023. Mass mortality of the invasive alien echinoid *Diadema*
444 *setosum* (Echinoidea: Diadematidae) in the Mediterranean Sea. *R Soc Open Sci* 10:230251.

445 15. Dinçtürk E, Öndes F, Alan V, Dön E. 2024. Mass mortality of the invasive sea urchin
446 *Diadema setosum* in Türkiye, eastern Mediterranean possibly reveals *Vibrio* bacteria
447 infection. *Mar Ecol* 45.

448 16. Ghallab et al. A. 2024. Status of the sea urchin, *Diadema setosum* (echinodermata,
449 Echinoidea, diadematidae) along the Egyptian red sea coasts. *Egypt J Aquat Biol Fish*
450 28:647–655.

451 17. Roth L, Eviatar G, Schmidt L-M, Bonomo M, Feldstein-Farkash T, Schubert P, Ziegler M,
452 Al-Sawalmih A, Abdallah IS, Quod J-P, Bronstein O. 2024. Mass mortality of diadematoid
453 sea urchins in the Red Sea and Western Indian Ocean. *Curr Biol* 34:2693-2701.e4.

454 18. Skouradakis G, Vernadou E, Koulouri P, Dailianis T. 2024. Mass mortality of the invasive
455 echinoid *Diadema setosum* (Leske, 1778) in crete, East mediterranean sea. *Mediterranean*
456 *Marine Science* 25:480–483.

457 19. Demircan MD, Arslan-Aydogdu EÖ, Dalyan C, Eldem V, Gönülal O, Tüney İ. 2025.
458 Mortality event of the Mediterranean Invasive Sea Urchin *Diadema setosum* from Göksu
459 Bay (Southern Aegean Sea). *Estuar Coast Shelf Sci* 319:109290.

460 20. Quod J-P, Séré M, Hewson I, Roth L, Bronstein O. 2025. Spread of a sea urchin disease to
461 the Indian Ocean causes widespread mortalities-Evidence from Réunion Island. *Ecology*
462 106:e4476.

463 21. Haas AF, Fairoz MFM, Kelly LW, Nelson CE, Dinsdale EA, Edwards RA, Giles S, Hatay
464 M, Hisakawa N, Knowles B, Lim YW, Maughan H, Pantos O, Roach TNF, Sanchez SE,
465 Silveira CB, Sandin S, Smith JE, Rohwer F. 2016. Global microbialization of coral reefs.
466 *Nat Microbiol* 1:16042.

467 22. Lessios HA, Robertson DR, Cubit JD. 1984. Spread of diadema mass mortality through the
468 Caribbean. *Science* 226:335–337.

469 23. Lessios HA, Cubit JD, Robertson DR, Shulman MJ, Parker MR, Garrity SD, Levings SC.
470 1984. Mass mortality of *Diadema antillarum* on the Caribbean coast of Panama. *Coral Reefs*
471 3:173–182.

472 24. Halewood E, Opalk K, Custals L, Carey M, Hansell DA, Carlson CA. 2022. Determination
473 of dissolved organic carbon and total dissolved nitrogen in seawater using High
474 Temperature Combustion Analysis. *Frontiers in Marine Science* 9.

475 25. Dopheide A, Lear G, Stott R, Lewis G. 2008. Molecular characterization of ciliate diversity
476 in stream biofilms. *Appl Environ Microbiol* 74:1740–1747.

477 26. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997.
478 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
479 *Nucleic Acids Res* 25:3389–3402.

480 27. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary
481 genetics analysis across computing platforms. *Mol Biol Evol* 35:1547–1549.

482 28. Qiu D, Huang L, Huang H, Yang J, Lin S. 2010. Two functionally distinct ciliates dwelling
483 in *Acropora* corals in the South China Sea near Sanya, Hainan Province, China. *Appl*
484 *Environ Microbiol* 76:5639–5643.

485 29. Medlin L, Elwood HJ, Stickel S, Sogin ML. 1988. The characterization of enzymatically
486 amplified eukaryotic 16S-like rRNA-coding regions. *Gene* 71:491–499.

487 30. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high
488 throughput. *Nucleic Acids Res* 32:1792–1797.

489 31. Core Team R. 2016. R: A language and environment for statistical computing. R
490 Foundation for Statistical Computing, Vienna, Austria. <http://www.R-project.org/>.

491 32. Wickham H. 2011. *ggplot2*. Wiley Interdiscip Rev Comput Stat 3:180–185.

492 33. Ahlmann-Eltze C, Patil I. 2021. *ggsignif*: R Package for Displaying Significance Brackets
493 for “*ggplot2*.” PsyArXiv <https://doi.org/10.31234/osf.io/7awm6>.

494 34. Roller BRK, Stoddard SF, Schmidt TM. 2016. Exploiting rRNA operon copy number to
495 investigate bacterial reproductive strategies. *Nat Microbiol* 1:16160.

496 35. Weisse T, Montagnes DJS. 2022. Ecology of planktonic ciliates in a changing world:
497 Concepts, methods, and challenges. *J Eukaryot Microbiol* 69:e12879.

498 36. Ravindran C, Irudayarajan L, Raveendran HP. 2023. Possible beneficial interactions of
499 ciliated protozoans with coral health and resilience. *Appl Environ Microbiol* 89:e0121723.

