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ABSTRACT This paper proposes the application of explanation methods to enhance the interpretability

of graph neural network (GNN) models in fault location for power grids. GNN models have exhibited

remarkable precision in utilizing phasor data from various locations around the grid and integrating

the system’s topology, an advantage rarely harnessed by alternative machine learning techniques. This

capability makes GNNs highly effective in identifying fault occurrences in power grids. Despite their

greater performance, these models can encounter criticism for their ‘‘black box’’ nature, which conceals

the reasoning behind their predictions. Lack of transparency significantly hinders power utility operations,

as interpretability is crucial to building trust, accountability, and actionable insights. This research

presents a comprehensive framework that systematically evaluates state-of-the-art explanation strategies,

representing the first use of such a framework for Graph Neural Network models for defect location

detection. By assessing the strengths and weaknesses of different explanatory methods, it identifies and

recommends the most effective strategies for clarifying the decision-making processes of GNN models.

These recommendations aim to improve the transparency of fault predictions, allowing utility providers to

better understand and trust the models’ output. The proposed framework not only enhances the practical

usability of GNN-based systems but also contributes to advancing their adoption in critical power grid

applications.

INDEX TERMS Fault location detection, graph neural network (GNN), Fidelity, characterization score,

model explainability and transparency, power grids.

I. INTRODUCTION

A. POWER GRID FAULT EVENT DETECTION

In a 3-phase power grid, short-circuit fault events are

generally among the most common types of fault events

that can occur [1]. Fault events can be caused by a variety

of different phenomena, such as natural disasters, human

error, equipment problems, or even man-made attempts to

sabotage infrastructure. In many instances, short-circuit fault

events can cause significant damage to equipment and costly

interruptions for power delivery services if they are not

discovered in a minimal amount of time [2]. For example,

Figure 1 shows how damage caused by a tornado can impact

power lines, and such damage can cause short-circuit fault

events. Utility providers can incur significant costs whenever

The associate editor coordinating the review of this manuscript and
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fault events lead to massive regional outages. However, even

smaller and more isolated fault events can also cause damage

and disruption that may hurt individual customers in a variety

of different ways, and in some cases may have the potential

to become a public health and safety issue [3]. Given the

apparent benefits of detecting short-circuit fault events as

quickly as possible, formal methodologies for determining

where a fault event occurs in a power grid may help mitigate

the damage caused by the fault event [4].

The research literature in the domain of fault event

detection is populated with many different types of methods

that have been proposed for detecting a variety of different

types of fault events in power grids [4]. Some fault detection

methods employ impedance-based analysis to estimate fault

locations by examining how grid impedances are altered

during fault events [5]. Other approaches utilize waveform

analysis, relying on voltage or current readings to identify
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FIGURE 1. Damage from natural disasters, such as damage caused by a
tornado as shown here [8], can cause short-circuit fault events.

potential fault locations [6]. Additionally, research has

demonstrated the use of time-frequency analysis, which

leverages waveform readings and time-frequency data to

estimate the location of higher-resistance fault events [7].

To develop more accurate fault detection methods using

data from power grids, recent research has increasingly

focused on implementing machine learning models to predict

fault locations with high precision [9]. While a detailed

exploration of other fault detection methods is beyond the

scope of this work, our study centers on the application

of a Graph Neural Network (GNN)—a machine learning

model designed to capture and learn from the graph

structure of data [10], [11]. We show that GNNs are highly

effective for fault location detection and, when combined

with a proposed explainability framework, offer improved

transparency compared to current GNN-based fault detection

approaches.

B. CONTRIBUTION

Building on our preliminary work [12], this paper shows that

explanation methods can be used to make short-circuit fault

location detection by GNN models more understandable and

more transparent for power systems. With the development

of our Explainable Graph Neural Network (EGNN), we also

apply an EGNN Evaluation Framework that can systemat-

ically inform us how well any applied GNN explanation

methods may actually perform. Given the scope of this work,

we propose several unique contributions:

• Ahigh-performance Explainable GraphNeural Network

(EGNN) is proposed for short-circuit fault location

detection in power systems.

• GNN models often operate as ‘‘black boxes,’’ lead-

ing to challenges in model transparency and trust.

To address this, we integrate various explanation meth-

ods to make the EGNN’s decision-making process more

interpretable.

• We propose to use a robust evaluation framework for

power grid fault detection, enabling a comprehensive

comparative analysis of different explanation methods

compatible with our EGNN.

The remainder of this paper is organized as follows:

Section II reviews the literature on the application of machine

learning methods to fault detection in power grids. Section III

provides an overview of GNN models and introduces the

proposed explanation evaluation framework. Section IV

details the case studies, discusses the results of these case

studies, and demonstrates the application of the proposed

EGNNexplanationmethods. Finally, SectionV concludes the

paper.

II. RELATED WORKS

A. MACHINE LEARNING FOR GRID FAULT DETECTION

Machine learning has been widely applied in power systems

for stability and reliability, with notable potential in Smart

Grids managing diverse alternative energy resources [13],

[14]. For fault detection, the literature is populated with

many recent examples that use measured voltage and current

values to train a variety of different machine learning

models [15]. A k-Nearest Neighbor (kNN) model was

tested with different feature selection methods for fault

detection and classification in a smart grid system [16],

a Long Short-Term Memory (LSTM) model [17] was used

to detect high-impedance fault events in a microgrid system

in the context of variable weather conditions [18], and

different deep learning models which included variations of

Restricted Boltzmann Machine (RBM) and Convolutional

Neural Networks (CNN) were used to detect and classify

faults in transmission lines [19].

