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 A B S T R A C T

Computer vision models can make systematic errors, performing well on average but substantially worse on 
particular subsets (or slices) of data. In this work, we introduce Visual Concept Reviewer (VCR), a human-
in-the-loop slice discovery framework that enables practitioners to interactively discover and understand 
systematic errors in object-detection models via novel use of visual concepts–semantically meaningful and 
frequently recurring image segments representing objects, parts, or abstract properties.

Leveraging recent advances in vision foundation models, VCR automatically generates segment-level visual 
concepts that serve as interpretable primitives for diagnosing issues in object-detection models, while also 
supporting lightweight human supervision when needed. VCR combines visual concepts with metadata in a 
tabular format and adapts frequent itemset mining techniques to identify common absences and presences of 
concepts associated with poor model performance at interactive speeds. VCR also keeps humans in the loop for 
interpretation and refinement at each step of the slice discovery process. We demonstrate VCR’s effectiveness 
and scalability through a new evaluation benchmark with 1713 slice discovery settings across three datasets. 
A user study with six expert industry machine learning scientists and engineers provides qualitative evidence 
of VCR’s utility in real-world workflows.

1. Introduction

Computer vision models for object-detection and image classifica-
tion are widely deployed in critical applications such as autonomous 
driving, medical imaging, surveillance systems, and content modera-
tion. While these models may achieve good average performance, they 
can exhibit systematic errors on specific subsets (or slices) of data [1–
3]. Prior work observed that object-recognition systems perform poorly 
on household items common in low-income countries, with up to a 
20% difference in recognition accuracy between images collected in 
high- and low-income regions [4]. These discrepancies arise not only 
from appearance differences within the same object categories but also 
from contextual variations in which objects typically appear. Similar 
performance gaps have been observed in various applications includ-
ing object recognition [5,6], image classification [7,8], and medical 
diagnosis [9,10]. Detecting these systematic errors could help guide 
practitioners to update training datasets and mitigate unwanted biases 
in models [11,12].
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For structured, tabular datasets, identifying problematic data slices 
is relatively straightforward. Tabular slice discovery methods can sum-
marize data slices using attribute–value pairs like {age < 20, gender =

Female}, and mine combinations of attributes that correlate with model 
errors [2,13–17]. The power of this approach lies in enabling a combi-
natorial explosion of possible patterns from a limited set of attributes. 
This raises the question of whether we can use similar image at-
tributes to identify coherent and semantically meaningful data slices 
in unstructured image datasets. Datasets with rich annotations, like 
CelebA’s 40 labeled attributes per image (e.g., eyeglasses, smiling) [18], 
illustrate the potential of this approach for vision. Although most 
real-world datasets lack such structured annotations, images exhibit 
compositional structure comprising objects, object parts, and spatial re-
lationships, which often correlate with systematic failures. This requires 
attributes that can capture these compositional elements and are also 
interpretable to users.

Our key insight is to leverage ‘‘visual concepts’’ as the core, human-
interpretable primitives for explaining behaviors of vision models. 
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Fig. 1. Example visual concepts that represent objects, parts of objects, as well as abstract properties such as color and material. Visual concepts in each image 
are highlighted in red and their corresponding labels are attached below.  (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

While visual concepts have various definitions across the literature [19–
24], in this work we define them as semantically meaningful and fre-
quently recurring image segments that can represent objects, object parts, 
or abstract properties like color and material, as shown in Fig.  1. 
These concepts serve as suitable primitives for slice discovery for two 
reasons: (1) their semantic meaning allows practitioners to define and 
understand slices in intuitive terms, similar to tabular attributes, (2) 
their recurrence across the dataset enables the discovery of systematic 
patterns rather than isolated failures.

We introduce Visual Concept Reviewer (VCR), framework that 
operationalizes this idea for discovering systematic errors in object-
detection models. VCRbuilds upon recent advances in vision foundation 
models [25,26] to automatically extract and label visual concepts, such 
as ‘‘pole’’, ‘‘wheel’’, and ‘‘pedestrian’’ in a driving dataset, while still 
allowing light human supervision for refinement. It then presents these 
concepts to a user through an interactive interface, which enables users 
to explore extracted concepts through 2D visualizations and adjust 
concept granularity and definition, and guide the analysis process using 
their domain expertise. VCR augments rather than replaces human 
experts, automating the identification of salient visual patterns in large 
datasets while keeping humans in the loop for interpretation and 
refinement.

To discover problematic data slices, VCR analyzes the interactions 
between these visual concepts and object-detection models’ bounding 
box predictions. For example, VCR may explain a set of poor detection 
results for the ‘‘car’’ class with the presence of the visual concept ‘‘pole’’ 
that occludes the view. While VCR builds on frequent itemset mining 
techniques to find combinations of visual concepts highly correlated 
with poor model performance, a key difference is its ability to consider 
the absence of concepts, which can reveal critical failure modes. For 
example, if a model relies on the concept ‘‘wheel’’ to identify cars, its 
absence could lead to misclassifications. However, naïvely supporting 
concepts absences could lead to a combinatorial explosion of trivial 
mining results dominated by absences, as concept absence is common. 
To improve the interactivity of the workflow, VCR introduces pruning 
optimizations based on mutual information analysis, which speeds up 
the mining performance by up to two orders of magnitude in our 
experiments.

In summary, we contribute:

• VCR, a human-in-the-loop slice discovery framework for object-
detection models that combines automated visual concept extrac-
tion with interactive exploration to uncover systematic model 
failures.

• A new evaluation benchmark for slice discovery methods in 
object-detection, which includes 1713 slice discovery settings 
across three widely used datasets. On this benchmark, VCR con-
sistently outperforms existing methods in recovering ground truth 
error patterns.

• A user study with six industry machine learning scientists and 
engineers, providing qualitative evidence that VCR supports real-
world model understanding workflows and helps users identify 
meaningful error patterns.

2. Visual concepts

In this section, we introduce the design considerations behind the 
notion of visual concepts used in this work (Section 2.1) and describe 
a preprocessing pipeline that automatically extracts visual concepts, 
while allowing light human supervision for refinement (Section 2.2).

2.1. Definition and design considerations

Visual concepts have been defined in various ways across the lit-
erature. Some methods require users to provide labeled examples to 
define concepts of interest [23,27,28] or interactively collaborate with 
the system to identify concepts [29–32]. Others consider neurons in 
deep neural networks with similar activation maps as defining visual 
concepts [24,33,34] or treat semantically meaningful regions of images 
as visual concepts [35].

In this work, we define visual concepts as (1) semantically mean-
ingful and (2) commonly occurring segments of natural images. These 
two properties of visual concepts make them suitable primitives for 
identifying and explaining systematic errors: semantically meaningful-
ness improves the interpretability of results, while common occurrence 
enables the capture of systematic behaviors.
Semantically Meaningful. The first aspect of our definition, semantic 
meaningfulness, is crucial for visual concepts to serve as effective build-
ing blocks for image understanding. This requires image decomposi-
tion methods that respect object boundaries. Grid-based decomposition 
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methods [36] offer an overly simplistic approach by breaking images 
into individual squares, failing this requirement since these boundaries 
rarely align with object boundaries; objects may span multiple cells 
and be fragmented into semantically ambiguous portions. We instead 
leverage image segmentation techniques, which are explicitly designed 
to group pixels into coherent, semantically meaningful regions. Using 
segmentation masks as the foundation for visual concepts aims to 
align each concept with a meaningful object or visual pattern, though 
segmentation quality may vary depending on image characteristics and 
model performance.
Common Occurrence. The second aspect, common occurrence, is 
important as it allows us to generate a shared ‘‘visual vocabulary’’ to 
describe image datasets. Similar segments often reappear in different 
contexts, varying in location, size, and specific content. To capture the 
natural recurrence of similar segments across images, we use clustering 
to group semantically similar image segments into visual concepts. 
Clustering, therefore, allows concepts to naturally emerge from the 
dataset rather than being limited to predefined categories.

Fig.  1 shows examples of visual concepts extracted from the MS 
COCO dataset [37]. Segments highlighted in red are sampled from the 
corresponding visual concept. Empirically, we have found that concepts 
could represent whole objects (e.g., ‘‘window blinds’’, ‘‘pizza’’, ‘‘bicy-
cle’’), object parts (e.g.,‘‘arm’’, ‘‘hair’’, ‘‘animal ears’’), or properties 
like colors (e.g.,‘‘blue_color’’, ‘‘dark_color’’) and material (e.g., ‘‘wood’’, 
‘‘concrete’’). Due to the nature of clustering, the boundaries between 
concepts are sometimes blurred. For instance, the ‘‘blue_color’’ concept 
shown in Fig.  1 contains many segments of the sky, and is close to 
concepts labeled as ‘‘sea’’, ‘‘sky’’ and ‘‘cloud’’ in the embedding space. 
A coarser clustering granularity may merge these separate concepts into 
a single cluster.

2.2. Visual concept generation pipeline

With these design principles for visual concepts in mind, we present 
a preprocessing pipeline to generate visual concepts from image
datasets using pre-trained vision foundation models. The pipeline con-
sists of four steps: segmentation, embedding, clustering, and an optional 
labeling step.
(1) Segmentation. The first step is to extract meaningful segments 
from each input image using an image segmentation model. We specif-
ically choose Meta’s Segment Anything Model (SAM) [25] for this 
task, as it has an implicit notion of ‘‘objects’’ derived from its training 
process. Given a prompt (e.g., one or more points), SAM returns a 
segmentation mask containing at least one of the objects referred to 
in the prompt. For example, given a point on a backpack, SAM might 
return a mask for either the backpack or the person wearing it—
both semantically meaningful entities. After segmentation, we filter out 
segments that occupy less than one percent of the total image area, as 
they are often noisy and lack meaningful content.
(2) Embedding. The next step is to capture the semantic meanings 
of these image segments. We experiment with two pre-trained vision 
foundation models that generate embeddings at different resolutions: 
CLIP [38] produces image-level embeddings and MaskCLIP [26] yields 
pixel-wise embeddings.

