IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

IEEE POWER & ENERGY SOCIETY SECTION

Received 30 June 2025, accepted 19 July 2025, date of publication 22 July 2025, date of current version 28 July 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3591604

==l APPLIED RESEARCH

Explainable Graph Neural Networks for Power
Grid Fault Detection

RICHARD BOSSO, COREY CHANG, MAHDI ZARIF, AND YUFEI TANG “, (Senior Member, IEEE)

Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA

Corresponding author: Yufei Tang (tangy @fau.edu)
This work was supported by U.S. National Science Foundation under Grant CMMI-2145571, Grant OAC-2320972, and Grant IIS-2302786.

ABSTRACT This paper proposes the application of explanation methods to enhance the interpretability
of graph neural network (GNN) models in fault location for power grids. GNN models have exhibited
remarkable precision in utilizing phasor data from various locations around the grid and integrating
the system’s topology, an advantage rarely harnessed by alternative machine learning techniques. This
capability makes GNNs highly effective in identifying fault occurrences in power grids. Despite their
greater performance, these models can encounter criticism for their “black box” nature, which conceals
the reasoning behind their predictions. Lack of transparency significantly hinders power utility operations,
as interpretability is crucial to building trust, accountability, and actionable insights. This research
presents a comprehensive framework that systematically evaluates state-of-the-art explanation strategies,
representing the first use of such a framework for Graph Neural Network models for defect location
detection. By assessing the strengths and weaknesses of different explanatory methods, it identifies and
recommends the most effective strategies for clarifying the decision-making processes of GNN models.
These recommendations aim to improve the transparency of fault predictions, allowing utility providers to
better understand and trust the models’ output. The proposed framework not only enhances the practical
usability of GNN-based systems but also contributes to advancing their adoption in critical power grid
applications.

INDEX TERMS Fault location detection, graph neural network (GNN), Fidelity, characterization score,
model explainability and transparency, power grids.

I. INTRODUCTION fault events lead to massive regional outages. However, even

A. POWER GRID FAULT EVENT DETECTION

In a 3-phase power grid, short-circuit fault events are
generally among the most common types of fault events
that can occur [1]. Fault events can be caused by a variety
of different phenomena, such as natural disasters, human
error, equipment problems, or even man-made attempts to
sabotage infrastructure. In many instances, short-circuit fault
events can cause significant damage to equipment and costly
interruptions for power delivery services if they are not
discovered in a minimal amount of time [2]. For example,
Figure 1 shows how damage caused by a tornado can impact
power lines, and such damage can cause short-circuit fault
events. Utility providers can incur significant costs whenever
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smaller and more isolated fault events can also cause damage
and disruption that may hurt individual customers in a variety
of different ways, and in some cases may have the potential
to become a public health and safety issue [3]. Given the
apparent benefits of detecting short-circuit fault events as
quickly as possible, formal methodologies for determining
where a fault event occurs in a power grid may help mitigate
the damage caused by the fault event [4].

The research literature in the domain of fault event
detection is populated with many different types of methods
that have been proposed for detecting a variety of different
types of fault events in power grids [4]. Some fault detection
methods employ impedance-based analysis to estimate fault
locations by examining how grid impedances are altered
during fault events [5]. Other approaches utilize waveform
analysis, relying on voltage or current readings to identify
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FIGURE 1. Damage from natural disasters, such as damage caused by a
tornado as shown here [8], can cause short-circuit fault events.

potential fault locations [6]. Additionally, research has
demonstrated the use of time-frequency analysis, which
leverages waveform readings and time-frequency data to
estimate the location of higher-resistance fault events [7].

To develop more accurate fault detection methods using
data from power grids, recent research has increasingly
focused on implementing machine learning models to predict
fault locations with high precision [9]. While a detailed
exploration of other fault detection methods is beyond the
scope of this work, our study centers on the application
of a Graph Neural Network (GNN)—a machine learning
model designed to capture and learn from the graph
structure of data [10], [11]. We show that GNNs are highly
effective for fault location detection and, when combined
with a proposed explainability framework, offer improved
transparency compared to current GNN-based fault detection
approaches.

B. CONTRIBUTION

Building on our preliminary work [12], this paper shows that
explanation methods can be used to make short-circuit fault
location detection by GNN models more understandable and
more transparent for power systems. With the development
of our Explainable Graph Neural Network (EGNN), we also
apply an EGNN Evaluation Framework that can systemat-
ically inform us how well any applied GNN explanation
methods may actually perform. Given the scope of this work,
we propose several unique contributions:

« A high-performance Explainable Graph Neural Network
(EGNN) is proposed for short-circuit fault location
detection in power systems.

+« GNN models often operate as “‘black boxes,” lead-
ing to challenges in model transparency and trust.
To address this, we integrate various explanation meth-
ods to make the EGNN’s decision-making process more
interpretable.

« We propose to use a robust evaluation framework for
power grid fault detection, enabling a comprehensive
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comparative analysis of different explanation methods
compatible with our EGNN.

The remainder of this paper is organized as follows:
Section Il reviews the literature on the application of machine
learning methods to fault detection in power grids. Section III
provides an overview of GNN models and introduces the
proposed explanation evaluation framework. Section IV
details the case studies, discusses the results of these case
studies, and demonstrates the application of the proposed
EGNN explanation methods. Finally, Section V concludes the

paper.