B. GRAPH LEARNING MODELS FOR FAULT DETECTION

For much of the previous literature discussed, many of the

applied models didn’t incorporate the actual topology of

power grid structures, while research interest in applying

graph learning models to power systems has grown sig-

nificantly in recent years [20]. When compared to more

traditional machine learningmodels, or models that can’t take

power grid topology into account, graph learningmodels have

generally shown better performance for anomaly detection

[21], [22], [23], [24]. These graph learning models are a

type of deep learning that are generally categorized as Graph

Neural Network (GNN) models [25]. In [21], a GNN model

based onChebyshev spectral graph learning [26] was found to

perform better at fault location detection when compared to

other non-graph learning methods. Using a model based on

the GNN designed by Kipf and Welling [27], a comparison

with several non-graph learning models found that the GNN

was more effective at detecting and classifying different

types of faults in transmission lines [22]. In [28], a GCN-

based fault detection method was proposed for low-voltage

DC microgrids, outperforming CNN, SVM, and FCN in

accuracy and robustness. From research published in 2023,

a heterogeneous multi-task learning GNN (MTL-GNN) was

found to be effective at various prediction tasks related
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to fault classification [23]. In addition, a location method

using a deep Graph Convolutional Network (GCN) that

integrates system topology and multiple bus measurements

was proposed in [29]. Tested on the IEEE 123-bus system,

it outperforms traditional and machine learning methods in

accuracy and robustness to noise and data loss. In 2024,

using the novel PowerGraph benchmark dataset that they

developed, Velickovic et al,. found that several variations of

GNN model architectures, including Graph Attention Net-

works (GAT) [30], modified Graph Isomorphism Networks

(GINe) [31], and Transformers [32], all performed effectively

for the detection of cascading failures in power systems [24].

C. MAKING GRAPH LEARNING MODELS EXPLAINABLE

Despite the competitive performance that has been attributed

to GNNmodels across many different domains, deep learning

models are often criticized for their lack of transparency since

the logic of these models is often impossible to interpret

on their own [33]. When any model lacks transparency,

even when such a model exhibits experimentally strong

performance, the lack of informativeness that comes from

these ‘‘black box’’ predictions can make it very difficult to

trust such a model with real-world applications [34].

Fortunately, a wide range of supplementary explainability

methods has been developed to address the limitations

of ‘‘black box’’ models [34], including several designed

specifically for GNN models [33]. While most explanation

methods in the research literature for power systems and

smart grids do not focus on GNNs [35], [36], some notable

examples demonstrate the application of such methods to

GNN models within the power grid domain [24], [37],

[38]. Using a GNN model for the detection of cascad-

ing power failures, the explanation visualization method

Layer-wise Relevance Propagation (LRP) [39] was used to

help explain the logic behind the model by determining

what factors in the power system were considered most

relevant by the model [37]. Showing how a Spatio-Temporal

Graph Neural Network (STGNN) could be used to predict

energy production for photovoltaic (PV) units distributed

in a power system, a GNNExplainer [40] was used to

generate explanations to show what aspects of power system

topology and node features represented the most important

patterns in the data [38]. With the models trained by their

PowerGraph benchmark data, several different explanation

methods were tested with GNN models to determine the

relative effectiveness of these different approaches [24].

III. PROPOSED APPROACH

A. PRELIMINARIES: CHEBYSHEV SPECTRAL GNN

For this work, the GNN is based off of the spectral graph

network from Defferrard et al. [26], which is also described

byKipf andWelling [27].We define a graph asG = (V, E,A),

where V is the set of nodes, E is the set of edges, and A is the

adjacency matrix defined as A ∈ {0, 1}|V |×|V | with |V| the

number of nodes. Given that the normalized adjacency matrix

A is defined as A = D−1/2AD−1/2, D is the diagonal degree

matrix such that D ∈ R
|V |×|V | and Dii =

∑
j Aij, and I is

the identity matrix. Since the standard Laplacian matrix LG
is defined as LG = D − A, the normalized Laplacian matrix

L can be derived such that:

L = D−1/2LGD
−1/2 = D−1/2(D− A)D−1/2

= D−1/2DD−1/2 − D−1/2AD−1/2

= I − D−1/2AD−1/2 (1)