500 37. Simek K, Jürgens K, Nedoma J, Comerma M, Armengol J. 2000. Ecological role and
501 bacterial grazing of *Halteria* spp.: small freshwater oligotrichs as dominant pelagic ciliate
502 bacterivores. *Aquat Microb Ecol* 22:43–56.

503 38. Pernthaler J. 2005. Predation on prokaryotes in the water column and its ecological
504 implications. *Nat Rev Microbiol* 3:537–546.

505 39. Cotner JB, Johengen TH, Biddanda BA. 2000. Intense winter heterotrophic production
506 stimulated by benthic resuspension. *Limnol Oceanogr* 45:1672–1676.

507 40. Weisse T, Scheffel U, Stadler P, Foissner W. 2013. *Bromeliothrix metopoides*, a boom and
508 bust ciliate (Ciliophora, Colpodea) from tank bromeliads. *Eur J Protistol* 49:406–419.

509 41. Grattepanche J-D, McManus GB, Katz LA. 2016. Patchiness of ciliate communities
510 sampled at varying spatial scales along the New England shelf. *PLoS One* 11:e0167659.

511 42. Pennekamp F, Mitchell KA, Chaine A, Schtickzelle N. 2014. Dispersal propensity in
512 *Tetrahymena thermophila* ciliates - a reaction norm perspective: DISPERSAL REACTION
513 NORMS OF *T. thermophila* CILIATES. *Evolution* 68:2319–2330.

514 43. Pennekamp F. 2014. Swimming with ciliates: dispersal and movement ecology of
515 *Tetrahymena thermophila*.

516 44. Brans V, Manzi F, Jacob S, Schtickzelle N. 2024. Demography and movement patterns of a
517 freshwater ciliate: The influence of oxygen availability. *Ecol Evol* 14:e11291.

518 45. Burge CA, Mark Eakin C, Friedman CS, Froelich B, Hershberger PK, Hofmann EE, Petes
519 LE, Prager KC, Weil E, Willis BL, Ford SE, Harvell CD. 2014. Climate change influences

520 on marine infectious diseases: implications for management and society. *Ann Rev Mar Sci*
521 6:249–277.

522 46. Altizer S, Ostfeld RS, Johnson PTJ, Kutz S, Harvell CD. 2013. Climate change and
523 infectious diseases: from evidence to a predictive framework. *Science* 341:514–519.

524 47. Byers JE. 2021. Marine parasites and disease in the era of global climate change. *Ann Rev*
525 *Mar Sci* 13:397–420.

526 48. Weisse T, Pröschold T, Kammerlander B, Sonntag B, Schicker L. 2024. Numerical and
527 thermal response of the bacterivorous ciliate *Colpidium kleini*, a species potentially at risk
528 of extinction by rising water temperatures. *Microb Ecol* 87:89.

529 49. Krenek S, Petzoldt T, Berendonk TU. 2012. Coping with temperature at the warm edge--
530 patterns of thermal adaptation in the microbial eukaryote *Paramecium caudatum*. *PLoS One*
531 7:e30598.

532 50. Seidel L, Broman E, Nilsson E, Ståhle M, Ketzer M, Pérez-Martínez C, Turner S, Hylander
533 S, Pinhassi J, Forsman A, Dopson M. 2023. Climate change-related warming reduces
534 thermal sensitivity and modifies metabolic activity of coastal benthic bacterial communities.
535 *ISME J* 17:855–869.

536 51. Smith KE, Burrows MT, Hobday AJ, King NG, Moore PJ, Sen Gupta A, Thomsen MS,
537 Wernberg T, Smale DA. 2023. Biological impacts of marine heatwaves. *Ann Rev Mar Sci*
538 15:119–145.

539 52. Manzello DP, Cunning R, Karp RF, Baker AC, Bartels E, Bonhag R, Borreil A, Bourque A,
540 Brown KT, Bruckner AW, Corbett B, D'Alessandro M, Dahlgren C, Dilworth J, Geiger E,
541 Gilliam DS, Gomez M, Hanson G, Harrell C, Hesley D, Huebner LK, Kenkel CD, Koch
542 HR, Kuehl J, Kuffner IB, Ladd MC, Lee S, Lesneski KC, Lewan A, Lirman D, Liu G,
543 Matsuda SB, Montoya-Maya PH, Moore J, Muller EM, Nedimyer K, Parkinson JE, Ruzicka
544 R, Spadaro J, Spady BL, Stein J, Unsworth JD, Walter C, Wen ADE, Williams DE,
545 Williams SD, Williamson OM. 2025. Heat-driven functional extinction of Caribbean
546 Acropora corals from Florida's Coral Reef. *Science* 390:361–366.

547 53. Edmunds PJ, Lasker HR. 2025. A long-term perspective to the effects of the 2023 marine
548 heat wave on stony corals in the Caribbean. *Biol Lett* 21:20250388.

549

550

551

552

553

554

555

556 **Tables**

557 **Table 1:** Total number of swab specimens surveyed for the presence of DaScPc by qPCR and
558 conventional PCR.