Il. RELATED WORKS

A. MACHINE LEARNING FOR GRID FAULT DETECTION
Machine learning has been widely applied in power systems
for stability and reliability, with notable potential in Smart
Grids managing diverse alternative energy resources [13],
[14]. For fault detection, the literature is populated with
many recent examples that use measured voltage and current
values to train a variety of different machine learning
models [15]. A k-Nearest Neighbor (kNN) model was
tested with different feature selection methods for fault
detection and classification in a smart grid system [16],
a Long Short-Term Memory (LSTM) model [17] was used
to detect high-impedance fault events in a microgrid system
in the context of variable weather conditions [18], and
different deep learning models which included variations of
Restricted Boltzmann Machine (RBM) and Convolutional
Neural Networks (CNN) were used to detect and classify
faults in transmission lines [19].

B. GRAPH LEARNING MODELS FOR FAULT DETECTION

For much of the previous literature discussed, many of the
applied models didn’t incorporate the actual topology of
power grid structures, while research interest in applying
graph learning models to power systems has grown sig-
nificantly in recent years [20]. When compared to more
traditional machine learning models, or models that can’t take
power grid topology into account, graph learning models have
generally shown better performance for anomaly detection
[21], [22], [23], [24]. These graph learning models are a
type of deep learning that are generally categorized as Graph
Neural Network (GNN) models [25]. In [21], a GNN model
based on Chebyshev spectral graph learning [26] was found to
perform better at fault location detection when compared to
other non-graph learning methods. Using a model based on
the GNN designed by Kipf and Welling [27], a comparison
with several non-graph learning models found that the GNN
was more effective at detecting and classifying different
types of faults in transmission lines [22]. In [28], a GCN-
based fault detection method was proposed for low-voltage
DC microgrids, outperforming CNN, SVM, and FCN in
accuracy and robustness. From research published in 2023,
a heterogeneous multi-task learning GNN (MTL-GNN) was
found to be effective at various prediction tasks related
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to fault classification [23]. In addition, a location method
using a deep Graph Convolutional Network (GCN) that
integrates system topology and multiple bus measurements
was proposed in [29]. Tested on the IEEE 123-bus system,
it outperforms traditional and machine learning methods in
accuracy and robustness to noise and data loss. In 2024,
using the novel PowerGraph benchmark dataset that they
developed, Velickovic et al,. found that several variations of
GNN model architectures, including Graph Attention Net-
works (GAT) [30], modified Graph Isomorphism Networks
(GINe) [31], and Transformers [32], all performed effectively
for the detection of cascading failures in power systems [24].

C. MAKING GRAPH LEARNING MODELS EXPLAINABLE
Despite the competitive performance that has been attributed
to GNN models across many different domains, deep learning
models are often criticized for their lack of transparency since
the logic of these models is often impossible to interpret
on their own [33]. When any model lacks transparency,
even when such a model exhibits experimentally strong
performance, the lack of informativeness that comes from
these ““black box” predictions can make it very difficult to
trust such a model with real-world applications [34].
Fortunately, a wide range of supplementary explainability
methods has been developed to address the limitations
of “black box” models [34], including several designed
specifically for GNN models [33]. While most explanation
methods in the research literature for power systems and
smart grids do not focus on GNNs [35], [36], some notable
examples demonstrate the application of such methods to
GNN models within the power grid domain [24], [37],
[38]. Using a GNN model for the detection of cascad-
ing power failures, the explanation visualization method
Layer-wise Relevance Propagation (LRP) [39] was used to
help explain the logic behind the model by determining
what factors in the power system were considered most
relevant by the model [37]. Showing how a Spatio-Temporal
Graph Neural Network (STGNN) could be used to predict
energy production for photovoltaic (PV) units distributed
in a power system, a GNNExplainer [40] was used to
generate explanations to show what aspects of power system
topology and node features represented the most important
patterns in the data [38]. With the models trained by their
PowerGraph benchmark data, several different explanation
methods were tested with GNN models to determine the
relative effectiveness of these different approaches [24].

Ill. PROPOSED APPROACH

A. PRELIMINARIES: CHEBYSHEV SPECTRAL GNN

For this work, the GNN is based off of the spectral graph
network from Defferrard et al. [26], which is also described
by Kipf and Welling [27]. We define a graphas G = (V, £, A),
where V is the set of nodes, € is the set of edges, and A is the
adjacency matrix defined as A € {0, 1}'V*IVI with |V| the
number of nodes. Given that the normalized adjacency matrix
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A is defined as A = D~1/2AD~1/2, D is the diagonal degree
matrix such that D € RVI*IVI and D; = > A, and [ is
the identity matrix. Since the standard Laplacian matrix Lg
is defined as Lg = D — A, the normalized Laplacian matrix
L can be derived such that:

L=D'2L;D"\? = Dfl/Z(D_A)Dfl/Z
— D-12pp=1/2 _ p=124p—1/2
=1 —D'2AD71/2 €))

Since the Laplacian matrix is defined to be a positive
semidefinite matrix, partly due to A being a symmetric
matrix and D being a diagonal matrix, L = UAUT can be
derived through eigendecomposition, such that U € RVI*V|
contains column-wise eigenvectors corresponding to L and
A e RVIXWI s a diagonal matrix of eigenvalues. Given a
signal vector x € RV representing a vector of scalar values
from each node in G, designating U” x as the graph Fourier
transform of x, and fy being a filter operation that is a function
of the eigenvalues of L as fy(A), this can be derived as:

foxx =fo(Lx =fyf(UAUx = Ufy(MUTx  (2)

where polynomial parameters using the coefficients § € RX
can be used to calculate fy as:

K—-1
fo= oA 3)
k=0

with K defined as the degrees in the polynomial. However,
considering how this series of matrix multiplications with
these polynomial coefficients are noted for being compu-
tationally complex [26], such an approach would not be a
scalable solution with larger graphs, such as large power
systems with many nodes. Alternatively, this polynomial
expansion can be more efficiently approximated using a
recursive algorithm, which in our case is the Chebyshev
polynomial expansion Ti(x) = 2xT;_1(x) — Tx_2(x) that
is recursively defined as 7o = land 7} = x, such that
Tr(A) € RVIXIVI represents each k-th order of Chebyshev
polynomial, defined as:

K
fo 2 D 0cTi(A) )

§=0
where A is defined to be a normalized version of A, such that:
A =2/ dpax x A —1 (5)

where A4, i defined as the largest eigenvalue found in the
matrix of eigenvalues A derived from the Laplacian matrix L.
Using the definitions that we have already established, we can
derive U(AYUT = (UAUT)F = L* as a general property to
further extend this recursive Chebyshev approximation to the
Laplacian matrix L itself, such that:

K K

foxx 2 UD OT(AMUx =D 6TulLx  (6)
k=0 k=0
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where L, similar to the calculation performed to generate the
normalized eigenvalue matrix A, is defined as:

lAf:Z/)Lmax xL—1 )

The Chebyshev spectral graph algorithm defined in this
section serves as the design for the graph convolutional filter
used in our EGNN model. By leveraging the Chebyshev
filter’s ability to operate on node signal vectors x, it can
be extended to node feature matrices in conjunction with
adjacency matrices, which are the standard inputs for GNN
models. This spectral graph convolutional operator enables
our GNN model to learn from both nodal features and graph
topology, as captured in our power grid data. Incorporating
this topology-aware approach allows the graph convolutional
filters to scale effectively with larger and more complex
power system data, enhancing the model’s ability to capture
deeper insights from the data’s structural context.

B. USING GNN FOR FAULT LOCATION DETECTION

Since the GNN model in this work is designed for graph
classification, the training and testing data consist of input
graphs containing voltage data recorded by Phasor Measure-
ment Units (PMUs) located at various bus locations. These
graphs also include the power grid topology corresponding
to different combinations of fault scenarios.

For each input graph, we define n as the number of nodes
and d as the number of features for each node, such that
the node feature matrix for the input graph is defined as
X € R™ 4 with an accompanying adjacency matrix defined
as A € {0, 1}™™ with 1 indicating that the nodes referred
to by the embedding do connect and 0 otherwise. Given that
this data is recorded using PMU installed at each bus location
under different fault conditions, where each input graph
represents PMU readings from any specific fault scenario,
the nodes represent the total of n buses in a power system
where m voltage features are recorded from each bus, and the
connections shown by the adjacency matrix A represent the
power line connections between each bus.

The phasor data recorded by each PMU consists of voltage
magnitudes V; and voltage angles /; for each i-th phase of a
three-phase power line, such that (Vy, Z{, V3, £, V3, /3) €
R® is measured from each bus during a fault event. In cases
where a bus is connected through only one phase or two-phase
power lines, values of V; and /; that would correspond to
any phases i that are absent from that bus measurement are
recorded as V; = O and /; = 0. With input graphs that are
structured in this way, our GNN model uses this input data
to generate predictions that attempt to indicate where a fault
event has occurred.

For this work, the GNN architecture shown in Figure 2 is
built with three Chebyshev graph convolutional layers using
PyTorch Geometric [41]. Each of the graph convolutional
layers is followed by Rectified Linear Unit (ReL.U) activation
functions. The degree of polynomial approximation for
the Chebyshev filters differ for each graph convolutional
layer, such that the depth of the Chebyshev polynomial
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FIGURE 2. The EGNN model architecture used for fault location
prediction.

approximates by order 3 for the first layer, a degree of order 4
for the second layer, and a degree of order 5 for the third layer.
After passing through all three of the graph convolutional
layers, they are followed by a mean pooling layer, which leads
to a dropout layer with a dropout rate of 0.2, before then being
passed to the last linear layer that produces the vector output
values that are used for the fault location prediction. Using
the Adam optimizer [42] to minimize the cross entropy loss
function used with multi-class classification, a set learning
rate of 0.001 was found to be effective, and the training data
was processed with batch sizes of 32.

C. EXPLANATION EVALUATION FRAMEWORK

Multiple explanation methods were applied to the EGNN,
making it essential to assess the effectiveness of each method
in generating explanations that accurately reflect the underly-
ing logic of the EGNN model. To enhance the explainability
of our fault location detection EGNN model, we propose the
application of the EGNN Evaluation Framework, detailed
below. This framework involves reporting the Fidelity+,
Fidelity-, and Characterization Score performance metrics for
each explanation method. By using these metrics, we can
comprehensively measure and compare the effectiveness of
each explanation approach.

1) FIDELITY+ AND FIDELITY-SCORES

The Fidelity metric, which was originally defined by [33],
was extended in [11] to also account for whether the
explanation method focused on explaining the phenomenon
or the model itself. When using the Fidelity metric, two
different scores can be generated, namely Fidelity+ and
Fidelity-. They both are designed to indicate how well the
subgraphs generated by the explanation methods can reflect
either the patterns in the phenomenon or the inner-workings
of the model itself, and Fidelity+ and Fidelity- each approach
this from different perspectives [11], [33].