Since the Laplacian matrix is defined to be a positive

semidefinite matrix, partly due to A being a symmetric

matrix and D being a diagonal matrix, L = U3UT can be

derived through eigendecomposition, such thatU ∈ R
|V |×|V |

contains column-wise eigenvectors corresponding to L and

3 ∈ R
|V |×|V | is a diagonal matrix of eigenvalues. Given a

signal vector x ∈ R
|V | representing a vector of scalar values

from each node in G, designating UT x as the graph Fourier

transform of x, and fθ being a filter operation that is a function

of the eigenvalues of L as fθ (3), this can be derived as:

fθ ∗ x = fθ (L)x = fθ (U3UT )x = Ufθ (3)UT x (2)

where polynomial parameters using the coefficients θ ∈ R
K

can be used to calculate fθ as:

fθ =

K−1∑

k=0

θk3
k (3)

with K defined as the degrees in the polynomial. However,

considering how this series of matrix multiplications with

these polynomial coefficients are noted for being compu-

tationally complex [26], such an approach would not be a

scalable solution with larger graphs, such as large power

systems with many nodes. Alternatively, this polynomial

expansion can be more efficiently approximated using a

recursive algorithm, which in our case is the Chebyshev

polynomial expansion Tk (x) = 2xTk−1(x) − Tk−2(x) that

is recursively defined as T0 = 1 and T1 = x, such that

Tk (3̂) ∈ R
|V |×|V | represents each k-th order of Chebyshev

polynomial, defined as:

fθ ⋍

K∑

g=0

θkTk (3̂) (4)

where 3̂ is defined to be a normalized version of3, such that:

3̂ = 2/λmax × 3 − I (5)

where λmax is defined as the largest eigenvalue found in the

matrix of eigenvalues3 derived from the Laplacian matrix L.

Using the definitions that we have already established, we can

derive U (3)kUT = (U3UT )k = Lk as a general property to

further extend this recursive Chebyshev approximation to the

Laplacian matrix L itself, such that:

fθ ∗ x ⋍ U

K∑

k=0

θkTk (3̂)UT x =

K∑

k=0

θkTk (L̂)x (6)
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where L̂, similar to the calculation performed to generate the

normalized eigenvalue matrix 3̂, is defined as:

L̂ = 2/λmax × L − I (7)

The Chebyshev spectral graph algorithm defined in this

section serves as the design for the graph convolutional filter

used in our EGNN model. By leveraging the Chebyshev

filter’s ability to operate on node signal vectors x, it can

be extended to node feature matrices in conjunction with

adjacency matrices, which are the standard inputs for GNN

models. This spectral graph convolutional operator enables

our GNN model to learn from both nodal features and graph

topology, as captured in our power grid data. Incorporating

this topology-aware approach allows the graph convolutional

filters to scale effectively with larger and more complex

power system data, enhancing the model’s ability to capture

deeper insights from the data’s structural context.

B. USING GNN FOR FAULT LOCATION DETECTION

Since the GNN model in this work is designed for graph

classification, the training and testing data consist of input

graphs containing voltage data recorded by Phasor Measure-

ment Units (PMUs) located at various bus locations. These

graphs also include the power grid topology corresponding

to different combinations of fault scenarios.

For each input graph, we define n as the number of nodes

and d as the number of features for each node, such that

the node feature matrix for the input graph is defined as

X ∈ R
n×d, with an accompanying adjacency matrix defined

as A ∈ {0, 1}n×n with 1 indicating that the nodes referred

to by the embedding do connect and 0 otherwise. Given that

this data is recorded using PMU installed at each bus location

under different fault conditions, where each input graph

represents PMU readings from any specific fault scenario,

the nodes represent the total of n buses in a power system

wherem voltage features are recorded from each bus, and the

connections shown by the adjacency matrix A represent the

power line connections between each bus.

The phasor data recorded by each PMU consists of voltage

magnitudes Vi and voltage angles ̸
i for each i-th phase of a

three-phase power line, such that (V1, ̸
1,V2, ̸

2,V3, ̸
3) ∈

R
6 is measured from each bus during a fault event. In cases

where a bus is connected through only one phase or two-phase

power lines, values of Vi and ̸
i that would correspond to

any phases i that are absent from that bus measurement are

recorded as Vi = 0 and ̸
i = 0. With input graphs that are

structured in this way, our GNN model uses this input data

to generate predictions that attempt to indicate where a fault

event has occurred.

For this work, the GNN architecture shown in Figure 2 is

built with three Chebyshev graph convolutional layers using

PyTorch Geometric [41]. Each of the graph convolutional

layers is followed by Rectified Linear Unit (ReLU) activation

functions. The degree of polynomial approximation for

the Chebyshev filters differ for each graph convolutional

layer, such that the depth of the Chebyshev polynomial

FIGURE 2. The EGNN model architecture used for fault location
prediction.

approximates by order 3 for the first layer, a degree of order 4

for the second layer, and a degree of order 5 for the third layer.

After passing through all three of the graph convolutional

layers, they are followed by amean pooling layer, which leads

to a dropout layer with a dropout rate of 0.2, before then being

passed to the last linear layer that produces the vector output

values that are used for the fault location prediction. Using

the Adam optimizer [42] to minimize the cross entropy loss

function used with multi-class classification, a set learning

rate of 0.001 was found to be effective, and the training data

was processed with batch sizes of 32.

C. EXPLANATION EVALUATION FRAMEWORK

Multiple explanation methods were applied to the EGNN,

making it essential to assess the effectiveness of each method

in generating explanations that accurately reflect the underly-

ing logic of the EGNN model. To enhance the explainability

of our fault location detection EGNN model, we propose the

application of the EGNN Evaluation Framework, detailed

below. This framework involves reporting the Fidelity+,

Fidelity-, andCharacterization Score performancemetrics for

each explanation method. By using these metrics, we can

comprehensively measure and compare the effectiveness of

each explanation approach.