For CLIP, we crop each segmentation mask to its minimum bound-
ing box, gray out non-segment pixels, and embed the result. However, 
we observed that this approach performs poorly, aligning with recent 
findings that pre-trained CLIP performance degrades on masked images 
due to distribution shifts [39]. We therefore focus on MaskCLIP which 
generates pixel level embeddings. We align these embeddings with 
SAM segments by resizing the segments to match each model’s output 
dimensions.
(3) Clustering. We perform K-means clustering on the segment-level 
embeddings to derive visual concepts, where segments grouped into the 
same cluster represent the same visual concept. Importantly, the num-
ber of clusters is a user-controlled parameter that allows practitioners 

to adjust the granularity of visual concepts based on their debugging 
needs and domain expertise. For instance, practitioners debugging 
autonomous vehicle models might prefer finer-grained concepts to 
distinguish between different types of road signs, while those working 
on general object-detection might use coarser granularity for broader 
categorical understanding. Empirically, we found that hundreds to 
thousands of concept clusters generally provide a good balance between 
comprehensive coverage and manageable exploration for practitioners. 
VCR’s interactive interface allows users to dynamically adjust this gran-
ularity and merge or split concepts based on their domain knowledge, 
ensuring the visual vocabulary aligns with their specific debugging 
priorities. This clustering step creates a shared ‘‘visual vocabulary’’ 
that captures recurring patterns across the dataset while remaining 
interpretable and actionable for human analysts.
(4) (Optional) Labeling. To further improve interpretability, we can 
leverage the multimodal nature of CLIP-based segment-level embed-
dings to automatically assign text labels to concept clusters. This is 
achieved by pairing each cluster center with the text label having 
the closest embedding distance. The input labels can be sourced in-
dependently, such as from a list of commonly used English nouns or 
domain-specific labels provided by users or large language models.

When multiple concepts map to the same label, we resolve conflicts 
by appending numbers to create subcategories (e.g., ‘‘tree_1’’, ‘‘tree_2’’, 
and ‘‘tree_3’’). This reflects either meaningful distinctions between 
concepts, or overly fine clustering granularity. For instance, in Fig.  1, 
the concepts ‘‘blue_color_6’’ and ‘‘blue_color’’ represent distinct visual 
patterns: the former includes background objects like ad banners and 
portable toilets, while the latter contains segments of sky and sea.

The quality of generated visual concepts depends on the perfor-
mance of the underlying segmentation and embedding models. To al-
low VCR to benefit from ongoing advances in the vision community, its 
concept generation pipeline is intentionally modular–practitioners can 
swap in newer architectures without requiring fundamental changes to 
the framework. Additionally, VCR’s interactive workflow (detailed in 
Section 3) allows practitioners to refine the visual vocabulary based 
on their domain expertise, further compensating for limitations in 
automated segmentation or embedding. 

3. VCR: Overview and user workflow

Building on the structured representation of images provided by 
visual concepts, we develop VCR, an interactive slice discovery frame-
work that identifies and explains systematic errors in object-detection 
models. VCR focuses on the object-detection task, as it is the most 
widely used computer vision task in practice, although visual concepts 
could also be used for other tasks such as image classification. In 
this section, we present background on the object-detection task, and 
introduce VCR’s user interface and workflow.

3.1. Background: Object-detection

Object-detection models analyze images to identify and locate ob-
jects, providing predictions in the form of bounding boxes and as-
sociated class labels. The accuracy of these models is evaluated by 
comparing their predictions to ground-truth data, focusing on two 
key aspects: class prediction accuracy and bounding box alignment. 
The quality of bounding boxes is often assessed using the Intersection 
over Union (IoU) metric, which measures the overlap between two 
bounding boxes by dividing the area of intersection by the area of their 
union. A key step in this evaluation process is bounding box matching, 
which associates each predicted box with a corresponding ground-truth 
box. Different systems implement this matching task differently: some 
prioritize maximizing IoU (e.g., using the Hungarian algorithm), while 
others give preference to class label confidence.

Object-detection models’ dual objectives of ensuring both correct 
classification and accurate object localization lead to several potential 
error types:
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Fig. 2. VCR’s user interface allows users to adjust mining settings, explore data slices and visual concepts, as well as perform refinement such as relabeling a 
concept and merging clusters.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

• Classification error: The bounding box is localized correctly (IoU 
greater than some threshold) but classified incorrectly.

• Localization error: The bounding box is classified correctly, but the 
IoU with ground truth is low, indicating poor localization.

• Background error (false positive): The model incorrectly detects the 
background as objects.

• Missed ground truth (false negative): Ground truth objects are un-
detected, not covered by classification or localization errors.

These error types are essential considerations in evaluating and improv-
ing object-detection models [40]. VCR supports all of the above error 
types.

3.2. User interface and workflow

Fig.  2 shows VCR’s user interface and workflow, designed to support 
practitioners in iteratively building understanding of their model’s 
behavior through visual concept exploration and refinement.

The Concept Exploration view (part A) displays the automatically 
extracted visual concepts in a 2D UMAP projection [41], helping users 
understand the overall concept space. Each color represents a different 
concept, and hovering over a dot reveals the automatically gener-
ated concept label. Users can experiment with concept granularity by 
changing the total number of clusters using the top panel.

Users can also delve into specific concept clusters by clicking on 
them, which displays sample image segments belonging to that concept. 
Part B shows example segments from a concept labeled as ‘‘clouds_1’’. 
Upon inspection, the user may realize that this cluster contains similar 
segments compared to the ‘‘clouds’’ cluster, so she can merge these 
two concepts by renaming them the same label. Our demonstration pa-
per [42] provides additional details on handling label conflicts during 
merging.

After exploring and refining concepts, users export their customized 
concept set to the Mining Interface (Part C), where they can adjust set-
tings such as filtering bounding boxes via class labels, support threshold 
(minimum slice size) and error type according to their specific debug-
ging goals. The mining results appear in a sortable table, where each 
row represents a data slice summarized by how bounding boxes interact 
with surrounding visual concepts and their metadata. For example, 
the highlighted row clouds_2 = 1 represents bounding boxes labeled as 
boats that interact with one segment of a clouds concept. This slice 
shows an accuracy difference of −0.52, meaning that the average IoU 
for this data slice predictions is 0.52 lower than the average of the 
entire dataset. Users can sort the table to prioritize slices by different 
criteria (e.g., size of slice, average accuracy), and save interesting slices 
for later analysis in the Bookmark Page.

Finally, clicking on a specific slice reveals sample images (part 
D) with four complementary views: the original image, bounding box 
pairs, relevant visual concepts, and zoomed concept details. This multi-
view visualization helps practitioners understand why the model fails 
on particular slices and assess whether the discovered patterns repre-
sent genuine systematic errors or spurious correlations. Beyond these 
views, an additional interface (Appendix  D) for exploring concept ab-
sences helps users interpret these often challenging cases. This interface 
allows users to compare an itemset containing a concept absence with 
its counterpart in which the same concept is present. Presenting these 
cases side by side helps contextualize the absence and clarify its impact 
on model behavior.

4. Concept-based slice discovery

Internally, VCR leverages frequent itemset mining techniques to 
identify correlation between problematic model behaviors and the 
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Fig. 3. VCR summarizes the interaction between visual concepts and the object-detection model’s predictions in a tabular format.  (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

presence and absence of visual concepts. Section 4.1 describes VCR’s 
automated slice discovery pipeline. While classic frequent itemset min-
ing that focuses only on frequently occurring items, accounting for 
the absence of items is equally valuable in our application. However, 
naïvely supporting concepts absences leads to a combinatorial explo-
sion of mining results dominated by absences, as concept absence is 
common. VCR introduces new pruning optimizations based on mutual 
information analysis to address the scalability challenges of supporting 
concept absences (Section 4.2).

4.1. VCR: Slice discovery pipeline

VCR operates in three main stages: concept extraction, tabular 
summarization, and concept mining. In the preprocessing step, VCR
extracts visual concepts for the input dataset using methods described 
in Section 2.2. Fig.  3(a) shows an example segmentation obtained using 
SAM, and Fig.  3(b) shows that the input image can be represented by a 
set of visual concepts such as ‘‘wall’’, ‘‘bed’’, ‘‘table’’, and ‘‘wood’’. These 
visual concepts serve as primitives for analyzing an object-detection 
model’s performance.
Tabular Summarization. VCR uses visual concepts to contextualize 
the object-detection model’s predictions. For each pair of predicted 
and ground truth bounding boxes, VCR identifies all visual concepts 
that have significant pixel overlap with the boxes. A fixed padding 
(e.g., 50 px) is applied around each box to capture additional nearby 
concepts, as bounding boxes are generally tightly fitted around the 
object. For instance, in Fig.  3(c), two segments (in teal color) from the 
‘‘table’’ concept overlap with the bounding box. These interactions are 
summarized in a tabular format, where each row corresponds to a pair 
of matched bounding boxes, each column represents a different visual 
concept, and cell values indicate the number of image segments from 
each concept interacting with each bounding box pair.
Concept Mining. Given the tabular summarization, VCR uses the 
Apriori algorithm to identify visual concept patterns that correlate 
with poor model performance. We chose Apriori because its level-
wise bottom-up approach allows us to easily enforce constraints on 
concept absences paired with presences at each support threshold, 
bubbling up incrementally for increasing itemset lengths. This property 
is particularly valuable for our pruning optimizations (Section 4.2), 
where we disallow multiple absences in size-2 itemsets to prevent 
their propagation to longer itemsets. Alternative frequent pattern min-
ing algorithms like FP-growth [43], while often faster for traditional 
mining tasks, build compressed tree structures (FP-trees) that make 

it challenging to selectively control the generation of specific itemset 
combinations based on absence constraints during tree construction.
VCR considers various error types, including classification error, lo-
calization error, background error (false positive), and missed ground 
truth (false negative), as discussed in Section 3.1. Given an error type 
and an IoU threshold (default at 0.5 as in [40,44]), VCR marks a subset 
of the bounding box pairs as problematic according to the error metrics.
VCR then outputs common patterns among problematic predictions 
as frequent itemsets, ranked by accuracy divergence—a metric that 
quantifies how much a slice’s performance deviates from the overall 
average [14]. For a slice S with error metric M , accuracy divergence is 
calculated as �acc (S) = M(S) −M(avg), where negative values indicate 
worse-than-average performance. This ranking helps practitioners pri-
oritize the most problematic systematic errors for investigation. Users 
can specify a minimum slice size (minimum support) parameter, and
VCR identifies all data slices above this threshold.

VCR supports itemsets that are conjunctions of predicates with both 
image metadata attributes and attributes enabled by visual concepts. 
These include bounding box statistics (relative size, aspect ratio, and 
position), crowding information (number of nearby overlapping bound-
ing boxes), image metadata (class labels, time of day, location), and 
the count of each type of visual concept that interacts with the model 
prediction. Numeric attributes, such as bounding box area, are auto-
matically discretized into ten bins using quartiles. Then, an example 
slice for a barely visible car in a busy intersection may look like 
{gt_bbox_area ∈ [0, 0.25], crowding ∈ (5, 10]} where the bounding box 
area of the car is in the bottom twenty-five percentile and there are 
five to ten other cars surrounding it.
Limitations. Co-occurrence-based concept mining can surface spurious 
correlations where identified patterns reflect coincidental associations 
rather than true causal relationships. Visual concepts should therefore 
be treated as discovery aids that guide practitioners toward error 
patterns and require expert validation. As shown in our user study 
(Section 5.3), spurious correlations that group together similar error 
patterns can still serve as effective starting points for inspection. 