With some exceptions, explanation methods included in
our study are designed to generate an edge mask Mg and a
node feature mask Myr. For each input graph, we already
defined n as the number of nodes and d as the number of
features for each node, such that the node feature matrix for
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the input graph is defined as X € R"*9, with each Adjacency
matrix defined as A € {0, 1}™*™. Each Gg subgraph is built to
include an adjacency matrix Ag and a node feature matrix Xg,
which are each derived from Hadamard products of the graph
input data and the explanation masks such that As = Mg © A
and Xg = Myr O X define Gy as a subset of the entire input
graph.

Though Mg and Myr have similar dimensions to A and
X respectively, such that My € R™™ and Myr € Roxd
when generated by an explanation method, both masks can
be further transformed to be either a soft mask or a hard
mask, depending on the preferred form of explanation [11].
Whereas soft masks are normalized so that their weight
values are between 0 and 1, such that M Ii-of "e [0, 17™*™ and

M I;‘Zt € [0, 11™*9, hard masks are further transformed such
that their values are only 0 and 1, such that M 1}5"” d ¢ {0, 1}xm
and M ,’f,‘,?d e {0, 1}™*4, Additionally, these explanation
masks can also be further transformed for different levels of
TopK, a threshold that determines the size of the explanation
subgraph Gg by adjusting the k number of edges based on
mask weights.

For examining how well an explanation method performs
at reflecting the underlying logic of a GNN model, given that
our GNN model is trained for the task of graph classification,
Fidelity+ and Fidelity- are defined as:

N

. 1 ~Ges N

fid =1- 5% 1 16, =) ®)
=

1 N

. ~G A

fid-=1-+ _21 13 =30 ©)
=

where N is the total number of instances in a given sample
of graph data inputs, y; is the predicted label generated by
the trained GNN model for each iy, graph input, )AziGS is the
label predicted by the GNN for each iy, subgraph Gg which
is generated by the explanation method for each graph input,
and &l-GC\S is the label predicted by the GNN for each iy,
complement of the subgraph Gg which are denoted as G¢\s.

Conceptually, Fidelity+ and Fidelity- reflect different
ways to evaluate the quality of the explanations provided
by the subgraphs that are generated from the explanation
method. Since Fidelity- essentially reflects how consistently
the explanation subgraph Gg points to the prediction gener-
ated by the model, Fidelity- indicates how well an explanation
method can generate sufficient explanations. Conversely,
Fidelity+ reflects how consistently the complement to the
explanation subgraph Gc\s points to the model prediction,
such that Fidelity+ indicates how well an explanation
method can generate necessary explanations. Based on the
assumptions taken by the calculations for Fidelity+ and
Fidelity-, an explanation method with Fidelity+ scores near
1 and Fidelity- scores near 0 are considered to be more
necessary and more sufficient, respectively [11]. For ease
of visualization and more convenience with reporting of
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FIGURE 3. IEEE 34 bus system modified with added PV units.

experimental results, Fidelity- scores are reported here as
(1 — Fidelity-).

2) CHARACTERIZATION SCORE

Once Fidelity+ and Fidelity- are both calculated, Character-
ization Score can also be used as an additional evaluation
metric, which considers the strength of an explainability
method indicated by Fidelity+ and Fidelity- simultaneously.
Characterization Score is defined as:

wy +w_
charact = —————

(10)
fo- t TR
where w is defined as the weight of importance that can be
attributed to the fid; score (Fidelity+), and w_ is defined
as the weight of importance attributed to the fid_ score
(Fidelity—). For our purposes, the Characterization Score is
calculated with w and w_ both set to a value of 0.5, which

assumes equal importance for both Fidelity+ and Fidelity-.

3) EVALUATION FRAMEWORK

The explanation evaluation framework we propose for assess-
ing explanation methods in the context of using EGNN (or
any explainable GNN model) to predict fault event locations
in a power grid allows for evaluating the effectiveness and
consistency of these methods. By simultaneously reporting
the Fidelity+, Fidelity-, and Characterization Scores, we can
determine how often the method provides effective expla-
nations. Reporting all these performance metrics provides
clearer insights into how consistently an explanation sub-
graph captures the key node features and edges of input graph
data that influence the EGNN’s decision-making process.

IV. CASE STUDY

A. BENCHMARK SYSTEMS AND DATASETS

For this work, simulations of short-circuit fault events were
generated using the IEEE 34 and IEEE 123 radial test
feeder systems [43], [44] and the more recently developed
342-node Low Voltage Networked (LVN) Test System [45].
OpenDSS [46] and its official python API py-dss-interface
[47] were used to implement modified versions of these test
systems, and for each system the fault simulations had fault
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events generated for every possible bus location. For all three
systems tested here, they were modified to have photovoltaic
(PV) units added at various bus locations. To simulate how
grid system loads and power generation from PV units can
vary throughout typical day cycles, different solar irradiance
levels for each PV unit and changes in the base system
load were introduced across different fault scenarios [21].
In addition to having various fault simulation scenarios,
different 1-phase, 2-phase, and 3-phase fault-type events were
also introduced, including various line-to-ground, line-to-
line, and line-to-neutral faults.

Similar to the rates of differentiation applied in [21], the
irradiance levels simulated for each PV unit ranged between
0 - 1 kW/m?, and the base load of the entire system was
adjusted between multiples of 0.4 and 1.2. By differentiating
combinations of fault event conditions for fault types, fault
locations, levels of system loading, and irradiance levels
impacting PV energy production, large enough sample sizes
of power system simulation data could be generated for use as
training and testing data. Similar to noise injection described
by [48], Gaussian noise was added to the testing data under
the assumption that noise with a standard deviation of 3%
makes the results more realistic.