1) FIDELITY+ AND FIDELITY-SCORES

The Fidelity metric, which was originally defined by [33],

was extended in [11] to also account for whether the

explanation method focused on explaining the phenomenon

or the model itself. When using the Fidelity metric, two

different scores can be generated, namely Fidelity+ and

Fidelity-. They both are designed to indicate how well the

subgraphs generated by the explanation methods can reflect

either the patterns in the phenomenon or the inner-workings

of the model itself, and Fidelity+ and Fidelity- each approach

this from different perspectives [11], [33].

With some exceptions, explanation methods included in

our study are designed to generate an edge mask ME and a

node feature mask MNF . For each input graph, we already

defined n as the number of nodes and d as the number of

features for each node, such that the node feature matrix for
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the input graph is defined as X ∈ R
n×d, with each Adjacency

matrix defined as A ∈ {0, 1}n×n. EachGS subgraph is built to

include an adjacency matrix AS and a node feature matrix XS ,

which are each derived from Hadamard products of the graph

input data and the explanation masks such that AS = ME ⊙A

and XS = MNF ⊙ X define GS as a subset of the entire input

graph.

Though ME and MNF have similar dimensions to A and

X respectively, such that ME ∈ R
n×n and MNF ∈ R

n×d

when generated by an explanation method, both masks can

be further transformed to be either a soft mask or a hard

mask, depending on the preferred form of explanation [11].

Whereas soft masks are normalized so that their weight

values are between 0 and 1, such that M
soft
E ∈ [0, 1]n×n and

M
soft
NF ∈ [0, 1]n×d, hard masks are further transformed such

that their values are only 0 and 1, such thatMhard
E ∈ {0, 1}n×n

and Mhard
NF ∈ {0, 1}n×d. Additionally, these explanation

masks can also be further transformed for different levels of

TopK, a threshold that determines the size of the explanation

subgraph GS by adjusting the k number of edges based on

mask weights.

For examining how well an explanation method performs

at reflecting the underlying logic of a GNN model, given that

our GNNmodel is trained for the task of graph classification,

Fidelity+ and Fidelity- are defined as:

fid+ = 1 −
1

N

N∑

i=1

1(ŷ
GC\S

i = ŷi) (8)

fid− = 1 −
1

N

N∑

i=1

1(ŷ
GS
i = ŷi) (9)

where N is the total number of instances in a given sample

of graph data inputs, ŷi is the predicted label generated by

the trained GNN model for each ith graph input, ŷ
GS
i is the

label predicted by the GNN for each ith subgraph GS which

is generated by the explanation method for each graph input,

and ŷ
GC\S

i is the label predicted by the GNN for each ith
complement of the subgraph GS which are denoted as GC\S .

Conceptually, Fidelity+ and Fidelity- reflect different

ways to evaluate the quality of the explanations provided

by the subgraphs that are generated from the explanation

method. Since Fidelity- essentially reflects how consistently

the explanation subgraph GS points to the prediction gener-

ated by themodel, Fidelity- indicates howwell an explanation

method can generate sufficient explanations. Conversely,

Fidelity+ reflects how consistently the complement to the

explanation subgraph GC\S points to the model prediction,

such that Fidelity+ indicates how well an explanation

method can generate necessary explanations. Based on the

assumptions taken by the calculations for Fidelity+ and

Fidelity-, an explanation method with Fidelity+ scores near

1 and Fidelity- scores near 0 are considered to be more

necessary and more sufficient, respectively [11]. For ease

of visualization and more convenience with reporting of

FIGURE 3. IEEE 34 bus system modified with added PV units.

experimental results, Fidelity- scores are reported here as

(1 – Fidelity-).

2) CHARACTERIZATION SCORE

Once Fidelity+ and Fidelity- are both calculated, Character-

ization Score can also be used as an additional evaluation

metric, which considers the strength of an explainability

method indicated by Fidelity+ and Fidelity- simultaneously.

Characterization Score is defined as:

charact =
w+ + w−

w+

fid+
+

w−

1−fid−

(10)

where w+ is defined as the weight of importance that can be

attributed to the fid+ score (Fidelity+), and w− is defined

as the weight of importance attributed to the fid− score

(Fidelity−). For our purposes, the Characterization Score is

calculated with w+ and w− both set to a value of 0.5, which

assumes equal importance for both Fidelity+ and Fidelity-.

3) EVALUATION FRAMEWORK

The explanation evaluation framework we propose for assess-

ing explanation methods in the context of using EGNN (or

any explainable GNN model) to predict fault event locations

in a power grid allows for evaluating the effectiveness and

consistency of these methods. By simultaneously reporting

the Fidelity+, Fidelity-, and Characterization Scores, we can

determine how often the method provides effective expla-

nations. Reporting all these performance metrics provides

clearer insights into how consistently an explanation sub-

graph captures the key node features and edges of input graph

data that influence the EGNN’s decision-making process.

IV. CASE STUDY

A. BENCHMARK SYSTEMS AND DATASETS

For this work, simulations of short-circuit fault events were

generated using the IEEE 34 and IEEE 123 radial test

feeder systems [43], [44] and the more recently developed

342-node Low Voltage Networked (LVN) Test System [45].