4.2. Challenge: Supporting concept absences

In the context of concept mining, VCR differs from classic frequent 
itemset mining techniques by considering not only the presence of 
items but also their absence. This is crucial for explaining the behavior 
of object-detection models, as the absence of certain concepts can be 
just as informative as their presence. For instance, a model trained to 
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identify cars based on the presence of wheels may fail when wheels are 
not visible in an image.

However, supporting concept absence mining introduces two sig-
nificant challenges: scalability and result redundancy. The scalability 
issue arises from the sparsity of concepts. For a dataset with many 
concepts, most concepts would be absent for a given predicted and 
ground truth bounding box pair. Therefore, naïvely treating absent 
concepts as frequent items would lead to a combinatorial explosion 
of results dominated by concept absences. For example, POEM ex-
perienced significant performance degradation in mining beyond 15 
concepts when considering absence [24]. Second, concept absence 
introduces additional redundancies in the mined itemsets. For example, 
{sky = 1, sea = 0} might represent a similar set of bounding-boxes 
as {sky = 1, land = 0}. Presenting multiple itemsets that essentially 
represent the same data can be confusing for users. Furthermore, 
accumulating concept absences in itemsets can produce uninformative 
results like {sky = 1, sea = 0, land = 0, toaster = 0, potato = 0}, which 
add little value to the analysis.
Mutual Information Analysis. To understand when concept absences 
are meaningful, we analyze the information gain between two itemsets 
using normalized mutual information (NMI).

Consider two itemsets A and B where B is a subset of A (e.g., 
B contains one additional item on top of A). We want to evaluate 
the additional information B provides given A using NMI, defined as 
NMI(A,B) =

2I(A;B)

H(A)+H(B)
, where H(A) and H(B) are the entropies of A

and B, and I(A;B) is their mutual information. NMI is scaled between 
0 and 1, with 1 indicating complete dependence between two events. A 
higher NMI suggests that B does not add much new information beyond 
A.

Proposition 4.1.  Consider two itemsets A and B. Assume that B is a 
subset of A, and that P (A) = p, P (B) = q. NMI(A,B) decreases as p − q

increases.

The proof is available in Appendix  A. We note two special cases of 
the proposition. When A and B are identical (� = 0), NMI(A,B) = 1. 
When B is rare (q → 0), NMI(A,B) → 0, regardless of A’s probability.

This analysis helps distinguish between meaningful and trivial con-
cept absences. Specifically,

• Frequent co-occurrence: Suppose A = {sea = 1} and B = {sea =

1, boat = 0}. Since ‘‘sea’’ and ‘‘boat’’ frequently co-occur (large �), 
B might be worth investigating.

• Rare co-occurrence: Suppose A = {sea = 1} and B = {sea =

1, carrot = 0}. Since ‘‘carrots’’ rarely appear with ‘‘sea’’ (small �), 
B is not likely to add much new information on top of A. In fact, 
if ‘‘carrots’’ and ‘‘sea’’ never co-occur, A and B are identical and 
redundant.

• Rare concept: Suppose A = {sky = 1} and B = {sky = 1, unicorn =

1}. Rare concepts could be informative if it occurs. However, their 
absences are not interesting: the absence of a unicorn in the sky 
is so common that it does not provide meaningful information 
beyond knowing there is sky in the image. We do not consider 
very rare concepts, as each itemset needs to pass the minimal 
support threshold.

Pruning and Duplication Optimization. Based on the analysis above, 
we introduce two optimizations that significantly improve the mining 
performance for concept absences, as demonstrated in Section 5.2.

In our first optimization, we implement a threshold-based filtering 
mechanism, where an absence is only included if it contributes a 
threshold amount of new information. In the implementation, we use 
the relative change in support as an approximation to NMI, as it is 
computationally more efficient and strongly correlated with NMI. Given 

Table 1
Overview of our slice discovery evaluation benchmark. 
 Datasets Color Aspect ratio Size Semantic #Settings 
 COCO 287 156 153 184 780  
 Visual Genome 217 143 140 113 613  
 BDD 100K 100 65 75 80 320  

itemset A and concept absence {c}, the relative support change in 
B = A ∩ {c} is �Sup(A,B = A ∩ {c}) = Sup(A ∩ {c})∕Sup(A).

Empirical Calibration. We validate the above approximation by gener-
ating 100 synthetic parent–child itemset scenarios at varying densities 
p (the percentage of data covered by the parent itemset), with each 
scenario evaluated on 100,000 samples. For each scenario, we compute 
the exact NMI and relative support change. Fig.  4 shows the resulting 
curves stratified by p. The inverse relationship is nearly linear across 
all densities, with coefficient of determination R2 ranging from 0.701 
for dense itemsets (p = 0.9) to 0.997 for very sparse ones (p = 0.1). 
Since sparse itemsets (p ≤ 0.5) dominate our mining results and achieve 
R2 ≥ 0.955, the approximation is highly reliable in practice.

For our second optimization, we restrict itemsets from containing 
multiple concept absences. We expect important multiple absences to 
show up as single absences in other itemsets, so this constraint main-
tains similar itemset quality while significantly reducing computational 
overhead, particularly addressing the problem of accumulating ab-
sences. We implement this restriction when generating itemsets of size 
two, which effectively precludes the creation of itemsets with multiple 
absences in itemsets of arbitrary length, per the Apriori principle.

Finally, we post-process the itemsets to remove near-duplicate re-
sults.

We use a lightweight, greedy deduplication algorithm that aims 
to preserve interesting itemsets while maximizing the diversity. The 
algorithm iterates through the itemsets in order of decreasing accuracy 
divergence, marking the bounding box pairs covered by each included 
itemset. We only include new itemsets when they contain a significant 
portion of unique bounding box pairs, controlled by the parameter 
� ∈ [0, 1]. In practice, we set � = 0.5 by default. Example results 
illustrating the greedy deduplication step and its diversity impact are 
provided in Appendix  B.

5. Evaluation

We create a large-scale evaluation benchmark comprising 1713 
slice discovery settings across three widely used datasets, enabling 
quantitative comparisons of slice discovery methods in object-detection 
tasks. VCR consistently outperforms baselines in identifying problem-
atic subgroups and that the pruning optimization significantly speeds 
up discovery (Section 5.2). To complement the quantitative evaluation, 
we conduct a user study with six industry machine learning scientists 
and engineers to provide qualitative insights into VCR’s real-world 
usability (Section 5.3).

5.1. Evaluation methodology

Few real-world object-detection datasets specify data slices where 
a model systematically underperforms. Following existing practices [1,
45,46], we programmatically generate 1713 slice discovery settings to 
enable quantitative performance comparison. Table  1 summarizes our 
evaluation benchmark.
Slice discovery settings. We evaluate on three widely-used datasets in 
object-detection tasks: COCO 2014 [37], Visual Genome [47], and BDD 
100K [48]. We consider two types of reasons that cause the model to 
underperform: metadata-based and content-based. Slices derived from 
metadata can exhibit better visual consistency, while those derived 
from content will have better semantic coherency. Accordingly, we 
create four error scenarios based on:
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Fig. 4. Relationship between exact NMI and relative support change across multiple itemset densities p. Least-squares fits (dashed) highlight the strong monotonic 
trend that justifies using support change as a computationally efficient proxy, especially for sparse itemsets.

Fig. 5. VCR leads to consistent improvement in slice discovery performance compared to baselines across three datasets and four error scenarios. 

• Color : Ground truth bounding boxes are resized into 50 × 50 
squares, followed by K-Means clustering on raw pixel values to 
assign them into different color clusters. We use 20 color clusters 
for each class of objects, and each cluster forms a slice.

• Size and Aspect Ratio: Bounding boxes are sorted into bins based 
on width*height for size and width/height for aspect ratio. We 
use a randomly chosen number of bins between 5 and 15 for each 
object class, and each bin forms a slice.

• Semantic: Inspired by [46], we extract semantically coherent slices 
such as ‘‘[object class] next to [setting/object]’’ (e.g., ‘‘person next 
to water’’). For COCO and Visual Genome, we use their image 
captions, embed them with CLIP embeddings, and retrieve up to 
500 images closest in the embedding space to our target prompts. 
For BDD, we use the provided annotations to define slices based 
on weather conditions, time of day, and scene (e.g., highway, 
residential); VCR does not directly use these metadata as slicing 
dimensions.

We discard slices with fewer than 25 samples. Once a slice is generated, 
we synthetically increase its localization error rate by perturbing the 
predicted bounding box location to lower the IoU. We model the 
IoU errors as a Gaussian distribution centered at 0.4, just below the 
standard 0.5 IoU error threshold. This allows us to create ground truth 
problematic slices for evaluation. While we focus on localization error, 
other error types can be supported similarly.

Our default object detector is Faster-RCNN from MMDetection [49,
50] trained on the MS-COCO Dataset’s 2017 train split. We provide 
additional details of the slice discovery setting generation, as well as 
samples of ground truth slices (Appendix  C).
Methods of Comparison. We consider the following methods:

• Domino [1]: Similar to VCR, Domino leverages external, pre-
trained models to generate image embeddings for slice discovery. 
Specifically, we configure it to use CLIP embeddings and set up 
its Gaussian Mixture Model with 100 clusters and 
 = 40 after 
hyperparameter tuning. We also provide Domino IoU values as 
its error metric.

• VCR (concept): VCR using concept interactions as the only slicing 
dimension (i.e. without metadata). This baseline is similar to 
POEM [24], which also only uses visual concepts as explanation 
primitives.

• VCR (metadata): VCR with only metadata attributes in the item-
sets. This baseline is similar to SliceTeller [51], which slices 
datasets based on predefined metadata attributes.

• VCR: By default, we use 500 concepts, a support count threshold 
of 10, limit the maximum itemset length to 3, and the greedy 
de-duplication algorithm with an overlap threshold � = 50%. 
For models, VCR uses SAM’s ViT-L for segments and MaskCLIP 
Vit-B/16 for pixel-level embeddings. We show that VCR’s perfor-
mance is not sensitive to specific parameters in Appendix B.1 of 
the technical report [52].
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Since previous works do not support object-detection tasks, we 
simplify the tasks by cropping images from ground-truth bounding-
box annotations and treating them as image classification tasks for 
baselines. We apply additional pixel padding to enhance the quality 
of image crops, which provides important contextual information and 
improves the performance of baselines.
Evaluation Metric. We use Precision@k to evaluate the performance 
of slice discovery methods. This metric measures the proportion of 
the top-k most erroneous samples in a discovered slice that are also 
present in the ground truth problematic slice. We set k = 10 and report 
the maximum precision across the top 10 discovered slices for each 
method. For VCR, samples are ranked by their error contribution. For 
Domino, which uses a Gaussian Mixture Model, samples are ranked by 
their membership probability to a given slice.

