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Abstract
Understanding patterns and mechanisms underlying local adaptation is

becoming increasingly important for species conservation amid anthropogenically driven
environmental change. Alpine systems are experiencing particularly intense pressure
from environmental change resulting from increased rates of warming and
corresponding loss of snow and ice. We integrate morphological and genetic analyses
to identify traits important for local adaptation in one of the highest elevation breeding
birds in North America, the Sierra Nevada Gray-crowned Rosy-Finch. We performed an
in-depth analysis of how traits with known links to thermoregulation in birds such as
wing length, bill size, and feather microstructure vary between two populations at sites
with contrasting climate and environmental conditions. We identified loci underlying
these traits using a genome-wide association study and further examined regions of the
genome related to altitude adaptation and cold tolerance using Fst outlier tests.
Together, these results indicate that temperature, food availability, and alpine landscape
features may impose multifaceted and potentially conflicting selective pressures on
morphological traits important to adaptation in alpine birds. Overall, this work represents
one of the first in-depth analyses of the genetic basis of adaptation in an alpine

specialist songbird.

Keywords

local adaptation, conservation genomics, genome-wide association study, Fs; outlier test,
alpine
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Introduction

Local adaptation occurs when natural selection favors traits that confer fithess

advantages in specific habitats (Endler, 1977; Kawecki & Ebert, 2004; Savolainen et al.,

2013). A species’ adaptive capacity determines the extent to which it will be able to

respond to rapid environmental change (Forester et al., 2022, 2023; Lande & Shannon,

1996; Meek et al., 2023). As a result, identifying genetic and morphological traits

involved in local adaptation is a key component of effective species conservation

planning (Hoban et al., 2016; Meek et al., 2023). Historically, assessments of the capacity

for local adaptation relied on reciprocal transplant experiments that allowed researchers

to link variation in putatively ecologically important traits to differences in fithess across
environmental gradients (Blanquart et al., 2013; Clausen et al., 1941; Kawecki & Ebert,
2004; Savolainen et al., 2013). However, recent advances in genomic methods have
made it possible to detect signatures of selection across the genome and to associate

these with environmental variation and ecologically important morphological variation

(Capblancq et al., 2020; Hoban et al., 2016; Lotterhos & Whitlock, 2015). We leveraged

recent advances in genomic methods to identify morphological and genetic traits
important to local adaptation in an understudied alpine bird system.

Many montane species undergo upward range shifts with climate change
(Mamantov et al., 2021). However, for those species already living near the top of a
mountain system, there are constraints that may limit the ability to track their niche, a
phenomenon termed the “escalator to extinction” (Freeman et al., 2018; Urban, 2018).

Alternatively, local adaptation can impact adaptive responses to the environment and

Page 4 of 240


https://www.zotero.org/google-docs/?exv77j
https://www.zotero.org/google-docs/?exv77j
https://www.zotero.org/google-docs/?mLq078
https://www.zotero.org/google-docs/?mLq078
https://www.zotero.org/google-docs/?w5ADtV
https://www.zotero.org/google-docs/?xGb6AM
https://www.zotero.org/google-docs/?xGb6AM
https://www.zotero.org/google-docs/?nOOWq2
https://www.zotero.org/google-docs/?KYHYIC
https://www.zotero.org/google-docs/?3YQza1

Page 5 of 240

oNOYTULT D WN =

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66
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allow species to persist despite a restricted capacity for range shifts (Aitken et al., 2008;
Capblancq et al., 2020). A first step toward improving our understanding of how high-
altitude species will respond to climate change is to identify morphological traits and
corresponding regions of the genome involved in adaptation to extreme alpine
environments (Blanquart et al., 2013; Pritchard & Di Rienzo, 2010).

Birds living in alpine regions are exposed to extreme environments throughout
the year, including variable snow cover, hypoxic conditions, and dramatic temperature
changes (Grabherr et al., 2010; Korner, 2003). As a result, traits that contribute directly
to thermoregulation are expected to be under strong selective pressure in alpine
species. Previous work has shown climate-linked traits often follow ecogeographical
rules such as Bergmann’s and Allen’s rule. Allen’s rule posits that animals adapted to
colder environments will have shorter appendages than animals adapted to warm
climates (Allen, 1877). In birds, this rule predicts that beaks and wings will be longer in
warmer environments to facilitate greater heat dissipation across a larger surface area,
and shorter in colder environments to facilitate heat conservation (Greenberg et al.,
2012; Lewden et al., 2023; Symonds & Tattersall, 2010; Tattersall et al., 2017; Ward et
al., 1999; Weeks et al., 2020, 2025). Bergmann’s rule, which states that body size tends
to decrease as temperature increases, has also been supported in birds (Ashton, 2002;
He et al., 2023). Following these rules, we predicted that birds will have shorter beaks
and smaller wings as well as larger overall body sizes in higher, colder environments.

An additional aspect of beak morphology that should be investigated in the
context of thermoregulation is nare length. Nares are the nostril of the bird and are

located at the top of the beak. Grinnell (1913) documented subspecific divergence in
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Leucosticte tephrocotis dawsoni, including differences in beak length and bill depth from
the nostril. While nare size per se was not the focus, these measurements provide a
morphological basis for interpreting variation in nasal exposure and potential heat
exchange, particularly in the context of ecological differences between alpine sites.
While there has not, to our knowledge, been work directly linking nare size to
thermoregulatory function, this may be an important and understudied aspect of beak
morphology as it relates to thermoregulation in birds. Following the logic for broader
beak morphology, we can expect to see larger nares in the warmer environments to
facilitate the dumping of excess heat.

Although less studied in the context of local adaptation, feather microstructure
may also be important to avian species’ adaptation to environmental variation in
temperature. While substantial evidence suggests feather microstructure plays a key
role in determining the thermoregulatory capacity of a bird’s plumage (Barve et al., 2021;
Stettenheim, 2000; Stoutjesdijk, 2003; Wolf & Walsberg, 2000), there is some confusion
over how environmental variation may drive feather microstructure differences (D’alba
et al., 2017; Koskenpato et al., 2016; Lei et al., 2002; Pap et al., 2017, 2020). In one of
the few studies that has been conducted at the population level, Koskenpato et al.
(2016) found that tawny owls living in colder environments have significantly denser
plumulaceous contour feathers than those living in warmer environments. This suggests
that feather density may facilitate heat retention. In contrast, however, Pap et al. (2017)
found that European bird species wintering in colder areas had less dense feathers than

those wintering in warmer places. Thus, there is a clear need for studies specifically
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linking environmental variation with population-level differences in feather
microstructure.

Recent advances in population genomics have enabled the detection of loci
involved in local adaptation, even in non-model and wild species (Faria et al., 2014).
Among these, Fst outlier tests are commonly used to identify genomic regions that
exhibit elevated population differentiation, which may signal divergent selection (Hoban
et al., 2016). However, many adaptive traits are likely polygenic, involving small effects
at numerous loci (Pritchard & Di Rienzo, 2010; Yeaman, 2015), and such loci will not be
picked up by Fst outlier tests. To address this, genome-wide association studies
(GWAS) can be used to link more subtle genetic variation to phenotypic variation in
ecologically important traits suspected to be under selection (Stinchcombe & Hoekstra,
2008). Taken together, combining approaches that detect both population-level
divergence and polygenic trait architecture offers a powerful framework for investigating
local adaptation.

We investigated the potential for local adaptation in the Sierra Nevada Gray-
crowned Rosy-Finch (Leucosticte tephrocotis dawsoni), one of the highest-breeding
songbirds in North America. Of the roughly four groups of rosy-finch found in North
America, this subspecies is more localized, found only in California’s alpine, and is a
short-distance migrant. In comparison, the broader Gray-crowned Rosy-Finch species
range extends along the entire western edge of North America from California to
Alaska. Despite long-standing interest (Grinnell, 1913, 1917; Twining, 1940), research
on this subspecies has been limited due to the difficulty of accessing its extreme nesting

sites located on the rocky cliff faces of the Sierra Nevada and White Mountains of
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California, more than 3,000 meters above sea level. Additionally, this subspecies may
act as a strong model of local adaptation due to the variation in habitat experienced
within a restricted range. To help fill this knowledge gap we conducted morphological
and genomic analysis of two populations breeding at distinct places in the elevational
and thermal range. Piute Pass, located in the Sierra Nevada, is lower in elevation and
warmer than the White Mountains (Fig 1A). To identify traits potentially involved in local
adaptation, we quantified variation in beak and feather morphology between the two
populations. Based on Allen’s rule, we predicted that birds in the warmer Piute Pass
population would have longer wings and larger beaks. Following Bergmann’s rule, we
predicted that birds in Piute Pass would also have smaller overall body size. Further, we
predicted that birds in the colder White Mountains location would exhibit feather traits
associated with increased insulation, specifically, longer barbules and higher node
density. Lastly, we used genome-wide association studies (GWAS) to identify genes
linked to feather and bill morphology and Fsr outlier tests to identify other potentially
important sources of genetic variation (Fig 1B-C). Overall, our findings provide new
insights into the process of local adaptation in an extreme alpine specialist bird and
provide key baseline information on the capacity for adaptation in the face of global

environmental change.

Methods

Site Selection
Our study compares Rosy-Finch populations from two sites: one in the Sierra

Nevada and one in the White Mountains. Sierra Gray-crowned Rosy-Finches occupy

alpine habitats from approximately 2,750-4,000 m across California (Brown et al., in
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review), and our study sites span a substantial portion of this range. The Piute Pass
location is in the Sierra Nevada at 3,470-3,625m in elevation and has a warmer average
temperature during the breeding season of 8°C (with a range of 3.8-13.0°C). The White
Mountain location, near White Mountain Peak, is higher in elevation at 4,285-4,344m
and colder with a mean average temperature during the breeding season of 6°C (with a
range of 1.5-10.7°C) (extracted from AdaptWest Project, 2022, see supplemental
methods and SupFig1). Because it lies in the Sierra Nevada rain shadow, the White
Mountain site receives roughly one-third the precipitation of areas at comparable
elevations in the Sierras (Rundel et al., 2008). Between the two sites, Piute Pass
receives more precipitation as snow and has a more persistent snowpack than the
White Mountain location. Additionally, aquatic environments such as streams, lakes and
ephemeral pools are more abundant in the Sierra Nevada than the White Mountains
(Rundel et al., 2008). The alpine ecosystems of these mountains can be delineated as
communities occurring above tree line (Rundel & Millar, 2016). Environmental stressors
such as extreme winter temperatures, short growing seasons, high winds, low partial
pressures of Oz, and limited water availability are characteristic of these alpine
environments (Grabherr et al., 2010; Rundel & Millar, 2016). Separating the western
Sierra Nevada Mountains and the eastern White Mountains is the Owens Valley, a
subregion of the Great Basin Desert (Belnap et al., 2016).
Sample Collection

A total of 171 Sierra Nevada Gray-crowned Rosy-Finches were captured using
potter traps at White Mountain (n=98) and Piute Pass (n=73) in June and July, the peak

of the species’ breeding season (MacDougall-Shackleton et al., 2000). Captures within
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each mountain range occurred across multiple locations within approximately 1 km? at
each site (White Mountain or Piute Pass) to maximize sample sizes while maintaining
site-specific environmental characteristics. The sampling thus, in total, represents only
these two sites. Not all morphology was able to be collected for every bird, resulting in
slight variation in the types of data collected for each individual (see details in
supplemental methods, see sample sizes for each trait in Supplementary Table 1).
Blood samples were collected from 150 of the captured birds using the brachial wing
vein and stored in Queen’s lysis buffer at room temperature (Owen, 2011; Seutin et al.,
1991). At the same time, morphological measurements - tarsus length, wing chord,
beak width, beak length, beak depth, nare length, and mass - were also collected from
154 of the birds using an electronic caliper and 5-10 body feathers were collected from
the breast of all individuals. Additionally, birds were aged and sexed following the
guidelines established in Pyle (2022) (see supplemental methodology). Birds were
banded to allow for identification of the individuals and recognize recaptures, then
released. All handling and banding of birds was done following the guidelines and
protocols of the U.S Geological Survey (USGS) Bird Banding Laboratory (BBL) and
complied with permits and permissions from federal and state agencies. All
measurements were taken by two researchers (TB and EZ), with one (TB) collecting
approximately 80% of the data. Because the majority of measurements were taken by a
single observer, and all followed the same standardized protocol, observer identity was

not included as a covariate in subsequent analyses.

Page 10 of 240


https://www.zotero.org/google-docs/?3LKAIq
https://www.zotero.org/google-docs/?3LKAIq
https://www.zotero.org/google-docs/?OFUJFW

Page 11 of 240

oNOYTULT D WN =

179
180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

Ecology and Evolution

Feather Microstructure Measurements
We measured the microstructure of three feathers for each individual. For each

feather, three photos were taken using an Olympus BX51 Microscope: one photo each
of an unbroken pennaceous and plumulaceous barb from the center of each region was
taken at 4x objective, and one photo of a plumulaceous barbule was taken at 10x
objective (Fig 3A). Structures were then measured from the photos using the
segmented line tool in Imaged. For the pennaceous and plumulaceous barbule length,
we measured one barbule from each region starting from the distal tip to where the
barbule meets the barb. For the pennaceous and plumulaceous barbule density, we
drew a 0.5mm line along the middle of a barb, counting the number of barbules along
that line. And finally, for plumulaceous node density, we drew a 0.2mm line along the
center of a barbule, counting the number of nodes along that line. Each replicate
measure for a feather trait was averaged per individual prior to downstream analysis.
Approximately 95% of feathers were measured by one researcher (SD) and observer
was not included as a covariate in subsequent analyses.
Statistical analysis for local adaptation

Body size and sex can confound morphological comparisons among individual
birds (D. C. Adams et al., 2020). To account for these effects in our investigation of
Allen’s rule, we included sex and tarsus length as predictor variables in our models. We
used tarsus length as an index of body size because it correlates strongly with mass but
is less affected by short-term fluctuations in condition; this approach has been used in
recent large-scale morphological studies (Demery et al., 2021; Weeks et al., 2020; Zimova

et al., 2023). As additional validation of tarsus as a proxy size for body size, we

generated a PC axis that incorporated multiple allometric traits and found that this was
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highly correlated (0.7) with tarsus (see supplement for additional details). We proceeded

with tarsus as our proxy for body size in all further analyses. To assess trait variation
between sites, we used both univariate and multivariate approaches (see SupTable 2-3
for a summary of trait values). We began by constructing linear models with tarsus
length, sex, age, and site code as predictors and used AIC weights to identify the
combination of variables that best explained trait variation. Traits for which site code
was a significant predictor were considered significantly different between the two
populations. We opted not to use a Bonferroni correction for the univariate models as
each model had a specific hypothesis associated with it. We used emmeans (Lenth,
2025) to calculate average trait values while controlling for predictors other than site
code, and these adjusted means were overlaid on the raw data in a violin plot (Fig 2 &
3B). To test our hypotheses derived from Bergmann’s rule, we compared both tarsus
length and a principal component axis representing overall body size using linear
models. Each model included age and sex as covariates to account for potential
confounding effects on trait variation. We then assessed whether body size differed
significantly between the two populations by including site as a predictor.

We also conducted a multivariate analysis to account for potential correlations
among traits in our investigation of Allen’s rule. For our multivariate approach we
incorporated all body morphology traits (wing chord, nare length, beak depth, beak
width, beak length) into a MANOVA model with site, age, sex, and tarsus as predictors.
The same analysis was performed with all of the feather traits (pennaceous barbule

density and length, plumulaceous barbule density, length, and node density) together.
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1
2

z 225 Sequencing and Genotyping

5 226 DNA was extracted from blood samples of 150 individuals using Qiagen’s

6

; 227 DNeasy Blood and Tissue Extraction Kit protocol and quantified with the Qubit dsDNA
9

10 228 HS Assay Kit. We used a modified version of lllumina’s Nextera Library Preparation
12 229 protocol to prepare WGS libraries and pooled the libraries by equal mass before

14230 sequencing. The resulting libraries were sequenced on 2 lanes of an lllumina NovaSeq

1? 231 6000 at Novogene Corporation.

18

19 232 To process the raw sequence reads and detect variants, we utilized Snakemake
20

21 233 (Molder et al. 2021), a workflow management system that provides efficiency,

23 234 adaptability, and reproducibility. The pipeline we adapted to our species can be found
26 235 on Github (https://github.com/erigande/mega-non-model-wgs-snakeflow/). To

28 236 summarize the workflow, sequence data were trimmed using fastp (S. Chen et al., 2018)
237 to remove adaptor sequences and polyG tails using a sliding window, and then aligned
33 238 to a Brown-capped Rosy-Finch (Leucosticte australis) reference genome (GenBank:

35 239 GCA_025504685.1) using Burrows-Wheeler Aligner software (H. Li & Durbin, 2009).

37 240 We marked PCR duplicates using SAMtools (Danecek et al., 2021) and read groups

40 241  (sample, lane, library) were added using Picard (http://broadinstitute.githut.io/picard).

42 242 Individual coverage was estimated using SAMtools, and, given the range of coverage
44 243 (7.4-19X), we downsampled bam files to 10x using the SAMtools subsample function

47 244  (Daneceketal., 2021). Individual gvcf files were created using the GATK
49 245 HaplotypeCaller (Poplin et al., 2018) with high base quality score filters (--min-base-
246  quality-score 33 --minimum-mapping-quality 20) to remove batch effects (Lou &

54 247  Therkildsen, 2022). We then parallelized the calling of genotypes across 3 million bp
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regions across the genome using the GenomicsDBImport and GenotypeGVCFs
functions (Auwera & O’Connor, 2020; McKenna et al., 2010). GATK versions above 4.0
call missing data as homozygous reference, which can bias downstream analysis. To
avoid this, all loci with a depth of zero were manually marked as missing. To remove
systematic errors according to GATK variant quality score recalibration (VQSR) best
practices, we hard filtered variants with the following parameters: StrandOddsRatio
(>3.0), FisherStrand (>60.0), MappingQuality (>40.0), and Quality by Depth (>2.0). We
further filtered for Single Nucleotide Polymorphisms (SNPs), removing indels, filtering
for missingness (<80%), allele frequencies (>0.05 and <0.95), depth (>4x), quality
(>30.0) using BCFtools (Danecek et al., 2021). After filtering, the resulting high-quality
SNPs were passed through BEAGLE 4.1 (Browning & Browning, 2016) to impute
missing genotypes.
Population genetic structure analysis

Population structure was assessed using a Principal Component Analysis (PCA)
followed by ADMIXTURE (Alexander et al., 2009). SNPs identified from sequence data
were pruned for linkage disequilibrium in PLINK (Purcell et al., 2007) using a 50kb
window, 10 SNP window step size, and a R? threshold of 0.2. Eigenvalues for the PCA
were then generated based on the pruned SNPs using PLINK and the first two principal
components (PC) were plotted in R. To further confirm a lack of population structure
ADMIXTURE was used to test k=1-3. The results were plotted using R and the cv

values were evaluated.
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1

2

z 269 Genome-Wide Association Study

5 270 Two GWAS models were implemented on all traits using GEMMA (Zhou et al.,
6

; 271 2013): a Bayesian sparse linear model, BSLMM, and a univariate linear model, ULMM.
9

10 272 These GWAS approaches allow us to detect SNPs associated with a given trait while

12 273  explicitly accounting for population structure and relatedness through the incorporation
14 274  of random effects whose correlation structure is characterized by a relatedness matrix.
275 Input files were generated with PLINK (Purcell et al., 2007). We implemented a

19 276 Bayesian sparse linear mixed model (BSLMM) using 500,000 MCMC burn-in iterations
21 277  that were discarded and 5 million MCMC iterations that were saved. We then filtered for
23 278  SNPs that had a mean posterior inclusion probability (PIP) above 0.01. A univariate

26 279 linear mixed model (ULMM) employing the Wald test was also conducted (see

28 280 SupTable 7 for A\GC values for each model and SupFig6 for PP plots for each trait). The
30 281 Wald test assesses the significance of the SNP genotypes in a linear regression model
33 282 andis used to test the null hypothesis that the effect size of a genetic variant on the

35 283 phenotypic trait is zero (i.e., there is no association between the variant and the trait).

37 284 SNPs were then filtered based on a p-value threshold of 5x10-8, a threshold widely used

oo 285  in GWAS studies (e.g. Chen et al., 2021).

41

fé 286 Genome Wide Fst

j‘sl 287 To estimate per site Fst, we used OutFLANK (Whitlock & Lotterhos, 2015).

46 288  OutFLANK identifies outlier Fst SNPs by modeling the distribution of Fst values across
49 289 loci using a trimmed likelihood approach to exclude loci under strong selection. It then
51 290 fits a chi-square distribution to the neutral Fst values and identifies SNPs with unusually
>3 291  high or low Fsr as potential outliers, suggesting loci under selection. We used a false

5 292  discovery rate threshold of 0.005 to determine outlier SNPs. We took the 90th quantile
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of these Fst values to narrow down the top SNPs for literature review and plotted these
on a Manhattan plot. This allowed for isolation of the most divergent loci as well as
easier visualization. We then determined the Fst values for the SNPs previously
identified in the GWAS analyses based on the values calculated by OutFLANK.
Identification of associated genes, enrichment analysis and literature review

To identify genes associated with significant SNPs from our GWAS and Fst
analysis, we implemented BEDTools (Quinlan & Hall, 2010) closest function with a
previously created Brown-capped Rosy-Finch gene annotation (Funk et al., 2023) to
identify genes close to the SNP positions. The output from this tool was filtered to find
only protein coding genes within 25kb of the given SNP. For plotting purposes, we used
the NUCmer function in MUMmer4.x (Margais et al., 2018) to align the Brown-capped
Rosy-Finch genome assembly to the Zebra Finch (Taeniopygia guttata) genome
assembly (GenBank: GCF_003957565.2). We then filtered the delta alignment output of
NUCmer to keep only matches that were greater than 400 bps, and used show-coords
to display the coordinates. We then used custom R scripts to convert our scaffold and
positions to Zebra Finch chromosome positions for plotting SNPs in Manhattan plots.

Enrichment in gene ontology (GO) terms was performed with Panther 19.0
(Thomas et al., 2022). For this analysis, Gallus gallus was used as the background
gene set. Enrichment thresholds were set to p<0.05 after Bonferroni correction. Gene
network analysis was conducted using STRING (Szklarczyk et al., 2023) with zebra
finch as the organismal reference for background genes. STRING (Search Tool for the
Retrieval of Interacting Genes/Proteins) is a database that predicts and visualizes

protein-protein interactions based on known and predicted associations from
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experiments, literature, and computational methods (Szklarczyk et al., 2023). For Fst
genes, all genes associated with the OutFLANK outliers were input into enrichment
analyses. Genes resulting from the GWAS analysis were grouped with all beak
morphology trait genes run as a single analysis, all feather trait genes run together, and
wing chord genes run in another analysis.

We performed a literature search for all of the candidate genes using google
scholar and the search terms gene name followed by, bird, trait specific term (when
applicable), environmental adaptation, local adaptation (e.g., “XIAP’ gene beak”, or
“DSCAM’ gene environmental adaptation”). For Fst SNPs, only those genes associated

with the 90th quantile of SNPs were evaluated in the literature. Genes were grouped by

their key functions or associations as described in the literature.