OpenDSS [46] and its official python API py-dss-interface

[47] were used to implement modified versions of these test

systems, and for each system the fault simulations had fault
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events generated for every possible bus location. For all three

systems tested here, they were modified to have photovoltaic

(PV) units added at various bus locations. To simulate how

grid system loads and power generation from PV units can

vary throughout typical day cycles, different solar irradiance

levels for each PV unit and changes in the base system

load were introduced across different fault scenarios [21].

In addition to having various fault simulation scenarios,

different 1-phase, 2-phase, and 3-phase fault-type events were

also introduced, including various line-to-ground, line-to-

line, and line-to-neutral faults.

Similar to the rates of differentiation applied in [21], the

irradiance levels simulated for each PV unit ranged between

0 - 1 kW/m2, and the base load of the entire system was

adjusted between multiples of 0.4 and 1.2. By differentiating

combinations of fault event conditions for fault types, fault

locations, levels of system loading, and irradiance levels

impacting PV energy production, large enough sample sizes

of power system simulation data could be generated for use as

training and testing data. Similar to noise injection described

by [48], Gaussian noise was added to the testing data under

the assumption that noise with a standard deviation of 3%

makes the results more realistic.

1) IEEE 34 BUS SYSTEM

The IEEE 34 bus systemwasmodified to have PV units added

to bus locations 890 and 844 [21], as shown in Figure 3. Each

PV unit had a nominal voltage rating of 4.16 kV, with the

bus 890 PV unit having a power capacity of 270 kW and

the bus 844 PV unit having a power capacity of 245 kW.

The training and testing data applied to our graph and

explanation model for the IEEE 34 case study comprised a

total of 26,820 fault scenarios. The fault scenario simulation

data is transformed for graph classification, such that each

fault scenario instance has a corresponding label for the

supervised learning process. The IEEE 34 system’s 34 buses

are grouped into 24 unique fault locations by assigning the

same label to buses within 1,000 ft of each other or connected

via transformers or regulators. This approach considers the

topological proximity of bus locations for each fault location

label, ensuring models do not need to differentiate between

fault locations with minimal separation. While most bus

locations in the IEEE 34 system are linked by 3-phase lines,

some (e.g., buses 810, 818, 820, 822, 826, 838, 856, and 864)

are connected only by 1-phase lines. For these locations, only

1-phase fault scenarios are used in simulations.

2) IEEE 123 BUS SYSTEM

For the IEEE 123 bus system, PV units were installed in

bus locations 79, 95, 250, 300, and 450 [49], and they

were each installed with a power capacity of 450 kW

and a voltage rating of 4.16 kV. The IEEE 123 system

includes not only 3-phase lines but also 1-phase lines, 2-phase

lines, and closed switches, all of which are represented

through node adjacency. While a small minority of buses are

FIGURE 4. IEEE 123 bus system modified with added PV units.

FIGURE 5. The 342 LVN System [44], [45] visualized to show the 48 buses
from the 8 spot networks [50]. For this study, PV units were installed at
each of the spot network bus locations.

connected exclusively via 2-phase lines, nearly half of all

buses are connected via one-phase lines. For these cases, only

applicable fault simulation scenarios are applied. To generate

the 38,450 fault scenarios for the IEEE 123 system, bus

nodes sharing regulators or closed switches were grouped

into common labels, as the distance between such nodes is

negligible. This process resulted in 120 distinct fault location

labels. Figure 4 illustrates themodified IEEE 123 systemwith

added PV units, where 1-phase, 2-phase, and 3-phase lines are

color-coded as shown.
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3) 342-NODE LVN BUS SYSTEM

The 342-node LVN system is also referred to as the IEEE

390 system, in reference to the 48 additional buses that

manage different networks of spot loads. This LVN system

was modified to have 48 PV units, each with a power capacity

of 300 kW and a 0.48 kV voltage rating, added to the

48 secondary buses S193 - S240 that support 8 networks of

spot loads present in the LVN system [45]. Shown in Figure 5,

the 342 LVN system is constructed to have a primary and

secondary set of connections. All lines and buses colored red

in Figure 5 comprise the primary section, while every other

bus connection comprises the secondary section. Similar with

other benchmarks, for the the 342-node LVN system, any bus

locations that share the same closed switch or transformer

are grouped together within the same classification label,

and any buses within the primary section of the 342 LVN

system that aren’t directly connected via a transformer or

closed switch to buses in the secondary section are all grouped

within the same fault location label, such that there are a

total of 186 fault location classification labels encoded for

the 31,200 samples generated. In addition to using 3-phase

line connections between each bus to represent the topology,

closed switches are also represented by graph data topology

as connections between bus locations. Though there has been

previous work that used the 342 LVN system for binary

detection of power grid system outages [51], to the best of the

author’s knowledge there exists no previous work that uses

the 342 LVN bus system as a benchmark for fault location

prediction and there are no other known instances of any type

of fault detection being applied to the 342 LVN bus system

when the system has been modified with added PV units.