5.2. Quantitative comparison

Slice Discovery Performance. Fig.  5 summarizes the performance of
VCR and baselines across all slice discovery settings. Overall, VCR con-
sistently outperforms Domino, and both visual concepts and metadata 
contribute meaningfully to VCR’s performance. For the metadata tests,
VCR’s mean difference with Domino in precision score is 0.244 (60.9% 
increase), 0.206 (48.2% increase), and 0.292 (87.8% increase) in the 
COCO, Visual Genome (VG), and BDD datasets, respectively. For the 
semantic tests, VCR’s mean difference with Domino in the precision 
score is .008, 0.100 (14.0% increase), and 0.170 (25.9% increase) in 
the three datasets, respectively.

Domino sees its best performance on the semantic slice tests and is 
not far behind VCR. This is expected as Domino uses CLIP embeddings 
of images to form semantically coherent clusters. Understandably, VCR
(metadata) cannot differentiate semantic attributes and experiences 
decreased precision in most semantic settings.

However, in BDD’s semantic test cases, we find VCR (metadata) can 
perform relatively well. While semantic tests in COCO and VG were 
derived from classes’ relations to other objects or settings (e.g., indoors), 
BDD’s semantic tests featured both concrete dimensions with ‘‘scene’’ as 
well two abstract ones, ‘‘timeofday’’ and ‘‘weather’’. We find that VCR
(metadata) achieves higher precision than Domino in ‘‘time of day’’ and 
‘‘weather’’, only losing in the scenes test. When combined with VCR
(concepts), metadata enables a significant increase in precision. This 
highlights the importance of metadata attributes even in the semantic 
setting.

For metadata slices on bounding box size and aspect ratio, VCR sees 
the biggest improvements over Domino, outperforming by 0.255–0.465 
precision points in the three datasets. This is because VCR utilizes 
bounding box statistics as slicing dimensions, while Domino’s semantic-
based slicing is a poor fit for these object-detection-specific error sce-
narios. For color clusters, all methods exhibit relatively poor perfor-
mance since neither metadata nor visual concepts explicitly capture the 
concept of color. Color clusters also tend to be more noisy compared 
to other test cases, particularly as we directly utilized raw pixel values. 
However, for specific classes like traffic lights and umbrellas, coherent 
color clusters (e.g., Fig.  C.11) could be formed. VCR still outperforms 
Domino by 0.04 to 0.13 precision points across datasets.
Concept Mining Scalability. We compare VCR against two repre-
sentative tabular slice discovery frameworks, DivExplorer [14] and 
SliceLine [15], using their open-source Python implementations [53,
54]. DivExplorer supports Apriori and FP-growth, while SliceLine uses a 
linear-algebra-based method. We use binary concept presence/absence 
data extracted from the COCO dataset with 100,000 rows and 200 
columns (concepts). All methods use a support threshold of 0.03 and 
generate itemsets with presence/absence up to length 3. Fig.  6 reports 
the mining runtime versus concept count in log scale, averaged over 
five runs. DivExplorer with FP-Growth takes over an hour at 75 con-
cepts, and SliceLine triggers the out-of-memory killer at 100 concepts. 

Table 2
Effect of number of clusters (k) and deduplication threshold (�) on VCR’s 
precision on the COCO dataset. The rows in bold represent the default 
experiment configuration. 
 Configurations Color Aspect ratio Size Semantic 
 k = 500 0.409 0.737 0.767 0.792  
 k = 400 0.408 0.728 0.746 0.762  
 k = 300 0.409 0.722 0.732 0.749  
 k = 200 0.405 0.750 0.764 0.751  
 � = 50% 0.409 0.737 0.767 0.792  
 � = 25% 0.411 0.740 0.768 0.790  
 � = 0% (No Dedup) 0.324 0.664 0.674 0.687  

In contrast, VCR finishes within 10 s even at 200 concepts, indicating 
at least two orders of magnitude speedup, mainly due to the absence 
pruning optimization.
Sensitivity Analysis. Table  2 presents VCR’s performance across vary-
ing deduplication thresholds (�) and concept cluster counts (k). While 
deduplication enhances VCR’s performance, VCR is not sensitive to the 
overlap threshold �. VCR is also robust to changes in the number of 
clusters. Moreover, users can dynamically adjust concept counts and 
labels through our concept explorer interface.

5.3. Qualitative evaluation with domain experts

To gain qualitative insights into how practitioners leverage VCR’s 
interactive capabilities to discover model failures, we conducted user 
studies with six expert users who used the system to analyze systematic 
errors in an object-detection model trained on the COCO dataset.
Expert User Demographics. We interviewed six expert users (industry 
ML scientists and engineers). All experts have two or more years of 
experience with machine learning (5.67 ± 2.49 years) and are familiar 
with object-detection (four have trained detection models before, and 
two have used but not trained these models). Five of the experts have 
a PhD in STEM, and one has a Masters Degree. The experts are not 
authors of this paper.
Interview Protocol. Each interview lasted 45 min and proceeded as 
follows: First, the user filled out a demographics questionnaire (5 min). 
Next, we demoed the system capabilities using the object ‘‘car’’, allow-
ing the experts to identify the model problems in the data slices and 
answer any questions they had (10 min). We then asked the experts 
to use VCR to identify and understand the model limitations, i.e., 
problematic data slices, in other objects (20 min). Finally, we asked 
them for feedback, including positive aspects, negative aspects, and 
points of improvement (10 min). We also used a 5-point Likert scale 
questionnaire to assess the perception of the system’s functionality and 
usability.

Expert user analysis and insights. While our sample size limits gen-
eralizability, the expert sessions provided valuable qualitative insights 
into VCR’s usage patterns and utility in practice. We highlight the key 
themes that emerged.

The experts evaluated two to three objects per session (see Fig.  7). 
A shared strategy involved initially examining the worst-performing 
slices. This allowed them to pinpoint where the models struggled with 
object-detection. Next, they inspected the slices where the models 
outperformed the average, indicating scenarios where the model could 
easily detect the objects. Here, we list some of their findings:
1. Occlusion was frequently listed as a fundamental reason for subpar 
detection performance. This issue was identified in the objects ‘‘car’’ 
and ‘‘chair’’. During the system demo using the ‘‘car’’ object, experts 
immediately found that the poorest performing data slice was defined 
by the itemset {pole = 1, road = 0} (�acc = −0.218), indicating the 
presence of a pole near the undetected object in the image. Upon 
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Fig. 6. VCR’s absence pruning optimization enables significant speedups compared to alternative mining approaches.

Fig. 7. Example data slices investigated by expert users. Concepts are highlighted in bright colors. The green bounding box indicates ground truth, and the blue 
bounding box indicates prediction. Top: data slice identified for the object ‘‘car’’, where poles obstruct the detection of the object. Bottom: data slice identified 
for the object ‘‘book’’, where crowding hampers the detection of the object.  (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 8. Expert ratings of VCRacross usability dimensions (n = 6), using a 5-point Likert Scale questionnaire.
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further examination, it was observed that the pole was obstructing 
the car in the picture. Similarly, when the experts were inspecting the 
‘‘chair’’ object, they found that undetected chairs were frequently due 
to occlusion by babies or toddlers, as indicated in the slice {baby =

1, diningtable = 0} (�acc = −0.248).

2. Crowding was also a frequent error identified by the experts. For 
example, when exploring the data slices belonging to ‘‘book’’ object, 
they noticed that the slice {booksℎelf = 1} (�acc = −0.141) had poor 
detection performance. Upon inspecting the images and detections, 
they noticed that the model had trouble identifying an object among 
objects of the same type. Similarly, when exploring the ‘‘boat’’ object 
data slices, they found that most of the mistakes in the boat class arose 
from object crowding, e.g., multiple boats next to each other.
3. Ground truth errors were also identified. The first type of error 
found in this category is related to crowding errors: experts found 
that slices containing multiple boats often had inconsistent annotations: 
sometimes, a single boat was boxed, while other times, multiple boats 
were included in the box. This issue is also present in other objects, 
such as ‘‘broccoli’’ (multiple pieces on a plate) and ‘‘books’’ (multiple 
books on a bookshelf). A second type of error occurs when only part 
of an object is included in the bounding box. For example, in the chair 
detection, one slice corresponded to chairs where only part of the object 
was included in the box.
4. Easily detected objects. Experts also explored the data slices with 
the best performance, gaining additional insight into the model. For 
example, when exploring the ‘‘chair’’ object, experts found that the 
model performs best when the chair is large or looks like a sofa 
({floor = 0, sofa = 1}, �acc = 0.195). Another interesting case comes 
from the ‘‘boat’’ object. When experts investigated the best-performing 
slice ({water = 1, boat = 1}, �acc = 0.339), they noticed that kayak, a 
particular type of boat, was easy to detect.
5. Spurious correlations arise due to the slice-finding method’s reliance 
on co-occurrence to identify problematic slices. This can sometimes 
lead to the identification of slices that are the result of coincidental 
correlations rather than actual problems. A common example of this 
issue was found when exploring the ‘‘boat’’ class. The slice that had 
the poorest performance was characterized by the {clouds = 1} (�acc =

−0.518) itemset. However, the experts found the association of missed 
detection with clouds to be incorrect. Upon further investigation, they 
discovered that the errors were not due to the presence of clouds. 
Instead, the errors were the result of overcrowding issues (multiple 
boats in close proximity to each other) and labeling problems (boxes 
containing more than one boat). Similar spurious correlations happened 
with the slices containing sky ({sky = 1}). Despite the slice itemset 
indicating a false correlation between clouds and incorrect detections, 
the grouping of these similar errors together still allowed users to 
identify the mistake with relative ease.
Expert feedback. The expert users generally found the system useful 
for their workflow. They valued how the data slices could provide 
potential reasons for a model’s errors, aiding them in considering 
various contributing factors. The simplicity of the interface was also 
well-received, along with the four views used to display results (original 
images, detection boxes, semantic segmentation, and a zoomed-in seg-
mentation). Users also appreciated how segmentations facilitated their 
understanding of the model’s mistakes. However, some experts noted 
occasional inaccuracies in the segmentation labels. While they valued 
the ability to alter the labels of visual concepts, they also expressed 
a desire to refine segments in real time, such as splitting a cluster of 
segments containing multiple objects. Additionally, they found data 
slices with concept absences occasionally difficult to comprehend, for 
example, the detection of the object ‘‘chair’’ performing poorly when 
no wall was present. At the end of the interview, the expert users 
were asked to fill out a Likert scale questionnaire about their expe-
rience with the system. Fig.  8 shows the user’s responses. Overall, 

the responses to this questionnaire coincide with the other feedback 
provided.