Results

Local adaptation of body and feather morphology
For the univariate approach, AIC model selection indicated five traits for which

site was a significant predictor. For wing chord, the best model included tarsus length,
age, sex, and site. The model showed high explanatory power (adjusted R?=0.673,
p<0.001) and showed that birds at the White Mountain location had shorter wing chords
compared to Piute Pass (PIPA) (p=0.003). The best model for nare length included
tarsus, sex, and site and had lower explanatory power (adjusted R2=0.197) but was still
highly significant (p<0.001). This model found that nare length was shorter in the White
Mountain population (p<0.001). Similarly, beak width had tarsus, age and site as
significant predictors (adjusted R?=0.135, p<0.001) with White Mountain having beaks

that are wider that those in Piute Pass (p<0.001). Beak depth had tarsus, age and site
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as the best predictors (adjusted R2=0.250) and found that White Mountain has
significantly deeper beaks than Piute Pass (p=0.003). Beak length was not significantly

different between the two locations and was best predicted by sex (adjusted R2=0.516,

p<0.001). For feather microstructure, the only trait that had site as a significant predictor

was plumulaceous node density. This model included tarsus and age as well as site but
had low explanatory power (adjusted R?=0.076, p<0.001). ltshowed that plumulaceous
node density was higher in the White Mountain populations (p<0.001). The best model
for plumulaceous barbule length based on AIC weights included site as a predictor;
however, the effect size was uncertain, and the effect of site was not statistically
significant (adjusted R?=0.142, p=0.078). Pennaceous barbule density had tarsus and
age as the best predictors (adjusted R?=0.365, p<0.001), pennaceous barbule length
had sex as the best predictor (adjusted R?=0.307, p<0.001) and plumulaceous barbule
density had tarsus and age as the best predictors (adjusted R?=0.076, p=0.004). We
found that body size did not vary between sites. In our model using tarsus (adjusted
R2=0.165, p<0.001) both age and sex were significant predictors (p<0.001 and p<0.05),
however site was not significant (p=0.417). Our comparison using the PC axis
representing size (adjusted R?=0.4639, p<0.001) had similar results with age and sex
as significant and site as not (p=0.53).

When looking at the results of the multivariate analysis, we see that for body
morphology traits site was a highly significant explanatory variable (p=1.327e-11).
Tarsus, age and sex were also highly significant (p<2.2e-16). The MANOVA on feather
traits also had site as a significant predictor although the p-value was less significant

(p=0.036). Age was also significant (p=1.5e-14) but tarsus and sex were not (p>0.05).
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For details on the models tested, models chosen, and full model results, see
Supplementary Table 4-6.
Evaluation of population structure

Whole-genome sequencing was performed on 150 individuals and 146 were
included in downstream analysis. Four individuals were removed because their
collection location could not be validated. Variant filtering resulted in 7,739,836 SNPs
for subsequent genetic analysis. Linkage pruning removed 5,526,104 SNPs. Visualizing
PLINK PCA results revealed little population structure with most individuals clustering
together (SupFig 2). ADMIXTURE results confirmed that there is no population structure
in these samples because k=1 had the lowest cv error (0.599) compared to k=2 or 3
(0.612 and 0.627).
Genes identified with genome-wide association approach

The univariate linear mixed model identified a total of 64 SNPs for wing chord,
beak length, beak width, pennaceous barbule length, and pennaceous barbule density.
Using a Brown-capped Rosy-Finch gene annotation we identified a total of 26 unique
genes corresponding to these SNPs (Table 1). We filtered out genes that were not fully
characterized (e.g., “LOC100221041”) leaving 14 genes. The Bayesian sparse linear
mixed model identified 266 SNPs for wing chord, nare length, beak length, depth and
width, pennaceous barbule length and density, and plumulaceous barbule length and
node density. We identified 146 genes associated with these SNPs (Table 1), 110 of
which had been fully characterized. For each trait the global view of p-values for all

SNPs and associated genes across both models are represented by Manhattan plots
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(Fig 4A-C, SupFig 3-5). Given the sample size (n = 146), this GWAS is best viewed as
conservative, detecting only loci with relatively strong effects on morphology.

GO term analysis using Panther produced significant results for beak depth and
a combined set of all feather traits. For beak depth, the top terms were presynaptic
membrane assembly (p=1.44x10-%), synaptic membrane adhesion (specifically cell
adhesion) (p=1.01x10-%) and heterophilic cell-cell adhesion via plasma membrane cell
adhesion molecules (p=1.13x10-®). For the feather traits (plumulaceous barbule and
node density combined with pennaceous barbule length), fructosamine catabolic
process was a significant term (p=1.12x10-%). Wing chord had no significant GO terms.
STRING analysis for beak and feather traits as well as wing chord did not find
significantly more interactions than expected.
Genes identified through high Fixation index (Fst) between the two populations

Using OutFLANK 831 loci were identified as having significantly high Fst when
comparing the White Mountain and Piute Pass populations, corresponding to 265 genes
(Fig 4D). No GWAS SNPs were flagged as having significant Fst values. The minimum
Fst to be considered an outlier was 0.17513. The mean Fst of SNPs not considered
outliers was 0.0045. Using a 90th quantile we determined Fst=0.235 to be the
threshold, narrowing down the SNPs to 105 loci. For the smaller set of loci, bedtools
identified 61 related genes (Table 2). We ran STRING and GO term enrichments on
both the larger and smaller set of genes. The smaller set did not have a significant
number of connections over all or any significantly enriched GO terms. The larger set of
264 genes, however, had an overall significant number of connections (p<0.05) and had

multiple significant annotated keywords (sourced from UniProt). The most significant
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was the keyword repeat (FDR<0.001), the next was ubl conjugation pathways

(FDR<0.05).

Discussion

Understanding the genetic and morphological basis of local adaptation is critical
for predicting how species respond to environmental change. Alpine species face
unique conservation challenges due to their extreme environments and thus are a high
priority for studies of adaptive capacity. In this study, we investigated morphological and
genetic differences between two populations of an alpine specialist songbird located in
distinct parts of its environmental range. Consistent with our predictions, we found
wings were shorter and feathers were denser in the colder environment. However, in
contrast to our prediction, beak depth and width were larger in the colder environment,
suggesting other factors like diet may place contrasting selective pressures on this
ecologically important trait. We also identified numerous genes with known links to limb,
facial, and feather development that potentially underlie variation in wing, bill and
feather microstructure. Further Fst outlier analyses revealed numerous significant
differences between cold and warm populations at SNPs located within genes with clear
links to altitudinal adaptation. Together, our results provide important insights into the
morphological traits and associated genomic regions associated with microgeographic

variation in a high-altitude songbird species.

Trait differences between warm and cold habitats

Ecogeographic rules, such as Allen’s and Bergmann’s rules, are useful for
predicting broad geographic trends in morphology in response to environmental

conditions, but observed patterns do not always align with expectations. In our study,
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we found that wing chord was smaller in the colder environment, suggesting that this
morphological trait may play a role in thermoregulation, consistent with Allen’s rule.
Heat dissipation from the wings occurs across the vascularized brachial regions,
primarily during flight when these areas are exposed to air flow (Lewden et al., 2023;
Ward et al., 1999). Wing bone length reflects the extent of vascularized areas on the
wings and has been shown to be longer in warmer environments across a broad sample
of passerine species (Weeks et al., 2025). However, studies of other alpine bird species
have found the opposite pattern: that birds from high-elevation sites have longer wings
than those from low-elevation sites (Bears et al., 2008; Ceresa et al., 2024). In these
cases, researchers have suggested that the demand for more energetically efficient
flight at high elevations may outweigh thermoregulatory selective pressures,
demonstrating the often contrasting selective pressures on ecologically important traits.
Although outside of the scope of the current work, additional wing measurements could
be collected that would allow for a more thorough investigation into the components of
flight morphology. It is possible that migratory behavior is influencing wing length as
previous work has shown that both within (Egbert & Belthoff, 2003; Grilli et al., 2017) and
between (Lockwood et al., 1998) species those who migrate further have longer wings.
To date, no formal study has been conducted on the migratory patterns of the Sierra
Nevada Gray-crowned subspecies and so future work could investigate the links
between wing morphology and movement patterns. Overall, our morphological analyses
support the idea that thermoregulatory demands may play an important role in shaping

wing morphology in the Sierra Nevada Gray-crowned Rosy-Finch, potentially
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outweighing the benefits of flight efficiency in this high-elevation, cold-adapted species
but not excluding the potentially parallel pressure of migratory distance.

Contrary to our predictions based on Allen’s rule, beak depth and width were larger
in the colder environment. Although temperature is often a key environmental variable
exerting selective pressure on alpine taxa, variation in beak morphology between our
populations may instead reflect divergent selective pressures associated with foraging
ecology, a well-documented driver of beak divergence in birds (Grant et al., 1976;
Lamichhaney et al., 2018). In our study system, the Piute Pass population likely has access
to more aquatic insects due to the higher availability of aquatic habitats proximate to Rosy-
Finch breeding sites in the Sierra Nevada (Epanchin et al., 2010; Rundel & Millar, 2016). For
example, Epanchin et al. (2010) found that, when abundant, mayflies can comprise up to
38% of the Sierra Nevada Gray-Crowned Rosy-Finch diet. In contrast, the White Mountain
population may rely more heavily on insects deposited in snowfields, a behavior that could
favor a more robust, conical bill for extracting frozen prey from the snow surface. Work is
currently underway to investigate the dietary differences between these two populations of
Rosy-Finch (Tim Brown, personal correspondence), and future work should explore the
selective pressures experienced by this species. The other aspect of beak morphology
assessed, nare length, was significantly larger in the warmer environment. If nare is playing
arole inthermoregulation, these results would be consistent with larger nares allowing for
more heat to be lost. Additionally, smaller nares in the colder environment would
potentially prevent snow from entering the nasal passages while foraging on snow. Overall,

our results on beak morphology emphasize the complexity of identifying drivers of local
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adaptation, especially in alpine systems where extreme environments, food scarcity,

and variation in migration strategies can create conflicting selection pressures.

Our comparison of body size did not have significant results, suggesting that
Bergmann’s rule is not contributing to morphological differences in this subspecies. He
et al (2023) found that there was significant variation in both strength and direction of
correlation between latitude and body size within and between taxa. With our results,
this could imply that Sierra Nevada Gray-crowned Rosy-Finch are an exception to the
ruel. In another meta-analysis, it was found that sedentary bird species were more likely
to conform to Bergmann’s rule than migratory ones and suggest that winter
temperatures may exert a higher pressure than breeding temperatures (Meiri & Dayan,
2003). The Sierra Nevada Gray-crowned Rosy-Finch is a short-distance, altitudinal
migrant. It is possible that both White Mountain and Piute Pass populations move to
similar areas or climates during the winter season, thus decreasing the divergent

selection pressure that would drive differences in Bermann’s rule.

Of our feather comparisons, we identified significant differences between cold
and warm sites for only one trait: plumulaceous node density. In line with our
predictions, plumulaceous node density was higher in the colder, high elevation White
Mountain population. Higher node density is known to improve air trapping ability, thus
trapping warmth against the body surface (King & McLelland, 1984). Consistent with our
results, a study on sparrows found that higher elevation alpine forms had higher node
density relative to lowland forms (Lei et al., 2002). A further multi-species comparison
found that species wintering in cold and windy conditions had downy feathers with

higher node densities (D’alba et al., 2017, 2017). These interspecific trends are mirrored
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in our results, suggesting that the White Mountain population has feather adaptations
consistent with an increased need for heat retention. The lack of significant results for
other feather traits may be explained by the amount of variation in the measurements as
well as the sample sizes being small, resulting in an underpowered comparison. An
alternative cause for the non-significant results is that alternative selection pressures
not considered in the present work are driving morphology of these traits. This is
somewhat supported by the overall low explanatory power of our models used in this
study. Additional work on this aspect of local adaptation would benefit from investigating
the influences of alternative environmental traits and utilizing a more controlled setting

to evaluate the functionality of intraspecific differences in feather morphology.

Genome-wide analysis

We used GWAS to identify SNPs within genes involved in traits that differ
between warm- and cold-adapted populations described previously:beak width and
depth, nare length, wing cord length, and pennaceous barbule density. Because ours is
one of the first studies to investigate the genetic basis of feather microstructure
variation, we also report on the genes associated with other measured feather traits,
even though high variance in these traits prevented our ability to robustly investigate
differences between populations occupying cold and warm environments.

Our literature review of GWAS results identified genes with diverse associations.
For wing chord, we identified limb and bone development, heat response, and
vascularization. Notably, the genes GUCA1C and NIPBL have been linked to limb

development in ducks and zebrafish (G. Li et al., 2020; Mohammadi, 2024; Muto et al.,
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2014) and may play a similar developmental role in songbirds. We also detected the
genes PGLYRP2 and PACRG, which have been shown to be upregulated in chickens
experiencing heat stress (Kim et al., 2021; Tian et al., 2020). Together, the limb
development and heat response genes we identified as important further support the
potential connection between wing length and thermoregulation suggested by our
morphological finding of shorter wings in the colder environment. Although GWAS
results do not establish a direct functional link to specific traits (Tam et al., 2019), our
findings suggest that future research should investigate the potential role of
thermoregulatory selective pressures on genes involved in wing development.

When focusing on genes associated with beak morphology, BSLMM found more
SNPs than LMM and identified several genes potentially associated with facial structure
development and climate adaptation. One gene associated with beak depth was XI/AP.
Duplications of this gene have been found to result in facial dysmorphism in humans,
including the underdevelopment of cheekbones and protruding jaws (Di Benedetto et
al., 2014). Although a link with beak development in birds has not yet been formally
established, this could be an area for further research. Another gene identified for beak
width was MINDY?2, which belongs to a group of deubiquitinating enzymes. These
genes are related to the regulation of the Wnt pathway (Park et al., 2020), a pathway
that is well established as important for beak development (Nierop 2002). Additional
genes such as RASL11A, TINAG, and PLPP3 have been directly linked to beak
development in avian species (Abernathy, 2021; Bai et al., 2018). Two genes
associated with beak depth in our study (LRP1B and UTRN) were shown to be

associated with breeding temperature in a study that used a GWAS approach to identify


https://www.zotero.org/google-docs/?2z2bux
https://www.zotero.org/google-docs/?khFg4o
https://www.zotero.org/google-docs/?QoPNr2
https://www.zotero.org/google-docs/?pbl5Hj
https://www.zotero.org/google-docs/?pbl5Hj
https://www.zotero.org/google-docs/?A0AZQ7
https://www.zotero.org/google-docs/?w5ej9J

Page 27 of 240

oNOYTULT D WN =

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

Ecology and Evolution

loci associated with climate variables related to morphology in hermit thrush (N. Adams
et al., 2025). Although the beak morphology of our species did not entirely fall in line
with predictions based around their thermoregulatory role, the elucidation of genes
indicating a relationship between thermoregulation and beak morphology suggests that
beaks still play a thermoregulatory role in this species.

Our GWAS on feather traits was, to the best of our knowledge, the first genome-
wide association study of feather microstructural traits. ldentifying the genetic basis of
these fine-scale traits opens new avenues for studying how feather structure evolves in
response to environmental pressures and functional demands. One of the genes
associated with pennaceous barbule length in our study, HBE1, has also been identified
in previous research on feather development. Using RNA sequencing, Limber et al.
(2024) found that HBE1, a hemoglobin gene (Mao et al., 2023), was highly expressed in
feather pulp, the central tissue of the developing feather germ. Additional genes
associated with feather traits in our study have been identified as being related to
plumage coloration in birds, including EFNA2, NRXN1, and HERC4 (Shakya, 2020; L.
Sun et al., 2020; X. Zhang et al., 2023). Many other genes identified as being
associated with feather traits in our work have not been shown to be associated with
feather development or morphology in the literature. Feather morphology remains
understudied in the context of local adaptation, and the genetic architecture of these
microstructural traits is still poorly understood. Our study offers a foundation for deeper
investigation. Expanding this work to include comparative genomic studies across

populations or species with more strongly differentiated feather morphology could also
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help link genotype to phenotype and provide insight into the adaptive significance of
feather microstructure.

It is important to note that, in this system, we are limited in our ability to assess
the role of phenotypic plasticity in driving trait differences. Bringing individuals together
from both populations into a common aviary, as was done in Bears et al. (2008), would
allow for better examination of these effects. It could also be argued that showing
relatively high Fst values for GWAS loci might suggest that the morphological
differentiation is due to divergence rather than phenotypic plasticity. Our original intent
with the Fst outlier tests was to determine if any of the genes identified in the GWAS
had variants that diverged significantly between the cold and warm environment
populations. However, when comparing our Fst results with SNPs identified in the
GWAS, we found no overlap between the two sets. Although this could suggest that
phenotypic plasticity is primarily driving the trait divergence, one must also consider that
this result is consistent with known limitations of Fst-based outlier scans, which are
biased toward detecting loci under strong divergent selection and with large effect sizes
(Hoban et al., 2016). Fst measures allele frequency differences between populations and
loci with large phenotypic effects are more likely to experience strong selection and
exhibit pronounced divergence. In contrast, highly polygenic traits are shaped by small-
effect variants that shift subtly in frequency—patterns that often fall below the detection
threshold of Fst scans. Our findings underscore the value of combining Fst outlier
analyses with GWAS approaches: while the former is designed to pinpoint loci under

strong selection, the latter is better suited for uncovering the complex genetic
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architecture of polygenic traits. Together, these methods can generate a more complete
understanding of the genetic basis for local adaptation.

While we did not find overlap between the Fst and the GWAS results, our Fst
analysis highlighted numerous genes involved in hypoxia response, altitude adaptation,
and cold adaptation. These results are consistent with our hypothesis that elevation and
associated climatic variables are applying divergent selection pressures in this species.
Of these genes, NOX4 was found to be involved in mediating hypoxia-inducible
transcription factors, a key component of the cellular response to hypoxia (Diebold et
al., 2010). Similarly, MAML2 and SUPT20H were found to be associated with altitude
adaptation in deer mice (Schweizer et al., 2021a) and ADGRD1 was associated with
altitude adaptation in Tibetan chickens (Nan et al., 2023). Multiple studies identified
PPP1R1C as being related to cold adaptation in chickens (Fedorova et al., 20223;
Romanov et al., 2023). These are all traits that would lend themselves to survival in
alpine environments, and divergent selection is likely a product of varying selection
pressures between the higher and colder White Mountain location and the warmer and
lower Piute Pass location.

Our Fst analysis also identified several genes that might be involved with
plumage color differences in Rosy-Finches. Another gene that showed divergence
between these two populations of finch was PHIP which has been shown to be related
to differentiation in plumage coloration in House Finch (Balenger et al., 2015).
Interestingly, when comparing candidate outlier genes from this work with studies
identifying genes involved with the notable plumage coloration differences across the

broader rosy-finch species complex, there were some overlapping genes. In a GWAS
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on crown coloration, Funk et al (2023) identified NDUFAF2, a gene that was also
significant in this work. For body plumage coloration, our results overlap with those of
Funk et al (2023) for the genes KCNV2, PUM3, and VLDLR. Although it was not a
component of the current work, other studies have shown that plumage coloration is
involved in avian thermoregulation, with darker plumage putatively facilitating heat
absorption (Medina et al., 2018; Rogalla et al., 2022), and can show adaptation to local
environment (Romano et al., 2019; Sandoval & Barrantes, 2019; Sirkia et al., 2010). This
provides an important avenue for future work with this species investigating the
differences in plumage coloration between populations.

An additional result of our Fst analysis was the identification of a gene, CTIF, that
has been previously identified as being a climate-adapted gene in a landscape genomic
study on the closely related Brown-capped Rosy-Finch (DeSaix et al., 2022).
Interestingly, this gene was also identified through a contrasting approach using a
mixed linear model on beak shape for two species of Darwin’s finches, Geospiza fortis
and G. scandens (Lawson & Petren, 2017). The authors of this paper summarize their
results as indicating that inter and intraspecies beak shape variation is a result of a
small suite of traits evolving in concert, corresponding to many genes. It is possible that
we did not identify CTIF genes in our GWAS method because of low power due to
smaller variation in the beak traits measured, a result of using continuous
measurements between two populations versus categorical comparisons between
different species as in Lawson & Petren (2017). Because of the large number of SNPs
obtained for our two populations, our Fst analysis likely had higher power and thus

detected this gene, in addition to the fact that it had a high Fst of 0.263 (averaged
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across the 5 SNPs associated with this trait). The overlap of these genes in the two
studies described as well as ours makes it a strong candidate as a genetic component
of adaptation to environment, potentially through the mechanism of beak morphology.

An important outcome of local adaptation is the maintenance of ecologically
important genetic variation (Savolainen et al., 2013). Conserving genetic variation
prevents loss of adaptive potential and can underlie rapid adaptive responses to
environmental change (Forester et al., 2023). We integrated phenotypic measurements,
genome-wide association studies, and Fst analyses, to understand the morphological
and genetic basis of local adaptation of an alpine bird species, the Sierra Gray-crowned
Rosy-Finch. When comparing traits suspected to be involved in thermoregulation for
this species, we found that morphological variation across populations only partially
aligned with ecogeographic expectations. Wing chord was shorter in the colder
environment, consistent with Allen’s rule and likely reflecting thermoregulatory
adaptation. However, beak depth and width were larger in colder environments,
contrary to predictions, suggesting additional selective pressures such as diet
specialization may be playing a role. Comparisons of feather microstructure further
showed thermoregulatory adaptation, with higher plumulaceous node density in the
high-elevation population likely enhancing insulation. When coupled with the results of
our GWAS and Fsr outlier scans we gained a clearer picture of traits and genes
important to adaptation in alpine birds. Importantly, we found that many of the genes
underlying wing length, beak depth and feather microstructure had links to both

development of similar traits in other organisms as well as thermoregulation. Our
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genomic and morphological results provide evidence that this alpine species is locally

adapted to temperature variation.

For those traits that are involved in thermoregulation, we can hypothesize about
the implication of the intraspecific differences in light of future climate change. Recent
work has shown that, for populations whose morphology and genetics misalign with the
environment as it changes due to anthropogenic pressures there is a decrease in

fitness (Pelletier & Coltman, 2018; Rodriguez et al., 2025). As climate change drives

increasing variability in temperature, understanding both simple and complex genetic
architectures underlying local adaptation is essential for predicting species’ responses
to global change. Although we cannot directly assess fithess consequences in this
species, this work enhances our understanding of the morphological traits and genetic
mechanisms underlying local adaptation in an alpine species and lays a ground work for
future investigation The resulting insights will be used to inform the delineation of
conservation units and support management strategies that seek to preserve the
evolutionary processes essential for long-term persistence of alpine organisms in a

changing world (Allendorf et al., 2010; Flanagan et al., 2018; Shafer et al., 2015).
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Figure 1. A) A map of California highlighting the sampling location and design for two
populations of Grey-crowned Rosy-Finch, Piute Pass and White Mountain. Elevation is
noted for each site along with an elevation transect. B) Overview of methods for GWAS
analysis. Morphological measurements were corrected for the effects of sex, age, and
body size before being input into BSLMM and LMM models. C) Overview of the
methods for the Fstanalysis. The output of both analyses were analyzed to identify
significant SNPs and related genes.

Figure 2. Violin plots of
beak morphology raw
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and C) beak depth.
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with a crossbar.
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Figure 3. A) Photograph showing a body feather from a Sierra Nevada Gray-crowned
Rosy-Finch captured at White Mountain. Highlighted is a microscopic image of the
pennaceous and plumulaceous barbule structure. B) Violin plots of node density raw

measurements, with illustrations above of the structure of plumulaceous barbule nodes.

Overlaid on the plots are the corrected mean trait measurements shown with a
crossbar. Significance of the effect of site on the morphological trait is shown for each
comparison.