B. MODEL PERFORMANCE COMPARATIVE STUDY

1) OVERVIEW AND IMPLEMENTATION OF FAULT

DETECTION MODELS

Along with our GNN model, we also tested k Nearest

Neighbors (kNN), Multi-Layer Perceptron (MLP), and Naive

Bayes models for fault detection with each of our case

studies. Aside from our GNN, each of these models were

implemented using Scikit-learn [52]. For our kNN model,

K (which reflects clustering distance between data samples

based on their features) was set to 1. Our MLP was trained

for 200 epochs, similar to the number of epochs that were

spent training our GNN model. Our Naive Bayes model was

implemented as a Gaussian variant. For each of these models,

alongside our GNN, the Testing Accuracy, F-1 Measure, and

AUC were reported for each them along an 80 % - 20 %

training-to-testing data ratio. For our purposes, we report

the Macro-F1 score for each of the model prediction results.

In our case studies the AUC scores for each class label are

calculated against the rest of the data, and the unweighted

mean of each AUC score for each class label is reported as

the AUC metric.

For the labeling of the fault locations being detected

for each bus system, the IEEE 34 bus system was

TABLE 1. Model comparative study for IEEE 34 bus system.

TABLE 2. Model comparative study for IEEE 123 bus system.

TABLE 3. Model comparative study for 342 LVN bus system.

assigned 24 classes, the IEEE 123 bus system was assigned

120 classes, and the 342 LVN bus system was assigned

187 classes, so from a machine learning perspective each

of these bus systems are represented by multi-class datasets.

Such numbers of classes in these datasets may generally

signify some class imbalance by default, but the fact that all

390 buses of the 342 LVN bus system were aggregated into

187 classes makes the dataset considerably more imbalanced

than the other bus systems. When trying to assess model

performance with imbalanced data, testing accuracy can be

misleading if used as the only performance metric [53], and

for multi-class data the sensitivity, specificity, and precision

rates can provide a comparison of each model that takes

model performance by class into account. Given the task of

predicting the bus locations of fault events, we report scores

for AUC, F-1Measure, and Testing Accuracy for each model,

in order to make our comparative study more representative

of model performance.

2) MODEL COMPARATIVE STUDY PERFORMANCE RESULTS

The Accuracy, F-1 Measure, and AUC scores are averages

taken from 5 different sampled testing scenarios, with

Table 1, Table 2, and Table 3 showing performance results

for the IEEE 34 bus system, the IEEE 123 bus system, and

the 342-node LVN bus system respectively. Though the GNN

was trained for 200 epochs to result in the performance

reported for the IEEE 34 and IEEE 123 bus systems, for

the 342 LVN system our GNN was trained for 350 epochs,

likely necessitated by the large number of classes and greater

complexity inherent to the 342 LVN system. The confusion

matrix showing the EGNN model performance for the IEEE
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FIGURE 6. Confusion matrix showing EGNN classification performance
for IEEE 34 bus system.

34 bus system is shown in Figure 6, and the confusion matrix

showing the EGNN model performance for the 342 LVN

bus system is shown in Figure 10, where the vertical axis

represents the true labels for each class and the horizontal axis

represents the label predictions that were actually generated.

Looking at the performance metric results, the EGNN

model generally outperformed all of the other models. The

only exception is the k-NN model for the 123 bus system,

which has acquired a slightly higher F1-Measure than the

EGNN model, despite the EGNN model having the highest

AUC and Testing Accuracy among these models. Given the

123 bus system, the k-NN model’s higher F-1 Measure score

might suggest that the k-NN model may have generated

predictions with higher precision for certain bus locations,

but the fact that the k-NN model had lower AUC and Testing

Accuracy scores than the EGNN model may suggest that

the EGNN generally did better at making classifications that

were considerably more sensitive and specific for a larger

majority of fault locations in the 123 bus power system.

To show model classification performance in more detail,

Figures 6 - 9 show the resulting confusion matrices for each

comparing model working with the IEEE 34 bus system.

Figure 6 shows the EGNN model results, Figure 7 shows

the k-NN model results, Figure 8 shows the MLP model

results, and Figure 9 shows the Naive Bayes model results.

As indicated by Table 1, we can see from Figures 6 - 9 that

the EGNN saw the lowest amount of misclassification across

the largest number of fault location classes.

Examining the confusion matrices for each model applied

to the 342 LVN system, shown in Figures 10-13, reveals

several noteworthy performance details. The 342 LVN bus

system comprises primary and secondary bus connections,

FIGURE 7. Confusion matrix showing kNN classification performance for
IEEE 34 bus system.

FIGURE 8. Confusion matrix showing MLP classification performance for
IEEE 34 bus system.

with an imbalanced class distribution for fault event locations.

Fault locations were labeled such that primary bus locations

received labels ranging roughly from 0 to 80, with class

14 representing the disproportionately large group. From the

confusion matrices, it is evident that the EGNN significantly

outperforms the other models in predicting fault locations.

In contrast, the other models struggle with classification

challenges posed by the larger class 14 and the imbalanced

labeling of primary bus locations. Specifically, the kNN and

MLP models (Figures 11 and 12, respectively) exhibit high
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FIGURE 9. Confusion matrix showing Naive Bayes classification
performance for IEEE 34 bus system.