559

	Coral	Porifera	Macroalgae									
Sampling Date			<i>Tedania ignis</i>	<i>Spheciopspongia vesparium</i>	<i>Cliona varians</i>	<i>Siderastrea siderea</i>	<i>Ircinia felix</i>	<i>Laurencia</i> sp.	<i>Penicillllus dumetosisis</i>	<i>Sargassum</i> sp.	<i>Thalassia testudinum</i>	Other
16-Aug-23	23	8	1				3			2		
19-Nov-23	18											
10-Feb-24	12	4	3	4								
6-May-24	18	2	6	3								
26-Jun-24	45	4	7	6	4	4	2	1	1	2		
7-Sep-24	21	6	1	3								
7-Dec-24	29		3	4	2							

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575 **Figure Legends**

576

577 **Figure 1:** Assessment of swab surface recovery. Zero to 3000 DaScPc culture FWC2 cells were
578 amended on *Astrangia poculata* in separate aquaria, then swabbed according to field protocols.
579 The abundance of DaScPc 28S rRNA genes was determined by qPCR. Boxes illustrate the
580 interquartile range (IQR), with whiskers indicating data extremes defined by $1.5 \times \text{IQR}$, and the
581 median shown as a horizontal line within each box.

582

583 **Figure 2:** Temporal variation in scuticociliate prevalence and environmental characteristics. (A)
584 Proportion of swabs that generated DaScPc 28S rRNA amplicons by qPCR in *Siderastrea*
585 *sidereal* (SSID) and other surfaces. qPCR positive sequences were then subject to screening
586 using nested conventional PCR; sequences that matched DaScPc and the related ciliate
587 *Acropora*/CHN/2009 (A/C/2019) were expressed as a proportion of total swabs; (B)
588 Physicochemical parameters and phytoplankton pigments (Chlorophyll a and phycoerythrin
589 (PE)) were measured at the time of sampling.

590

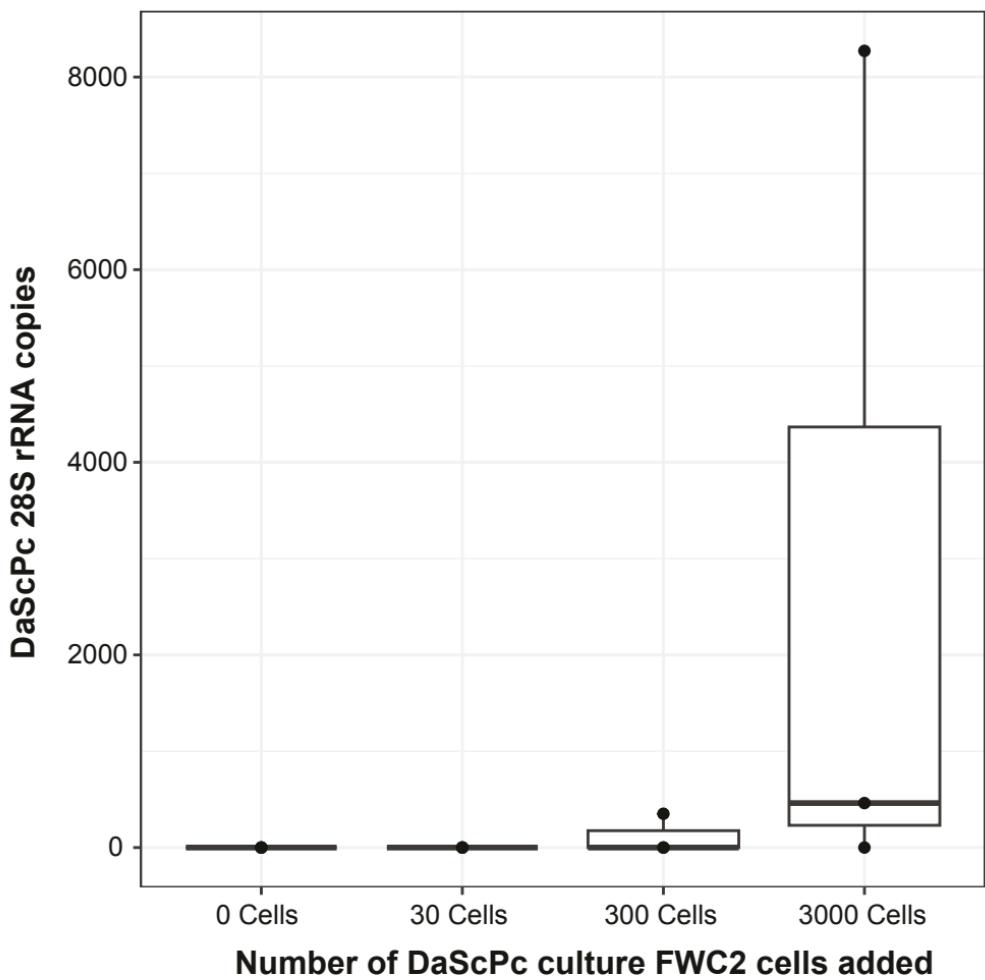
591 **Figure 3:** Phylogenetic reconstruction of scuticociliate sequences from swabs collected from
592 *Siderastrea siderea* from Grassy Key (purple), coral from Panama (green), and coral from
593 Reunion (teal). Scuticociliate sequences from planktonic samples collected at Grassy Key are
594 blue. The reconstruction was performed based on a 299 nt alignment (MUSCLE (53)) by
595 neighbor-joining, employing the Kimura-2 model and gamma substitution model for sites in
596 MEGAX with 100 bootstraps (27).