Page 66 of 240



Page 67 of 240

oNOYTULT D WN =

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504

Ecology and Evolution

B Plumulaceous Barbule Node Density /

\ N\
N AN

* }j
WARM COLD
Site

~J (o] w0
1 1

Node Count per 0.1mm

D
1

Figure 4. Manhattan plot depicting the results of the LMM analysis on beak depth (A),
wing chord (B), and pennaceous barbule length (C) with —log10(p-value) on the y-axis
and the mapped Zebra Finch chromosome location on the x-axis. Significant SNPs from
the BSLMM analysis are overlaid onto the LMM results, plotted with their corresponding
p-values and corresponding genes are noted. Also plotted are the results of the per-site
Fst results (D), using the 90" quantile threshold of 0.235. Corresponding genes are also
shown and functional categories are highlighted by color category. See Table 1 for more
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Abstract
Understanding patterns and mechanisms underlying local adaptation is

becoming increasingly important for species conservation amid anthropogenically driven
environmental change. Alpine systems are experiencing particularly intense pressure
from environmental change resulting from increased rates of warming and
corresponding loss of snow and ice. We integrate morphological and genetic analyses
to identify traits important for local adaptation in one of the highest elevation breeding
birds in North America, the Sierra Nevada Gray-crowned Rosy-Finch. We performed an
in-depth analysis of how traits with known links to thermoregulation in birds such as
wing length, bill size, and feather microstructure vary between two populations at sites
with contrasting climate and environmental conditions. We identified loci underlying
these traits using a genome-wide association study and further examined regions of the
genome related to altitude adaptation and cold tolerance using Fst outlier tests.
Together, these results indicate that temperature, food availability, and alpine landscape
features may impose multifaceted and potentially conflicting selective pressures on
morphological traits important to adaptation in alpine birds. Overall, this work represents
one of the first in-depth analyses of the genetic basis of adaptation in an alpine

specialist songbird.

Keywords

local adaptation, conservation genomics, genome-wide association study, Fs; outlier test,
alpine
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Introduction

Local adaptation occurs when natural selection favors traits that confer fithess

advantages in specific habitats (Endler, 1977; Kawecki & Ebert, 2004; Savolainen et al.,

2013). A species’ adaptive capacity determines the extent to which it will be able to

respond to rapid environmental change (Forester et al., 2022, 2023; Lande & Shannon,

1996; Meek et al., 2023). As a result, identifying genetic and morphological traits

involved in local adaptation is a key component of effective species conservation

planning (Hoban et al., 2016; Meek et al., 2023). Historically, assessments of the capacity

for local adaptation relied on reciprocal transplant experiments that allowed researchers

to link variation in putatively ecologically important traits to differences in fithess across
environmental gradients (Blanquart et al., 2013; Clausen et al., 1941; Kawecki & Ebert,
2004; Savolainen et al., 2013). However, recent advances in genomic methods have
made it possible to detect signatures of selection across the genome and to associate

these with environmental variation and ecologically important morphological variation

(Capblancqg et al., 2020; Hoban et al., 2016; Lotterhos & Whitlock, 2015). We leveraged

recent advances in genomic methods to identify morphological and genetic traits
important to local adaptation in an understudied alpine bird system.

Many montane species undergo upward range shifts with climate change
(Mamantov et al., 2021). However, for those species already living near the top of a
mountain system, there are constraints that may limit the ability to track their niche, a
phenomenon termed the “escalator to extinction” (Freeman et al., 2018; Urban, 2018).

Alternatively, local adaptation can impact adaptive responses to the environment and
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allow species to persist despite a restricted capacity for range shifts (Aitken et al., 2008;
Capblancgq et al., 2020). A first step toward improving our understanding of how high-
altitude species will respond to climate change is to identify morphological traits and
corresponding regions of the genome involved in adaptation to extreme alpine
environments (Blanquart et al., 2013; Pritchard & Di Rienzo, 2010).

Birds living in alpine regions are exposed to extreme environments throughout
the year, including variable snow cover, hypoxic conditions, and dramatic temperature
changes (Grabherr et al., 2010; Korner, 2003). As a result, traits that contribute directly
to thermoregulation are expected to be under strong selective pressure in alpine
species. Previous work has shown climate-linked traits often follow ecogeographical

rules such as Bergmann’s and Allen’s rule. Allen’s rule;-a-hyphypeothesis-that posits that

animals adapted to colder environments will have shorter appendages than animals
adapted to warm climates (Allen, 1877). In birds, this rule predicts that beaks and wings
will be longer in warmer environments to facilitate greater heat dissipation across a
larger surface area, and shorter in colder environments to facilitate heat conservation
(Greenberg et al., 2012; Lewden et al., 2023; Symonds & Tattersall, 2010; Tattersall et
al., 2017; Ward et al., 1999; Weeks et al., 2020, 2025). Fer-thisreason,-we-predicted

wings-Bergmann’s rule, which states that body size tends to decrease as temperature

increases, has also been supported in birds (Ashton, 2002; He et al., 2023). Following

these rules, we predicted that birds will have shorter beaks and smaller wings as well as

larger overall body sizes in higher, colder environments.
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An additional aspect of beak morphology that should be investigated in the

context of thermoregulation is nare length. Nares are the nostril of the bird and are

located at the top of the beak. Grinnell (1913) documented subspecific divergence in

Leucosticte tephrocotis dawsoni, including differences in beak length and bill depth from

the nostril. While nare size per se was not the focus, these measurements provide a

morphological basis for interpreting variation in nasal exposure and potential heat

exchange, particularly in the context of ecological differences between alpine sites.

While there has not, to our knowledge, been work directly linking nare size to

thermoregulatory function, this may be an important and understudied aspect of beak

morphology as it relates to thermoreqgulation in birds. Following the logic for broader

beak morphology, we can expect to see larger nares in the warmer environments to

facilitate the dumping of excess heat.

Although less studied in the context of local adaptation, feather microstructure
may also be important to avian species’ adaptation to environmental variation in
temperature. While substantial evidence suggests feather microstructure plays a key
role in determining the thermoregulatory capacity of a bird’s plumage (Barve et al., 2021;
Stettenheim, 2000; Stoutjesdijk, 2003; Wolf & Walsberg, 2000), there is some confusion
over how environmental variation may drive feather microstructure differences (D’alba
et al., 2017; Koskenpato et al., 2016; Lei et al., 2002; Pap et al., 2017, 2020). In one of
the few studies that has been conducted at the population level, Koskenpato et al.
(2016) found that tawny owls living in colder environments have significantly denser
plumulaceous contour feathers than those living in warmer environments. This suggests

that feather density may facilitate heat retention. In contrast, however, Pap et al. (2017)
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found that European bird species wintering in colder areas had less dense feathers than
those wintering in warmer places. Thus, there is a clear need for studies specifically
linking environmental variation with population-level differences in feather
microstructure.

Recent advances in population genomics have enabled the detection of loci
involved in local adaptation, even in non-model and wild species (Faria et al., 2014).
Among these, Fst outlier tests are commonly used to identify genomic regions that
exhibit elevated population differentiation, which may signal divergent selection (Hoban
et al., 2016). However, many adaptive traits are likely polygenic, involving small effects
at numerous loci (Pritchard & Di Rienzo, 2010; Yeaman, 2015), and such loci will not be
picked up by Fst outlier tests. To address this, genome-wide association studies
(GWAS) can be used to link more subtle genetic variation to phenotypic variation in
ecologically important traits suspected to be under selection (Stinchcombe & Hoekstra,
2008). Taken together, combining approaches that detect both population-level
divergence and polygenic trait architecture offers a powerful framework for investigating
local adaptation.

We investigated the potential for local adaptation in the Sierra Nevada Gray-
crowned Rosy-Finch (Leucosticte tephrocotis dawsoni), one of the highest-breeding

songbirds in North America. Of the roughly four groups of rosy-finch found in North

America, this subspecies is more localized, found only in California’s alpine, and is a

short-distance migrant. In comparison, the broader Gray-crowned Rosy-Finch species

range extends along the entire western edge of North America from California to

Alaska. Despite long-standing interest (Grinnell, 1913, 1917; Twining, 1940), research
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on this subspecies has been limited due to the difficulty of accessing its extreme nesting
sites located oin the rocky cliff faces of the Sierra Nevada and White Mountains of

California, more than 3,000 meters above sea level. Additionally, this subspecies may

act as a strong model of local adaptation due to the variation in habitat experienced

within a restricted range. To help fill this knowledge gap we conducted morphological

and genomic analysis of two populations breeding at distincteentrasting placesends inef
the elevational and thermal range. Piute Pass, located in the Sierra Nevada, is lower in
elevation and warmer than the White Mountains (Fig- 1A). To identify traits potentially
involved in local adaptation, we quantified variation in beak and feather morphology
between the two populations. Based on Allen’s rule, we predicted that birds in the
warmer Piute Pass population would have longer wings and larger beaks. Following

Bergmann’s rule, we predicted that birds in Piute Pass would also have smaller overall

body size. -Further, we predicted that birds in the colder White Mountains location would
exhibit feather traits associated with increased insulation, specifically, longer barbules
and higher node density. Lastly, we used genome-wide association studies (GWAS) to
identify genes linked to feather and bill morphology and Fsr outlier tests to identify other
potentially important sources of genetic variation_(Fig 1B-C). Overall, our findings
provide new insights into the process of local adaptation in an extreme alpine specialist
bird and provide key baseline information on the capacity for adaptation in the face of

global environmental change.
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Methods

Site Selection

Our study compares Rosy-Finch populations from two sites: one in the Sierra

Nevada and one in the White Mountains. Sierra Gray-crowned Rosy-Finches occupy

alpine habitats from approximately 2,750-4,000 m across California (Brown et al., in

review), and our study sites span a substantial portion of this range. The Piute Pass

location is in the Sierra Nevada at 3.470-3,625m in elevation and has a warmer average

temperature during the breeding season warmest-menth of 8°C (with a range of 3.8-

13.0°C). The White Mountain location, near White Mountain Peak, is higher in elevation

at 4,285-4,344m and colder with a mean average temperature during the Resy-Finch

breeding season of 6°C (with a range of 1.5-10.7°C) (extracted from AdaptWest Project,

2022, see supplemental methods and SupFig1). Because it lies in the Sierra Nevada

rain shadow, the White Mountain site receives roughly one-third the precipitation of
areas at comparable elevations in the Sierras (Rundel et al., 2008). Between the two
sites, Piute Pass receives more precipitation as snow and has a more persistent
snowpack than the White Mountain location. Additionally, aquatic environments such as
streams, lakes and ephemeral pools are more abundant in the Sierra Nevada than the
White Mountains (Rundel et al., 2008). The alpine ecosystems of these mountains can
be delineated as communities occurring above tree line (Rundel & Millar, 2016).
Environmental stressors such as extreme winter temperatures, short growing seasons,
high winds, low partial pressures of O2, and limited water availability are characteristic of
these alpine environments (Grabherr et al., 2010; Rundel & Millar, 2016). Separating
the western Sierra Nevada Mountains and the eastern White Mountains is the Owens

Valley, a subregion of the Great Basin Desert (Belnap et al., 2016).
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Sample Collection
A total of 171 Sierra Nevada Gray-crowned Rosy-Finches were

capturedeellected using potter traps_at White Mountains (n=98) and Piute Pass (n=73)
in June and July, the peak of the species’ breeding season (MacDougall-Shackleton et

al., 2000). Captures within each mountain range occurred across multiple locations

within approximately 1 km? at each site (White Mountain or Piute Pass) to maximize

sample sizes while maintaining site-specific environmental characteristics. The

sampling thus, in total, represents only these two sites. Not all morphology was able to

be collected for every bird, resulting in slight variation in the types of data collected for

each individual (see details in supplemental methods, see sample sizes for each trait in

SupTable 1). Blood samples were collected from 150 of the captured birds using the
brachial wing vein and stored in Queen’s lysis buffer at room temperature (Owen, 2011;
Seutin et al., 1991). At the same time, morphological measurements - tarsus length,
wing chord, beak width, beak length, beak depth, and-nare length, and mass - were also
collected from 154 of the birds using an electronic caliper and 5-10 body feathers were

collected from the breast of all individuals. Additionally, birds were aged and sexed

following the quidelines established in Pyle (2022) (see supplemental methodology))

Birds were banded to allow for identification of the individuals and recognizeto-aveid
recaptures, then released. All handling and banding of birds was done following the
guidelines and protocols of the U.S Geological Survey (USGS) Bird Banding Laboratory
(BBL) and compliedeemply with permits and permissions from federal and state

agencies. All measurements were taken by two researchers (TB and EZ), with one (TB)

collecting approximately 80% of the data. Because the majority of measurements were
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10 79 taken by a single observer, and all followed the same standardized protocol, observer
1; 80 identity was not included as a covariate in subsequent analyses.

13 .

14 181 Feather Microstructure Measurements

15 182 We measured the microstructure of three feathers for each individual. For each
16

17 183 feather, three photos were taken using an Olympus BX51 Microscope: one photo each
13 184  of an unbroken pennaceous and plumulaceous barb from the center of each region was
20 185 taken at 4x objective, and one photo of a plumulaceous barbule was taken at 10x

21

22 186 objective (Fig 3A). Structures were then measured from the photos using the

23

54 187 segmented line tool in ImagedJ. For the pennaceous and plumulaceous barbule length,
;2 188 we measured one barbule from each region starting from the distal tip to where the
27 189  barbule meets the barb. For the pennaceous and plumulaceous barbule density, we
28

29 190 drew a 0.5mm line along the middle of a barb, counting the number of barbules along
30

37 191 that line. And finally, for plumulaceous node density, we drew a 0.2mm line along the
g; 192  center of a barbule, counting the number of nodes along that line. {Fig-2A)-Each

34 193 replicate measure for a feather trait was averaged per individual prior to downstream
35

36 [194 analysis._ Approximately 95% of feathers were measured by one researcher (SD) and
37

38 195 observer was not included as a covariate in subsequent analyses.

39

40 196  Statistical analysis for local adaptation

41 197 Body size and sex can confound morphological comparisons among individual
42

43 198 birds (D. C. Adams et al., 2020). To account for these effects_in our investigation of
44

45 [199 Allen’s rule, we included sex and tarsus length (a-proxy-for-bedy-size)-as predictor
2? P00  variables in our models. \We used tarsus length as an index of body size because it
48 po1 correlates strongly with mass but is less affected by short-term fluctuations in condition;
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this approach has been used in recent large-scale morphological studies (Demery et al.,

2021; Weeks et al., 2020; Zimova et al., 2023). As additional validation of tarsus as a

proxy size for body size, we generated a PC axis that incorporated multiple allometric

traits and found that this was highly correlated (0.7) with tarsus (see supplement for

additional details). We proceeded with tarsus as our proxy for body size in all further

analyses. To assess trait variation between sites, we used both univariate and

multivariate approaches (see SupTable 2-3 for a summary of trait values). We began by

constructing Fereach-traitwe-constructed-linear models with tarsus length, sex, age,
and site code as predictors and used AIC weightstests to identify the combination of
variables that best explained trait variation. Traits for which site code was a significant
predictor were considered significantly different between the two populations. We opted

not to use a Bonferroni correction for the univariate models as each model had a

specific hypothesis associated with it. Albp-valuesforsite-code-predictors-were

reperted-We used emmeans (Lenth, 2025) to calculate average trait values while

controlling for predictors other than site code, and these adjusted means were overlaid

on the raw data in a violin plot (Fig 2 & 3B). To test our hypotheses derived from

Bergmann’s rule, we compared both tarsus length and a principal component axis

representing overall body size using linear models. Each model included age and sex

as covariates to account for potential confounding effects on trait variation. We then

assessed whether body size differed significantly between the two populations by

including site as a predictor.
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We also conductedinclude a multivariate analysis to account for potential
correlations amongbetween traits in our investigation of Allen’s rule. For our multivariate
approach were incorporated all body morphology traits (wing chord, nare length, beak
depth, beak width, beak length) into a MANOVA model with site, age, sex, and tarsus
as predictors. The same analysis was performedrun with all of the feather traits
(pennaceous barbule density and length, plumulaceous barbule density, length, and
node density) together.

Sequencing and Genotyping

DNA was extracted from blood samples of 150 individuals using Qiagen’s
DNeasy Blood and Tissue Extraction Kit protocol and quantified with the Qubit dsSDNA
HS Assay Kit. We used a modified version of lllumina’s Nextera Library Preparation
protocol to prepare WGS libraries and pooled the libraries by equal mass before
sequencing. The resulting libraries were sequenced on 2 lanes of an lllumina NovaSeq
6000 at Novogene Corporation.

To process the raw sequence reads and detect variants, we utilized Snakemake
(Molder et al. 2021), a workflow management system that provides efficiency,
adaptability, and reproducibility. The pipeline we adapted to our species can be found
on Github (https://github.com/erigande/mega-non-model-wgs-snakeflow/). To

summarize the workflow, sSequence data were trimmed using fastp (S. Chen et al.,

2018) to remove adaptor sequences and polyG tails using a sliding window, and then
aligned to a Brown-capped Rosy-Finch (Leucosticte australis) reference genome
(GenBank: GCA_025504685.1) using Burrows-Wheeler Aligner software (H. Li &

Durbin, 2009). We marked PCR duplicates using SAMtoolsSAMtesls (Danecek et al.,
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2021) and read groups (sample, lane, library) were added using Ppicard

(http://broadinstitute.githut.io/picard). Individual coverage was estimated using

SAMtoolssamteels, and, given the range of coverage (7.4-19X), we downsampled bam
files to 10x using the SAMtools subsample function (Danecek et al., 2021). Individual
gvcf files were created using the GATK’s HaplotypeCaller (Poplin et al., 2018) with high
base quality score filters (--min-base-quality-score 33 --minimum-mapping-quality 20) to
remove batch effects (Lou & Therkildsen, 2022). We then parallelized the calling of
genotypes across 3 million bp regions across the genome using the GenomicsDBImport
and GenotypeGVCFs functions (Auwera & O’Connor, 2020; McKenna et al., 2010). GATK
versions above 4.0 call missing data as homozygous reference, which can bias
downstream analysis. To avoid this, all loci with a depth of zero were manually marked
as missing. To remove systematic errors according to GATK variant quality score
recalibration (VQSR) best practices, we hard filtered variants with the following
parameters:_StrandOddsRatio (>3.0), FisherStrand (>60.0), MappingQuality (>40.0),
and Quality by Depth (>2.0). We further filtered for Single Nucleotide Polymorphisms
(SNPs), removing indels, filtering for missingness (<8050%), allele frequencies (>0.05
and <0.95), depth (>4x), quality (>30.0) using BCFtools (Danecek et al., 2021). After
filtering, the resulting high-quality SNPs were passed through BEAGLE 4.1 (Browning &
Browning, 2016) to impute missing genotypes.
Population genetic structure analysis

Population structure was assessed using a Principal Component Analysis (PCA)
followed by ADMIXTURE (Alexander et al., 2009). SNPs identified from sequence data

were pruned for linkage disequilibrium in PLINK (Purcell et al., 2007) using a 50kb
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window, 10 SNPbp window step size, and a R? threshold of 0.24. Eigenvalues for the
PCA were then generated based on the pruned SNPs using PLINK and the first two
principal components (PC) were plotted in R. To further confirm a lack of population
structure ADMIXTURE was used to test k=1-32. The results were plotted using R and
the cv values were evaluated.
Genome-Wide Association Study

Two GWAS models were implemented on all traits using GEMMA (Zhou et al.,
2013):; a Bayesian sparse linear model, BSLMM, and a univariate linear model, ULMM.
These GWAS approaches allow us to detect SNPs associated with a given trait while
explicitly accounting for population structure and relatedness through the incorporation
of random effects whose correlation structure is characterized by a relatedness matrix.
Input files were generated with PLINK (Purcell et al., 2007). We implemented a
Bayesian sparse linear mixed model (BSLMM) using 500,000 MCMC burn-in iterations
that were discarded and 5 million MCMC iterations that were saved. We then filtered for
SNPs that had a mean posterior inclusion probability (PIP) above 0.01. {(Fig4-A-&B)}-A
univariate linear mixed model (ULMM) employing the Wald test was also conducted

(see SupTable 7 for AGC values for each model and SupFig6 for PP plots for each trait).

The Wald test assesses the significance of the SNP genotypes in a linear regression
model and is used to test the null hypothesis that the effect size of a genetic variant on
the phenotypic trait is zero (i.e., there is no association between the variant and the
trait). SNPs were then filtered based on a p-value threshold of 5x108, a threshold widely

used in GWAS studies (e.g. Chen et al., 2021).(Fig4-A-&B)-
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Genome Wide Fst
To estimate per site Fst, we used OutFLANK (Whitlock & Lotterhos, 2015).

OutFLANK identifies outlier Fst SNPs by modeling the distribution of Fst values across
loci using a trimmed likelihood approach to exclude loci under strong selection. It then
fits a chi-square distribution to the neutral Fst values and identifies SNPs with unusually
high or low Fst as potential outliers, suggesting loci under selection. We used a false
discovery rate threshold of 0.005 to determine outlier SNPs. We took the 90th quantile
of these Fsrt values to narrow down the top SNPs for literatureliturature review and

plotted these on a Manhattan plot(Fig-4-C). This allowed for isolation of the most

divergent loci as well as easier visualization. We then determined the Fst values for the

SNPs previously identified in the GWAS analyses based on the values calculated by
OutFLANK.
Identification of associated genes, enrichment analysis and literature review

To identify genes associated with significant SNPs from our GWAS and Fst
analysis, we implemented BEDTools (Quinlan & Hall, 2010) closest function with a
previously created Brown-capped Rosy-Finch gene annotation (Funk et al., 2023) to
identify genes close to the SNP positions. The output from this tool was filtered to find
only protein coding genes within 25kb of the given SNP. For plotting purposes, we used

the NUCmernumeer function in MUMmer4.x (Margais et al., 2018) to align the Brown-

capped Rosy-Finch genome assembly to the Zebra Finch (Taeniopygia guttata)
genome assembly (GenBank: GCF_003957565.2). We then filtered the delta alignment
output of NUCruemer to keep only matches that were greater than 400 bps, and used

the-show-coords to display the coordinates. We then used custom R scripts to convert
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our scaffold and positions to Zebra Finch chromosome positions for plotting SNPs in
Manhattan plots.
Enrichment in gene ontology (GO) terms was performed with Panther 19.0

(Thomas et al., 2022). For this analysis, Gallus gallus was used as the background

gene set. Enrichment thresholds were set to p<0.05 after Bonferroni correction. Gene
network analysis was conducted using STRING (Szklarczyk et al., 2023) with zebra

finch as the organismal reference for background genes. STRING (Search Tool for the

Retrieval of Interacting Genes/Proteins) is a database that predicts and visualizes
protein-protein interactions based on known and predicted associations from
experiments, literature, and computational methods (Szklarczyk et al., 2023). For Fst
genes, all genes associated with the OutFLANK outliers were input into enrichment

analyses. Genes resulting from the GWAS analysis were grouped with all beak

morphology trait genes run as a single analysis, all feather trait genes run together, and
wing chord genes run in another analysis.