FIGURE 10. Confusion matrix showing EGNN classification performance
for the 342 LVN bus system.

false positive and false negative rates for class 14. The Naive

Bayes model, consistently the worst performer, demonstrates

the most severe inability to predict fault locations within the

primary distribution bus locations, as shown in Figure 13.

C. EXPLANATION METHOD COMPARATIVE STUDY

We exam our proposed explanation evaluation framework

in this section. The implementation environment is in the

Pytorch Geometric [41] and Captum [54]. In addition

to several gradient-based explanation methods, including

FIGURE 11. Confusion matrix showing kNN classification performance for
the 342 LVN bus system.

FIGURE 12. Confusion matrix showing MLP classification performance for
the 342 LVN bus system.

Guided Backpropagation [55], Integrated Gradients [56],

Saliency [57], Deconvolution [58], and Input X Gradi-

ent [59], our comparative study of explanation methods

also included the perturbation-based explanation methods

GNNExplainer [40] and GraphMaskExplainer [60]. Whereas

gradient-based methods attempt to estimate importance

values of input features based directly on training gradient

values, perturbation-based methods attempt to show what

129528 VOLUME 13, 2025



R. Bosso et al.: Explainable Graph Neural Networks for Power Grid Fault Detection

FIGURE 13. Confusion matrix showing Naive Bayes classification
performance for the 342 LVN bus system.

TABLE 4. Explanation method comparative study for IEEE 34.

input features are most important by analyzing how model

predictions are influenced when random modifications are

applied to input features [33].

1) PARAMETERS AND APPROACH FOR EGNN EVALUATION

The Fidelity+, Fidelity-, and Characterization evaluation

metrics are reported at TopK values of 10 to comprehensively

compare the performance of these evaluation methods for

explanation subgraphs with 10 edges. These results are tested

using hard masks to identify the most effective methods.

As a baseline, the same mask conditions and evaluation

metrics are also applied to a ‘‘Random’’ method, which

generates random binary values (0 and 1) for each hard mask

element, enabling a comparison of all explanation methods

against random results. Since random guesses are unlikely to

provide meaningful model insights, any explanation method

performing no better than Random will be deemed largely

ineffective. The evaluation metrics reported in the following

sections were tested using 6 different random samples, each

containing 1,000 instances of graph input data. As noted

earlier, Fidelity- scores are presented as 1 - Fidelity-.

TABLE 5. Explanation method comparative study for IEEE 123.

TABLE 6. Explanation method comparative study for 342 LVN.

2) EXPLANATION METHOD EVALUATION FRAMEWORK

RESULTS

Based on the explanation method performance metric

results shown in Tables 4, 5, and 6, which show the

Fidelity+, Fidelity-, and Characterization scores resulting

from the explanation subgraphs generated by each explana-

tion method, it was generally found that overall explanation

method performance seemed to be noticeably lower for the

IEEE 123 and 342 LVN bus systems when compared to

the explanation performance observed for the IEEE 34 bus

system, particularly when taking Fidelity- and Characteri-

zation scores into account. This means that the explanation

methods were generally less effective at generating sufficient

explanations for the IEEE 123 and 342 LVN bus systems.

This may be attributed to the greater complexity of larger

systems, as more complex bus systems inherently have

a higher number of classes due to the increased number

of possible fault locations. Nonetheless, from a model

performance and fault location detection perspective, our

EGNN demonstrated strong scalability with these larger and

more intricate bus systems.

For both the IEEE 34 and IEEE 123 bus sys-

tems, the Integrated Gradients method demonstrates the

best-performing explanation results. For the IEEE 34 bus

system, while GraphMask Explainer and GNNExplainer—

both perturbation-based methods—generally outperformed

most other gradient-based methods aside from Integrated

Gradients in terms of Fidelity- (indicating how often an

explanation method successfully identifies input features

sufficient to reproduce the model’s prediction, such as

fault location predictions made by the EGNN), these

perturbation-based methods showed the lowest Fidelity+

scores. This suggests that, for this system, perturbation-

based methods struggle to generate explanations capturing

the portions of the input graph uniquely necessary for the

model’s prediction.
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TABLE 7. Calculation times for explanation methods.

The generally poorer performance of explanation methods

for the more complex IEEE 123 and 342 LVN bus systems

suggests these methods may work best on simpler power

grid sections or grids labeled with fewer fault location

classes. Even for the simpler IEEE 34 bus system, most

gradient-based methods (except Integrated Gradients) per-

formed no better than random guesses. These findings

highlight the importance of the EGNN Evaluation Frame-

work for fault detection, as practitioners need to identify

methods that may struggle to explain EGNN predictions.

Among the methods studied, GNNExplainer, GraphMask

Explainer, and especially Integrated Gradients showed better

andmore consistent performance for the IEEE 34 and 123 bus

systems.

We have also reported the computation times for each

explanation method in Table 7, measured in seconds. Each

value represents the average of five sample runs using

identical hardware. As expected, the Random method had

the shortest computation time since it simply generates

random numbers. Among the remaining methods, most

gradient-based approaches were the fastest, with computation

times for Integrated Gradients, Guided Backpropagation,

Deconvolution, Saliency, and InputXGradient ranging from

slowest to fastest within this group.