1) IEEE 34 BUS SYSTEM

The IEEE 34 bus system was modified to have PV units added
to bus locations 890 and 844 [21], as shown in Figure 3. Each
PV unit had a nominal voltage rating of 4.16 kV, with the
bus 890 PV unit having a power capacity of 270 kW and
the bus 844 PV unit having a power capacity of 245 kW.
The training and testing data applied to our graph and
explanation model for the IEEE 34 case study comprised a
total of 26,820 fault scenarios. The fault scenario simulation
data is transformed for graph classification, such that each
fault scenario instance has a corresponding label for the
supervised learning process. The IEEE 34 system’s 34 buses
are grouped into 24 unique fault locations by assigning the
same label to buses within 1,000 ft of each other or connected
via transformers or regulators. This approach considers the
topological proximity of bus locations for each fault location
label, ensuring models do not need to differentiate between
fault locations with minimal separation. While most bus
locations in the IEEE 34 system are linked by 3-phase lines,
some (e.g., buses 810, 818, 820, 822, 826, 838, 856, and 864)
are connected only by 1-phase lines. For these locations, only
1-phase fault scenarios are used in simulations.

2) IEEE 123 BUS SYSTEM

For the IEEE 123 bus system, PV units were installed in
bus locations 79, 95, 250, 300, and 450 [49], and they
were each installed with a power capacity of 450 kW
and a voltage rating of 4.16 kV. The IEEE 123 system
includes not only 3-phase lines but also 1-phase lines, 2-phase
lines, and closed switches, all of which are represented
through node adjacency. While a small minority of buses are
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FIGURE 4. IEEE 123 bus system modified with added PV units.

FIGURE 5. The 342 LVN System [44], [45] visualized to show the 48 buses
from the 8 spot networks [50]. For this study, PV units were installed at
each of the spot network bus locations.

connected exclusively via 2-phase lines, nearly half of all
buses are connected via one-phase lines. For these cases, only
applicable fault simulation scenarios are applied. To generate
the 38,450 fault scenarios for the IEEE 123 system, bus
nodes sharing regulators or closed switches were grouped
into common labels, as the distance between such nodes is
negligible. This process resulted in 120 distinct fault location
labels. Figure 4 illustrates the modified IEEE 123 system with
added PV units, where 1-phase, 2-phase, and 3-phase lines are
color-coded as shown.
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3) 342-NODE LVN BUS SYSTEM

The 342-node LVN system is also referred to as the IEEE
390 system, in reference to the 48 additional buses that
manage different networks of spot loads. This LVN system
was modified to have 48 PV units, each with a power capacity
of 300 kW and a 0.48 kV voltage rating, added to the
48 secondary buses S193 - S240 that support 8 networks of
spot loads present in the LVN system [45]. Shown in Figure 5,
the 342 LVN system is constructed to have a primary and
secondary set of connections. All lines and buses colored red
in Figure 5 comprise the primary section, while every other
bus connection comprises the secondary section. Similar with
other benchmarks, for the the 342-node LVN system, any bus
locations that share the same closed switch or transformer
are grouped together within the same classification label,
and any buses within the primary section of the 342 LVN
system that aren’t directly connected via a transformer or
closed switch to buses in the secondary section are all grouped
within the same fault location label, such that there are a
total of 186 fault location classification labels encoded for
the 31,200 samples generated. In addition to using 3-phase
line connections between each bus to represent the topology,
closed switches are also represented by graph data topology
as connections between bus locations. Though there has been
previous work that used the 342 LVN system for binary
detection of power grid system outages [51], to the best of the
author’s knowledge there exists no previous work that uses
the 342 LVN bus system as a benchmark for fault location
prediction and there are no other known instances of any type
of fault detection being applied to the 342 LVN bus system
when the system has been modified with added PV units.

B. MODEL PERFORMANCE COMPARATIVE STUDY
1) OVERVIEW AND IMPLEMENTATION OF FAULT
DETECTION MODELS
Along with our GNN model, we also tested k Nearest
Neighbors (kNN), Multi-Layer Perceptron (MLP), and Naive
Bayes models for fault detection with each of our case
studies. Aside from our GNN, each of these models were
implemented using Scikit-learn [52]. For our kNN model,
K (which reflects clustering distance between data samples
based on their features) was set to 1. Our MLP was trained
for 200 epochs, similar to the number of epochs that were
spent training our GNN model. Our Naive Bayes model was
implemented as a Gaussian variant. For each of these models,
alongside our GNN, the Testing Accuracy, F-1 Measure, and
AUC were reported for each them along an 80 % - 20 %
training-to-testing data ratio. For our purposes, we report
the Macro-F1 score for each of the model prediction results.
In our case studies the AUC scores for each class label are
calculated against the rest of the data, and the unweighted
mean of each AUC score for each class label is reported as
the AUC metric.

For the labeling of the fault locations being detected
for each bus system, the IEEE 34 bus system was
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TABLE 1. Model comparative study for IEEE 34 bus system.

Models AUC F-1 Measure Accuracy
EGNN 0.9991 0.9693 0.9607
k-NN 0.9816 0.9636 0.9544
MLP 0.9988 0.9592 0.9450
Naive Bayes  0.5051 0.0689 0.0087

TABLE 2. Model comparative study for IEEE 123 bus system.