We performed a literature search for all of the candidate genes using google
scholar and the search terms gene name followed by, bird, trait specific term (when
applicable), environmental adaptation, local adaptation (e.g., ““XIAP’> gene beak”, or
“DSCAM” gene environmental adaptation”). For Fst SNPs, only those genes
associated with the 90th quantile of SNPs were evaluated in the literature. Genes were

grouped by their key functions or associations as described in the literature.-(fable-H-
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Results

Local adaptation of body and feather morphology

For the univariate approach, AIC model selection indicated five traits for

whichwhere site was a significant predictor. For wing chord, the best model included
tarsus length, age, sex, and site. The model showed high explanatory power (adjusted
R2=0.673, p<0.001) and showed that birds at the White Mountain location
Whites\WWMTN)-had shorter wings chords compared to Piute Pass (PIPA) (p=0.003).
The best model for nare length included tarsus, sex, and site and had lower explanatory
power (adjusted R?=0.197) but was still highly significant (p<0.001). This model found
that nare length was shorter in the White Mountain\W/MTN population (p<0.001).
Similarly, beak width had tarsus, age and site as significant predictors (adjusted
R2=0.135, p<0.001) with White Mountain\WMTN having beaks that are wider that those

in Piute PassPIPA (p<0.001p=0-004). Beak depth had tarsus, age and site as the best

predictors (adjusted R2=0.250) and found that White Mountain'\AMTN has significantly
deeper beaks than Piute PassPIPA (p=0.00314). Beak length was not significantly
different between the two locations and was best predicted by sex (adjusted R?=0.5186,
p<0.001). For feather microstructure, the only trait that had site as a significant predictor
was plumulaceous node density. This model included tarsus and age as well as site but

had low explanatory power (adjusted R2=0.07632, p<0.001). It-and-showed that

plumulaceous node density was higher in the White Mountain'WMFN populations
(p<0.001p=6-037). The best model for plumulaceous barbule length based on weighted
AIC weights included site as a predictor; however, the effect size was uncertain, and the

effect of site was not statistically significant (adjusted R?=0.142, p=0.078). Pennaceous

barbule density had tarsus and age as the best predictors (adjusted R2=0.365,
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p<0.001), pennaceous barbule length had sex as the best predictor (adjusted R?=0.307,
p<0.001) and plumulaceous barbule density had tarsus and age as the best predictors

(adjusted R2=0.076, p=0.004). We found that body size did not vary between sites. In

our model using tarsus (adjusted R2=0.165, p<0.001) both age and sex were significant

predictors (p<0.001 and p<0.05), however site was not significant (p=0.417). Our

comparison using the PC axis representing size (adjusted R2=0.4639, p<0.001) had

similar results with age and sex as significant and site as not (p=0.53).

When looking at the results of the multivariate analysis, we see that for body

morphology traits site was a highly significant explanatory variable (p=1.327e-11).

Tarsus, age and sex were also highly significant (p<2.2e-16). The MANOVA on feather

traits also had site as a significant predictor although the p-value was less significant

(p=0.036). Age was also significant (p=1.5e-14) but tarsus and sex were not (p>0.05).

For details on the models tested, models chosen, and full model results, see

Supplementary Table |4-6

Evaluation of population structure
Whole-genome sequencing was performed on 150 individuals and 146 were

included in downstream analysis. FourFwe individuals were removed becauseas their

collection location could not be validatedwas-netavailable. Variant filtering resulted in

7,739,836 SNPs for subsequent genetic analysis. Linkage pruning removed 5,526,104
SNPs. Visualizing PLINK PCA results revealed little population structure with most
individuals clustering together (SupFig 24). ADMIXTURE results confirmed that there is
no population structure in these samples becauseas k=1 had the lowest cv error (0.599)

compared to k=2 or 3 (0.612 and 0.627).
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Genes identified with genome-wide association approach

The univariate linear mixed model identified a total of 64 SNPs for traits-wing
chord, beak length, beak width, pennaceous barbule length, and pennaceous barbule
density. Using a Brown-capped Rosy-Finch gene annotation we identified a total of 26
unique genes corresponding to these SNPs (Table_1). We filtered out genes that
werehave not been-fully characterized (e.g., “LOC100221041”) leaving 14 genes. The
Bayesian sparse linear mixed model identified 266 SNPs for wing chord, nare_length,
beak length, depth and width, pennaceous barbule length and density, and
plumulaceous barbule length and node density. We identified 146 genes associated
with these SNPs (Table 1), 110 of which had been fully characterized. For each trait the
global view of p-values for all SNPs and associated genes across both models are

represented by Manhattan plots (Fig 4-A-C, SupFig 3-52-5). Given the sample size (n =

146), this GWAS is best viewed as conservative, detecting only loci with relatively

strong effects on morphology.

GOe term analysis using Panther produced significant results for beak depth and

a combined set of all feather traits-cembined. For beak depth, the top terms were

presynaptic membrane assembly (p=1.44x10-%), synaptic membrane adhesion
(specifically cell adhesion) (p=1.01x10-%) and heterophilic cell-cell adhesion via plasma
membrane cell adhesion molecules (p=1.13x10-%). For the feather traits (plumulaceous
barbule and node density combined with pennaceous barbule length), fructosamine
catabolic process was a significant term (p=1.12x10°). Wing chord had no significant
GO terms. STRINGString analysis for beak and feather traits as well as wing chord did

not find significantly more interactions than expected.
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Genes identified through high Fixation index (Fst) between the two populations

Using OutFLANK 831 loci were identified as having significantly high Fst when
comparing the White Mountain and Piute Pass populations, corresponding to 265 genes
(Fig 4D;-Sup-TFable-2). No GWAS SNPs were flagged as having significant Fst values.
The minimum Fst to be considered an outlier was 0.17513. The mean Fst of SNPs not
considered outliers was 0.0045. Using a 90th quantile we determined Fst=0.235 to be
the threshold, narrowing down the SNPs to 105 loci. For the smaller set of loci, bedtools
identified 61 related genes (Table 2). We ran STRING and GO term enrichments on
both the larger and smaller set of genes. The smaller set did not have a significant
number of connections over all or any significantly enriched GO terms. The larger set of
264 genes, however, had an overall significant number of connections (p<0.05) and had
multiple significant annotated keywords (sourced from UniProt). The most significant
was the keyword repeat (FDRp<0.001), the next was ubl conjugation pathways

(FDRp<0.05).

Discussion

Understanding the genetic and morphological basis of local adaptation is critical
for predicting how species respond to environmental change. Alpine species face
unique conservation challenges due to their extreme environments and thus are a high
priority for studies of adaptive capacity. In this study, we investigated morphological and
genetic differences between two populations of an alpine specialist songbird located

distinctthe-extreme of its environmental range. Consistent with our
predictions, we found wings were shorter and feathers were denser in the colder

environment. However, in contrast to our prediction, beak depth and width were larger
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in the colder environment, suggesting other factors like diet may place contrasting
selective pressures on this ecologically important trait. We also identified numerous
genes with known links to limb, facial, and feather development that potentially underlie
variation in wing, bill and feather microstructure. Further Fst outlier analyses revealed
numerous significant differences between cold and warm populations at SNPs located
within genes with clear links to altitudinal adaptation. Together, our results provide
important insights into the morphological traits and associated genomic regions

associated with microgeographic variation in a high-altitude songbird species.

Trait differences between warm and cold habitats

Ecogeographic rules, such as Allen’s and Bergmann’s rules, are useful for
predicting broad geographic trends in morphology in response to environmental
conditions, but observed patterns do not always align with expectations. In our study,
we found that wing chord was smaller in the colder environment, suggesting that this
morphological trait may play a role in thermoregulation, consistent with Allen’s rule.
Heat dissipation from the wings occurs across the vascularized brachial regions,
primarily during flight when these areas are exposed to air flow (Lewden et al., 2023;
Ward et al., 1999). Wing bone length reflects the extent of vascularized areas on the
wings and has been shown to be longer in warmer environments across a broad sample
of passerine species (Weeks et al., 2025). However, studies of other alpine bird species
have found the opposite pattern: that birds from high-elevation sites have longer wings
than those from low-elevation sites (Bears et al., 2008; Ceresa et al., 2024). In these
cases, researchers have suggested that the demand for more energetically efficient

flight at high elevations may outweigh thermoregulatory selective pressures,
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demonstrating the often contrasting selective pressures on ecologically important traits.

Although outside of the scope of the current work, additional wing measurements could

be collected that would allow for a more thorough investigation into the components of

flight morphology. It is possible that migratory behavior is influencing wing length as

previous work has shown that both within (Egbert & Belthoff, 2003; Grilli et al., 2017) and

between (Lockwood et al., 1998) species those who migrate further have longer wings.

To date, no formal study has been conducted on the migratory patterns of the Sierra

Nevada Gray-crowned subspecies and so future work could investigate the links

between wing morphology and movement patterns. Overall, our morphological analyses

support the idea that thermoregulatory demands may play an important roleimpertant

deminantrole in shaping wing morphology in the Sierra Nevada Gray-crowned Rosy-
Finch, potentially outweighing the benefits of flight efficiency in_this high-elevation, cold-

adapted species_but not excluding the potentially parallel pressure of migratory

distance.

Contrary to our predictions based on Allen’s rule, beak depth and width were larger
in the colder environment. Although temperature is often a key environmental variable
exerting selective pressure on alpine taxa, variation in beak morphology between our
populations may instead reflect divergent selective pressures associated with foraging
ecology, a well-documented driver of beak divergence in birds (Grant et al., 1976;
Lamichhaney et al., 2018). In our study system, the Piute Pass population likely has access
to more aquatic insects due to the higher availability of aquatic habitats proximate to Rosy-
Finch breeding sites in the Sierra Nevada (Epanchin et al., 2010; Rundel & Millar, 2016). For

example, Epanchin et al. (2010) found that, when abundant, mayflies can comprise up to
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38% of the Sierra Nevada Gray-Crowned Rosy-Finch diet. -In contrast, the White Mountain
population may rely more heavily on insects deposited in snowfields, a behavior that could
favor a more robust, conical bill for extracting frozen prey from the snow surface. Work is
currently underway to investigate the dietary differences between these two populations of
Rosy-Finch (Tim Brown, personal correspondence), and future work should explore the

selective pressures experienced by this species. hhe other aspect of beak morphology

assessed, nare length, was significantly larger in the warmer environment. If nare is playing

arole i} thermoregulation, these results would be consistent with larger nares allowing

for more heat to be lost. Additionally, smaller nares in the colder environment would

potentially prevent snow from entering the nasal passages while foraging on snow. Overall,

our results on beak morphologytFheseresulis emphasize the complexity of identifying

drivers of local adaptation, especially in alpine systems where extreme environments,
food scarcity, and variation in migration strategies can create conflicting selection

pressures.

Our comparison of body size did not have significant results, suggesting that

Bergmann’s rule is not contributing to morphological differences in this subspecies. He

et al (2023) found that there was significant variation in both strength and direction of

correlation between latitude and body size within and between taxa. With our results,

this could imply that Sierra Nevada Gray-crowned Rosy-Finch are an exception to the

ruel. In another meta-analysis, it was found that sedentary bird species were more likely

to conform to Bergmann’s rule than migratory ones and suggest that winter

temperatures may exert a higher pressure than breeding temperatures (Meiri & Dayan,

Page 92 of 240

| Commented [4]: Including thoughts on nare
differences here.



https://www.zotero.org/google-docs/?4po9BB

Page 93 of 240 Ecology and Evolution

oNOYTULT D WN =

496

497

498

499

503

504

505

506

507

508

509

510

511

2003). The Sierra Nevada Gray-crowned Rosy-Finch is a short-distance, altitudinal

migrant. It is possible that both White Mountain and Piute Pass populations move to

similar areas or climates during the winter season, thus decreasing the divergent

selection pressure that would drive differences in Bermann'’s rule.

Of our feather comparisons, we identified significant differences between cold
and warm sites for only one trait:— plumulaceous node density. In line with our
predictions, plumulaceous node density was higher in the colder, high elevation White
Mountain population. Higher node density is known to improve air trapping ability, thus
trapping warmth against the body surface (King & McLelland, 1984). Consistent with our
results, a study on sparrows found that higher elevation alpine forms had higher node
density relative to lowland forms (Lei et al., 2002). A further multi-species comparison
found that species wintering in cold and windy conditions had downy feathers with
higher node densities (D’alba et al., 2017, 2017). These interspecific trends are mirrored
in our results, suggesting that the White Mountain population has feather adaptations
consistent with an increased need for heat retention. The lack of significant results for
other feather traits may be explained by the amount of variation in the measurements as
well as the sample sizes being small, resulting in an underpowered comparison. An

alternative cause for the non-significant results is that alternative selection pressures

not considered in the present work are driving morphology of these traits. This is

somewhat supported by the overall low explanatory power of our models used in this

study. Additional work on this aspect of local adaptation would benefit from investigating

the influences of alternative environmental traits and utilizing a more controlled setting

to evaluate the functionality of intraspecific differences in feather morphology.
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Genome-wide analysis

We used GWAS to identify SNPs within genes involved in traits that differ
between warm- and cold-adapted populations described previously:—beak width and
depth, nare length, wing cord length, and pennaceous barbule density. -Because ours is
one of the first studies to investigate the genetic basis of feather microstructure
variation, we also report on the genes associated with other measured feather traits,
even though high variance in these traits prevented our ability to robustly investigate
differences between populations occupying cold and warm environments.

Our literature review of GWAS results identified genes with diverse associations.
For wing chord, we identified limb and bone development, heat response, and
vascularization. Notably, the genes GUCA1C and NIPBL have been linked to limb
development in ducks and zebrafish (G. Li et al., 2020; Mohammadi, 2024; Muto et al.,
2014) and may play a similar developmental role in songbirds. We also detected the
genes PGLYRP2 and PACRG, which have been shown to be upregulated in chickens
experiencing heat stress (Kim et al., 2021; Tian et al., 2020). Together, the limb
development and heat response genes we identified as important further support the
potential connection between wing length and thermoregulation suggested by our
morphological finding of shorter wings in the colder environment. Although GWAS
results do not establish a direct functional link to specific traits (Tam et al., 2019), our
findings suggest that future research should investigate the potential role of

thermoregulatory selective pressures on genes involved in wing development.
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When focusing onleeking-at genes associated with beak morphology, BSLMM
found more SNPs than LMM and identified several genes potentially associated with
facial structure development and climate adaptation. One gene associated with beak
depth was XIAP. Duplications of this gene have been found to result in facial
dysmorphism in humans, including the underdevelopment of cheekbones and
protruding jaws (Di Benedetto et al., 2014). Although a link with beak development in
birds has not yet been formally established, this could be an area for further research.
Another gene identified for beak width was MINDY?2, which belongs to a group of
deubiquitinating enzymes. These genes are related to the regulation of the Wnt pathway
(Park et al., 2020), a pathway that is well established as important for beak
development (Nierop 2002). Additional genes such as RASL11A, TINAG, and PLPP3
have been directly linked to beak development in avian species (Abernathy, 2021; Bai
et al., 2018). Two genes associated with beak depth in our study (LRP1B and UTRN)
were shown to be associated with breeding temperature in a study that used a GWAS
approach to identify loci associated with climate variables related to morphology in
hermit thrush (N. Adams et al., 2025). Although the beak morphology of our species did
not entirely fall in line with predictions based around their thermoregulatory role, the
elucidation of genes indicating a relationship between thermoregulation and beak
morphology suggests that beaks still play a thermoregulatory role in this species.

Our GWAS on feather traits was, to the best of our knowledge, the first genome-
wide association study of feather microstructural traits. Identifying the genetic basis of
these fine-scale traits opens new avenues for studying how feather structure evolves in

response to environmental pressures and functional demands. One of the genes
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associated with pennaceous barbule length in our study, HBE1, has also been identified
in previous research on feather development. Using RNA sequencing, Limber et al.
(2024) found that HBE1, a hemoglobin gene (Mao et al., 2023), was highly expressed in
feather pulp, the central tissue of the developing feather germ. Additional genes
associated with feather traits in our study have been identified as being related to
plumage coloration in birds, including EFNA2, NRXN1, and HERC4 (Shakya, 2020; L.
Sun et al., 2020; X. Zhang et al., 2023). Many other genes identified as being
associated with feather traits in our work have not been shown to be associated with
feather development or morphology in the literature. Feather morphology remains
understudied in the context of local adaptation, and the genetic architecture of these
microstructural traits is still poorly understood. Our study offers a foundation for deeper
investigation. Expanding this work to include comparative genomic studies across
populations or species with more strongly differentiated feather morphology could also
help link genotype to phenotype and provide insight into the adaptive significance of

feather microstructure.

oo pAreRchicepulaionoHeo o R somsaringon S proonlio i Sl o
identified-in-the GWAS we found-no-overlap-between-the two-sets-|t is important to

note that, in this system, we are limited in our ability to assess the role of phenotypic

plasticity in driving trait differences. Bringing individuals together from both populations

into a common aviary, as was done in Bears et al. (2008), would allow for better

examination of effects. It could also be argued that showing relatively high Fst
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values for GWAS loci might suggest that the morphological differentiation is due to

divergence rather than phenotypic plasticity. Our original intent with the Fst outlier tests

was to determine if any of the genes identified in the GWAS had variants that diverged

significantly between the cold and warm environment populations. However, when

comparing our Fst results with SNPs identified in the GWAS, we found no overlap

between the two sets. Although this could suggest that phenotypic plasticity is primarily

driving the trait divergence, one must also consider that thisThis result is consistent with

known limitations of Fst-based outlier scans, which are biased toward detecting loci
under strong divergent selection and with large effect sizes (Hoban et al., 2016). Fst
measures allele frequency differences between populations and loci with large
phenotypic effects are more likely to experience strong selection and exhibit
pronounced divergence. In contrast, highly polygenic traits are shaped by small-effect
variants that shift subtly in frequency—patterns that often fall below the detection
threshold of Fst scans. Our findings underscore the value of combining Fst outlier
analyses with GWAS approaches: while the former is designed to pinpoint loci under
strong selection, the latter is better suited for uncovering the complex genetic
architecture of polygenic traits. Together, these methods can generate a more complete
understanding of the genetic basis for local adaptation.

While we did not find overlap between the Fst and the GWAS results, our Fst
analysis highlighted numerous genes involved in hypoxia response, altitude adaptation,
and cold adaptation. These results are consistent with our hypothesis that elevation and
associated climatic variables are applying divergent selection pressures in this species.

Of these genes, NOX4 was found to be involved in mediating hypoxia-inducible
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transcription factors, a key component of the cellular response to hypoxia (Diebold et
al., 2010). Similarly, MAML2 and SUPT20H were found to be associated with altitude
adaptation in deer mice (Schweizer et al., 2021a) and ADGRD1 was associated with
altitude adaptation in Tibetan chickens (Nan et al., 2023). Multiple studies identified
PPP1R1C as being related to cold adaptation in chickens (Fedorova et al., 20223;
Romanov et al., 2023). These are all traits that would lend themselves to survival in
alpine environments, and divergent selection is likely a product of varying selection
pressures between the higher and colder White Mountain location and the warmer and
lower Piute Pass location.

Our Fst analysis also identified several genes that might be involved with
plumage color differences in Rosy-Finches. Another gene that showed divergence
between these two populations of finch was PHIP which has been shown to be related
to differentiation in plumage coloration in House Finch (Balenger et al., 2015).
Interestingly, when comparing candidate outlier genes from this work with studieswerk
identifying genes involved with the notable plumage coloration differences across the
broader rRosy-fFinch species complex, there were some overlapping genes. In a
GWAS on crown coloration, Funk et al (2023) identified NDUFAF2, a gene that was also
significant in this work. For body plumage coloration, our results overlap with those of
Funk et al (2023) for the genes KCNV2, PUM3, and VLDLR. Although it was not a
component of the current work, other studies have shown that plumage coloration is
involved in avian thermoregulation, with darker plumage putatively facilitating heat
absorption (Medina et al., 2018; Rogalla et al., 2022), and can show adaptation to local

environment (Romano et al., 2019; Sandoval & Barrantes, 2019; Sirkia et al., 2010). This
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provides an important avenue for future work with this species investigating the
differences in plumage coloration between populations.

An additional result of our Fst analysis was the identification of a gene, CTIF, that
has been previously identified as being a climate-adapted gene in a landscape genomic
study on the closely related Brown-capped Rosy-Finch (DeSaix et al., 2022).
Interestingly, this gene was also identified through a contrasting approach using a
mixed linear model on beak shape for two species of Darwin’s finches, Geospiza fortis
and G. scandens (Lawson & Petren, 2017). The authors of this paper summarize their
results as indicating that inter and intraspecies beak shape variation is a result of a
small suite of traits evolving in concert, corresponding to many genes. It is possible that
we did not identify CTIF genes in our GWAS method because of low power due to
smaller variation in the beak traits measured, a result of using continuous
measurements between two populations versus categorical comparisons between
different species as in Lawson & Petren (2017). Because of the large number of SNPs
obtained for our two populations, our Fst analysis likely had higher power and thus
detected this gene, in addition to the fact that it had a high Fst of 0.263 (averaged
across the 5 SNPs associated with this trait). The overlap of these genes in the two
studies described as well as ours makes it a strong candidate as a genetic component
of adaptation to environment, potentially through the mechanism of beak morphology.

An important outcome of local adaptation is the maintenance of ecologically
important genetic variation (Savolainen et al., 2013). Conserving genetic variation
prevents loss of adaptive potential and can underlie rapid adaptive responses to

environmental change (Forester et al., 2023). We integrated phenotypic measurements,
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genome-wide association studies, and Fsrt analyses, to understand the morphological
and genetic basis of local adaptation of an alpine bird species, the Sierra Gray-crowned
Rosy-Finch. When comparing traits suspected to be involved in thermoregulation for
this species, we found that morphological variation across populations only partially
aligned with ecogeographic expectations. Wing chord was shorter in the colder
environment, consistent with Allen’s rule and likely reflecting thermoregulatory
adaptation. However, beak depth and width were larger in colder environments,
contrary to predictions, suggesting additional selective pressures such as diet
specialization may be playing a role. Comparisons of feather microstructure further
showed thermoregulatory adaptation, with higher plumulaceous node density in the
high-elevation population likely enhancing insulation. When coupled with the results of
our GWAS and Fsr outlier scans we gained a clearer picture of traits and genes
important to adaptation in alpine birds. Importantly, we found that many of the genes
underlying wing length, beak depth and feather microstructure had links to both
development of similar traits in other organisms as well as thermoregulation. Our
genomic and morphological results provide streng-evidence that this alpine species is

locally adapted to temperature variation.

For those traits that are involved in thermoregulation, we can hypothesize about

the implication of the intraspecific differences in light of future climate change. Recent

work has shown that, for populations whose morphology and genetics misalign with the

environment as it changes due to anthropogenic pressures there is a decrease in
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fitness (Pelletier & Coltman, 2018; Rodriguez et al., 2025). As climate change drives

increasing variability in temperature, understanding both simple and complex genetic

architectures underlying local adaptation is essential for predicting species’ responses

to global change. Although we cannot directly assess fithess consequences in this

species, Overall-this work enhances our understanding of the morphological traits and

genetic mechanisms underlying local adaptation in an alpine species and lays a ground

work for future investigation- The resulting insights will be used to inform the delineation

of conservation units and support management strategies that seek to preserve the
evolutionary processes essential for long-term persistence of alpine organisms in a

changing world (Allendorf et al., 2010; Flanagan et al., 2018; Shafer et al., 2015).
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Figure 1. A) A map of California highlighting the sampling location and design for two
populations of Grey-crowned Rosy-Finch, Piute Pass and White Mountain. EKey
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with an elevation transect.(ELEV)-and-mean-temperature-of the-warmest-month

MW, B) Overview of methods for GWAS analysis. Morphological measurements
were corrected for the effects of sex, age, and body size before being input into BSLMM
and LMM models. C) Overview of the methods for the Fstanalysis. The output of both
analyses werewas analyzed to identify significant SNPs and related genes.