597

598 **Figure 4:** Comparison between DaScPc 28S rRNA quantity (determined by qPCR) and
599 phylogenetic affiliation of swab-derived 18S rRNA sequences (by conventional PCR). qPCR
600 quantities in swabs that did not amplify by 18S rRNA conventional PCR, yet yielded qPCR
601 detections are presented for comparison. Boxes illustrate the interquartile range (IQR), with
602 whiskers indicating data extremes defined by $1.5 \times \text{IQR}$, and the median shown as a horizontal
603 line within each box.

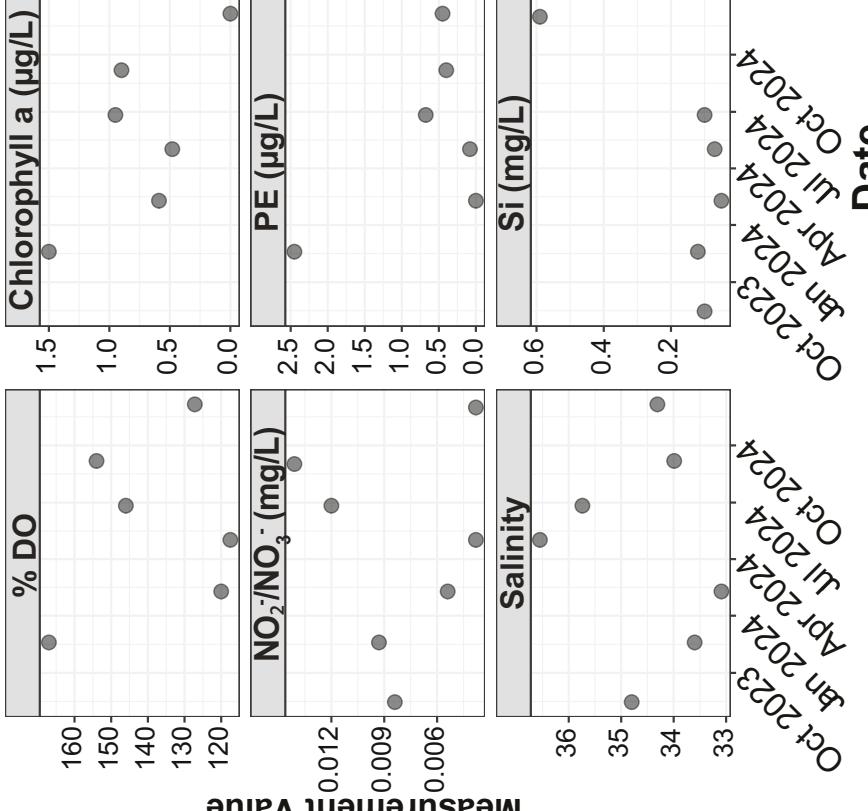
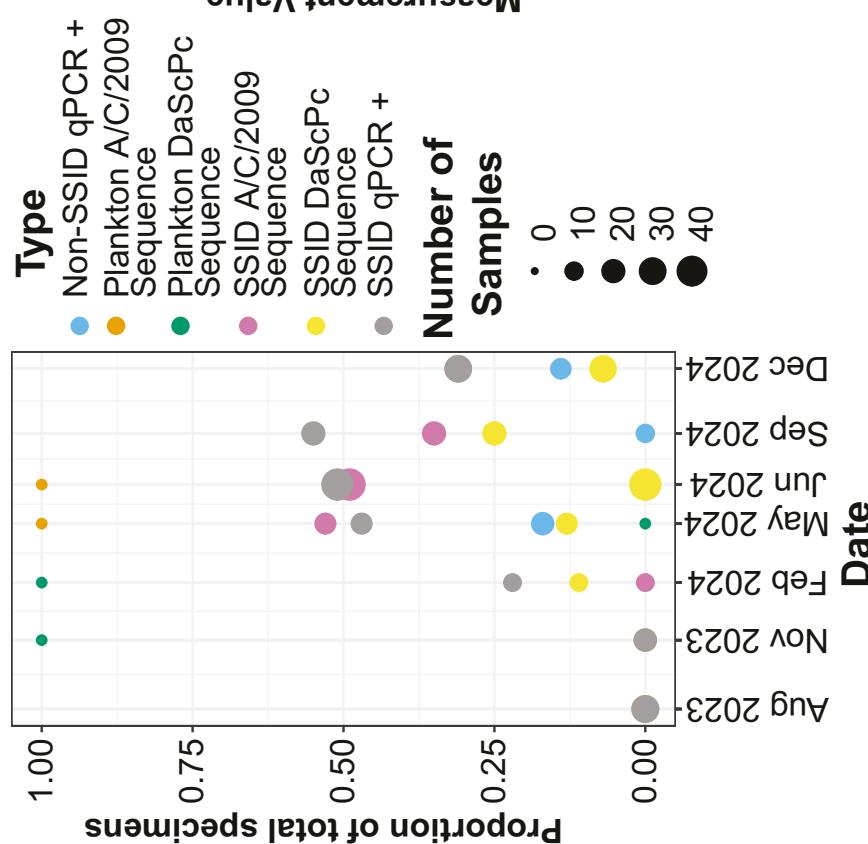
604

605 **Figure 5:** Phylogenetic representation of dominant macroalgae from Grassy Key (orange). The
606 reconstruction is based on a 680 nt alignment of the 18S rRNA gene (MUSCLE (53)) using


607 neighbor joining and the Kimura-2 model of substitution and gamma distributed sites in
608 MEGAX with 100 bootstraps (27). Samples collected from macroalgae during the observed May
609 and December 2024 blooms are designated with two astrixs (**).