D. USAGE AND DEMONSTRATION OF EXPLANATION

The EGNN explanation methods are designed to clarify the

GNN model’s logic by visualizing the spatial and temporal

features present in power grid data. Spatial aspects highlight

the significance of line connections in the grid, represented

by the explanation edge mask, while temporal aspects

indicate the importance of node features, such as voltage

angles and magnitudes, at specific time frames, shown in

the explanation node mask. These explanation subgraphs

are fully utilized in the visualizations. To implement these

methods, we used PyTorch Geometric, Captum, NetworkX,

and Matplotlib, as mentioned earlier. The visualizations from

Integrated Gradients are shown in Figures 14 and 15, those

from GraphMask Explainer in Figures 16 and 17, and those

from GNNExplainer in Figures 18 and 19.

1) EXPLAINS SPATIAL ASPECTS

As discussed earlier, the data from each power system case

study represent 1-phase, 2-phase, and 3-phase connections

FIGURE 14. Integrated gradients edge explanation for fault at 802.

FIGURE 15. Integrated gradients node feature explanation.

FIGURE 16. GraphMask explainer edge explanation for fault at 830/854.

between bus locations. SinceGNNmodels can leverage graph

topology, the explanation methods for our EGNN are able

to identify and express the importance of different parts of

this topology. This means that the edge masks generated

by each explanation method highlight the most significant

line connections between bus locations, which the EGNN

model uses to make fault location predictions. Figures 14,

16, and 18 demonstrate how these spatial aspects can be

visualized for the IEEE 34 bus system using NetworkX and

Matplotlib. In these visualizations, the edge masks highlight

line connections in red, indicating their importance to the

model’s prediction, while black lines are considered less

important. The red lines are part of the explanation subgraph,

representing the key connections for the specific fault
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FIGURE 17. GraphMask explainer node feature explanation.

FIGURE 18. GNNExplainer edge explanation for fault at 830/854.

scenario, while the black lines belong to a complementary

subgraph, which is less relevant to the explanation.

2) EXPLAINS TEMPORAL ASPECTS

The temporal aspect of the EGNN is determined by the

importance of node features, specifically the voltage phasor

data measured at each bus location, as emphasized by the

node mask in the explanation subgraph. For the IEEE 34 bus

system, this temporal aspect directly reflects the voltage angle

and magnitude data for each of the three phases measured

at each bus. Figures 15, 17, and 19 illustrate how these

temporal aspects are visualized for the IEEE 34 bus system

using Matplotlib. These visualizations, which complement

the edge explanations shown on the same page, highlight the

node features deemed most important by the corresponding

EGNN explanation method. In the context of power grids,

each bus location is treated as a node, and these node features

represent the voltage data recorded by PMUs at each location.

The importance values for each of the voltage magnitude and

angle readings, shown in the figures, reflect how frequently

these features were selected by the node mask as crucial for

a specific fault scenario. Bar charts are used for readability,

aligning with the edge explanation visuals on the same page.

3) DISCUSSION OF EGNN EXPLANATION VISUALIZATIONS

The visualizations demonstrate how fault location predictions

made by the EGNN model can be explained in a comprehen-

sive spatiotemporal context. For example, Figures 14 and 15

FIGURE 19. GNNExplainer node feature explanation.

illustrate the results from Integrated Gradients, which explain

what features of the IEEE 34 bus system the EGNN model

relied on most when predicting a fault at bus location 802.

In Figure 14, the red lines represent the bus connections

that Integrated Gradients identified as most significant for

the fault location prediction. Figure 15 shows that, for

this particular fault event, Integrated Gradients emphasized

the voltage magnitude data from all three phases as being

more important than the voltage angles. Notably, the voltage

magnitudes at Phase 3 had the most influence on the model’s

decision, as indicated by the higher importance scores for that

phase compared to the others.

The explanations offer a way to interpret the underlying

logic of the EGNN model, providing greater transparency

by revealing which aspects of the power grid system data

the model considers most crucial when making predictions.

Similarly, Figures 16-19 showcase the explanations from

GraphMask Explainer and GNNExplainer, demonstrating

how these methods highlight different features of the power

grid data and contribute to a better understanding of the

model’s decision-making process for various fault scenarios.

Ultimately, these visualizations help improve transparency

and interpretability of the EGNN model in the context of

power grid fault location detection.

V. CONCLUSION

Short-circuit fault events present significant challenges for

utility providers and power grid operators. To reduce the

time required for fault detection, research suggests leveraging

machine learning models that utilize voltage data across the

grid. While GNN models excel at learning from the network

topology of power grids to make accurate predictions,

their lack of transparency can hinder trust in their results.

To address this issue, we introduce the Explainable GNN

(EGNN), which incorporates explanation techniques into

GNN models for fault location detection, clarifying the

rationale behind their predictions.

Furthermore, we present an EGNN Evaluation Frame-

work to systematically evaluate the efficacy of multiple

explanation approaches. This comprehensive evaluation iden-

tifies the most effective techniques for various power grid
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configurations. Additionally, we showcase how these meth-

ods generate clear, graphic, and context-rich explanations

that reveal the EGNN model’s underlying logic. These

insights not only enhance the interpretability of GNN-based

fault location systems but also bolster their trustworthiness,

paving the way for more transparent and reliable power grid

operation.
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