Body Morphology Results A
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Nare Length (mm)

3.0

coLp

Beak Depth (mm)

Beak Width (mm)

A

Site

coLp

Figure 2. Violin plots of
beak morphology raw
measurement: A) beak
width, B) nare length,
and C) beak depth.
Overlaid are the
corrected mean trait
measurements shown
with a crossbar.
Significance of the
effect of site on the
morphological trait is
shown for each
comparison. Piute Pass
is the warm site and
White Mountain is the
cold site. We found that
nares were longer while
beak widths and depths
were smaller in the
warmer environment.
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Figure 3. A) Photograph showing a body feather from a Sierra Nevada Graey-crowned
Rosy—Flnch captured at White Mountain. Highlighted is a microscopic

magesimplification of the_pennaceous and plumulaceous barbule structure. B) Violin
pIots of node density raw measurements, with illustrations above of the structure of
plumulaceous barbule nodes. Overlaid on the plots are the corrected mean trait
measurements shown with a crossbar. Significance of the effect of site on the
morphological trait is shown for each comparison.
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The genetic and morphological basis of local adaptation to elevational extremes in an

alpine finch

Robertson, Erica C.N.", Brown, Timothy?, Deitch, Sophie', Bossu, Christine M.",

Zavaleta, Erika S.2, Hooten, Mevin B.3, Ruegg, Kristen C.!

Supplemental Methodology

Extracting temperature data from AdaptWest, 2022.

The two sampling locations, identified by GPS coordinates collected during
fieldwork, were each buffered by 1 km to account for the spatial heterogeneity
experienced by the birds. Monthly climate rasters from AdaptWest were filtered to
include only June, July, and August, corresponding to the Gray-crowned Rosy-Finch
breeding season. For each site, raster layers representing mean, minimum, and
maximum monthly temperature were extracted within the 1 km buffer, and pixel values
were averaged. The resulting mean, minimum, and maximum temperature values were
then summarized for each site. The average values were also plotted across time (Sup

Fig 1).

Sup Fig 1. Average . Monthly Climate Averages

values within a 1km —o
buffer around sample

sites for Tave, Tmax, o Variable
and Tmin of the © : I;V:x
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Sexing and Aging of Birds

Aqing followed standard guidelines outlined in the Pyle Identification Guide to
North American Birds (Pyle 1997). Age was determined primarily by examination of
skull pneumatization and degree of cranial ossification, supplemented by plumage
characteristics (extent of molt limits, feather wear, and coloration). When available,
known-age individuals from previous banding or recapture records were also included.
All assessments were conducted by trained banders using consistent criteria across
field seasons. A full breakdown of individuals by age class and sex is provided in Sup
Table 1.

Variation around morphological data collected

Not all individuals were measured for the full suite of morphological traits. In
some cases, birds exhibited signs of acute handling stress (e.g., wincing of the eyes,
open-beak panting, or rapid breathing), and were released before all measurements
could be completed to minimize risk. In other instances, data collection was interrupted
by rapidly changing field conditions, such as approaching thunderstorms or hail events,
which required immediate cessation of banding activities for personnel safety. As a
result, sample sizes differ slightly among traits, reflecting our decision to prioritize bird
welfare and field safety over completeness of measurements.

Generating PC axis representing size

To further validate our choice of tarsus as a proxy for body size, we performed a
principal component analysis on allometric traits to compare a PC axis representing
overall body size with tarsus. We first removed all individuals that were missing
information for any of the following traits: wing chord, tarsus, tail length, beak depth,
beak width, and beak length. This left us with 136 individuals with complete data. We
centered and scaled the variables and performed a principal component analysis on the
resulting data. The first axis, PC1, explained 34.3% of the variance while PC2 explained

28.7%. We found the following loadings for PC1 and PC2:

wing chord | tarsus tail length | beak depth | beak width | beak length

PC1 [ 0.5900 0.5358 |0.5358 0.2094 0.1290 0.0172

o

2 |-0.1654 -0.0829 |-0.1260 0.6134 0.5789 0.4881

Because of the highly positive loadings on PC1 and the high percent of variance
explained, we used this as a proxy for body size. We found that PC1_size was highly
correlated with tarsus (0.77) so we proceeded with tarsus as our proxy for body size.
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1

2

3

4

5

6

7

8

9 . .

10 Morphological data and analysis

1 Summary of morphological data

12

13 Sup Table 1. Summary of sample sizes, distribution of sexes and ages for each site.

14

15 | Piute Pass n=72 White Mountains n=98

16

17 | Sex Age Sex Age

18 | F:25 SY:30 F:42 SY:55

19

20 | M:35 ASY:30 M:35 ASY:22

;; | UNK:12 HY:12 UNK:21 HY:21

23

24 ‘ Sup Table 2. Summary of trait values for Piute Pass.

25

26 | Trait Mean sD N Range

27

28 | Wing Chord 100.47 3.808 72 92-110

29 | Tarsus 20.001 729 72 18.1-22.3

30

31 | Nare Length 2.186 0.4362 57 1.45-3.2

g; | Beak Depth | 6.505 0.544 61 4.74-7.79

34 | Beak Width 5.837 0.5310 61 4.5-7.07

22 | Beak Length 11.504 0.5686 61 9.4-12.87

37 Pen Barbule 0.3795 0.0593 54 0.29-0.61

38 Length

ig Pen Barbule 19.276 3.1449 54 13.25-24.67

41 Density

42 Plum Barbule 0.8243 0.0902 54 0.64-1.05

43 Length

44 Plum Barbule | 28.353 2.6963 54 21-33.33

45 Density

46

47 Plum Barbule 6.997 0.5748 54 5.33-8
Node Density

48

49

50

51

52

53

54

55

56

57

58

59
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Trait Mean SD N Range
Wing Chord 98.44 3.435 95 92-106
Tarsus 19.9 .572 95 18.4-21.7
Nare Length 1.87 0.327 93 1.14-2.9
Beak Depth 6.569 0.4757 95 5.56-7.97
Beak Width 6.0202 0.4743 95 5-7

Beak Length 11.2 0.6844 95 9.49-12.88
Pen Barbule 0.3631 0.05541 85 0.24-0.52
Length

Pen Barbule 19.8313 2.6285 85 13.67-25.33
Density

Plum Barbule 0.79822 0.1011 85 0.6-1.11
Length

Plum Barbule 28.38039 3.0564 85 20.33-35
Density

Plum Barbule 7.2745 0.6865 85 5.33-9.33
Node Density

Univariate Model Summary Details

We evaluated a suite of candidate linear models for each morphological trait to assess

Morphological Statistical Analysis Model Details

the effects of body size (tarsus length), age, sex, and site. All models were fit using ordinary

least squares in R. The following fixed-effect combinations were tested:

Model ID |[Fixed Effects Included
1 tarsus

2 age

3 sex

4 site_code

%)

tarsus + age
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1

2

3

4

5

6

7

8

9

10 | 6 tarsus + sex

11 | 7 tarsus + site_code

12 | 8 age + sex

::2 | ) age +site_code

15 | 10 sex + site_code

16 | 11 tarsus x age

::; | 12 tarsus x sex

19 | 13 tarsus x site_code

20 | 14 age x sex

21 | 15 age x site_code

;; | 16 sex x site_code

24 | 17 tarsus + age + sex

25 tarsus + age +

26 18 site_code

27 | [ils) tarsus + sex + site_code

;g | 20 age + sex + site_code

30 | 21 tarsus x age x sex

31 tarsus x age x

32 22 site_code

33 | 23 tarsus x sex x site_code

34 | 24 age x sex x site_code

35

36

37 Sup Table 4. Top three models tested and resulting AIC information for each of those models
38 for each trait.

39

40 Formula K | AlCc Delta AICc | AlCcWt Cum.Wt
41 | Beak Depth

42 tarsus + age + 6 |[189.95893 |0 0.22197985 | 0.22197985
43 site code 5 5
44 tarsus + sex + site_code | 6 190.210098 | 0.25116876 | 0.19578208 | 0.41776194
45 8 6 9 4
46 tarsus * sex * site_code |12 |190.692707 |0.73377728 [ 0.15380691 [ 0.57156885
47 3 1 5
48 Beak Width

49

50

51

52

53

54

55

56

57

58

59
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tarsus + sex + site code |6 [214.603266 |0 0.28176801 | 0.28176801
7 8 8
tarsus * sex * site_code |12 |214.733299 |0.13003272 | 0.26403132 [ 0.54579934
4 4 4
tarsus + age + sex + 7 |216.545844 |1.94257758 [ 0.10667590 | 0.65247524
site_code 3 9 4 5]
Beak Length
sex 4 |202.858482 |0 0.21026054 | 0.21026054
2 1 1
age 4 |204.054312 | 1.19583051 | 0.11563424 | 0.32589478
7 2 8 9
tarsus + sex 5 1204.275641 | 1.41715939 | 0.10352030 | 0.42941509
6 1
Nare Length
tarsus + sex + site_code | 6 124.965750 | 0 0.35089455 | 0.35089455
4 6 6
tarsus + age + sex + 7 125.280982 | 0.31523265 | 0.29972621 | 0.65062077
site_code 9 7 5 1
tarsus + age + 6 127.320330 | 2.35458055 | 0.10811500 [ 0.75873577
site_code 8 4 2 3]
Wing Chord
tarsus + age + sex + 7 |735.524521 |0 0.83590162 | 0.83590162
site_code 2
tarsus + sex + site code [6 | 738.858897 | 3.33437659 | 0.15779909 [ 0.9937007
8 )
tarsus + age + sex 6 | 745.522703 | 9.99818237 | 0.00563738 | 0.99933809
6 4
Pennaceous Barbule Length
sex 4 |- 0 0.26538709 | 0.26538709
445.925198 9 9
6
sex + site_code 5 |-445.551068 | 0.37413064 | 0.22010928 | 0.48549638
3 8 7
age * sex 6 |- 1.48309822 [ 0.12642388 | 0.61192026
444.442100 | 2 1 8
4
Pennaceous Barbule Density
tarsus + age 5 |616.554421 |0 0.24815054 | 0.24815054
6 8 8
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1

2

3

4

5

6

7

8

?O tarsus + sex 5 |616.938818 |0.38439685 | 0.20475971 [ 0.45291026
11 4 5 8 6

12 tarsus + age + 6 |617.915651 | 1.36122961 | 0.12564001 [ 0.57855028
13 site_code 2 8 6 3

14 Plumulaceous Barbule Length

15 age + site code 5 |- 0 0.27657032 | 0.27657032
16 267.584944 2 2

17 9

18 age 4 |- 1.04890058 | 0.16369661 | 0.44026694
19 266.536044 |7 8

20 3

21 age * site_code 7 |- 1.07419116 | 0.16163966 | 0.6019066
22 266.510753 | 8

23 7

24 Plumulaceous Barbule Density

25 tarsus + age 5 |672.442234 |0 0.30687339 | 0.30687339
26 6

27 tarsus + age + sex 6 |673.176964 |0.73472949 [ 0.21252731 [ 0.51940070
28 1 8 1 1

29 tarsus + sex 5 |673.642519 |1.20028475 | 0.16839171 | 0.68779241
30 4 1 2

31 Plumulaceous Barbule Node Density

32 tarsus + age + 6 ]229.271709 |0 0.4507249 | 0.4507249
33 site_code &

34 age + site_code 5 |[231.33502 |2.06331062 | 0.16064578 [ 0.61137068
35 5 7 7

:? tarsus + age + sex + 7 23148286 |2.21115065 [ 0.14919912 [ 0.76056981
38 site_code 7 9 6

39

40 Sup Table 5. Summary of model ran and the model results for the top model for each
41 trait. Asterisk (*) notes which traits are considered significantly different between sites.
42

43 Formula | r.squared | adj.r.squared | p.value

44 | Beak Depth *

45 tarsus + age + site_code  [0.26910403  [0.24961347 | 1.30E-09

46 Beak Width *

47 tarsus + sex + site_code  [0.15702313  [0.13454374 | 3.49E-05

48 Beak Length

49 sex |0.52253017 [ 0.51628873 | 2.75E-25

50

51

52

53

54

55

56

57

58

59
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Nare Length *

tarsus + sex + site_code 0.219043 0.19719804 3.50E-07
Wing Chord *
tarsus + age + sex + 0.6826689 0.6728139 2.35E-38
site_code
Pennaceous Barbule Length
sex [0.31689028 [ 0.30684455 | 5.56E-12
Pennaceous Barbule Density
tarsus + age [0.3791724  [0.36506268 | 1.25E-13
Plumulaceous Barbule Length *
age + site_code [0.16133686 | 0.1426999 | 2.70E-05
Plumulaceous Barbule Density
tarsus + age |0.09665926  [0.07612878 | 0.00372514
Plumulaceous Barbule Node Density
tarsus + age |0.09665926  [0.07612878 | 0.00372514

Sup Table 6.A-J. Detailed summary for each of the trait models run. Sample size (n) is

noted for each analysis. Significant site p-values are italicized. WWhen site is present,

95% Cl is also shown with the beta coefficient for site.

A. Beak Depth, n=155

term estimate std.error statistic p.value
Intercept 3.37921794 | 1.20275672 | 2.80956065 | 0.00562258
tarsus 0.15757233 | 0.06065696 |2.59776171 | 0.0103184
age3d -0.0419748 | 0.08464803 |-0.4958742 |[0.62070894
aged -0.7813467 | 0.11173235 |-6.9930214 | 8.29E-11
site_codeWMTN | 0.23301356 | 0.0764162 3.04926899 | 0.00271257
B =0.46, 95% Cl = 0.16-0.76
B. Beak Width, n=155
term estimate std.error statistic p.value
Intercept 3.13067772 | 1.26675195 | 2.47142127 [ 0.01457617
tarsus 0.13913241 | 0.06376169 | 2.18206908 [ 0.03066072
sexM -0.1290975 | 0.0855716 |-1.5086492 |0.13349188
sexUNK -0.5671672 | 0.12422359 | -4.5656968 | 1.03E-05
site_codeWMTN | 0.28128538 | 0.0818869 3.43504748 | 0.0007664
B =0.55 95% Cl = 0.24-0.87
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term estimate std.error statistic p.value
(Intercept) 11.5557576 |0.05611459 | 205.931438 | 6.60E-189
sexM -0.0851779 |[0.07849068 |-1.0851971 |0.27954128
sexUNK -1.4224242 |0.11421569 |-12.453843 | 5.00E-25
D. Nare Length, n=148
term estimate std.error statistic p.value
Intercept 0.00316755 | 0.92079149 | 0.00344003 [ 0.99726005
tarsus 0.11403506 | 0.04632887 |2.46142557 [ 0.01502832
sexM -0.1216435 | 0.06971025 |-1.7449874 |[0.08313529
sexUNK -0.2391738 | 0.07966172 |-3.0023678 |0.0031627
site_codeWMTN | -0.3084156 0.0611737 -5.0416373 1.38E-06
B=-0.76, 95% Cl = -1.07-(-0.46)
E. Wing Chord, n=167
term estimate std.error statistic p.value
Intercept 67.5307604 | 5.49907378 | 12.2803881 | 6.99E-25
tarsus 1.47810264 | 0.27931635 | 5.29185855 | 3.91E-07
age3 0.98013348 | 0.42161033 | 2.32473783 | 0.02133471
aged 2.61989277 | 0.47482379 | 5.51761055 | 1.35E-07
sexM 5.18357951 | 0.39536383 | 13.1109099 | 3.49E-27
site_codeWMTN | -1.1884579 0.34055186 | -3.4898001 0.0006237
B=-0.32, 95% CI = -0.50-(-0.14)
F. Pennaceous Barbule Length, n=139
term estimate std.error statistic p.value
(Intercept) 0.34640226 | 0.00621558 | 55.7312693 | 1.55E-95
sexM 0.01699774 |0.00899133 | 1.89045812 | 0.06082431
sexUNK 0.0882362 |0.0112384 |7.85131195 | 1.10E-12

G. Pennaceous Barbule Density, n=136
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term estimate std.error statistic p.value
(Intercept) 23.2506487 | 6.11112099 | 3.80464545 [ 0.00021631
tarsus -0.1510297 |[0.30918622 |-0.4884749 |0.626024
age3 0.47029958 |0.47571193 | 0.98862262 | 0.32465654
age4 -4.24769 0.53314041 |-7.9673009 |[6.67E-13

H. Plumulaceous Barbule Length

term estimate std.error statistic p.value
Intercept 0.8237826 |0.01620735 |50.8277177 |6.72E-90
age3 -0.0349157 | 0.01789566 |-1.9510714 | 0.0531196
age4 0.07217363 | 0.02106868 | 3.42563687 | 0.00081297
site_codeWMTN [ -0.0288163 0.01624784 | -1.773549 0.07839249

B =-0.30, 95% Cl = -0.62-0.34

|. Plumulaceous Barbule Density

term estimate std.error statistic p.value
(Intercept) 25.5415447 | 7.50508001 | 3.40323417 | 0.00088205
tarsus 0.1335034 |0.37971223 | 0.351591 0.72570563
age3 1.16460095 | 0.58422278 | 1.99341926 | 0.048277
age4 -1.3306565 |0.65475081 |-2.0323098 [ 0.04412831

J. Plumulaceous Barbule Node Density

term estimate std.error statistic p.value
Intercept 9.17335111 | 1.46944391 | 6.24273647 | 5.54E-09
tarsus -0.1062565 | 0.07416009 |-1.432799 0.15429738
age3 0.27870664 | 0.11659663 | 2.39034915 [ 0.01825573
age4 -0.7579252 | 0.12906466 |-5.8724455 |(3.34E-08
site_codeWMTN | 0.26874166 | 0.0987462 2.72153933 | 0.00738179

8=0.41,95% Cl =0.11-0.70

Population Structure Results
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Sup Fig 24. PCA results showing a lack of population structure between the White
Mountain (WMNT, blue) and Piute Pass (PIPA, red) populations. There are some outlier
individuals but an ADMIXTURE analysis confirmed that 1 population is the most
supported.

Extended GWAS Results

beak_length 0.5 missingness filter

-log10(p-value)

1 1A 2 3 4 A5 6 7 8 9101112131416 20 28 Z 37
Chromosome

Sup Fig 32. Beak length GWAS results. Significant SNPs from the BSLMM analysis are
overlaid onto the LMM results, plotted with their corresponding p-values and
corresponding genes are noted if available.

beak_width 0.5 missingness filter

-log10(p-value)

1 1A 2 3 4 4A 5 6 7 8 9 101112131416 20 28 Z 37
Chromosome

Sup Fig 43. Beak width GWAS results. Significant SNPs from the BSLMM analysis are
overlaid onto the LMM results, plotted with their corresponding p-values and
corresponding genes are noted if available.
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pen_num 0.5 missingness filter

-log10(p-value)

3 4 6 7 & 9101112131416 20 28 2 37
Chromosome

Sup Fig 54. Pennaceous barbule density GWAS results. Significant SNPs from the
BSLMM analysis are overlaid onto the LMM results, plotted with their corresponding p-
values and corresponding genes are noted if available.

GWAS model evaluation

Sup Table 7. AGC value for each ULMM run, based on p-values.

Trait AGC

Wing Chord 1.0287
Nare Length 1.0316
Beak Depth 1.0129
Beak Width 1.0157
Beak Length 0.9684
Pen Barbule Length 1.0273
Pen Barbule Density 1.0232
Plum Barbule Length 0.9773
Plum Barbule Density 1.0009
Plum Barbule Node Density | 1.0218

Sup Fig 6. PP plots for all traits.
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A Sampling Scheme

White Mountain

Elevation:
~4300 m

Piute Pass

Elevation:
~3600 m
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Figure 1. A) A map of California highlighting the sampling location and design for two populations of Grey-
crowned Rosy-Finch, Piute Pass and White Mountain. Elevation is noted for each site along with an elevation
transect. B) Overview of methods for GWAS analysis. Morphological measurements were corrected for the
effects of sex, age, and body size before being input into BSLMM and LMM models. C) Overview of the
methods for the Fst analysis. The output of both analyses were analyzed to identify significant SNPs and
related genes.
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Gene Model Function Details Reference
Wing Chord
PCP4 BSLMM Bone development, stress response in quail ~ Xiao et al 2008;
Steven 2021
GRIK?2 BSLMM Reproduction Egg quality and production in goose and Gao et al 2023;
duck Bhavana et al
2022
AKAP7 BSLMM Stress response in quail Stevens 2021
PACRG BSLMM Heat stress response in chickens Tian et al 2020
HAPLN1 BSLMM Coloration Plumage coloration in ducks Zhang et al 2024
NEGR1 BSLMM Development, Col- Neural development, plumage coloration in Sun et al 2020
oration crested ibis
PGLYRP2 BSLMM /LMM Immune response in vertebrates, heat stress Hafiz et al 2020;
response in chickens Kim et al 2021
GUCA1C LMM Morphology Visual systems in birds, bone quality in Wu et al 2021;
ducks, wing deformity in chickens Gesemann et al
2023; Li et al
2020;  Moham-
madi et al 2024
RFX3 LMM Altitude adaptation in wolves Zhang et al
2014;  Shweizer
et al 2014
NIPBL LMM Developmental regulation and DNA repair Barnes 2019
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(Continued from previous page)

Gene Model Function Details Reference
CHD1 LMM Gene Regulation Modulates gene expression in birds Fridolfsson et al
2000
NDUFA11 LMM Metabolism, Respira- Respiratory system support in buffalo, mito- Clark et al 2024;
tion chondrial activity in songbirds Sadeesh et al
2025
Beak Depth
TENM4 BSLMM Development, Col- Neural development in quail, dorsal feather Twumasi et al
oration, Reproduction coloration in duck, breeding timing in great 2024; Steven
tit 2021;  Gienapp
et al 2017
RASL11A BSLMM Morphology Craniofacial development in buteo Abernathy 2021
TINAG BSLMM Morphology Beak development in chicken Bai et al 2018
LAMA4 BSLMM Migration Migration timing in Swainson’s thrush Johnston et al
2016
LURAPIL  BSLMM Coloration Pigmentation in mallards Ma et al 2021
PTPRD BSLMM Communication, Col- Vocal signaling in flycatchers, pigmentation Garcia et al
oration in mallards 2023; Ma et al
2021
CLRN3 BSLMM Reproduction, Sex Sex differentiation in chicken Lou et al 2024
Differentiation
CPEB3 BSLMM Reproduction Oocyte meiosis regulator in chicken Chen et al 2022
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(Continued from previous page)

Gene Model Function Details Reference
BICC1 BSLMM Morphology, Body Bone development in chicken and mice, body Kinsella et al
Size size in chicken and hermit thrush 2019; Johns-

son et al 2015;
Mesner et al
2014

ANK3 BSLMM Migration Migration in birds Lenon 2022

PRKG1 BSLMM Reproduction, Behav- Ovarian function in duck, foraging behavior Sun et al 2024;

OTUD7A BSLMM

ERCCS8 BSLMM
MEGF11 BSLMM

DLG1 BSLMM

Nare Length
NRIP1 BSLMM

ior, Coloration

Development

Hypoxia Adaptation
Coloration

Development, Regula-
tion

Reproduction, Adap-
tation, Metabolism

in humans, signal transduction and feather
pigmentation in ducks

Neural development and adaptation to urban
environments in bananaquit

Altitude adaptation in lizard

Dorsal feather coloration in duck

Embryo development in mice, regulatory de-
velopment in birds

Female reproduction in goose, nocturnal
adaptation in owls, mitochondrial biosynthe-
sis in vertebrates

Struk et al 2019;
Twumasi et al
2024
Mascarenhas et
al 2023

Yan et al 2022
Twumasi et al
2024

Seki et al 2017

Zheng et al
2023; SungCho
et al 2019; Da
Costa Moreno et
al 2022
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(Continued from previous page)