Models AUC F-1 Measure  Accuracy
EGNN 0.9999 0.9822 0.9905
k-NN 0.9943 0.9890 0.9826
MLP 0.9998 0.9677 0.9486
Naive Bayes  0.5035 0.0016 0.0507

TABLE 3. Model comparative study for 342 LVN bus system.

Models AUC F-1 Measure Accuracy
EGNN 0.9994 0.9046 0.8552
k-NN 0.9337 0.8684 0.7606
MLP 0.9948 0.6877 0.6865
Naive Bayes  0.8134 0.2268 0.1811

assigned 24 classes, the IEEE 123 bus system was assigned
120 classes, and the 342 LVN bus system was assigned
187 classes, so from a machine learning perspective each
of these bus systems are represented by multi-class datasets.
Such numbers of classes in these datasets may generally
signify some class imbalance by default, but the fact that all
390 buses of the 342 LVN bus system were aggregated into
187 classes makes the dataset considerably more imbalanced
than the other bus systems. When trying to assess model
performance with imbalanced data, testing accuracy can be
misleading if used as the only performance metric [53], and
for multi-class data the sensitivity, specificity, and precision
rates can provide a comparison of each model that takes
model performance by class into account. Given the task of
predicting the bus locations of fault events, we report scores
for AUC, F-1 Measure, and Testing Accuracy for each model,
in order to make our comparative study more representative
of model performance.

2) MODEL COMPARATIVE STUDY PERFORMANCE RESULTS

The Accuracy, F-1 Measure, and AUC scores are averages
taken from 5 different sampled testing scenarios, with
Table 1, Table 2, and Table 3 showing performance results
for the IEEE 34 bus system, the IEEE 123 bus system, and
the 342-node LVN bus system respectively. Though the GNN
was trained for 200 epochs to result in the performance
reported for the IEEE 34 and IEEE 123 bus systems, for
the 342 LVN system our GNN was trained for 350 epochs,
likely necessitated by the large number of classes and greater
complexity inherent to the 342 LVN system. The confusion
matrix showing the EGNN model performance for the IEEE
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FIGURE 6. Confusion matrix showing EGNN classification performance
for IEEE 34 bus system.

34 bus system is shown in Figure 6, and the confusion matrix
showing the EGNN model performance for the 342 LVN
bus system is shown in Figure 10, where the vertical axis
represents the true labels for each class and the horizontal axis
represents the label predictions that were actually generated.

Looking at the performance metric results, the EGNN
model generally outperformed all of the other models. The
only exception is the k-NN model for the 123 bus system,
which has acquired a slightly higher F1-Measure than the
EGNN model, despite the EGNN model having the highest
AUC and Testing Accuracy among these models. Given the
123 bus system, the k-NN model’s higher F-1 Measure score
might suggest that the k-NN model may have generated
predictions with higher precision for certain bus locations,
but the fact that the k-NN model had lower AUC and Testing
Accuracy scores than the EGNN model may suggest that
the EGNN generally did better at making classifications that
were considerably more sensitive and specific for a larger
majority of fault locations in the 123 bus power system.

To show model classification performance in more detail,
Figures 6 - 9 show the resulting confusion matrices for each
comparing model working with the IEEE 34 bus system.
Figure 6 shows the EGNN model results, Figure 7 shows
the k-NN model results, Figure 8 shows the MLP model
results, and Figure 9 shows the Naive Bayes model results.
As indicated by Table 1, we can see from Figures 6 - 9 that
the EGNN saw the lowest amount of misclassification across
the largest number of fault location classes.

Examining the confusion matrices for each model applied
to the 342 LVN system, shown in Figures 10-13, reveals
several noteworthy performance details. The 342 LVN bus
system comprises primary and secondary bus connections,
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FIGURE 7. Confusion matrix showing kNN classification performance for
IEEE 34 bus system.
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FIGURE 8. Confusion matrix showing MLP classification performance for
IEEE 34 bus system.

with an imbalanced class distribution for fault event locations.
Fault locations were labeled such that primary bus locations
received labels ranging roughly from O to 80, with class
14 representing the disproportionately large group. From the
confusion matrices, it is evident that the EGNN significantly
outperforms the other models in predicting fault locations.
In contrast, the other models struggle with classification
challenges posed by the larger class 14 and the imbalanced
labeling of primary bus locations. Specifically, the kNN and
MLP models (Figures 11 and 12, respectively) exhibit high
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FIGURE 10. Confusion matrix showing EGNN classification performance
for the 342 LVN bus system.

false positive and false negative rates for class 14. The Naive
Bayes model, consistently the worst performer, demonstrates
the most severe inability to predict fault locations within the
primary distribution bus locations, as shown in Figure 13.

C. EXPLANATION METHOD COMPARATIVE STUDY

We exam our proposed explanation evaluation framework
in this section. The implementation environment is in the
Pytorch Geometric [41] and Captum [54]. In addition
to several gradient-based explanation methods, including
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FIGURE 11. Confusion matrix showing kNN classification performance for
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|3 700
.
2 \\
s
5
. 600
50 '\""-..,.
K’»
e %
75 '\\' "
.
3
2
g
:
£ 100 400

150

0 25 50 75 100 125 150 175
Predicted Label

FIGURE 12. Confusion matrix showing MLP classification performance for
the 342 LVN bus system.

Guided Backpropagation [55], Integrated Gradients [56],
Saliency [57], Deconvolution [58], and Input X Gradi-
ent [59], our comparative study of explanation methods
also included the perturbation-based explanation methods
GNNExplainer [40] and GraphMaskExplainer [60]. Whereas
gradient-based methods attempt to estimate importance
values of input features based directly on training gradient
values, perturbation-based methods attempt to show what
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performance for the 342 LVN bus system.