610

611 **Figure 6:** Detection of DaScPc and Acropora/CHN/2009 in relation to macroalgal proximity.
612 Proximity was scored from underwater photographs (1) if the algae were touching or overlapping
613 swabbed corals; (2) were not touching but within ~5cm of corals; (3) were more than 5cm from
614 corals. Significance was determined using a Wilcoxon signed-rank test. Boxes illustrate the
615 interquartile range (IQR), with whiskers indicating data extremes defined by $1.5 \times \text{IQR}$, and the
616 median shown as a horizontal line within each box.



617

618 **Figure 7:** (A) Percent macroalgal cover and percent *Laurencia/Spyridia* cover determined from
619 underwater photographs over time. Cover was estimated from photographs (n = 10 per sampling
620 time) by randomization and manual scoring (B) Regression of (left) DaScPc 18S rRNA sequence
621 positive proportion and (right) *Acropora/CHN/2009* 18S rRNA sequence positive coral swabs
622 with % *Laurencia/Spyridia* cover. The gray zone is the 95% confidence interval.

Figure 1. Assessment of swab surface recovery. Zero to 3000 DaScPc culture FWC2 cells were amended on *Astrangia poculata* in separate aquaria, then swabbed according to field protocols. The abundance of DaScPc 28S rRNA genes was determined by qPCR. Boxes illustrate the interquartile range (IQR), with whiskers indicating data extremes defined by $1.5 \times \text{IQR}$, and the median shown as a horizontal line within each box.

A

Figure 2. Temporal variation in scuticociliate prevalence and environmental characteristics. (A) Proportion of swabs that generated DaScPc 28S rRNA amplicons by qPCR in *Siderastrea sidereum* (SSID) and other surfaces. qPCR positive sequences were then subject to screening using nested conventional PCR; sequences that matched DaScPc and the related ciliate *Acropora/CHN/2009* (A/C/2009) were expressed as a proportion of total swabs; (B) Physicochemical parameters and phytoplankton pigments (Chlorophyll a and phycoerythrin (PE)) were measured at the time of sampling.

Grassy Key (Which Was not certified by peer review) May 2024

Siderastrea siderea

Grassy Key Plankton

Panama Corals

Reunion Coral

72

D. antillarum transcriptome abnormal 18S rRNA

Sep 2024

Sep 2024

Feb 2024

Dec 2024

Sep 2024

Nov 2023

Ciliate Culture FWC2 OP896852.1

Ciliate Culture USF152 OP896850.1

Dec 2024

Feb 2024

May 2024

Sep 2024

Dec 2024

May 2024

Dec 2024

Jun 2024

Jun 2024

May 2024

Jun 2024

Jun 2024

Jun 2024

Jun 2024

May 2024

May 2024

Galeta Panama Aug 2023 *Pseudodiploria clivosa*

Dec 2024

Dec 2024

Sep 2024

Jun 2024

Jun 2024

Jun 2024

May 2024

Uncultivated Acropora/ciliate 2-1/CHN/2009 HM030718.1

Jun 2024

Jun 2024

Unc. Acropora/ciliate 2-2/CHN/2009 HM030719.1

Galeta Panama Aug 2023 *Siderastrea siderea*

Dec 2024

Sep 2024

Sep 2024

Jun 2024

Jun 2024

Jun 2024

Jun 2024

Jun 2024

Sep 2024

Sep 2024

Dec 2024

Dec 2024

May 2024

Jun 2024

Etang Sale Reunion Dec 2024 *Leptastrea purpurata*

Jun 2024

Jun 2024

Jun 2024

Jun 2024

Sep 2024

Dec 2024

Dec 2024

66

Galeta Panama Aug 2023 *Siderastrea siderea**Philaster apodigitiformis* FJ648350.1

Uncultured ciliate clone B09 GQ980332.1

Scuticociliatia sp. isolate Holi - 1 OK030521.1

Philaster lucinda KC832299.1*Philaster guamensis* JN626269.1

Dec 2024 Sponge (tedania)

Parauronema longum AY212807.1100 *Plagiopyliella pacifica* AY541685.1100 *Miamiensis avidus* KU992658.1