Gene Model Function Details Reference
ATP1A1 BSLMM Migration Migration in birds Lenon 2022
TENM4 BSLMM Development, Col- Neural development in quail, dorsal feather Twumasi et al
oration, Reproduction coloration in duck, breeding timing in great 2024, Steven
tit 2021;  Gienapp
et al 2017
KALRN BSLMM Neurodevelopment Cognitive ability in chickadee Richetti et al
2024
CNTNAP5 BSLMM Development, Mem- Brain development and signaling in zebra Gilbert et al
ory, Hypoxia Adapta- finch, spatial memory in chickadees, hypoxia 2021; Semenov
tion response in chickens et al 2024; Li et
al 2009
KCTD18 BSLMM Immunity, Communi- Immune response in vultures, vocal learning Chung et al
cation in chickens 2015; Lovell et
al 2013
PLPP3 BSLMM Morphology, Culmen length in buteo Abernathy et al
Metabolism 2021
DLG1 BSLMM Development, Regula- Embryo development in mice, regulatory de- Seki et al 2017
tion velopment in birds
ADAMTS18 BSLMM Morphology, Bone Bone mineral density in humans and chickens Xiong et al 2009;
Density Guo et al 2017
PSD2 BSLMM Coloration, Stress Re- Melanin production in owls, stress response Ducrest et al

sponse

in quail

2025; Steven
2021
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(Continued from previous page)
Gene Model Function Details

Reference

BRAT1 BSLMM _ Stress response in chickens

Pennaceous Barbule Length

KCNF1 BSLMM Coastal Adaptation Coastal adaptation in song sparrow and frogs
CSMD1 BSLMM/LMM Heat adaptation in chickens, adaptation to
altitude in humans

NKAIN1 BSLMM

Immune response in house finch, migration
tendency in European blackcap

Immunity, Migration

KCNJ3 BSLMM Reproduction Egg production in duck
AGBL1 BSLMM Metabolism Fatty acid composition in chicken
TENM1 BSLMM Morphology Craniofacial development in pigeons

Plumulaceous Node Density
EFNA2 BSLMM Heat Stress, Morphol- Heat stress response in chickens, bone mor-
ogy, Coloration phogenesis and remolding in ground tit, color
differences in bulbul

STK10 BSLMM Morphology Cranium and bill depth in buteo

Plumulaceous Barbule Density
BORCS6 BSLMM Metabolism Meat quality in chickens

HSF2 BSLMM _ Response to heat stress in chickens

Rodriguez et al
2022

Clark et al 2024
Hao et al 2024;
De Loma et al
2025

Veetil et al 2024;
Delmore et al
2020

Sun et al 2024
Cho et al 2023
Boer et al 2021

Zhuang et al
2019; Cheng et
al 2020; Shakya
et al 2020

Abernathy 2021

Alsoufi et al
2023
Xie et al 2014
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Gene Model Function Details Reference
PRKN BSLMM Domestication Domestication in birds Farias-Virgens
et al 2025
NRXNI1 BSLMM Neurodevelopment, Neural connections, plumage coloration in Sun et al 2020;
Communication, crested ibis, vocal rhythm in birds, speech Sebastianelli et
Coloration disorders in humans al 2024
ALDH1A1 BSLMM Hypoxia Adaptation, Hypoxia adaptation and fat metabolism in Bao et al 2016;

ADAMTS19 BSLMM

HERC4 BSLMM
SMC4 BSLMM
SPAG16 BSLMM

Metabolism, Vision

Morphology
Coloration, Migration

Development
Reproduction,  Col-
oration, Longevity

rosy finch, eyesight in owl and mice

Rumpless trait in chickens
Plumage color in duck, migration in Euro-
pean blackbirds

Feather follicle development in goose

Sexual development in birds-of-paradise,
plumage coloration in ducks, longevity in
mammals

Funk et al 2023;
Borges et al 2019
Chen et al 2024
Zhang et al
2023; Franchini
et al 2017

Hu et al 2020
Prost et a 2018;
Zhang et al
2024; Matsuda
et al 2024
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Fsr outliers

Gene Function Reference

GDPD5 Lipid Metabolism Feng et al 2023

NOX4 Goel et al 2021; Diebold et al 2010
MAML2 Schweizer et al 2021

SUPT20H Schweizer et al 2021

PPP1R1C Cold Adaptation Federova et al 2022

SOX14 Chen et al 2024

MEGF11 Twumasi et al 2024

MSRA Jeong et al 2018; Gheyas et al 2021
AKT3 Buroker et al 2012; Qi et al 2018
DOCKI11 Crates et al 2024

SMARCA1 Boer et al 2021

GAB3 Boer et al 2021

ADGRD1 Nan et al 2021

NPHP4 Vision Borges et al 2019

ALDH7A1 Bai et al 2014
ADAMTS19 Metabolism Zhang et al 2022
VLDLR Lipid Protein Wang et al 2011

ERCCS Yan et al 2022
CTIF Lawson et al 2017
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The genetic and morphological basis of local adaptation to elevational extremes in an
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9 alpine finch

12 Robertson, Erica C.N.", Brown, Timothy?, Deitch, Sophie', Bossu, Christine M.,

Zavaleta, Erika S.2, Hooten, Mevin B.3, Ruegg, Kristen C.!

Supplemental Methodology
Extracting temperature data from AdaptWest, 2022.

The two sampling locations, identified by GPS coordinates collected during

25 fieldwork, were each buffered by 1 km to account for the spatial heterogeneity

26 experienced by the birds. Monthly climate rasters from AdaptWest were filtered to
include only June, July, and August, corresponding to the Gray-crowned Rosy-Finch

29 breeding season. For each site, raster layers representing mean, minimum, and

30 maximum monthly temperature were extracted within the 1 km buffer, and pixel values
were averaged. The resulting mean, minimum, and maximum temperature values were
33 then summarized for each site. The average values were also plotted across time (Sup

35 Fig 1).

36 .
37 Sup Fig 1. Average . Monthly Climate Averages

38 values within a 1km
buffer around sample
41 sites for Tave, Tmax, -
42 and Tmin of the SEE : Ifnv:x
breeding season "

45 plotted against
46 month.

Variable

-
o

Tmin

Mean value
(4}
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Sexing and Aging of Birds

Aging followed standard guidelines outlined in the Pyle Identification Guide to
North American Birds (Pyle 1997). Age was determined primarily by examination of
skull pneumatization and degree of cranial ossification, supplemented by plumage
characteristics (extent of molt limits, feather wear, and coloration). When available,
known-age individuals from previous banding or recapture records were also included.
All assessments were conducted by trained banders using consistent criteria across
field seasons. A full breakdown of individuals by age class and sex is provided in Sup
Table 1.

Variation around morphological data collected

Not all individuals were measured for the full suite of morphological traits. In
some cases, birds exhibited signs of acute handling stress (e.g., wincing of the eyes,
open-beak panting, or rapid breathing), and were released before all measurements
could be completed to minimize risk. In other instances, data collection was interrupted
by rapidly changing field conditions, such as approaching thunderstorms or hail events,
which required immediate cessation of banding activities for personnel safety. As a
result, sample sizes differ slightly among traits, reflecting our decision to prioritize bird
welfare and field safety over completeness of measurements.

Generating PC axis representing size

To further validate our choice of tarsus as a proxy for body size, we performed a
principal component analysis on allometric traits to compare a PC axis representing
overall body size with tarsus. We first removed all individuals that were missing
information for any of the following traits: wing chord, tarsus, tail length, beak depth,
beak width, and beak length. This left us with 136 individuals with complete data. We
centered and scaled the variables and performed a principal component analysis on the
resulting data. The first axis, PC1, explained 34.3% of the variance while PC2 explained
28.7%. We found the following loadings for PC1 and PC2:

wing chord | tarsus | tail length | beak depth | beak width | beak
length
PC1 | 0.5900 0.5358 | 0.5358 0.2094 0.1290 0.0172
PC2 | -0.1654 -0.0829 | -0.1260 | 0.6134 0.5789 0.4881

Because of the highly positive loadings on PC1 and the high percent of variance
explained, we used this as a proxy for body size. We found that PC1_size was highly
correlated with tarsus (0.77) so we proceeded with tarsus as our proxy for body size.

Morphological data and analysis

Summary of morphological data
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Sup Table 1. Summary of sample sizes, distribution of sexes and ages for each site.

Piute Pass n=72

White Mountains n=98

Sex Age Sex Age
F:25 SY:30 F:42 SY:55
M:35 ASY:30 M:35 ASY:22
UNK:12 HY:12 UNK:21 HY:21

Sup Table 2. Summary of trait values for Piute Pass.
Trait Mean SD N Range
Wing Chord 100.47 3.808 72 92-110
Tarsus 20.001 729 72 18.1-22.3
Nare Length 2.186 0.4362 57 1.45-3.2
Beak Depth 6.505 0.544 61 4.74-7.79
Beak Width 5.837 0.5310 61 4.5-7.07
Beak Length 11.504 0.5686 61 9.4-12.87
Pen Barbule 0.3795 0.0593 54 0.29-0.61
Length
Pen Barbule 19.276 3.1449 54 13.25-24.67
Density
Plum Barbule | 0.8243 0.0902 54 0.64-1.05
Length
Plum Barbule | 28.353 2.6963 54 21-33.33
Density
Plum Barbule | 6.997 0.5748 54 5.33-8
Node Density

Sup Table 3. Summary of trait values for White Mountain.
Trait Mean SD N Range
Wing Chord 98.44 3.435 95 92-106
Tarsus 19.9 572 95 18.4-21.7
Nare Length 1.87 0.327 93 1.14-2.9
Beak Depth 6.569 0.4757 95 5.56-7.97
Beak Width 6.0202 0.4743 95 5-7
Beak Length 11.2 0.6844 95 9.49-12.88
Pen Barbule 0.3631 0.05541 85 0.24-0.52
Length
Pen Barbule 19.8313 2.6285 85 13.67-25.33
Density
Plum Barbule | 0.79822 0.1011 85 0.6-1.11
Length
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Plum Barbule | 28.38039 3.0564 85 20.33-35
Density

Plum Barbule 7.2745 0.6865 85 5.33-9.33
Node Density

Morphological Statistical Analysis Model Details
Univariate Model Summary Details

We evaluated a suite of candidate linear models for each morphological trait to assess
the effects of body size (tarsus length), age, sex, and site. All models were fit using ordinary
least squares in R. The following fixed-effect combinations were tested:

Model ID |Fixed Effects Included

1 tarsus

2 age

3 sex

4 site_code

5 tarsus + age

6 tarsus + sex

7 tarsus + site_code

8 age + sex

9 age + site_code

10 sex + site_code

11 tarsus x age

12 tarsus x sex

13 tarsus x site_code

14 age x sex

15 age x site_code

16 sex x site_code

17 tarsus + age + sex
tarsus + age +

18 site_code

19 tarsus + sex + site_code

20 age + sex + site_code

21 tarsus x age x sex
tarsus x age x

22 site_code

23 tarsus x sex x site_code

24 age x sex x site_code

Sup Table 4. Top three models tested and resulting AIC information for each of those models
for each ftrait.
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Formula |K | AlCc Delta_AICc | AICcWt Cum.Wt
Beak Depth
tarsus + age + 6 |189.95893 |0 0.2219798 | 0.2219798
site_code 55 55
tarsus + sex + site_code | 6 | 190.210098 | 0.2511687 | 0.1957820 | 0.4177619
8 66 89 44
tarsus * sex * site_code |12 | 190.692707 | 0.7337772 | 0.1538069 | 0.5715688
3 8 11 55
Beak Width
tarsus + sex + site_code |6 | 214.603266 | O 0.2817680 | 0.2817680
7 18 18
tarsus * sex * site_code | 12 | 214.733299 | 0.1300327 | 0.2640313 | 0.5457993
4 24 22 4
tarsus + age + sex + 7 |216.545844 | 1.9425775 | 0.1066759 | 0.6524752
site_code 3 89 04 45
Beak Length
sex 4 |202.858482 |0 0.2102605 | 0.2102605
2 41 41
age 4 | 204.054312 | 1.1958305 | 0.1156342 | 0.3258947
7 12 48 89
tarsus + sex 5 [204.275641 | 1.4171593 | 0.1035203 | 0.4294150
6 9 01 9
Nare Length
tarsus + sex + site_code | 6 | 124.965750 | O 0.3508945 | 0.3508945
2 56 56
tarsus + age + sex + 7 | 125.280982 | 0.3152326 | 0.2997262 | 0.6506207
site_code 9 57 15 71
tarsus + age + 6 | 127.320330 | 2.3545805 |0.1081150 | 0.7587357
site_code 8 54 02 73
Wing Chord
tarsus + age + sex + 7 735524521 |0 0.8359016 | 0.8359016
site_code 2 2 2
tarsus + sex + site_code | 6 | 738.858897 | 3.3343765 | 0.1577990 | 0.9937007
8 95 9
tarsus + age + sex 6 | 745.522703 | 9.9981823 | 0.0056373 | 0.9993380
6 74 8 9

Pennaceous Barbule Length
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sex 4 |- 0 0.2653870 | 0.2653870
445.925198 99 99
6
sex + site_code 5 |- 0.3741306 | 0.2201092 | 0.4854963
445.551068 |43 88 87
age * sex 6 |- 1.4830982 | 0.1264238 | 0.6119202
444.442100 | 22 81 68
4
Pennaceous Barbule Density
tarsus + age 5 [616.554421 |0 0.2481505 | 0.2481505
6 48 48
tarsus + sex 5 |616.938818 | 0.3843968 | 0.2047597 | 0.4529102
4 55 18 66
tarsus + age + 6 |[617.915651 | 1.3612296 | 0.1256400 | 0.5785502
site_code 2 18 16 83
lumulaceous Barbule Length
age + site_code 5 |- 0 0.2765703 | 0.2765703
267.584944 22 22
9
age 4 |- 1.0489005 | 0.1636966 | 0.4402669
266.536044 | 87 18 4
3
age * site_code 7 |- 1.0741911 | 0.1616396 | 0.6019066
266.510753 | 68 6
7
Plumulaceous Barbule Density
tarsus + age 5 672442234 |0 0.3068733 | 0.3068733
6 9 9
tarsus + age + sex 6 |673.176964 | 0.7347294 |0.2125273 | 0.5194007
1 98 11 01
tarsus + sex 5 |673.642519 | 1.2002847 |0.1683917 | 0.6877924
4 5 11 12
Plumulaceous Barbule Node Density
tarsus + age + 6 |229.271709 |0 0.4507249 | 0.4507249
site_code 3
age + site_code 5 |231.33502 2.0633106 | 0.1606457 | 0.6113706
25 87 87
tarsus + age + sex + 7 123148286 |2.2111506 |0.1491991 | 0.7605698
site_code 57 29 16
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1
2

z Sup Table 5. Summary of model ran and the model results for the top model for each
5 trait. Asterisk (*) notes which traits are considered significantly different between sites.
? Formula | r.squared | adj.r.squared | p.value

8 Beak Depth *

T tarsus + age + site_code | 0.26910403 | 0.24961347 | 1.30E-09

11 Beak Width *

o tarsus + sex + site_code | 0.15702313 [ 0.13454374 [ 3.49E-05

14 Beak Length

15 sex | 0.52253017 0.51628873 | 2.75E-25

1? Nare Length *

18 tarsus + sex + site_code [ 0.219043 0.19719804 | 3.50E-07

;g Wing Chord *

21 tarsus + age + sex + 0.6826689 0.6728139 2.35E-38

22 site_code

;i Pennaceous Barbule Length

25 sex |0.31689028 | 0.30684455 | 5.56E-12

26 Pennaceous Barbule Density

i tarsus + age [0.3791724 | 0.36506268 | 1.25E-13

29 Plumulaceous Barbule Length *

i age + site_code |0.16133686 | 0.1426999 | 2.70E-05

32 Plumulaceous Barbule Density

33 tarsus + age | 0.09665926 | 0.07612878 | 0.00372514

gg Plumulaceous Barbule Node Density

36 tarsus + age | 0.09665926 | 0.07612878 | 0.00372514

8

23 Sup Table 6.A-J. Detailed summary for each of the trait models run. Sample size (n) is
41 noted for each analysis. Significant site p-values are italicized. When site is present,
fé 95% Cl is also shown with the beta coefficient for site.

j‘s‘ A. Beak Depth, n=155

j? term estimate std.error statistic p-value

48 (Intercept) 3.37921794 | 1.20275672 | 2.80956065 | 0.00562258

;‘g tarsus 0.15757233 | 0.06065696 | 2.59776171 | 0.0103184

51 age3 -0.0419748 | 0.08464803 | -0.4958742 | 0.62070894

52 age4 -0.7813467 | 0.11173235 | -6.9930214 | 8.29E-11

gi site_codeWMTN | 0.23301356 | 0.0764162 3.04926899 | 0.00271257

55 B =0.46, 95% CI = 0.16-0.76

56

57

58

59
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term estimate std.error statistic p-value
(Intercept) 3.13067772 | 1.26675195 | 2.47142127 | 0.01457617
tarsus 0.13913241 | 0.06376169 | 2.18206908 | 0.03066072
sexM -0.1290975 | 0.0855716 |-1.5086492 |0.13349188
sexUNK -0.5671672 | 0.12422359 | -4.5656968 | 1.03E-05
site_codeWMTN | 0.28128538 | 0.0818869 3.43504748 | 0.0007664
B =0.55 95% Cl = 0.24-0.87
C. Beak Length, n=156
term estimate std.error statistic p.value
(Intercept) 11.5557576 | 0.05611459 | 205.931438 | 6.60E-189
sexM -0.0851779 | 0.07849068 | -1.0851971 | 0.27954128
sexUNK -1.4224242 | 0.11421569 | -12.453843 | 5.00E-25
D. Nare Length, n=148
term estimate std.error statistic p-value
(Intercept) 0.00316755 | 0.92079149 | 0.00344003 | 0.99726005
tarsus 0.11403506 | 0.04632887 | 2.46142557 | 0.01502832
sexM -0.1216435 | 0.06971025 | -1.7449874 | 0.08313529
sexUNK -0.2391738 | 0.07966172 | -3.0023678 | 0.0031627
site_codeWMTN | -0.3084156 0.0611737 -5.0416373 1.38E-06
B =-0.76, 95% Cl = -1.07-(-0.46)
E. Wing Chord, n=167
term estimate std.error statistic p-value
(Intercept) 67.5307604 | 5.49907378 | 12.2803881 | 6.99E-25
tarsus 1.47810264 | 0.27931635 | 5.29185855 | 3.91E-07
age3 0.98013348 | 0.42161033 | 2.32473783 | 0.02133471
age4 2.61989277 | 0.47482379 | 5.51761055 | 1.35E-07
sexM 5.18357951 | 0.39536383 | 13.1109099 | 3.49E-27
site_codeWMTN | -1.1884579 0.34055186 | -3.4898001 0.0006237
B =-0.32, 95% CI = -0.50-(-0.14)
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F. Pennaceous Barbule Length, n=139

term estimate std.error statistic p-value
(Intercept) 0.34640226 | 0.00621558 | 55.7312693 | 1.55E-95
sexM 0.01699774 | 0.00899133 | 1.89045812 | 0.06082431
sexUNK 0.0882362 |0.0112384 | 7.85131195 | 1.10E-12

G. Pennaceous Barbule Density, n=136
term estimate std.error statistic p-value
(Intercept) 23.2506487 | 6.11112099 | 3.80464545 | 0.00021631
tarsus -0.1510297 | 0.30918622 | -0.4884749 | 0.626024
age3 0.47029958 | 0.47571193 | 0.98862262 | 0.32465654
age4 -4.24769 0.53314041 | -7.9673009 |6.67E-13

H. Plumulaceous Barbule Length
term estimate std.error statistic p-value
(Intercept) 0.8237826 | 0.01620735 | 50.8277177 | 6.72E-90
age3 -0.0349157 | 0.01789566 |-1.9510714 | 0.0531196
age4 0.07217363 | 0.02106868 | 3.42563687 | 0.00081297
site_codeWMTN | -0.0288163 0.01624784 | -1.773549 0.07839249

B =-0.30, 95% Cl = -0.62-0.34

|. Plumulaceous Barbule Density
term estimate std.error statistic p-value
(Intercept) 25.5415447 | 7.50508001 | 3.40323417 | 0.00088205
tarsus 0.1335034 | 0.37971223 | 0.351591 0.72570563
age3 1.16460095 | 0.58422278 | 1.99341926 | 0.048277
age4 -1.3306565 | 0.65475081 | -2.0323098 | 0.04412831

J. Plumulaceous Barbule Node Density
term estimate std.error statistic p-value
(Intercept) 9.17335111 | 1.46944391 | 6.24273647 | 5.54E-09
tarsus -0.1062565 | 0.07416009 | -1.432799 0.15429738
age3 0.27870664 | 0.11659663 | 2.39034915 | 0.01825573
age4 -0.7579252 | 0.12906466 | -5.8724455 | 3.34E-08
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site_codeWMTN | 0.26874166 | 0.0987462 2.72153933 | 0.00738179
B =0.41,95% Cl = 0.11-0.70

Population Structure Results

0.24

0.0 %
Yy

site
0.2 WMNT
PIPA

PC2 (5.95%)

06 0.4 0.0 0.2

0.2
PC1 (6.18%)

Sup Fig 2. PCA results showing a lack of population structure between the White
Mountain (WMNT, blue) and Piute Pass (PIPA, red) populations. There are some outlier
individuals but an ADMIXTURE analysis confirmed that 1 population is the most
supported.

Extended GWAS Results
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Sup Fig 3. Beak length GWAS results. Significant SNPs from the BSLMM analysis are
overlaid onto the LMM results, plotted with their corresponding p-values and
corresponding genes are noted if available.
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Sup Fig 4. Beak width GWAS results. Significant SNPs from the BSLMM analysis are
overlaid onto the LMM results, plotted with their corresponding p-values and
corresponding genes are noted if available.
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Sup Fig 5. Pennaceous barbule density GWAS results. Significant SNPs from the
BSLMM analysis are overlaid onto the LMM results, plotted with their corresponding p-
values and corresponding genes are noted if available.

GWAS model evaluation
Sup Table 7. AGC value for each ULMM run, based on p-values.

Trait AGC

Wing Chord 1.0287
Nare Length 1.0316
Beak Depth 1.0129
Beak Width 1.0157
Beak Length 0.9684
Pen Barbule Length 1.0273
Pen Barbule Density 1.0232
Plum Barbule Length 0.9773
Plum Barbule Density 1.0009
Plum Barbule Node Density | 1.0218

Sup Fig 6. PP plots for all traits: A) plumulaceous barbule density, B) plumulaceous
barbule node density, C) pennaceous barbule density, D) pennaceous barbule length,
E) plumulaceous barbule length, F) beak length, G) beak width, H) beak depth, I) nare
length, J) wing chord.
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41 Abstract

43 Understanding patterns and mechanisms underlying local adaptation is

becoming increasingly important for species conservation amid anthropogenically driven

48 environmental change. Alpine systems are experiencing particularly intense pressure

50 from environmental change resulting from increased rates of warming and

32 corresponding loss of snow and ice. We integrate morphological and genetic analyses

55 to identify traits important for local adaptation in one of the highest elevation breeding

57 birds in North America, the Sierra Nevada Gray-crowned Rosy Finch. We performed an

59 in-depth analysis of how traits with known links to thermoregulation in birds such as
wing length, bill size, and feather microstructure vary between two populations at sites
with contrasting climate and environmental conditions. We identified loci underlying

these traits using a genome-wide association study and further examined regions of the
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genome related to altitude adaptation and cold tolerance using Fgt outlier tests.