Study Limitations. Our user study with six experts provides qualitative 
insights into VCR’s real-world utility but has limitations in general-
izability due to the small sample size. The 45-minute sessions with 
industry experts were challenging to scale. These findings complement 
our primary quantitative evaluation (Section 5.2) by illustrating how 
practitioners interact with the system in practice.

6. Related work

Our work draws from several research areas: interpretability frame-
works for computer vision models, slice discovery methods for identify-
ing systematic model failures, and visual concept extraction techniques. 
We organize the related work into these three main categories based on 
the core methodologies and application domains.

6.1. Explainable artificial intelligence

Our work contributes to the broader field of Explainable Artificial 
Intelligence (XAI), which aims to make AI systems and their results 
more understandable to humans [55–57]. XAI methods range from 
creating inherently interpretable white-box or gray-box models [58–
60] to developing post-hoc explanations for black-box models through 
techniques like feature importance analysis [61–64] or counterfac-
tual reasoning [65–67]. A key distinction among post-hoc explanation 
methods is between local explanations that interpret individual predic-
tions [63,68,69] and global explanations that characterize overall model 
behavior [23,28].

VCR is most closely related to feature importance methods such as 
LIME [63] and SHAP [64], which explain how input features contribute 
to a model’s outputs. VCR uses visual concepts as interpretable features 
and identifies correlations between these features and systematic errors 
through frequent itemset mining, therefore providing global explana-
tions that characterize failure patterns across data slices. Importantly,
VCR’s treatment of concept absences is related to but distinct from 
classic feature importance methods. For example, SHAP uses additive 
feature attribution, decomposing a model’s output into contributions 
from individual features based on Shapley values. A key property of 
this formulation is missingness: absent features are assumed to have zero 
effect on the prediction [55]. In contrast, VCR explicitly examines when 
the absence of a concept itself is informative about a model’s failure 
modes.

XAI evaluation remains challenging, as criteria such as interpretabil-
ity and explainability are not easily quantified. In the XAI literature, 
interpretability and explainability are closely related concepts that lack 
universal definitions [70,71]: interpretability focuses on understanding 
how a model arrives at its decisions (the internal mechanisms and 
logic), while explainability focuses on communicating why a specific 
decision was made in terms meaningful to users (building trust and jus-
tifying outputs). Although researchers agree that anecdotal inspection 
is insufficient for robust verification, the XAI community has yet to es-
tablish standardized evaluation metrics beyond often-reported anecdo-
tal evidence showing individual, convincing examples [72–74]. VCR’s 
evaluation addresses this challenge by combining quantitative metrics 
for slice discovery accuracy with qualitative evaluation through our 
user study, moving beyond anecdotal evidence toward more rigorous 
validation of explanation quality

6.2. Slice discovery methods

VCR builds upon the success of slice discovery methods in tabular 
datasets [2,13–17]. These methods identify problematic data subgroups 
using predicates over predefined attributes (e.g., age = 25–40, gender 
= Male). DivExplorer [14], SliceLine [15], and Macrobase [16] employ 
optimized frequent itemset mining algorithms such as Apriori [75] and 
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Table 3
Feature comparison between VCR and representative frameworks for identify-
ing systematic errors in image classification tasks. 
 VCR SliceTeller Domino POEM ESCAPE 
 (Ours) [51] [1] [24] [31]  
 Model agnostic 3 3 3 7 3  
 Segment-level concepts 3 7 7 3 3  
 Leverage metadata 3 3 7 7 7  
 Automated discovery 3 3 3 3 7  
 Object-detection 3 7 7 7 7  

FP-growth [43], while Slice Finder [2,13] uses decision trees and lattice 
search techniques. VCR uses Apriori, with optimizations specifically 
designed to support concept absences. When applied to image datasets, 
these methods rely on predefined metadata attributes. SliceTeller [51] 
applies frequent itemset mining to annotated attributes in datasets like 
CelebA [18], while Uni-Evaluator [76] handles both discrete (e.g., class 
labels) and continuous metadata (e.g., aspect ratios, size, direction) 
across classification, detection, and segmentation tasks. VCR extends 
beyond metadata-based approaches by automatically discovering visual 
concepts that provide additional, interpretable slicing dimensions.

A number of automated slice discovery methods seek to evalu-
ate performance of image classification models beyond predefined 
metadata [1,24,32,45,77–80]. For example, Spotlight [78] identifies 
problematic slices of images by searching for contiguous regions in the 
final layer representation space of a neural network that align with 
errors. Domino [1] and FACTS [79] fit an error-aware Gaussian mixture 
model on CLIP embeddings [38] or some specialized feature space to 
generate data slices (clusters). Most related to us are methods that use 
visual concepts to explain vision model behaviors. POEM [24] uses a 
pre-trained semantic segmentation model on Unified Perceptual Parsing 
(UPP) [81] to label visual concepts and identifies a filter activation map 
in image classifier CNNs that overlaps with the visual concepts to use 
for explanations. In contrast, VCR’s visual concepts are model-agnostic 
and not limited to predefined labels in UPP. EAC [80] uses SAM to 
generate segments for each image as visual concepts and uses Shapley 
values to explain each concept’s contribution to the model’s prediction, 
whereas VCR’s notion of visual concepts focuses on the recurrences 
across images to capture systematic behavior. Table  3 summarizes the 
main features offered by representative frameworks.

6.3. Visual concept discovery

Visual concepts are conceptually related to the Bag of Visual Words 
(BoVW) model, which has been used to build image representations 
prior to deep learning methods [19–21]. The BoVW method extracts 
local features from images, such as via SIFT descriptors [22], and 
clusters these features to create a ‘‘visual vocabulary’’. Each image 
is then represented as a histogram of these visual words, analogous 
to how documents are represented by their constituent words and 
frequencies.

Modern approaches to extracting visual concepts fall into three 
paradigms based on supervision requirements: supervised methods re-
quire users to provide labeled examples for concepts of interest [23,
27,28], automated methods that aim to extract semantically mean-
ingful concepts without supervision [33–35], interactive approaches 
that allow users to collaborate with the system [29–32]. For example, 
ESCAPE [31] provides a workflow that allows users to select a set 
of semantically coherent segments to be defined as a visual concept. 
Similarly, VLSlice [32] is a human-in-the-loop tool that aids users 
in discovering data slices, but requires them to first specify the bias 
dimension of interest as an initial query. VCR provides automatic 
concept discovery by leveraging vision foundation models by default 
but also allows users to fine-tune the concepts in an interactive manner.
Saliency Maps and Attention Mechanisms. Saliency maps and visual 
concepts both aim to identify important image regions, but serve 

fundamentally different purposes. Saliency maps visualize which image 
regions contribute most to a model’s prediction through gradient-based 
methods like GradCAM [68], GradCAM++ [82], and HiResCAM [83], 
or gradient-free alternatives like Eigen-CAM [84] and Ablation-CAM 
[85]. These pixel-level importance maps explain individual predictions 
by highlighting where the model ‘‘looks’’ for each decision. While com-
plementary to VCR, saliency maps differ in key aspects: they explain 
individual predictions rather than systematic patterns, operate at the 
pixel level without semantic labels, and their gradient-based variants 
depend on specific model architectures and often require access to 
model internals. POEM [24] represents a hybrid approach that aligns 
visual concepts with model attention via saliency maps before min-
ing patterns, but it is limited to CNN classifiers. In contrast, VCR is 
model-agnostic and focuses on discovering recurring semantic patterns 
correlated with systematic errors across data slices. In Appendix  E, 
we provide additional visual comparisons between saliency maps and 
visual concepts.

7. Discussion and future work

While VCR provides interpretable concept labels and an interactive 
interface for refinement, it does not explicitly model individual users’ 
familiarity with different visual concepts. Adapting explanations based 
on user expertise represents a promising direction for making VCR more 
effective across users with varying domain knowledge.

Several practical approaches could enhance the system’s ability 
to tailor explanations to user familiarity. First, concept prioritization 
could boost slices containing familiar concepts higher in ranked lists, 
helping users quickly identify patterns in domains they understand 
well while still surfacing critical unfamiliar patterns when accuracy 
divergence is exceptionally high. Second, the concept exploration in-
terface could automatically adjust the level of detail based on user 
expertise, for example, showing fine-grained concepts (e.g., ‘‘sedan’’, 
‘‘SUV’’, ‘‘pickup truck’’) in familiar domains while presenting coarser 
categories (e.g., ‘‘vehicle’’) for less familiar areas. The system could also 
use progressive disclosure that starts with high-level familiar concepts 
and allows users to drill down to unfamiliar details on demand, and 
familiarity indicators (such as visual badges or color coding) that help 
users quickly distinguish between new concepts and those they have 
previously explored.

User familiarity could be learned implicitly from interaction pat-
terns, such as time spent viewing concepts, which concepts are clicked 
versus skipped, and which concepts users merge or refine, or captured 
explicitly through ratings or ‘‘mark as familiar’’ buttons. A key chal-
lenge for these personalization mechanisms is balancing the surfacing 
of comfortable, familiar concepts with enabling discovery of unfamiliar 
but important error patterns. We leave the design and evaluation of 
such personalization approaches as future work.

8. Conclusion

In summary, VCR is an interactive framework for understanding 
systematic errors in object-detection models through visual concepts–
semantically meaningful image segments that serve as interpretable 
primitives for slice discovery. By combining automated concept ex-
traction with human expertise, practitioners can explore their datasets, 
refine concept definitions, and discover meaningful error patterns that 
traditional approaches miss. Through our large-scale evaluation bench-
mark with 1713 slice discovery settings, we show that VCR consis-
tently outperforms alternatives in identifying problematic data slices. A 
user study with six industry experts provides qualitative evidence that
VCR facilitates identification and explanation of errors in real-world 
object-detection models.
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Appendix A. Mutual information analysis

Proposition A.1.  Consider two itemsets A and B. Assume that B is a 
subset of A, and that P (A) = p, P (B) = q. NMI(A,B) decreases as p − q

increases.

Proof.  By definition, we have P (A = 1, B = 1) = q, P (A = 0, B = 1) =

0, P (A = 1, B = 0) = p − q, P (A = 0, B = 0) = 1 − p. So the mutual 
information for A and B is: 

H(A) = −p log(p) − (1 − p) log(1 − p) (A.1)

H(B) = −q log(q) − (1 − q) log(1 − q) (A.2)

H(A,B) = −q log(q) − (p − q) log(p − q) − (1 − p) log(1 − p) (A.3)

I(A;B) = H(A) +H(B) −H(A,B) (A.4)

= −p log(p) − (1 − q) log(1 − q) + (p − q) log(p − q) (A.5)

Let � = p − q.