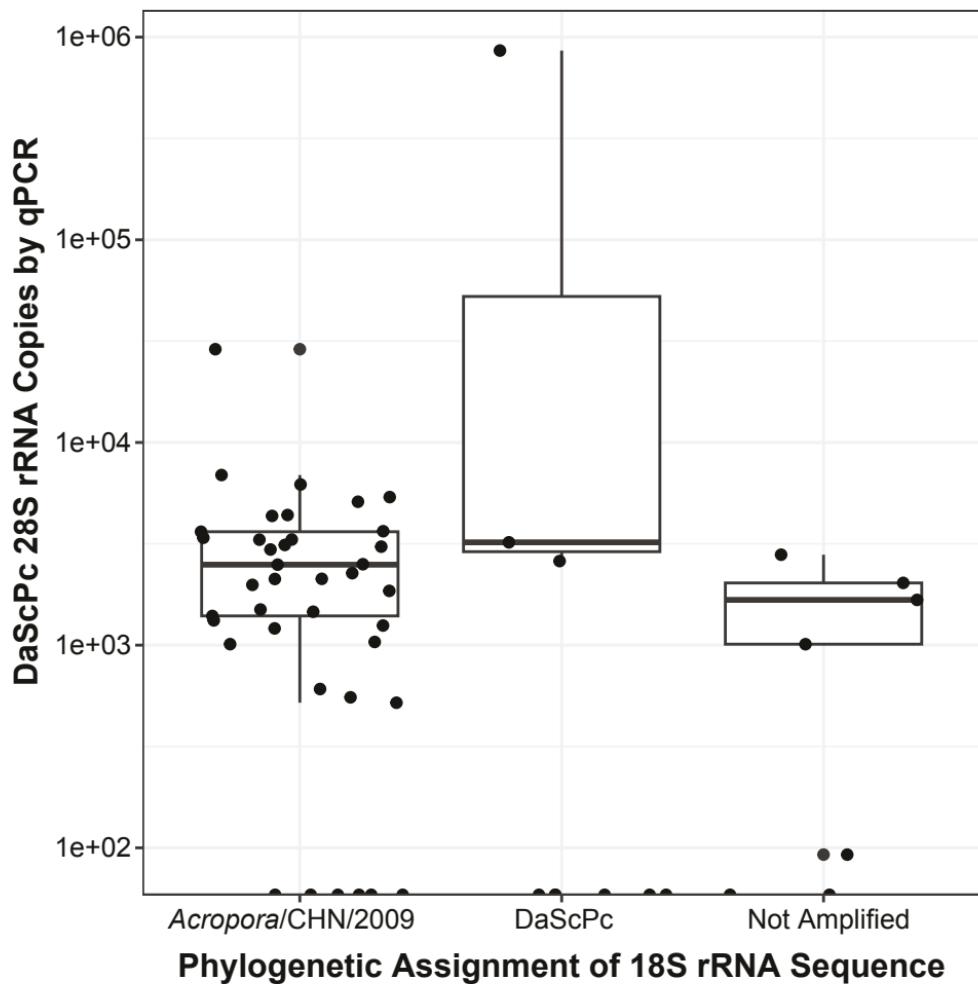
DaScPc

Acropora/CHN/2009-like Sequences

0.01

68

66


65

91

92

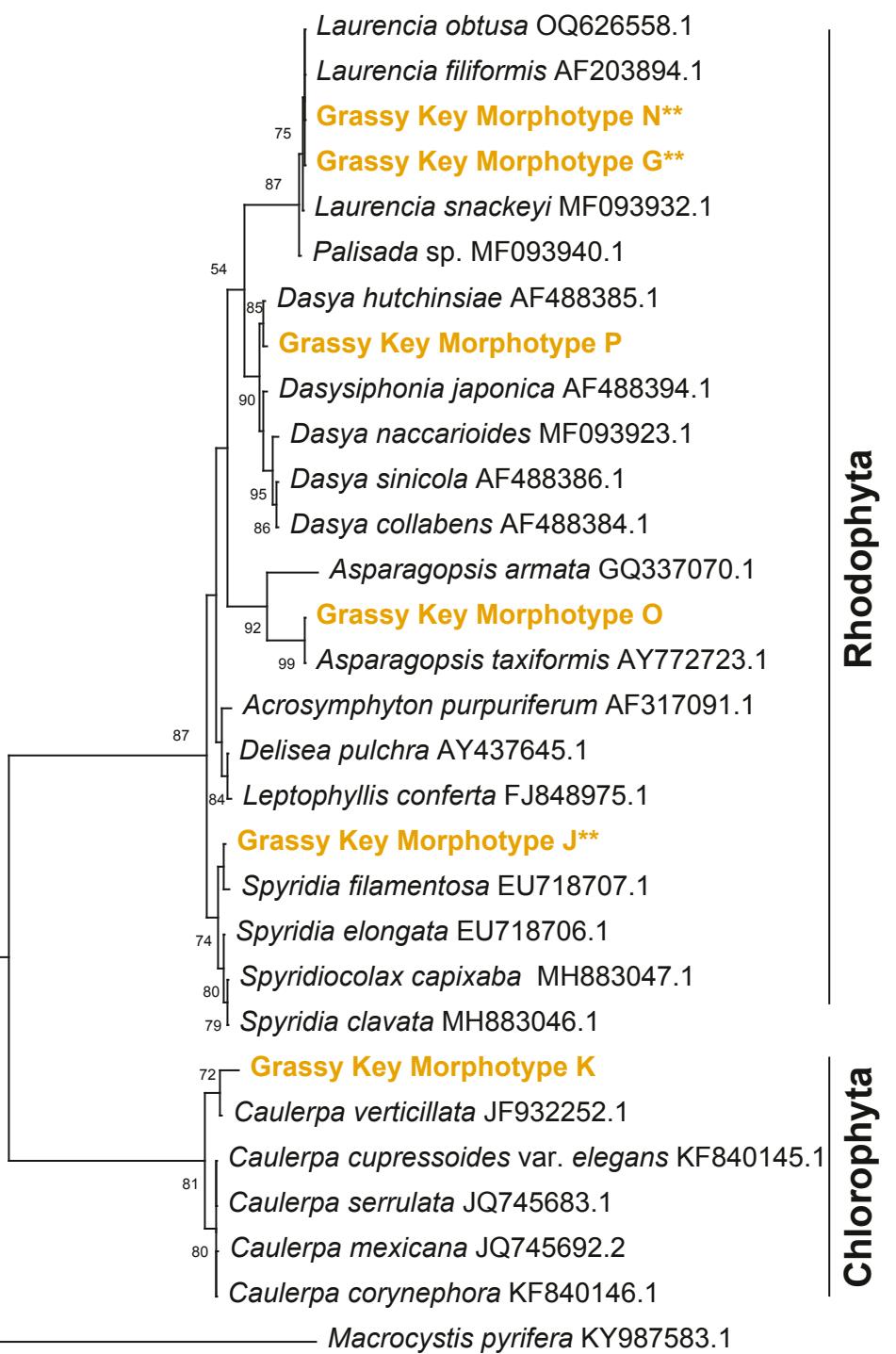

100

Figure 3. Phylogenetic reconstruction of scuticociliate sequences from swabs collected from *Siderastrea siderea* from Grassy Key (purple), coral from Panama (green), and coral from Reunion (teal). Scuticociliate sequences from planktonic samples collected at Grassy Key are blue. The reconstruction was performed based on a 299 nt alignment (MUSCLE (53)) by neighbor-joining, employing the Kimura-2 model and gamma substitution model for sites in MEGAX with 100 bootstraps (27).