Together, these results indicate that temperature, food availability, and alpine landscape

features may impose multifaceted and potentially conflicting selective pressures on

morphological traits important to adaptation in alpine birds. Overall, this work represents

one of the first in-depth analyses of the genetic basis of adaptation in an alpine

specialist songbird.

Keywords

local adaptation, conservation genomics, genome-wide association study, Fs; outlier test,
alpine

Introduction

Local adaptation occurs when natural selection favors traits that confer fithess
advantages in specific habitats (Endler, 1977; Kawecki & Ebert, 2004; Savolainen et al.,
2013). A species’ adaptive capacity determines the extent to which it will be able to
respond to rapid environmental change (Forester et al., 2022, 2023; Lande & Shannon,
1996; Meek et al., 2023). As a result, identifying genetic and morphological traits
involved in local adaptation is a key component of effective species conservation
planning (Hoban et al., 2016; Meek et al., 2023). Historically, assessments of the
capacity for local adaptation relied on reciprocal transplant experiments that allowed
researchers to link variation in putatively ecologically important traits to differences in
fitness across environmental gradients (Blanquart et al., 2013; Clausen et al., 1941;
Kawecki & Ebert, 2004; Savolainen et al., 2013). However, recent advances in genomic
methods have made it possible to detect signatures of selection across the genome and
to associate these with environmental variation and ecologically important
morphological variation (Capblancq et al., 2020; Hoban et al., 2016; Lotterhos &

Whitlock, 2015). We leveraged recent advances in genomic methods to identify


https://www.zotero.org/google-docs/?exv77j
https://www.zotero.org/google-docs/?exv77j
https://www.zotero.org/google-docs/?mLq078
https://www.zotero.org/google-docs/?mLq078
https://www.zotero.org/google-docs/?w5ADtV
https://www.zotero.org/google-docs/?xGb6AM
https://www.zotero.org/google-docs/?xGb6AM
https://www.zotero.org/google-docs/?nOOWq2
https://www.zotero.org/google-docs/?nOOWq2
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2 morphological and genetic traits important to local adaptation in an understudied alpine
12 bird system.

14 Many montane species undergo upward range shifts with climate change

17 (Mamantov et al., 2021). However, for those species already living near the top of a

19 mountain system, there are constraints that may limit the ability to track their niche, a
22 phenomenon termed the “escalator to extinction” (Freeman et al., 2018; Urban, 2018).
24 Alternatively, local adaptation can impact adaptive responses to the environment and
27 allow species to persist despite a restricted capacity for range shifts (Aitken et al., 2008;
29 Capblancq et al., 2020). A first step toward improving our understanding of how high-
32 altitude species will respond to climate change is to identify morphological traits and

34 corresponding regions of the genome involved in adaptation to extreme alpine

37 environments (Blanquart et al., 2013; Pritchard & Di Rienzo, 2010).

Birds living in alpine regions are exposed to extreme environments throughout

4 the year, including variable snow cover, hypoxic conditions, and dramatic temperature
44 changes (Grabherr et al., 2010; Korner, 2003). As a result, traits that contribute directly
46 to thermoregulation are expected to be under strong selective pressure in alpine
species. Previous work has shown climate-linked traits often follow Allen’s rule, a

51 hypothesis that posits animals adapted to colder environments will have shorter

53 appendages than animals adapted to warm climates (Allen, 1877). In birds, this rule
predicts that beaks and wings will be longer in warmer environments to facilitate greater
58 heat dissipation across a larger surface area, and shorter in colder environments to

60 facilitate heat conservation (Greenberg et al., 2012; Lewden et al., 2023; Symonds &
Tattersall, 2010; Tattersall et al., 2017; Ward et al., 1999; Weeks et al., 2020, 2025). For
this reason, we predicted that birds in high altitude alpine systems will have shorter

beaks and smaller wings.
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Although less studied in the context of local adaptation, feather microstructure
may also be important to avian species’ adaptation to environmental variation in
temperature. While substantial evidence suggests feather microstructure plays a key
role in determining the thermoregulatory capacity of a bird’s plumage (Stettenheim,
2000; Stoutjesdijk, 2003; Wolf & Walsberg, 2000), there is some confusion over how
environmental variation may drive feather microstructure differences (D’alba et al.,
2017; Koskenpato et al., 2016; Lei et al., 2002; Pap et al., 2017, 2020). In one of the
few studies that has been conducted at the population level, Koskenpato et al. (2016)
found that tawny owls living in colder environments have significantly denser
plumulaceous contour feathers than those living in warmer environments. This suggests
that feather density may facilitate heat retention. In contrast, however, Pap et al. (2017)
found that European bird species wintering in colder areas had less dense feathers than
those wintering in warmer places. Thus, there is a clear need for studies specifically
linking environmental variation with population-level differences in feather
microstructure.

Recent advances in population genomics have enabled the detection of loci
involved in local adaptation, even in non-model and wild species (Faria et al., 2014).
Among these, Fst outlier tests are commonly used to identify genomic regions that
exhibit elevated population differentiation, which may signal divergent selection (Hoban
et al., 2016). However, many adaptive traits are likely polygenic, involving small effects
at numerous loci (Pritchard & Di Rienzo, 2010; Yeaman, 2015), and such loci will not be
picked up by Fst outlier tests. To address this, genome-wide association studies
(GWAS) can be used to link more subtle genetic variation to phenotypic variation in
ecologically important traits suspected to be under selection (Stinchcombe & Hoekstra,

2008). Taken together, combining approaches that detect both population-level
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?o divergence and polygenic trait architecture offers a powerful framework for investigating
:; local adaptation.

13

14 We investigated the potential for local adaptation in the Gray-crowned Rosy

15

16 Finch (Leucosticte tephrocotis dawsoni), one of the highest-breeding songbirds in North
17

12 America. Despite long-standing interest (Grinnell, 1913, 1917; Twining, 1940), research
20

21 on this species has been limited due to the difficulty of accessing its extreme nesting

22

23 sites located in the rocky cliff faces of the Sierra Nevada and White Mountains of

24

;Z California more than 3,000 meters above sea level. To help fill this knowledge gap we
27

28 conducted morphological and genomic analysis of two populations breeding at

29

30 contrasting ends of the elevational and thermal range. Piute Pass, located in the Sierra
31

gg Nevada, is lower in elevation and warmer than the White Mountains (Fig. 1). To identify
gg traits potentially involved in local adaptation, we quantified variation in beak and feather
36

37 morphology between the two populations. Based on Allen’s rule, we predicted that birds
38

39 in the warmer Piute Pass population would have longer wings and larger beaks.

40

j; Further, we predicted that birds in the colder White Mountains location would exhibit

43

44 feather traits associated with increased insulation—specifically, longer barbules and

45

46 higher node density. Lastly, we used genome-wide association studies (GWAS) to

47

jg identify genes linked to feather and bill morphology and Fst outlier tests to identify other
50

51 potentially important sources of genetic variation. Overall, our findings provide new

52

53 insights into the process of local adaptation in an extreme alpine specialist bird and

54

gg provide key baseline information on the capacity for adaptation in the face of global

57 :

58 environmental change.

59

60

Methods

Site Selection

Our study compares Rosy Finch populations from two sites in the Sierra Nevada

and White Mountains. The Piute Pass location is in the Sierra Nevada at approximately


https://www.zotero.org/google-docs/?Jyg3ql

oNOYTULT D WN =

Ecology and Evolution Page 182 of 240

Page 9 of 68

3500m in elevation and has a warmer average temperature during the warmest month
of 11°C. The White Mountain location, near White Mountain Peak, is higher in elevation
at 4150m and colder with a mean average temperature during the warmest month of
7.5°C (extracted from AdaptWest Project, 2022) (Fig 1). The White Mountain location is
located in the rain shadow of the Sierra Nevada Mountains and receives about a third of
the precipitation for the same elevation (Rundel et al., 2008). Between the two sites,
Piute Pass receives more precipitation as snow and has a more persistent snowpack
than the White Mountain location. Additionally, aquatic environments such as streams,
lakes and ephemeral pools are more abundant in the Sierra Nevada than the White
Mountains (Rundel et al., 2008). The alpine ecosystems of these mountains can be
delineated as communities occurring above tree line (Rundel & Millar, 2016).
Environmental stressors such as extreme winter temperatures, short growing seasons,
high winds, low partial pressures of O,, and limited water availability are characteristic of
these alpine environments (Grabherr et al., 2010; Rundel & Millar, 2016). Separating the
western Sierra Nevada Mountains and the eastern White Mountains is the Owens
Valley, a subregion of the Great Basin Desert (Ecosystems of California, 2016) (Belnap et

al., 2016).

Sample Collection
A total of 171 Gray-crowned Rosy Finches were collected using potter traps

White Mountains (n=98) and Piute Pass (n=73) in June and July, the peak of the
species’ breeding season (MacDougall-Shackleton et al., 2000). Birds showing signs of
stress were released, resulting in slight variation in the types of data collected for each
individual. Blood samples were collected from 150 of the captured birds using the
brachial wing vein and stored in Queen'’s lysis buffer at room temperature (Owen, 2011;
Seutin et al., 1991). At the same time, morphological measurements - tarsus length,

wing chord, beak width, beak length, beak depth, and nare length - were also collected
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?o from 154 of the birds using an electronic caliper and 5-10 body feathers were collected
:; from the breast of all individuals. Birds were banded to allow for identification of the

13

14 individuals and to avoid recapture, then released. All handling and banding of birds was
15

16 done following the guidelines and protocols of the U.S Geological Survey (USGS) Bird
17

12 Banding Laboratory (BBL) and comply with permits and permissions from federal and
20 ,

21 state agencies.

22

23

24 Feather Microstructure Measurements

;Z We measured the microstructure of three feathers for each individual. For each
27

28 feather, three photos were taken using an Olympus BX51 Microscope: one photo each
29

30 of an unbroken pennaceous and plumulaceous barb from the center of each region was
31

gg taken at 4x objective, and one photo of a plumulaceous barbule was taken at 10x

gg objective. Structures were then measured from the photos using the segmented line tool
36

37 in Imaged. For the pennaceous and plumulaceous barbule length, we measured one

38

zg barbule from each region starting from the distal tip to where the barbule meets the

j; barb. For the pennaceous and plumulaceous barbule density, we drew a 0.5mm line

43

a4 along the middle of a barb, counting the number of barbules along that line. And finally,
45

46 for plumulaceous node density, we drew a 0.2mm line along the center of a barbule,

47

jg counting the number of nodes along that line (Fig 2A). Each replicate measure for a

50

51 feather trait was averaged per individual prior to downstream analysis.

52

53

54 Statistical analysis for local adaptation

gg Body size and sex can confound morphological comparisons among individual
;73 birds (D. C. Adams et al., 2020). To account for these effects, we included sex and

59

60 tarsus length (a proxy for body size) as predictor variables in our models. For each trait,

we constructed linear models with tarsus length, sex, age, and site code as predictors
and used AIC tests to identify the combination of variables that best explained trait

variation. Traits for which site code was a significant predictor were considered
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significantly different between the two populations. All p-values for site code predictors
were corrected for multiple testing using a Bonferroni correction, and corrected p-values
are reported. We used emmeans (Lenth, 2025) to calculate average trait values while
controlling for predictors other than site code, and these adjusted means were overlaid
on the raw data in a violin plot (Fig 2 & 3).

Sequencing and Genotyping

DNA was extracted from blood samples of 150 individuals using Qiagen’s
DNeasy Blood and Tissue Extraction Kit protocol and quantified with the Qubit dsDNA
HS Assay Kit. We used a modified version of lllumina’s Nextera Library Preparation
protocol to prepare WGS libraries and pooled the libraries by equal mass before
sequencing. The resulting libraries were sequenced on 2 lanes of an lllumina NovaSeq
6000 at Novogene Corporation.

To process the raw sequence reads and detect variants, we utilized Snakemake
(Molder et al. 2021), a workflow management system that provides efficiency,
adaptability, and reproducibility. The pipeline we adapted to our species can be found
on Github (https://github.com/erigande/mega-non-model-wgs-snakeflow/). Sequence
data were trimmed using fastp (S. Chen et al., 2018) to remove adaptor sequences and
polyG tails using a sliding window, and then aligned to a Brown-capped Rosy Finch
(Leucosticte australis) reference genome (GenBank: GCA _025504685.1) using
Burrows-Wheeler Aligner software (H. Li & Durbin, 2009). We marked PCR duplicates
using samtools (Li et al., 2009) and read groups (sample, lane, library) were added

using picard (http://broadinstitute.githut.io/picard). Individual coverage was estimated

using samtools, and given the range of coverage (7.4-19X), we downsampled bam files
to 10x using the samtools subsample function (Li et al., 2009). Individual gvcf files were

created using GATK'’s HaplotypeCaller (Poplin et al., 2018) with high base quality score

filters (--min-base-quality-score 33 --minimum-mapping-quality 20) to remove batch
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?o effects (Lou and Therkildsen 2021). We then parallelized the calling of genotypes

:; across 3 million bp regions across the genome using the GenomicsDBImport and

13

14 GenotypeGVCFs functions (Auwera & O’Connor, 2020; McKenna et al., 2010). GATK

15

1? versions above 4.0 call missing data as homozygous reference, which can bias

12 downstream analysis. To avoid this, all loci with a depth of zero were manually marked
20

21 as missing. To remove systematic errors according to GATK variant quality score

22

;i recalibration (VQSR) best practices, we hard filtered variants with the following

;Z parameters:StrandOddsRatio (>3.0), FisherStrand (>60.0), MappingQuality (>40.0), and
27

28 Quality by Depth (>2.0). We further filtered Single Nucleotide Polymorphisms (SNPs),
29

30 removing indels, filtering for missingness (<50%), allele frequencies (>0.5 and <0.95),
31

gg depth (>4x), quality (>30.0) using bcftools ( Li, 2011. After filtering, the resulting high-
34

35 quality SNPs were passed through BEAGLE 4.1 (Browning & Browning, 2016) to impute
36

37 missing genotypes.

38

39

40 Population genetic structure analysis

j; Population structure was assessed using a Principal Component Analysis (PCA)
43

44 followed by ADMIXTURE (Alexander et al., 2009). SNPs identified from sequence data
45

j? were pruned for linkage disequilibrium in PLINK (Purcell et al., 2007) using a 50kb

jg window, 10 bp window step size, and a R? threshold of 0.1. Eigenvalues for the PCA

50

51 were then generated based on the pruned SNPs using PLINK and the first two principal
52

53 components (PC) were plotted in R. To further confirm a lack of population structure

54

gg ADMIXTURE was used to test k=1-2. The results were plotted using R and the cv

57

58 values were evaluated.

59

60

Genome-Wide Association Study
Two GWAS models were implemented on all traits using GEMMA (Zhou et al.,

2013), a Bayesian sparse linear model, BSLMM, and a univariate linear model, ULMM.

These GWAS approaches allow us to detect SNPs associated with a given trait while
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explicitly accounting for population structure and relatedness through the incorporation
of random effects whose correlation structure is characterized by a relatedness matrix.
Input files were generated with PLINK (Purcell et al., 2007). We implemented a
Bayesian sparse linear mixed model (BSLMM) using 500,000 MCMC burn-in iterations
that were discarded and 5 million MCMC iterations that were saved. We then filtered for
SNPs that had a mean posterior inclusion probability (PIP) above 0.01 (Fig4 A & B). A
univariate linear mixed model (ULMM) employing the Wald test was also conducted.
The Wald test assesses the significance of the SNP genotypes in a linear regression
model and is used to test the null hypothesis that the effect size of a genetic variant on
the phenotypic trait is zero (i.e., there is no association between the variant and the
trait). SNPs were then filtered based on a p-value threshold of 5x10-8, a threshold widely
used in GWAS studies (e.g. Chen et al., 2021) (Fig 4 A & B).
Genome Wide Fgr

To estimate per site Fst, we used OutFLANK (Whitlock & Lotterhos, 2015).
OutFLANK identifies outlier Fst SNPs by modeling the distribution of Fst values across
loci using a trimmed likelihood approach to exclude loci under strong selection. It then
fits a chi-square distribution to the neutral Fst values and identifies SNPs with unusually
high or low Fst as potential outliers, suggesting loci under selection. We used a false
discovery rate threshold of 0.005 to determine outlier SNPs. We took the 90th quantile
of these Fst values to narrow down the top SNPs for lit review and plotted these on a
Manhattan plot (Fig 4 C). We then determined the Fgsr values for the SNPs previously
identified in the GWAS analyses based on the values calculated by OutFLANK.
Identification of associated genes, enrichment analysis and literature review

To identify genes associated with significant SNPs from our GWAS and Fgr
analysis, we implemented BEDTools (Quinlan & Hall, 2010) closest function with a

previously created Brown-capped Rosy Finch gene annotation (Funk et al., 2023) to
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?o identify genes close to the SNP positions. The output from this tool was filtered to find
:; only protein coding genes within 25kb of the given SNP. For plotting purposes, we used
13

14 the numcer in MUMmer4.x (Margais et al., 2018)(Marcais et al. 2018) to align the

15

16 Brown-capped Rosy Finch genome assembly to the Zebra Finch (Taeniopygia guttata)
17

B genome assembly (GenBank: GCF_003957565.2). We then filtered the delta alignment
20

21 output of nucmer to keep only matches that were greater than 400 bps, and used the
22

23 show-coords to display the coordinates. We then used custom R scripts to convert our
24

;2 scaffold and positions to Zebra Finch chromosome positions for plotting SNPs in

;; Manhattan plots.

29

30 Enrichment in gene ontology (GO) terms was performed with Panther 19.0

31

gg (Thomas et al., 2022). Enrichment thresholds were set to p<0.05 after Bonferroni

gg correction. Gene network analysis was conducted using STRING (Szklarczyk et al.,

36

37 2023) with zebra finch as the organismal reference. STRING (Search Tool for the

38

39 Retrieval of Interacting Genes/Proteins) is a database that predicts and visualizes

40

j; protein-protein interactions based on known and predicted associations from

43

44 experiments, literature, and computational methods (Szklarczyk et al., 2023). For Fst
45

46 genes, all genes associated with the OutFLANK outliers were input into enrichment

47

jg analyses. Genes were grouped with all beak morphology trait genes run as a single

g? analysis, all feather trait genes run together, and wing chord genes run in another

52

53 analysis.

54

gg We performed a literature search for all of the candidate genes using google

;73 scholar and the search terms gene name followed by, bird, trait specific term (when

59

60 applicable), environmental adaptation, local adaptation (e.g., “XIAP” gene beak, or

“‘DSCAM” gene environmental adaptation). For Fst SNPs, only those genes associated
with the 90th quantile of SNPs were evaluated in the literature. Genes were grouped by

their key functions or associations as described in the literature (Table 1).
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Results

Local adaptation of body and feather morphology
AIC model selection indicated five traits where site was a significant predictor.

For wing chord, the best model included tarsus length, age, sex, and site. The model
showed high explanatory power (adjusted R?=0.673, p<0.001) and showed that birds at
the White Mountain location (WMTN) had shorter wings chords compared to Piute Pass
(PIPA) (p=0.003). The best model for nare length included tarsus, sex, and site and had
lower explanatory power (adjusted R?=0.197) but was still highly significant (p<0.001).
This model found that nare length was shorter in the WMTN population (p<0.001).
Similarly, beak width had tarsus, age and site as significant predictors (adjusted
R2=0.135, p<0.001) with WMTN having beaks that are wider that those in PIPA
(p=0.004). Beak depth had tarsus, age and site as the best predictors (adjusted
R2=0.250) and found that WMTN has significantly deeper beaks than PIPA (p=0.014).
Beak length was not significantly different between the two locations and was best
predicted by sex (adjusted R2=0.516, p<0.001). For feather microstructure, the only trait
that had site as a significant predictor was node density. This model included tarsus and
age as well as site (adjusted R?=0.32, p<0.001) and showed that node density was
higher in the WMTN populations (p=0.037). The best model for plumulaceous barbule
length based on weighted AIC included site as a predictor; however, the effect size was
uncertain, and the effect of site was not statistically significant (p=0.078). Pennaceous
barbule density had tarsus and age as the best predictors (adjusted R?=0.365,
p<0.001), pennaceous barbule length had sex as the best predictor (adjusted R2=0.307,
p<0.001) and plumulaceous barbule density had tarsus and age as the best predictors

(adjusted R2=0.076, p=0.004).
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?o Evaluation of population structure

11 Whole-genome sequencing was performed on 150 individuals. Two individuals
12

12 were removed as their collection location was not available. Variant filtering resulted in
12 7,739,836 SNPs for subsequent genetic analysis. Linkage pruning removed 5,526,104
17

18 SNPs. Visualizing PLINK PCA results revealed little population structure with most

19

20 individuals clustering together (SupFig 1). ADMIXTURE results confirmed that there is
21

;g no population structure in these samples as k=1 had the lowest cv error (0.599)

24

25 compared to k=2 or 3 (0.612 and 0.627).

26

27

28 Genes identified with genome-wide association approach

;g The univariate linear mixed model identified a total of 64 SNPs for traits wing

g; chord, beak length, beak width, pennaceous barbule length, and pennaceous barbule
33

34 density. Using a Brown-capped Rosy Finch gene annotation we identified a total of 26
35

g? unique genes corresponding to these SNPs (Table1). We filtered out genes that have
gg not been fully characterized (e.g., “LOC100221041”) leaving 14 genes. The Bayesian
40

41 sparse linear mixed model identified 266 SNPs for wing chord, nare, beak length, depth
42

43 and width, pennaceous barbule length and density, and plumulaceous barbule length
44

22 and node density. We identified 146 genes associated with these SNPs (Table 1), 110
47

48 of which had been fully characterized. For each trait the global view of p-values for all
49

50 SNPs and associated genes across both models are represented by Manhattan plots
51

§§ (Fig 4 A-C, SupFig 2-5).

gg Go term analysis using Panther produced significant results for beak depth and
56

57 feather traits combined. For beak depth, the top terms were presynaptic membrane

58

Zg assembly (p=1.44x10-°), synaptic membrane adhesion (specifically cell adhesion)

(p=1.01x10-°) and heterophilic cell-cell adhesion via plasma membrane cell adhesion
molecules (p=1.13x10). For the feather traits (plumulaceous barbule and node density

combined with pennaceous barbule length), fructosamine catabolic process was a
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significant term (p=1.12x10-%). Wing chord had no significant GO terms. String analysis
for beak and feather traits as well as wing chord did not find significantly more
interactions than expected.
Genes identified through high Fixation index (Fsr) between the two populations
Using OutFLANK 831 loci were identified as having significantly high Fst when
comparing the White Mountain and Piute Pass populations, corresponding to 265 genes
(Fig 4D, Sup Table 2). No GWAS SNPs were flagged as having significant Fgt values.
The minimum Fgt to be considered an outlier was 0.17513. The mean Fst of SNPs not
considered outliers was 0.0045. Using a 90th quantile we determined Fst=0.235 to be
the threshold, narrowing down the SNPs to 105 loci. For the smaller set of loci, bedtools
identified 61 related genes (Table 2). We ran STRING and GO term enrichments on
both the larger and smaller set of genes. The smaller set did not have a significant
number of connections over all or any significantly enriched GO terms. The larger set of
264 genes, however, had an overall significant number of connections (p<0.05) and had
multiple significant annotated keywords (sourced from UniProt). The most significant

was the keyword repeat (p<0.001), the next was ubl conjugation pathways (p<0.05).