TABLE 5. Explanation method comparative study for IEEE 123.

Methods Fidelity+ Fidelity- Characterization
GraphMask Explainer 0.9896 0.0162 0.0318
GNNExplainer 0.7522 0.0132 0.0257
Random 0.8685 0.0148 0.0290
Deconvolution 0.9057 0.0073 0.0143
Guided Backpropagation 0.9013 0.0084 0.0165
InputXGradient 0.9489 0.0100 0.0197
Integrated Gradients 0.9948 0.0164 0.0322
Saliency 0.9378 0.0066 0.0130

TABLE 6. Explanation method comparative study for 342 LVN.

Methods Fidelity+ Fidelity- Characterization
GraphMask Explainer 0.9933 0.0067 0.0132
GNNExplainer 0.8393 0.0067 0.0131
Random 0.8381 0.0069 0.0135
Deconvolution 0.8370 0.0079 0.0157
Guided Backpropagation 0.8411 0.0065 0.0127
InputXGradient 0.8373 0.0071 0.0139
Integrated Gradients 0.8797 0.0074 0.0145
Saliency 0.8301 0.0075 0.0149

2) EXPLANATION METHOD EVALUATION FRAMEWORK

RESULTS

TABLE 4. Explanation method comparative study for IEEE 34.

Methods Fidelity+ Fidelity- Characterization
GraphMask Explainer 0.8985 0.0694 0.1287
GNNEXxplainer 0.9048 0.0731 0.1351
Random 0.9377 0.0664 0.1239
Deconvolution 0.9193 0.0534 0.1008
Guided Backpropagation 0.9223 0.0454 0.0863
InputXGradient 0.9574 0.0519 0.0984
Integrated Gradients 0.9696 0.0733 0.1361
Saliency 0.9418 0.0603 0.1132

input features are most important by analyzing how model
predictions are influenced when random modifications are
applied to input features [33].

1) PARAMETERS AND APPROACH FOR EGNN EVALUATION
The Fidelity+, Fidelity-, and Characterization evaluation
metrics are reported at TopK values of 10 to comprehensively
compare the performance of these evaluation methods for
explanation subgraphs with 10 edges. These results are tested
using hard masks to identify the most effective methods.
As a baseline, the same mask conditions and evaluation
metrics are also applied to a ‘“Random” method, which
generates random binary values (0 and 1) for each hard mask
element, enabling a comparison of all explanation methods
against random results. Since random guesses are unlikely to
provide meaningful model insights, any explanation method
performing no better than Random will be deemed largely
ineffective. The evaluation metrics reported in the following
sections were tested using 6 different random samples, each
containing 1,000 instances of graph input data. As noted
earlier, Fidelity- scores are presented as 1 - Fidelity-.
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Based on the explanation method performance metric
results shown in Tables 4, 5, and 6, which show the
Fidelity+, Fidelity-, and Characterization scores resulting
from the explanation subgraphs generated by each explana-
tion method, it was generally found that overall explanation
method performance seemed to be noticeably lower for the
IEEE 123 and 342 LVN bus systems when compared to
the explanation performance observed for the IEEE 34 bus
system, particularly when taking Fidelity- and Characteri-
zation scores into account. This means that the explanation
methods were generally less effective at generating sufficient
explanations for the IEEE 123 and 342 LVN bus systems.
This may be attributed to the greater complexity of larger
systems, as more complex bus systems inherently have
a higher number of classes due to the increased number
of possible fault locations. Nonetheless, from a model
performance and fault location detection perspective, our
EGNN demonstrated strong scalability with these larger and
more intricate bus systems.

For both the IEEE 34 and IEEE 123 bus sys-
tems, the Integrated Gradients method demonstrates the
best-performing explanation results. For the IEEE 34 bus
system, while GraphMask Explainer and GNNExplainer—
both perturbation-based methods—generally outperformed
most other gradient-based methods aside from Integrated
Gradients in terms of Fidelity- (indicating how often an
explanation method successfully identifies input features
sufficient to reproduce the model’s prediction, such as
fault location predictions made by the EGNN), these
perturbation-based methods showed the lowest Fidelity+
scores. This suggests that, for this system, perturbation-
based methods struggle to generate explanations capturing
the portions of the input graph uniquely necessary for the
model’s prediction.
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TABLE 7. Calculation times for explanation methods.

Methods Calculation Time (Seconds)
GraphMask Explainer 19.8
GNNExplainer 341

Random 0.046
Deconvolution 0.076

Guided Backpropagation 0.076
InputXGradient 0.063

Integrated Gradients 0.871

Saliency 0.075

The generally poorer performance of explanation methods
for the more complex IEEE 123 and 342 LVN bus systems
suggests these methods may work best on simpler power
grid sections or grids labeled with fewer fault location
classes. Even for the simpler IEEE 34 bus system, most
gradient-based methods (except Integrated Gradients) per-
formed no better than random guesses. These findings
highlight the importance of the EGNN Evaluation Frame-
work for fault detection, as practitioners need to identify
methods that may struggle to explain EGNN predictions.
Among the methods studied, GNNExplainer, GraphMask
Explainer, and especially Integrated Gradients showed better
and more consistent performance for the IEEE 34 and 123 bus
systems.