I(A;B) = −p log(p) − (1 − (p − �)) log(1 − (p − �)) + � log(�)

)I(A;B)

)�
= log(

�

1 − p + �
)

H(A) +H(B) = −p log(p) − (1 − p) log(1 − p) − (p − �) log(p − �)

− (1 − (p − �)) log(1 − (p − �))

)(H(A) +H(B))

)�
= log(

p − �

1 − p + �
)

NMI(A,B) = 2 ×
I(A;B)

H(A)+H(B)
, therefore 

)NMI(A,B)

)�
=

log(
�

1−p+�
)(H(A) +H(B)) + log(

p−�

1−p+�
)I(A;B)

(H(A) +H(B))2
(A.6)

Plug in Eq (A.4), we also have 
)NMI(A,B)

)�

=
(log(

�

1−p+�
) + log(

p−�

1−p+�
))(H(A) +H(B)) − log(

p−�

1−p+�
)H(A,B)

(H(A) +H(B))2

(A.7)

There are two cases:

Table B.4
Greedy deduplication increases diversity as the maximum allowed overlap 
� decreases. At � = 0.90, average pairwise Jaccard drops by an order of 
magnitude compared to no deduplication (� = 1.0), and continues to fall with 
stricter thresholds.
 � Average pairwise similarity 
 1.00 0.166626  
 0.95 0.023640  
 0.90 0.016797  
 0.50 0.004768  
 0.10 0.001252  

Case 1: p − � < 0.5. Since denominator of Eq (A.6), H(A),H(B),

I(A;B) are all non negative, we only need to check the sign of the 
numerator. When p < 1 and � ≥ 0, �

1−p+�
< 1, so log( �

1−p+�
) < 0, and the 

first term in the numerator is negative. When p−� < 0.5, p−� < 1−(p−�), 
so log( p−�

1−p+�
) < 0, and the second term in the numerator is also negative. 

So )NMI(A,B)

)�
< 0.

Case 2: p − � ≥ 0.5. Similarly, we analyze the sign of the numerator 
of Eq.  (A.7). When p− � ≥ 0.5 > 0, so the second term in the numerator 
is negative. Let us look at the first term:

log(
�

1 − p + �
) + log(

p − �

1 − p + �
) = log(

�(p − �)

(1 − p + �)2
)

< log(
�

1 − p + �
) < 0,

where the first inequality follows from p− � > 1− p+ �, and the second 
inequality follows from p < 1. Therefore, the first term in the numerator 
of Eq.  (A.6) is also negative. So overall )NMI(A,B)

)�
< 0. □

Appendix B. Effect of greedy deduplication on itemset diversity

Fig.  B.9 provides a qualitative example of the greedy deduplication 
step and quantifies its effect on result diversity. The example shows 
how near-duplicate itemsets (e.g., {bookcase = 1, person_12 = 0} 
and {bookcase = 1}) are removed while preserving representative, 
high-divergence slices. 

To assess diversity quantitatively, we compute the average pairwise 
Jaccard similarity among the top-50 itemsets (ranked by accuracy 
divergence) after applying greedy deduplication at varying maximum 
overlap thresholds �. Results are from our COCO 2017 Validation 
dataset under 500 concept columns and 36,780 rows (bounding-box 
pairs). Lower Jaccard similarity indicates higher diversity.

Overall, Table  B.4 shows that greedy deduplication substantially 
increases itemset diversity. At � = 0.5 we observe a ∼97% reduction in 
average pairwise overlap versus no deduplication (0.0048 vs. 0.1666). 
We therefore adopt � = 0.5 as the default threshold in our experiments.

Appendix C. Detailed description of datasets and slice settings

COCO 2014. The COCO 2014 Validation dataset is a subset of the larger 
Microsoft Common Objects in Context (COCO) dataset, covering a wide 
range of objects and scenes for a total of 40504 images. Furthermore, 
each image is annotated with five descriptive captions, which we 
leverage in the semantic slice generation process. We chose the 2014 
split over the 2017 split since our detection model was directly trained 
on the 2017 split.

For generating semantic slices, we focus on the top 15 object 
classes in the dataset, ranked by the frequency of their annotations. 
Specifically, among these top classes, we generate semantic slices by:

• Filtering Images: For each class, we filter down to images con-
taining at least one ground truth instance of that object class.

• Generating Image Representations: We represent each image 
by embedding its captions in the CLIP embedding space. For a 
single image, we average the embeddings for each caption and 
normalize the resultant vector, denoted as vi.
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Fig. B.9. Greedy deduplication example. Left: itemsets without any deduplication. Right: itemsets after greedy deduplication using an overlap threshold � = 0.5.

Fig. C.10. Example semantic ground truth slices generated from the COCO 2014 dataset. 

Fig. C.11. Example color slices generated from the COCO 2014 dataset.  (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

• Generating Contexts: We use the template ‘‘[object class] next to 
[setting]’’ to create categories for the slices. We extract settings by 
considering the most frequent words in the captions of the object-
filtered dataset, removing stop words (e.g., ‘‘the’’, ‘‘a’’, ‘‘of’’) and 
choosing a selection of the top nouns as settings.

• Generating Context Representations: We format each context 
string into template strings (e.g., ‘‘a photo of a big’’, ‘‘a photo of 
a small’’) and generate embeddings using CLIP. By using these 
templates, we can generate a variety of contexts that describe 
the object class in different ways, such as its size, quality, or 

appearance. We average the CLIP embeddings and normalize the 
resultant vector, denoted as cj , representing one context.

• Finding Closest Semantic Slice: To categorize the image rep-
resentations, we find the context vector, cj , with the smallest 
distance to the image vector, vi, indicating the closest semantic 
slice. Once the closest semantic slice is determined, every instance 
of the object class in that image is assigned to that category.

Fig.  C.10 shows a few examples of semantic ground truth slices 
generated via this approach. For the three metadata-based settings, 
we again use the 15 classes with the most number of labels. For 
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Fig. C.12. Example semantic ground truth slices generated from the Visual Genome dataset. 

both size and aspect ratio bounding box metadata settings, we bucket 
bounding boxes into 5–15 different bins according to their size/aspect 
ratio. For color clusters, we extract 50 × 50 square crops of ground-
truth bounding boxes and run them through the K-Means clustering 
algorithm for k = 20 total clusters. Fig.  C.11 shows examples of color 
slices generated for this dataset.
Visual Genome. The Visual Genome (VG) dataset is a large-scale 
image dataset covering a wide range of everyday scenes and objects, 
with more than 108,000 images, each annotated with dense object 
annotations, attributes, and relationship graphs. Instead of using all 
108,000 images, we start with the first half of the dataset VG_100K 
(where the second half is VG_100K_2) and filter it down the images 
further to include only images that have any of the 80 COCO labels. 
Additionally, VG is known to have image overlaps with COCO. As such, 
we ignore any of the images that have an associated COCO ‘‘id’’ with 
it.

In order to generate semantic slices we perform the following steps:
• Filtering Images: For each class, we filter down to images con-
taining at least one ground truth instance of that object class.

• Image Representation: We generate a set of captions for each 
image by selecting a diverse set of regions within the image. This 
selection includes:

∙ A subset of the largest regions by bounding box area, rep-
resenting the most prominent objects.

∙ Middle-sized regions, providing contextual information and 
additional details.

∙ A random sample of the smallest regions, offering diversity 
and capturing less prominent elements.

We concatenate the phrases from these regions in groups of three 
to generate a set of captions for the image. This helps to form 
captions that encapsulate the image’s coarse and fine details. We 
embed these captions in the CLIP embedding space and take the 
average of the embeddings to represent the image. This average 
serves as the image representation vi.

• Generating Contexts: We use the text template ‘‘[object class] 
next to [settings]’’ to generate contexts for the slice categories. 
We find the settings by selecting from the most common nouns 
found in the phrases associated with each region in an image after 
filtering out stop words.

• Context Representation: We format each context into template 
strings (e.g., ‘‘a photo of’’, ‘‘a photo of a small’’) to generate 

a variety of contexts that describe the object class in different 
ways, such as its size, quality, or appearance. We generate em-
beddings using CLIP for each context template, average the CLIP 
embeddings, and normalize the resultant vector, denoted as cj , 
representing one context.

• Finding Closest Semantic Slice: To categorize the image repre-
sentations, we find the context vector cj with the smallest distance 
to the image vector vi, indicating the closest semantic slice. This 
is done by calculating the L2 distance ‖vi − cj‖

2 and selecting the 
context vector cj that minimizes this distance. Once the closest 
semantic slice is determined, every instance of the object class in 
that image is assigned to that category.

We display a few of these semantic slices in Fig.  C.12. For the three 
metadata based settings, we do the same as with the COCO dataset, 
bucketing the different sizes and aspect ratios for the bounding boxes, 
and using K-Means to form color clusters.

BDD100K. The BDD100K dataset consists of 100,000 images taken 
from the perspective of a car, featuring diverse scenes across various 
times and conditions. Unlike COCO and VGG, BDD100K has a very 
limited number of classes, most of which overlap with COCO’s. To make 
sure BDD100K’s detection annotations align with those of our object 
detector, we remove the ‘‘traffic sign’’ label and merge ‘‘rider’’ and 
‘‘pedestrian’’ into ‘‘person’’. We further created our own 10K split of 
BDD100K after filtering for images that contain object-detections after 
finding that the provided BDD10K did not always have detection labels.

From this subset of BDD data, we then created semantic slices based 
directly on metadata provided by BDD (no CLIP needed). Specifically, 
we used the following metadata attributes to create semantic slices:

• timeofday: daytime, night, dawn, dusk, undefined
• weather: rainy, snowy, clear, overcast, partly cloudy, foggy, un-
defined

• scene: tunnel, residential, parking lot, city street, gas stations, 
highway, undefined

This leads to slices of the form ‘‘[object class] in [metadata attribute]’’. 
We display a few of these semantic slices in Fig.  C.13.

For the three metadata based settings, we do the same as with the 
COCO dataset, bucketing the different sizes and aspect ratios for the 
bounding boxes, and using K-Means to form color clusters.
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Fig. C.13. Example semantic ground truth slices generated from the BDD dataset. The first line under each image represents the semantic setting, the second 
line represents the target class.

Fig. D.14.  Visualization panel for comparing concept absences versus presences. The left panel shows an itemset with concept absence, {pavement_3 = 0, car_2 
= 1}, where glare from car lights introduces visual noise and obscures the roadway, resulting in poor IoU. The right panel displays the alternative scenario, 
{pavement_3 = 1, car_2 = 1}, where the road is clearly present and the model achieves high IoU for the car.

Appendix D. Visualization of concept absence

To help users interpret the effects of concept absences, we introduce 
a comparison-based visualization mechanism to our interface as seen in 
Fig.  D.14. Specifically, when a concept is absent, users can now view an 
alternative visualization in which that concept is present, while keeping 
the rest of the itemset unchanged. This side-by-side presentation allows 

users to better contextualize how the presence or absence of specific 
concepts influences the overall interpretation.