Discussion

Understanding the genetic and morphological basis of local adaptation is critical
for predicting how species respond to environmental change. Alpine species face
unique conservation challenges due to their extreme environments and thus are a high
priority for studies of adaptive capacity. In this study, we investigated morphological and
genetic differences between two populations of an alpine specialist songbird located at
the extreme ends of its environmental range. Consistent with our predictions, we found
wings were shorter and feathers were denser in the colder environment. However, in
contrast to our prediction, beak depth and width were larger in the colder environment,

suggesting other factors like diet may place contrasting selective pressures on this
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ecologically important trait. We also identified numerous genes with known links to limb,
facial, and feather development that potentially underlie variation in wing, bill and
feather microstructure. Further Fst outlier analyses revealed numerous significant
differences between cold and warm populations at SNPs located within genes with clear
links to altitudinal adaptation. Together, our results provide important insights into the
morphological traits and associated genomic regions associated with microgeographic

variation in a high-altitude songbird species.

Trait differences between warm and cold habitats

Ecogeographic rules, such as Allen’s rule, are useful for predicting broad
geographic trends in morphology in response to environmental conditions, but observed
patterns do not always align with expectations. In our study, we found that wing chord
was smaller in the colder environment, suggesting that this morphological trait may play
a role in thermoregulation, consistent with Allen’s rule. Heat dissipation from the wings
occurs across the vascularized brachial regions, primarily during flight when these areas
are exposed to air flow (Lewden et al., 2023; Ward et al., 1999). Wing bone length
reflects the extent of vascularized areas on the wings and has been shown to be longer
in warmer environments across a broad sample of passerine species (Weeks et al.,
2025). However, studies of other alpine bird species have found the opposite pattern:
that birds from high-elevation sites have longer wings than those from low-elevation
sites (Bears et al., 2008; Ceresa et al., 2024). In these cases, researchers have
suggested that the demand for more energetically efficient flight at high elevations may
outweigh thermoregulatory selective pressures, demonstrating the often contrasting
selective pressures on ecologically important traits. Overall, our morphological analyses
support the idea that thermoregulatory demands may play a dominant role in shaping
wing morphology in the Gray-crowned Rosy Finch, potentially outweighing the benefits

of flight efficiency in high-elevation, cold-adapted species.
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Contrary to our predictions based on Allen’s rule, beak depth and width were larger
in the colder environment. Although temperature is often a key environmental variable
exerting selective pressure on alpine taxa, variation in beak morphology between our
populations may instead reflect divergent selective pressures associated with foraging
ecology—a well-documented driver of beak divergence in birds (Grant et al., 1976;
Lamichhaney et al., 2018). In our study system, the Piute Pass population likely has access
to more aquatic insects due to the higher availability of aquatic habitats proximate to Rosy
Finch breeding sites in the Sierra Nevada (Epanchin et al., 2010; Rundel & Millar, 2016). For
example, Epanchin et al. (2010) found that, when abundant, mayflies can comprise up to
38% of the Sierra Nevada Gray-Crowned Rosy Finch diet. In contrast, the White Mountain
population may rely more heavily on insects deposited in snowfields, a behavior that could
favor a more robust, conical bill for extracting frozen prey from the snow surface. Work is
currently underway to investigate the dietary differences between these two populations of
Rosy Finch (Tim Brown, personal correspondence), and future work should explore the
selective pressures experienced by this species. These results emphasize the complexity

of identifying drivers of local adaptation, especially in alpine systems where extreme
environments, food scarcity, and variation in migration strategies can create conflicting

selection pressures.

Of our feather comparisons, we identified significant differences between cold
and warm sites for only one trait - plumulaceous node density. In line with our
predictions, plumulaceous node density was higher in the colder, high elevation White
Mountain population. Higher node density is known to improve air trapping ability, thus
trapping warmth against the body surface (King & McLelland, 1984). Consistent with our
results, a study on sparrows found that higher elevation alpine forms had higher node

density relative to lowland forms (Lei et al., 2002). A further multi-species comparison
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2 found that species wintering in cold and windy conditions had downy feathers with
higher node densities (D’alba et al., 2017, 2017). These interspecific trends are mirrored
14 in our results, suggesting that the White Mountain population has feather adaptations

16 consistent with an increased need for heat retention. The lack of significant results for
other feather traits may be explained by the amount of variation in the measurements as

21 well as the sample sizes being small, resulting in an underpowered comparison.

24 Genome-wide analysis

26 We used GWAS to identify SNPs within genes involved in traits that differ

between warm- and cold-adapted populations described previously — beak width and

31 depth, nare length, wing cord length, and pennaceous barbule density. Because ours is

one of the first studies to investigate the genetic basis of feather microstructure

36 variation, we also report on the genes associated with other measured feather traits,

even though high variance in these traits prevented our ability to robustly investigate

4 differences between populations occupying cold and warm environments.

Our literature review of GWAS results identified genes with diverse associations.

46 For wing chord, we identified limb and bone development, heat response, and

vascularization. Notably, the genes GUCA1C and NIPBL have been linked to limb

51 development in ducks and zebrafish (G. Li et al., 2020; Mohammadi, 2024; Muto et al.,

2014) and may play a similar developmental role in songbirds. We also detected the

56 genes PGLYRPZ2 and PACRG, which have been shown to be upregulated in chickens

59 experiencing heat stress (Kim et al., 2021; Tian et al., 2020). Together, the limb
development and heat response genes we identified as important further support the
potential connection between wing length and thermoregulation suggested by our

morphological finding of shorter wings in the colder environment. Although GWAS
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results do not establish a direct functional link to specific traits (Tam et al., 2019), our
findings suggest that future research should investigate the potential role of
thermoregulatory selective pressures on genes involved in wing development.

When looking at genes associated with beak morphology, BSLMM found more
SNPs than LMM and identified several genes potentially associated with facial structure
development and climate adaptation. One gene associated with beak depth was X/AP.
Duplications of this gene have been found to result in facial dysmorphism in humans,
including the underdevelopment of cheekbones and protruding jaws (Di Benedetto et
al., 2014). Although a link with beak development in birds has not yet been formally
established, this could be an area for further research. Another gene identified for beak
width was MINDY?2, which belongs to a group of deubiquitinating enzymes. These
genes are related to the regulation of the Wnt pathway (Park et al., 2020), a pathway
that is well established as important for beak development (Nierop 2002). Additional
genes such as RASL11A, TINAG, and PLPP3 have been directly linked to beak
development in avian species (Abernathy, 2021; Bai et al., 2018). Two genes
associated with beak depth in our study (LRP1B and UTRN) were shown to be
associated with breeding temperature in a study that used a GWAS approach to identify
loci associated with climate variables related to morphology in hermit thrush (N. Adams
et al., 2025). Although the beak morphology of our species did not entirely fall in line
with predictions based around their thermoregulatory role, the elucidation of genes
indicating a relationship between thermoregulation and beak morphology suggests that
beaks still play a thermoregulatory role in this species.

Our GWAS on feather traits was, to the best of our knowledge, the first genome-
wide association study of feather microstructural traits. Identifying the genetic basis of
these fine-scale traits opens new avenues for studying how feather structure evolves in

response to environmental pressures and functional demands. One of the genes
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?o associated with pennaceous barbule length in our study, HBE1, has also been identified
:; in previous research on feather development. Using RNA sequencing, Limber et al.

12 (2024) found that HBE1, a hemoglobin gene (Mao et al., 2023), was highly expressed in
E feather pulp, the central tissue of the developing feather germ. Additional genes

B associated with feather traits in our study have been identified as being related to

3(1) plumage coloration in birds, including EFNA2, NRXN1, and HERC4 (Shakya, 2020; L.
% Sun et al., 2020; X. Zhang et al., 2023). Many other genes identified as being

;2 associated with feather traits in our work have not been shown to be associated with

;; feather development or morphology in the literature. Feather morphology remains

;g understudied in the context of local adaptation, and the genetic architecture of these

% microstructural traits is still poorly understood. Our study offers a foundation for deeper
gg investigation. Expanding this work to include comparative genomic studies across

2? populations or species with more strongly differentiated feather morphology could also
;E help link genotype to phenotype and provide insight into the adaptive significance of

j; feather microstructure.

ji Our original intent with the Fst outlier tests was to determine if any of the genes
?15 identified in the GWAS had variants that diverged significantly between the cold and

jg warm environment populations. However, when comparing our Fst results with SNPs

g? identified in the GWAS, we found no overlap between the two sets. This result is

gg consistent with known limitations of Fsr-based outlier scans, which are biased toward

gg detecting loci under strong divergent selection and with large effect sizes (Hoban et al.,
;73 2016). Fst measures allele frequency differences between populations and loci with

23 large phenotypic effects are more likely to experience strong selection and exhibit

pronounced divergence. In contrast, highly polygenic traits are shaped by small-effect
variants that shift subtly in frequency—patterns that often fall below the detection

threshold of Fst scans. Our findings underscore the value of combining Fst outlier
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analyses with GWAS approaches: while the former is designed to pinpoint loci under
strong selection, the latter is better suited for uncovering the complex genetic
architecture of polygenic traits. Together, these methods can generate a more complete
understanding of the genetic basis for local adaptation.

While we did not find overlap between the Fst and the GWAS results, our Fst
analysis highlighted numerous genes involved in hypoxia response, altitude adaptation,
and cold adaptation. These results are consistent with our hypothesis that elevation and
associated climatic variables are applying divergent selection pressures in this species.
Of these genes, NOX4 was found to be involved in mediating hypoxia-inducible
transcription factors, a key component of the cellular response to hypoxia (Diebold et
al., 2010). Similarly, MAMLZ2 and SUPT20H were found to be associated with altitude
adaptation in deer mice (Schweizer et al., 2021a) and ADGRD1 was associated with
altitude adaptation in Tibetan chickens (Nan et al., 2023). Multiple studies identified
PPP1R1C as being related to cold adaptation in chickens (Fedorova et al., 20223;
Romanov et al., 2023). These are all traits that would lend themselves to survival in
alpine environments, and divergent selection is likely a product of varying selection
pressures between the higher and colder White Mountain location and the warmer and
lower Piute Pass location.

Our Fgt analysis also identified several genes that might be involved with
plumage color differences in Rosy Finches. Another gene that showed divergence
between these two populations of finch was PHIP which has been shown to be related
to differentiation in plumage coloration in House Finch (Balenger et al., 2015).
Interestingly, when comparing candidate outlier genes from this work with work
identifying genes involved with the notable plumage coloration differences across the
broader Rosy Finch species complex, there were some overlapping genes. In a GWAS

on crown coloration, Funk et al (2023) identified NDUFAF2, a gene that was also
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?o significant in this work. For body plumage coloration, our results overlap with those of
:; Funk et al (2023) for the genes KCNV2, PUM3, and VLDLR. Although it was not a

13

14 component of the current work, other studies have shown that plumage coloration is

15

16 involved in avian thermoregulation, with darker plumage putatively facilitating heat

17

12 absorption (Medina et al., 2018; Rogalla et al., 2022), and can show adaptation to local
20 .

21 environment (Romano et al., 2019; Sandoval & Barrantes, 2019; SirkiA et al., 2010).

22

23 This provides an important avenue for future work with this species investigating the

24

;Z differences in plumage coloration between populations.

27

28 An additional result of our Fst analysis was the identification of a gene, CTIF, that
29

30 has been previously identified as being a climate-adapted gene in a landscape genomic
31

gg study on the closely related Brown-capped Rosy Finch (DeSaix et al., 2022).

gg Interestingly, this gene was also identified through a contrasting approach using a

36

37 mixed linear model on beak shape for two species of Darwin’s finches, Geospiza fortis
38

39 and G. scandens (Lawson & Petren, 2017). The authors of this paper summarize their
40

j; results as indicating that inter and intraspecies beak shape variation is a result of a

43

44 small suite of traits evolving in concert, corresponding to many genes. It is possible that
45

46 we did not identify CTIF genes in our GWAS method because of low power due to

47

jg smaller variation in the beak traits measured, a result of using continuous

50 , , :

51 measurements between two populations versus categorical comparisons between

52

53 different species as in Lawson & Petren (2017). Because of the large number of SNPs
54

gg obtained for our two populations, our Fgst analysis likely had higher power and thus

;73 detected this gene, in addition to the fact that it had a high Fst of 0.263 (averaged

59

60 across the 5 SNPs associated with this trait). The overlap of these genes in the two

studies described as well as ours makes it a strong candidate as a genetic component

of adaptation to environment, potentially through the mechanism of beak morphology.
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An important outcome of local adaptation is the maintenance of ecologically
important genetic variation (Savolainen et al., 2013). Conserving genetic variation
prevents loss of adaptive potential and can underlie rapid adaptive responses to
environmental change (Forester et al., 2023). We integrated phenotypic measurements,
genome-wide association studies, and Fgr analyses, to understand the morphological
and genetic basis of local adaptation of an alpine bird species, the Sierra Gray-crowned
Rosy Finch. When comparing traits suspected to be involved in thermoregulation for this
species, we found that morphological variation across populations only partially aligned
with ecogeographic expectations. Wing chord was shorter in the colder environment,
consistent with Allen’s rule and likely reflecting thermoregulatory adaptation. However,
beak depth and width were larger in colder environments, contrary to predictions,
suggesting additional selective pressures such as diet specialization may be playing a
role. Comparisons of feather microstructure further showed thermoregulatory
adaptation, with higher plumulaceous node density in the high-elevation population
likely enhancing insulation. When coupled with the results of our GWAS and Fst outlier
scans we gained a clear picture of traits and genes important to adaptation in alpine
birds. Importantly, we found that many of the genes underlying wing length, beak depth
and feather microstructure had links to both development of similar traits in other
organisms as well as thermoregulation. Our genomic and morphological results provide
strong evidence that this alpine species is locally adapted to temperature variation.
Overall, this work enhances our understanding of the morphological traits and genetic
mechanisms underlying local adaptation in an alpine species. The resulting insights will
be used inform the delineation of conservation units and support management

strategies that seek to preserve the evolutionary processes essential for long-term
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persistence of alpine organisms in a changing world (Allendorf et al., 2010; Flanagan et

al., 2018; Shafer et al., 2015).
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Statistical analysis, GWAS and Fst results are available at
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available on GitHub at https://github.com/ecnrobertson/GCRF_Pub
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Figure 2. Violin plots of
beak morphology raw
measurement: A) beak
width, B) nare length,
and C) beak depth.
Overlaid are the
corrected mean trait
measurements shown
with a crossbar.
Significance of the
effect of site on the
morphological trait is
shown for each
comparison. Piute Pass
is the warm site and
White Mountain is the
cold site. We found that
nares were longer while
beak widths and depths
were smaller in the
warmer environment.
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Table 1: Summary of Fgr Outlier Results. Show are the genes for which function information were available,
from the narrower (90th quantile) Fgr results. Gene functions are color coded following the key in Figure 4.

Fsp outliers

Gene Function Reference

GDPD5 Lipid Metabolism Feng et al 2023

NOX4 Heat Stress, Altitude Adaptation = Goel et al 2021; Diebold et al 2010
MAMIL2 Altitude Adaptation Schweizer et al 2021

SUPT20H Altitude Adaptation Schweizer et al 2021

PPPIR1C Cold Adaptation Federova et al 2022

SOX14 Feather Development Chen et al 2024

MEGF11 Feather Development Twumasi et al 2024

MSRA Altitude Adaptation Jeong et al 2018; Gheyas et al 2021
AKT3 Altitude Adaptation Buroker et al 2012; Qi et al 2018
DOCK11 Feather Development Crates et al 2024

SMARCA1 Craniofacial Development Boer et al 2021

GAB3 Craniofacial Development Boer et al 2021

ADGRD1 Altitude Adaptation Nan et al 2021

NPHP4 Vision Borges et al 2019

ALDHT7A1 Beak Development Bai et al 2014

ADAMTS19 Metabolism Zhang et al 2022

VLDLR Lipid Protein Wang et al 2011

ERCCS Altitude Adaptation Yan et al 2022

CTIF Beak Development Lawson et al 2017
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Table 1: Summary of GWAS Results by Trait. Show are the genes for which function informatior
available. Gene functions are color coded following the key in Figure 4.

Gene Model Function Details Ref
Wing Chord

PCP4 BSLMM Bone development, stress response in quail  Xia

Stes

GRIK?2 BSLMM Reproduction Egg quality and production in goose and Gac

duck Bhe

202!

AKAP7 BSLMM Stress response in quail Stex

PACRG BSLMM Heat stress response in chickens Tia:

HAPLNI1 BSLMM Coloration Plumage coloration in ducks Zha

NEGRI1 BSLMM Development, Col- Neural development, plumage coloration in Sun

oration crested ibis

PGLYRP2 BSLMM/LMM Immune response in vertebrates, heat stress Haf

response in chickens Kin

GUCA1C LMM Morphology Visual systems in birds, bone quality in Wu

ducks, wing deformity in chickens Ges

202.

2021

mac

RFX3 LMM Altitude adaptation in wolves Zha

201

et a
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(Continued from previous page)

Gene Model Function Details Re
NIPBL LMM Development, DNA Developmental regulation and DNA repair  Ba
Repair
CHD1 LMM Gene Regulation Modulates gene expression in birds Fri
20(
NDUFA11 LMM Metabolism, Respira- Respiratory system support in buffalo, mito- Cl:
tion chondrial activity in songbirds Sac
20«
Beak Depth
TENMA4 BSLMM Development, Col- Neural development in quail, dorsal feather Tw
oration, Reproduction coloration in duck, breeding timing in great 202
tit 20«
et
RASL11A BSLMM Morphology Craniofacial development in buteo Ab
TINAG BSLMM Morphology Beak development in chicken Ba
LAMA4 BSLMM Migration Migration timing in Swainson’s thrush Jol
20
LURAPIL  BSLMM Coloration Pigmentation in mallards Me
PTPRD BSLMM Communication, Col- Vocal signaling in flycatchers, pigmentation Ga
oration in mallards 20:
20«
CLRN3 BSLMM Reproduction, Sex Sex differentiation in chicken Lo
Differentiation
CPEB3 BSLMM Reproduction Oocyte meiosis regulator in chicken Ch
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(Continued from previous page)

Gene Model Function Details Re
BICC1 BSLMM Morphology, Body Bone development in chicken and mice, body Kis
Size size in chicken and hermit thrush 20
SOr
Me
201
ANK3 BSLMM Migration Migration in birds Le
PRKG1 BSLMM Reproduction, Behav- Ovarian function in duck, foraging behavior Su
ior, Coloration in humans, signal transduction and feather Str
pigmentation in ducks Tw
202
OTUDTA BSLMM Development Neural development and adaptation to urban Me
environments in bananaquit al :
ERCC8 BSLMM Hypoxia Adaptation @ Altitude adaptation in lizard Ya,
MEGF11 BSLMM Coloration Dorsal feather coloration in duck Tw
202
DLG1 BSLMM Development, Regula- Embryo development in mice, regulatory de- Sel
tion velopment in birds
Nare Length
NRIP1 BSLMM Reproduction, Adap- Female reproduction in goose, nocturnal Zh
tation, Metabolism adaptation in owls, mitochondrial biosynthe- 202
sis in vertebrates et
Co
al :
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(Continued from previous page)

Gene Model Function Details Re
ATP1A1 BSLMM Migration Migration in birds Le
TENM4 BSLMM Development, Col- Neural development in quail, dorsal feather Tw
oration, Reproduction coloration in duck, breeding timing in great 20:
tit 202
et
KALRN BSLMM Neurodevelopment Cognitive ability in chickadee Ric
202
CNTNAP5 BSLMM Development, Mem- Brain development and signaling in zebra Gil
ory, Hypoxia Adapta- finch, spatial memory in chickadees, hypoxia 202

tion response in chickens et
al :
KCTD18 BSLMM Immunity, Communi- Immune response in vultures, vocal learning Ch
cation in chickens 201
al :
PLPP3 BSLMM Morphology, Culmen length in buteo, formation of goose Ab
Metabolism fatty liver 20:
201
DLG1 BSLMM Development, Regula- Embryo development in mice, regulatory de- Sel

tion velopment in birds

ADAMTS18 BSLMM Morphology, Bone Bone mineral density in humans and chickens  Xic
Density Gu
PSD2 BSLMM Coloration, Stress Re- Melanin production in owls, stress response Du
sponse in quail 20:
20




oNOYTULT D WN =

Ecology and Evolution Page 238 of 240

Page 65 of 68

(Continued from previous page)

Gene Model Function Details Re
BRAT1 BSLMM Stress response in chickens Ro
202
Pennaceous Barbule Length
KCNF1 BSLMM Coastal Adaptation Coastal adaptation in song sparrow and frogs Clz
CSMD1 BSLMM/LMM Heat adaptation in chickens, adaptation to Ha
altitude in humans De
202
NKAIN1 BSLMM Immunity, Migration = Immune response in house finch, migration Ve
tendency in European blackcap De
202
KCNJ3 BSLMM Reproduction Egg production in duck Su
AGBL1 BSLMM Metabolism Fatty acid composition in chicken Ch
TENM1 BSLMM Morphology Craniofacial development in pigeons Bo
Plumulaceous Node Density
EFNA2 BSLMM Heat Stress, Morphol- Heat stress response in chickens, bone mor- Zh
ogy, Coloration phogenesis and remolding in ground tit, color 20!
differences in bulbul al
et
STK10 BSLMM Morphology Cranium and bill depth in buteo Ab
Plumulaceous Barbule Density
BORCS6 BSLMM Metabolism Meat quality in chickens Als
202
HSF2 BSLMM _ Response to heat stress in chickens Xie
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(Continued from previous page)

Gene Model Function Details Re
PRKN BSLMM Domestication Domestication in birds Fa
et

NRXNI1 BSLMM Neurodevelopment, Neural connections, plumage coloration in Su
Communication, crested ibis, vocal rhythm in birds, speech Sel

Coloration disorders in humans al :

ALDH1A1 BSLMM Hypoxia Adaptation, Hypoxia adaptation and fat metabolism in Ba
Metabolism, Vision rosy finch, eyesight in owl and mice Fu

Bo

ADAMTS19 BSLMM Morphology Rumpless trait in chickens Ch
HERCA4 BSLMM Coloration, Migration Plumage color in duck, migration in Euro- Zh,
pean blackbirds 20:

et

SMC4 BSLMM Development Feather follicle development in goose Hu
SPAG16 BSLMM Reproduction,  Col- Sexual development in birds-of-paradise, Pr
oration, Longevity plumage coloration in ducks, longevity in Zh

mammals 20:

et
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Supplemental Information for:

The genetic and morphological basis of local adaptation to elevational

extremes in an alpine finch

Robertson, Erica C.N.!, Brown, Timothy?, Deitch, Sophie', Bossu, Christen M.",

Zavaleta, Erika S.2, Hooten, Mevin B.3, Ruegg, Kristen C.!

Population Structure Results
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Sup Fig 1. PCA results showing a lack of population structure between the White
Mountain (WMNT, blue) and Piute Pass (PIPA, red) populations. There are some outlier
individuals but an ADMIXTURE analysis confirmed that 1 population is the most
supported.

Extended GWAS Results
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18 Sup Fig 2. Beak length GWAS results. Significant SNPs from the BSLMM analysis are
20 overlaid onto the LMM results, plotted with their corresponding p-values and
21 corresponding genes are noted if available.
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32 Sup Fig 3. Beak width GWAS results. Significant SNPs from the BSLMM analysis are
34 overlaid onto the LMM results, plotted with their corresponding p-values and
35 corresponding genes are noted if available.
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46 Sup Fig 4. Pennaceous barbule density GWAS results. Significant SNPs from the
BSLMM analysis are overlaid onto the LMM results, plotted with their corresponding p-
49 values and corresponding genes are noted if available.
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60 Sup Fig 5. Tail length GWAS results. Significant SNPs from the BSLMM analysis are
overlaid onto the LMM results, plotted with their corresponding p-values and
corresponding genes are noted if available.