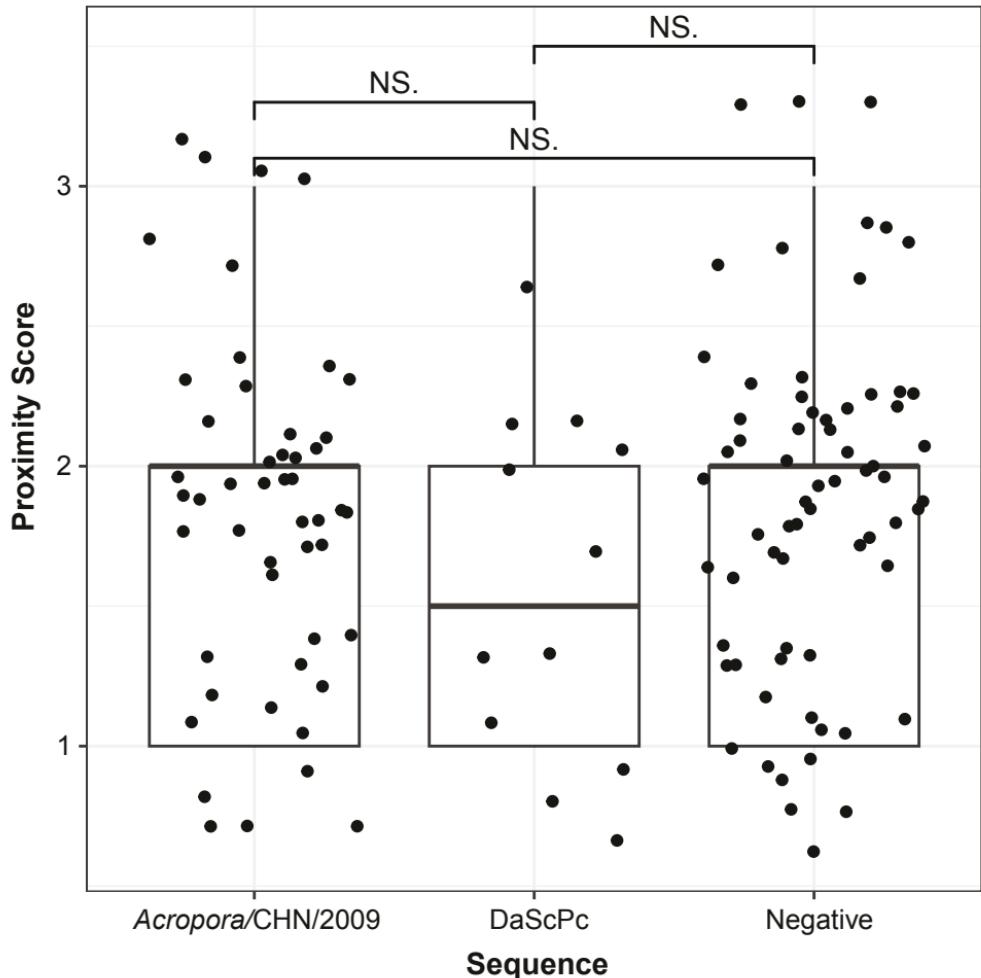


Figure 4. Comparison between DaScPc 28S rRNA quantity (determined by qPCR) and phylogenetic affiliation of swab-derived 18S rRNA sequences (by conventional PCR). qPCR quantities in swabs that did not amplify by 18S rRNA conventional PCR, yet yielded qPCR detections are presented for comparison. Boxes illustrate the interquartile range (IQR), with whiskers indicating data extremes defined by $1.5 \times \text{IQR}$, and the median shown as a horizontal line within each box.