Appendix E. Comparison with saliency maps

While saliency maps provide pixel-level importance for individual 
predictions, VCR visual concepts offer semantic, segment-level repre-
sentations that recur across images to identify systematic error patterns. 
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(a) Original image with Faster R-CNN detections.

  
(b) GradCAM applied to DETR model.

 

 
(c) Eigen-CAM applied to Faster R-CNN.

  
(d) SAM segmentations as visual concepts.

 

Fig. E.15. Comparison between saliency maps and visual concepts. Saliency maps (b, c) provide pixel-level attention for individual predictions without semantic 
labels, while VCR’s visual concepts (d) produce semantically-labeled segments that can be mined across images to identify systematic error patterns.

Fig.  E.15 illustrates this distinction using the same input image. The 
original image (a) shows the ground truth bounding boxes detected by 
the model. Both GradCAM applied to DETR [86] (b) and Eigen-CAM 
applied to Faster R-CNN (c) highlight pixel-level regions of impor-
tance for individual predictions, but these heatmaps are prediction-
specific and lack semantic labels. Note that different saliency meth-
ods are required for different architectures: DETR’s transformer-based 
architecture supports gradient-based methods like GradCAM, while 
Faster R-CNN requires gradient-free alternatives like Eigen-CAM. In 
contrast, our SAM-based segmentation approach (d) produces inter-
pretable, semantically-coherent segments (e.g., ‘‘car’’, ‘‘road’’, ‘‘sky’’) 
that serve as visual concepts. These concepts can be mined across 
images to discover systematic failure patterns, whereas saliency maps 
explain only individual decisions without revealing recurring error 
correlations.

Data availability

Data will be made available on request.

References

[1] S. Eyuboglu, M. Varma, K. Saab, J.-B. Delbrouck, C. Lee-Messer, J. Dunnmon, J. 
Zou, C. Ré, Domino: Discovering systematic errors with cross-modal embeddings, 
2022, arXiv preprint arXiv:2203.14960.

[2] Y. Chung, T. Kraska, N. Polyzotis, K.H. Tae, S.E. Whang, Slice finder: Automated 
data slicing for model validation, in: 2019 IEEE 35th International Conference 
on Data Engineering, ICDE, IEEE, 2019, pp. 1550–1553.

[3] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, A. Galstyan, A survey on bias 
and fairness in machine learning, ACM Comput. Surv. 54 (6) (2021) 1–35.

[4] T. De Vries, I. Misra, C. Wang, L. Van der Maaten, Does object recognition work 
for everyone? in: Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition Workshops, 2019, pp. 52–59.

[5] K. Xiao, L. Engstrom, A. Ilyas, A. Madry, Noise or signal: The role of image 
backgrounds in object recognition, 2020, arXiv preprint arXiv:2006.09994.

[6] A. Barbu, D. Mayo, J. Alverio, W. Luo, C. Wang, D. Gutfreund, J. Tenenbaum, 
B. Katz, Objectnet: A large-scale bias-controlled dataset for pushing the limits of 
object recognition models, Adv. Neural Inf. Process. Syst. 32 (2019).

[7] J. Buolamwini, T. Gebru, Gender shades: Intersectional accuracy disparities in 
commercial gender classification, in: Conference on Fairness, Accountability and 
Transparency, PMLR, 2018, pp. 77–91.

[8] R. Shetty, B. Schiele, M. Fritz, Not using the car to see the sidewalk–quantifying 
and controlling the effects of context in classification and segmentation, in: 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, 2019, pp. 8218–8226.

[9] A.J. DeGrave, J.D. Janizek, S.-I. Lee, AI for radiographic COVID-19 detection 
selects shortcuts over signal, Nat. Mach. Intell. 3 (7) (2021) 610–619.

[10] A. Bissoto, E. Valle, S. Avila, Debiasing skin lesion datasets and models? not 
so fast, in: Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition Workshops, 2020, pp. 740–741.

[11] R. Zellers, Y. Bisk, R. Schwartz, Y. Choi, Swag: A large-scale adversarial dataset 
for grounded commonsense inference, 2018, arXiv preprint arXiv:1808.05326.

[12] K. Karkkainen, J. Joo, Fairface: Face attribute dataset for balanced race, gender, 
and age for bias measurement and mitigation, in: Proceedings of the IEEE/CVF 
Winter Conference on Applications of Computer Vision, 2021, pp. 1548–1558.

[13] Y. Chung, T. Kraska, N. Polyzotis, K.H. Tae, S.E. Whang, Automated data slicing 
for model validation: A big data-ai integration approach, IEEE Trans. Knowl. 
Data Eng. 32 (12) (2019) 2284–2296.

[14] E. Pastor, L. De Alfaro, E. Baralis, Looking for trouble: Analyzing classifier 
behavior via pattern divergence, in: Proceedings of the 2021 International 
Conference on Management of Data, 2021, pp. 1400–1412.

[15] S. Sagadeeva, M. Boehm, Sliceline: Fast, linear-algebra-based slice finding for 
ml model debugging, in: Proceedings of the 2021 International Conference on 
Management of Data, 2021, pp. 2290–2299.

[16] P. Bailis, E. Gan, S. Madden, D. Narayanan, K. Rong, S. Suri, Macrobase: 
Prioritizing attention in fast data, in: Proceedings of the 2017 ACM International 
Conference on Management of Data, 2017, pp. 541–556.

Information Systems 138 (2026) 102652 

16 



J.J. Xu et al.

[17] E. Pastor, E. Baralis, L. de Alfaro, et al., A hierarchical approach to anomalous 
subgroup discovery, in: 39th IEEE International Conference on Data Engineering, 
ICDE 2023, Anaheim, California, USA, April 3–7, 2023., IEEE, 2023.

[18] Z. Liu, P. Luo, X. Wang, X. Tang, Deep learning face attributes in the wild, in: 
Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 
3730–3738.

[19] G. Csurka, C. Dance, L. Fan, J. Willamowski, C. Bray, Visual categorization with 
bags of keypoints, in: Workshop on Statistical Learning in Computer Vision, 
ECCV, vol. 1, Prague, 2004, pp. 1–2.

[20] F. Perronnin, C. Dance, Fisher kernels on visual vocabularies for image catego-
rization, in: 2007 IEEE Conference on Computer Vision and Pattern Recognition, 
IEEE, 2007, pp. 1–8.

[21] L. Fei-Fei, P. Perona, A bayesian hierarchical model for learning natural scene 
categories, in: 2005 IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, CVPR’05, vol. 2, IEEE, 2005, pp. 524–531.

[22] D.G. Lowe, Object recognition from local scale-invariant features, in: Proceedings 
of the Seventh IEEE International Conference on Computer Vision, vol. 2, Ieee, 
1999, pp. 1150–1157.

[23] D. Bau, B. Zhou, A. Khosla, A. Oliva, A. Torralba, Network dissection: Quanti-
fying interpretability of deep visual representations, in: Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, 2017, pp. 6541–6549.

[24] V. Dadvar, L. Golab, D. Srivastava, POEM: Pattern-oriented explanations of 
convolutional neural networks, Proc. VLDB Endow. 16 (11) (2023) 3192–3200.

[25] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. 
Whitehead, A.C. Berg, W.-Y. Lo, et al., Segment anything, 2023, arXiv preprint 
arXiv:2304.02643.

[26] X. Dong, J. Bao, Y. Zheng, T. Zhang, D. Chen, H. Yang, M. Zeng, W. Zhang, L. 
Yuan, D. Chen, et al., Maskclip: Masked self-distillation advances contrastive 
language-image pretraining, in: Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 2023, pp. 10995–11005.

[27] B. Zhou, Y. Sun, D. Bau, A. Torralba, Interpretable basis decomposition for visual 
explanation, in: Proceedings of the European Conference on Computer Vision, 
ECCV, 2018, pp. 119–134.

[28] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, et al., 
Interpretability beyond feature attribution: Quantitative testing with concept 
activation vectors (tcav), in: International Conference on Machine Learning, 
PMLR, 2018, pp. 2668–2677.

[29] Z. Zhao, P. Xu, C. Scheidegger, L. Ren, Human-in-the-loop extraction of inter-
pretable concepts in deep learning models, IEEE Trans. Vis. Comput. Graphics 
28 (1) (2021) 780–790.

[30] J. Huang, A. Mishra, B.C. Kwon, C. Bryan, ConceptExplainer: Interactive expla-
nation for deep neural networks from a concept perspective, IEEE Trans. Vis. 
Comput. Graphics 29 (1) (2022) 831–841.

[31] Y. Ahn, Y.-R. Lin, P. Xu, Z. Dai, ESCAPE: Countering systematic errors from 
machine’s blind spots via interactive visual analysis, in: Proceedings of the 2023 
CHI Conference on Human Factors in Computing Systems, CHI ’23, Association 
for Computing Machinery, New York, NY, USA, 2023, http://dx.doi.org/10.1145/
3544548.3581373.

[32] E. Slyman, M. Kahng, S. Lee, VLSlice: Interactive vision-and-language slice 
discovery, in: International Conference on Computer Vision, ICCV, 2023, URL 
https://arxiv.org/pdf/2309.06703.pdf.

[33] A. Ghorbani, J. Wexler, J.Y. Zou, B. Kim, Towards automatic concept-based 
explanations, Adv. Neural Inf. Process. Syst. 32 (2019).

[34] H. Park, N. Das, R. Duggal, A.P. Wright, O. Shaikh, F. Hohman, D.H.P. Chau, 
Neurocartography: Scalable automatic visual summarization of concepts in deep 
neural networks, IEEE Trans. Vis. Comput. Graphics 28 (1) (2021) 813–823.

[35] M. Hoque, W. He, A. Shekar, L. Gou, L. Ren, Visual concept programming: A 
visual analytics approach to injecting human intelligence at scale, IEEE Trans. 
Vis. Comput. Graphics 29 (01) (2023) 74–83, http://dx.doi.org/10.1109/TVCG.
2022.3209466.

[36] J. Vogel, B. Schiele, Semantic modeling of natural scenes for content-based image 
retrieval, Int. J. Comput. Vis. 72 (2007) 133–157.

[37] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L. 
Zitnick, Microsoft coco: Common objects in context, in: Computer Vision–ECCV 
2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, 
Proceedings, Part V 13, Springer, 2014, pp. 740–755.

[38] A. Radford, J.W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, 
A. Askell, P. Mishkin, J. Clark, et al., Learning transferable visual models from 
natural language supervision, in: International Conference on Machine Learning, 
PMLR, 2021, pp. 8748–8763.

[39] F. Liang, B. Wu, X. Dai, K. Li, Y. Zhao, H. Zhang, P. Zhang, P. Vajda, D. 
Marculescu, Open-vocabulary semantic segmentation with mask-adapted clip, 
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, 2023, pp. 7061–7070.