We have also reported the computation times for each
explanation method in Table 7, measured in seconds. Each
value represents the average of five sample runs using
identical hardware. As expected, the Random method had
the shortest computation time since it simply generates
random numbers. Among the remaining methods, most
gradient-based approaches were the fastest, with computation
times for Integrated Gradients, Guided Backpropagation,
Deconvolution, Saliency, and InputXGradient ranging from
slowest to fastest within this group.

D. USAGE AND DEMONSTRATION OF EXPLANATION

The EGNN explanation methods are designed to clarify the
GNN model’s logic by visualizing the spatial and temporal
features present in power grid data. Spatial aspects highlight
the significance of line connections in the grid, represented
by the explanation edge mask, while temporal aspects
indicate the importance of node features, such as voltage
angles and magnitudes, at specific time frames, shown in
the explanation node mask. These explanation subgraphs
are fully utilized in the visualizations. To implement these
methods, we used PyTorch Geometric, Captum, NetworkX,
and Matplotlib, as mentioned earlier. The visualizations from
Integrated Gradients are shown in Figures 14 and 15, those
from GraphMask Explainer in Figures 16 and 17, and those
from GNNEXxplainer in Figures 18 and 19.

1) EXPLAINS SPATIAL ASPECTS
As discussed earlier, the data from each power system case
study represent 1-phase, 2-phase, and 3-phase connections
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FIGURE 14. Integrated gradients edge explanation for fault at 802.
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FIGURE 15. Integrated gradients node feature explanation.

FIGURE 16. GraphMask explainer edge explanation for fault at 830/854.

between bus locations. Since GNN models can leverage graph
topology, the explanation methods for our EGNN are able
to identify and express the importance of different parts of
this topology. This means that the edge masks generated
by each explanation method highlight the most significant
line connections between bus locations, which the EGNN
model uses to make fault location predictions. Figures 14,
16, and 18 demonstrate how these spatial aspects can be
visualized for the IEEE 34 bus system using NetworkX and
Matplotlib. In these visualizations, the edge masks highlight
line connections in red, indicating their importance to the
model’s prediction, while black lines are considered less
important. The red lines are part of the explanation subgraph,
representing the key connections for the specific fault
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FIGURE 17. GraphMask explainer node feature explanation.

FIGURE 18. GNNExplainer edge explanation for fault at 830/854.

scenario, while the black lines belong to a complementary
subgraph, which is less relevant to the explanation.

2) EXPLAINS TEMPORAL ASPECTS

The temporal aspect of the EGNN is determined by the
importance of node features, specifically the voltage phasor
data measured at each bus location, as emphasized by the
node mask in the explanation subgraph. For the IEEE 34 bus
system, this temporal aspect directly reflects the voltage angle
and magnitude data for each of the three phases measured
at each bus. Figures 15, 17, and 19 illustrate how these
temporal aspects are visualized for the IEEE 34 bus system
using Matplotlib. These visualizations, which complement
the edge explanations shown on the same page, highlight the
node features deemed most important by the corresponding
EGNN explanation method. In the context of power grids,
each bus location is treated as a node, and these node features
represent the voltage data recorded by PMUs at each location.
The importance values for each of the voltage magnitude and
angle readings, shown in the figures, reflect how frequently
these features were selected by the node mask as crucial for
a specific fault scenario. Bar charts are used for readability,
aligning with the edge explanation visuals on the same page.

3) DISCUSSION OF EGNN EXPLANATION VISUALIZATIONS

The visualizations demonstrate how fault location predictions
made by the EGNN model can be explained in a comprehen-
sive spatiotemporal context. For example, Figures 14 and 15
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FIGURE 19. GNNExplainer node feature explanation.

illustrate the results from Integrated Gradients, which explain
what features of the IEEE 34 bus system the EGNN model
relied on most when predicting a fault at bus location 802.
In Figure 14, the red lines represent the bus connections
that Integrated Gradients identified as most significant for
the fault location prediction. Figure 15 shows that, for
this particular fault event, Integrated Gradients emphasized
the voltage magnitude data from all three phases as being
more important than the voltage angles. Notably, the voltage
magnitudes at Phase 3 had the most influence on the model’s
decision, as indicated by the higher importance scores for that
phase compared to the others.

The explanations offer a way to interpret the underlying
logic of the EGNN model, providing greater transparency
by revealing which aspects of the power grid system data
the model considers most crucial when making predictions.
Similarly, Figures 16-19 showcase the explanations from
GraphMask Explainer and GNNExplainer, demonstrating
how these methods highlight different features of the power
grid data and contribute to a better understanding of the
model’s decision-making process for various fault scenarios.
Ultimately, these visualizations help improve transparency
and interpretability of the EGNN model in the context of
power grid fault location detection.

V. CONCLUSION

Short-circuit fault events present significant challenges for
utility providers and power grid operators. To reduce the
time required for fault detection, research suggests leveraging
machine learning models that utilize voltage data across the
grid. While GNN models excel at learning from the network
topology of power grids to make accurate predictions,
their lack of transparency can hinder trust in their results.
To address this issue, we introduce the Explainable GNN
(EGNN), which incorporates explanation techniques into
GNN models for fault location detection, clarifying the
rationale behind their predictions.

Furthermore, we present an EGNN Evaluation Frame-
work to systematically evaluate the efficacy of multiple
explanation approaches. This comprehensive evaluation iden-
tifies the most effective techniques for various power grid
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configurations. Additionally, we showcase how these meth-
ods generate clear, graphic, and context-rich explanations
that reveal the EGNN model’s underlying logic. These
insights not only enhance the interpretability of GNN-based
fault location systems but also bolster their trustworthiness,
paving the way for more transparent and reliable power grid
operation.
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