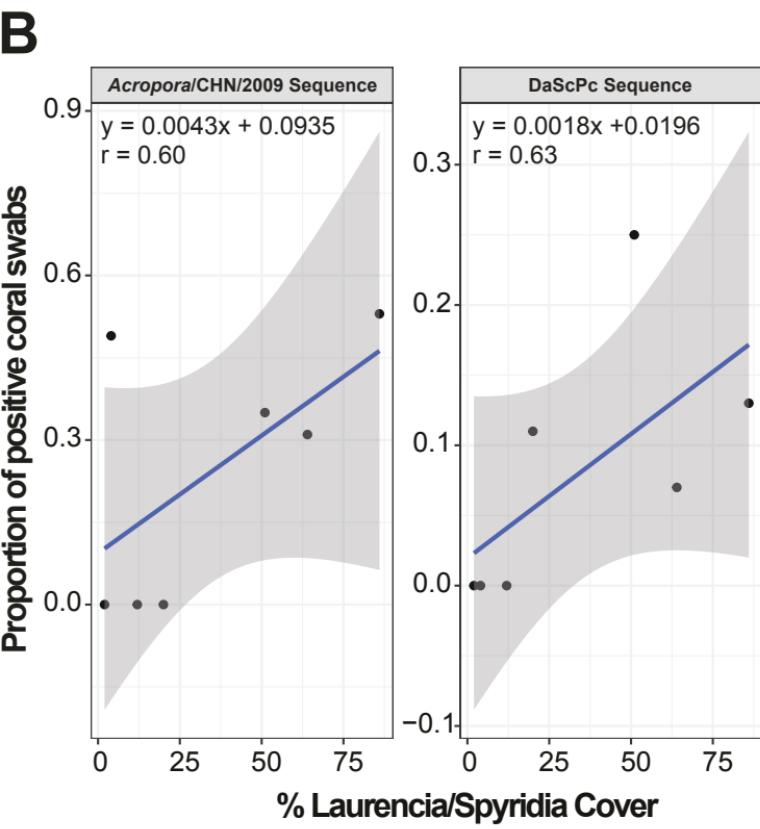
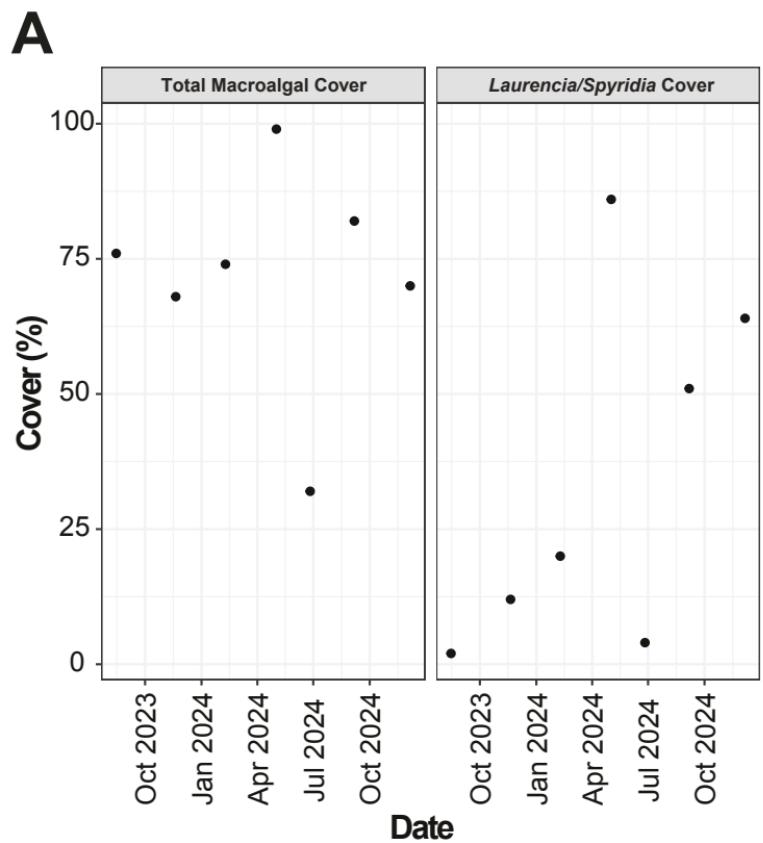


0.20

Figure 5. Phylogenetic representation of dominant macroalgae from Grassy Key (orange). The reconstruction is based on a 680 nt alignment of the 18S rRNA gene (MUSCLE (53)) using neighbor joining and the Kimura-2 model of substitution and gamma distributed sites in MEGAX with 100 bootstraps (27). Samples collected from macroalgae during the observed May and December 2024 blooms are designated with two asterisks (**).

Figure 6. Detection of DaScPc and *Acropora/CHN/2009* in relation to macroalgal proximity. Proximity was scored from underwater photographs (1) if the algae were touching or overlapping swabbed corals; (2) were not touching but within ~5cm of corals; (3) were more than 5cm from corals. Significance was determined using a Wilcoxon signed-rank test. Boxes illustrate the interquartile range (IQR), with whiskers indicating data extremes defined by $1.5 \times \text{IQR}$, and the median shown as a horizontal line within each box.

Figure 7. Percent macroalgal cover and percent *Laurencia/Spyridia* cover determined from underwater photographs over time. Cover was estimated from photographs ($n = 10$ per sampling time) by randomization and manual scoring (B) Linear regression (blue line) of DaScPc 18S rRNA (left) sequence positive proportion and Acropora/CHN/2009 (right) 18S rRNA sequence positive coral swabs with percent *Laurencia/Spyridia* cover. The gray zone is the 95% confidence interval.