[40] D. Bolya, S. Foley, J. Hays, J. Hoffman, Tide: A general toolbox for identifying 
object detection errors, in: Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16, Springer, 
2020, pp. 558–573.

[41] L. McInnes, J. Healy, J. Melville, Umap: Uniform manifold approximation and 
projection for dimension reduction, 2018, arXiv preprint arXiv:1802.03426.

[42] J.J. Xu, S. Dhanani, J.P. Ono, W. He, L. Ren, K. Rong, Demonstration of 
VCR: A tabular data slicing approach to understanding object detection model 
performance, Proc. VLDB Endow. 17 (12) (2024) 4453–4456.

[43] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation, 
ACM Sigmod Rec. 29 (2) (2000) 1–12.

[44] D. Hoiem, Y. Chodpathumwan, Q. Dai, Diagnosing error in object detectors, in: 
European Conference on Computer Vision, Springer, 2012, pp. 340–353.

[45] G. Plumb, N. Johnson, A. Cabrera, A. Talwalkar, Towards a more rigorous science 
of blindspot discovery in image classification models, Trans. Mach. Learn. Res. 
(2023).

[46] S. Joshi, Y. Yang, Y. Xue, W. Yang, B. Mirzasoleiman, Towards mitigating 
spurious correlations in the wild: A benchmark & a more realistic dataset, 2023, 
arXiv preprint arXiv:2306.11957.

[47] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. 
Kalantidis, L.-J. Li, D.A. Shamma, et al., Visual genome: Connecting language 
and vision using crowdsourced dense image annotations, Int. J. Comput. Vis. 
123 (2017) 32–73.

[48] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, T. Darrell, 
Bdd100k: A diverse driving dataset for heterogeneous multitask learning, in: 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, 2020, pp. 2636–2645.

[49] MMDetection Github, 2024, https://github.com/open-mmlab/mmdetection. (Ac-
cessed Februrary 2024).

[50] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. 
Xu, et al., MMDetection: Open mmlab detection toolbox and benchmark, 2019, 
arXiv preprint arXiv:1906.07155.

[51] X. Zhang, J.P. Ono, H. Song, L. Gou, K.-L. Ma, L. Ren, SliceTeller: A data slice-
driven approach for machine learning model validation, IEEE Trans. Vis. Comput. 
Graphics 29 (1) (2022) 842–852.

[52] Seeing in concepts: Enabling structured image representation and analysis with 
visual concepts (technical report), 2024, https://anonymous.4open.science/r/
seeing-in-concepts-4495/docs/tr.pdf. (Accessed October 2024).

[53] DivExplorer github, 2024, https://github.com/divexplorer/divexplorer. (Accessed 
Februrary 2024).

[54] SliceLine github, 2024, https://github.com/DataDome/sliceline. (Accessed Febru-
rary 2024).

[55] E.S. Ortigossa, T. Gonçalves, L.G. Nonato, Explainable artificial intelligence 
(xai)—from theory to methods and applications, IEEE Access 12 (2024) 
80799–80846.

[56] S. Ali, T. Abuhmed, S. El-Sappagh, K. Muhammad, J.M. Alonso-Moral, R. 
Confalonieri, R. Guidotti, J. Del Ser, N. Díaz-Rodríguez, F. Herrera, Explainable 
artificial intelligence (XAI): What we know and what is left to attain trustworthy 
artificial intelligence, Inf. Fusion 99 (2023) 101805.

[57] M. Nauta, J. Trienes, S. Pathak, E. Nguyen, M. Peters, Y. Schmitt, J. Schlötterer, 
M. Van Keulen, C. Seifert, From anecdotal evidence to quantitative evaluation 
methods: A systematic review on evaluating explainable ai, ACM Comput. Surv. 
55 (13s) (2023) 1–42.

[58] G.P. Schmitz, C. Aldrich, F.S. Gouws, ANN-DT: An algorithm for extraction of 
decision trees from artificial neural networks, IEEE Trans. Neural Netw. 10 (6) 
(1999) 1392–1401.

[59] Y. Lou, R. Caruana, J. Gehrke, G. Hooker, Accurate intelligible models with 
pairwise interactions, in: Proceedings of the 19th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, 2013, pp. 623–631.

[60] N. Papernot, P. McDaniel, Deep k-nearest neighbors: Towards confident, 
interpretable and robust deep learning, 2018, arXiv preprint arXiv:1803.04765.

[61] G. Casalicchio, C. Molnar, B. Bischl, Visualizing the feature importance for black 
box models, in: Joint European Conference on Machine Learning and Knowledge 
Discovery in Databases, Springer, 2018, pp. 655–670.

[62] M. Wojtas, K. Chen, Feature importance ranking for deep learning, Adv. Neural 
Inf. Process. Syst. 33 (2020) 5105–5114.

[63] M.T. Ribeiro, S. Singh, C. Guestrin, "Why should i trust you?" explaining 
the predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining, 2016, pp. 
1135–1144.

[64] S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, 
Adv. Neural Inf. Process. Syst. 30 (2017).

[65] S. Wachter, B. Mittelstadt, C. Russell, Counterfactual explanations without 
opening the black box: Automated decisions and the GDPR, Harv. JL & Tech. 
31 (2017) 841.

[66] R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, F. Giannotti, 
Local rule-based explanations of black box decision systems, 2018, arXiv preprint 
arXiv:1805.10820.

[67] R. Poyiadzi, K. Sokol, R. Santos-Rodriguez, T. De Bie, P. Flach, FACE: Feasible 
and actionable counterfactual explanations, in: Proceedings of the AAAI/ACM 
Conference on AI, Ethics, and Society, 2020, pp. 344–350.

[68] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-
cam: Visual explanations from deep networks via gradient-based localization, in: 
Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 
618–626.

Information Systems 138 (2026) 102652 

17 



J.J. Xu et al.

[69] V. Petsiuk, A. Das, K. Saenko, Rise: Randomized input sampling for explanation 
of black-box models, 2018, arXiv preprint arXiv:1806.07421.

[70] F. Doshi-Velez, B. Kim, Towards a rigorous science of interpretable machine 
learning, 2017, arXiv preprint arXiv:1702.08608.

[71] D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, G.-Z. Yang, XAI—Explainable 
artificial intelligence, Sci. Robot. 4 (37) (2019) eaay7120.

[72] M.L. Leavitt, A. Morcos, Towards falsifiable interpretability research, 2020, arXiv 
preprint arXiv:2010.12016.

[73] F. Doshi-Velez, B. Kim, Considerations for evaluation and generalization in 
interpretable machine learning, in: Explainable and Interpretable Models in 
Computer Vision and Machine Learning, Springer, 2018, pp. 3–17.

[74] A. Jacovi, Y. Goldberg, Towards faithfully interpretable NLP systems: How should 
we define and evaluate faithfulness?, 2020, arXiv preprint arXiv:2004.03685.

[75] R. Agrawal, R. Srikant, et al., Fast algorithms for mining association rules, in: 
Proc. 20th Int. Conf. Very Large Data Bases, VLDB, vol. 1215, Santiago, Chile, 
1994, pp. 487–499.

[76] C. Chen, Y. Guo, F. Tian, S. Liu, W. Yang, Z. Wang, J. Wu, H. Su, H. Pfister, 
S. Liu, A unified interactive model evaluation for classification, object detection, 
and instance segmentation in computer vision, IEEE Trans. Vis. Comput. Graphics 
30 (1) (2024) 76–86, http://dx.doi.org/10.1109/TVCG.2023.3326588.

[77] N. Sohoni, J. Dunnmon, G. Angus, A. Gu, C. Ré, No subclass left behind: Fine-
grained robustness in coarse-grained classification problems, Adv. Neural Inf. 
Process. Syst. 33 (2020) 19339–19352.

[78] G. d’Eon, J. d’Eon, J.R. Wright, K. Leyton-Brown, The spotlight: A general method 
for discovering systematic errors in deep learning models, in: Proceedings of the 
2022 ACM Conference on Fairness, Accountability, and Transparency, 2022, pp. 
1962–1981.

[79] S. Yenamandra, P. Ramesh, V. Prabhu, J. Hoffman, FACTS: First amplify corre-
lations and then slice to discover bias, in: IEEE/CVF International Conference in 
Computer Vision, ICCV, 2023.

[80] A. Sun, P. Ma, Y. Yuan, S. Wang, Explain any concept: Segment anything meets 
concept-based explanation, 2023, arXiv preprint arXiv:2305.10289.

[81] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, J. Sun, Unified perceptual parsing for scene 
understanding, in: Proceedings of the European Conference on Computer Vision, 
ECCV, 2018, pp. 418–434.

[82] A. Chattopadhay, A. Sarkar, P. Howlader, V.N. Balasubramanian, Grad-cam++: 
Generalized gradient-based visual explanations for deep convolutional networks, 
in: 2018 IEEE Winter Conference on Applications of Computer Vision, WACV, 
IEEE, 2018, pp. 839–847.

[83] R.L. Draelos, L. Carin, Use HiResCAM instead of grad-CAM for faithful ex-
planations of convolutional neural networks, 2020, arXiv preprint arXiv:2011.
08891.

[84] M.B. Muhammad, M. Yeasin, Eigen-cam: Class activation map using principal 
components, in: 2020 International Joint Conference on Neural Networks, IJCNN, 
IEEE, 2020, pp. 1–7.

[85] H.G. Ramaswamy, et al., Ablation-cam: Visual explanations for deep convolu-
tional network via gradient-free localization, in: Proceedings of the IEEE/CVF 
Winter Conference on Applications of Computer Vision, 2020, pp. 983–991.

[86] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, J. Dai, Deformable detr: Deformable 
transformers for end-to-end object detection, 2020, arXiv preprint arXiv:2010.
04159.

Information Systems 138 (2026) 102652 

18 


	VCR: Interpretable and interactive debugging of object detection models with visual concepts
	Introduction
	Visual Concepts
	Definition and Design Considerations
	Visual Concept Generation Pipeline

	VCR: Overview and user workflow
	Background: Object-Detection
	User Interface and Workflow

	Concept-based Slice Discovery
	VCR: Slice discovery pipeline
	Challenge: Supporting Concept Absences

	Evaluation
	Evaluation Methodology
	Quantitative Comparison
	Qualitative Evaluation with Domain Experts

	Related Work
	Explainable Artificial Intelligence
	Slice Discovery Methods
	Visual Concept Discovery

	Discussion and Future Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. Mutual Information Analysis
	Appendix B. Effect of Greedy Deduplication on Itemset Diversity 
	Appendix C. Detailed Description of Datasets and Slice Settings
	Appendix D. Visualization of Concept Absence
	Appendix E. Comparison with Saliency Maps
	Data availability
	References


