Information Systems 138 (2026) 102652

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

VCR: Interpretable and interactive debugging of object detection models
with visual concepts™

Jie Jeff Xu®®*, Saahir Dhanani ?, Jorge Piazentin Ono®, Wenbin He", Liu Ren", Kexin Rong?

2 Georgia Institute of Technology, Atlanta, 30324, GA, USA
Y Bosch Center for Artificial Intelligence (BCAI), Bosch Research North America, Sunnyvale, 94085, CA, USA

ARTICLE INFO ABSTRACT

Keywords:

Slice discovery methods
Visual concepts
Human-in-the-loop

Computer vision models can make systematic errors, performing well on average but substantially worse on
particular subsets (or slices) of data. In this work, we introduce Visual Concept Reviewer (VCR), a human-
in-the-loop slice discovery framework that enables practitioners to interactively discover and understand
systematic errors in object-detection models via novel use of visual concepts-semantically meaningful and
frequently recurring image segments representing objects, parts, or abstract properties.

Leveraging recent advances in vision foundation models, VCR automatically generates segment-level visual
concepts that serve as interpretable primitives for diagnosing issues in object-detection models, while also
supporting lightweight human supervision when needed. VCR combines visual concepts with metadata in a
tabular format and adapts frequent itemset mining techniques to identify common absences and presences of
concepts associated with poor model performance at interactive speeds. VCR also keeps humans in the loop for
interpretation and refinement at each step of the slice discovery process. We demonstrate VCR’s effectiveness
and scalability through a new evaluation benchmark with 1713 slice discovery settings across three datasets.
A user study with six expert industry machine learning scientists and engineers provides qualitative evidence

of VCR’s utility in real-world workflows.

1. Introduction

Computer vision models for object-detection and image classifica-
tion are widely deployed in critical applications such as autonomous
driving, medical imaging, surveillance systems, and content modera-
tion. While these models may achieve good average performance, they
can exhibit systematic errors on specific subsets (or slices) of data [1-
3]. Prior work observed that object-recognition systems perform poorly
on household items common in low-income countries, with up to a
20% difference in recognition accuracy between images collected in
high- and low-income regions [4]. These discrepancies arise not only
from appearance differences within the same object categories but also
from contextual variations in which objects typically appear. Similar
performance gaps have been observed in various applications includ-
ing object recognition [5,6], image classification [7,8], and medical
diagnosis [9,10]. Detecting these systematic errors could help guide
practitioners to update training datasets and mitigate unwanted biases
in models [11,12].

For structured, tabular datasets, identifying problematic data slices
is relatively straightforward. Tabular slice discovery methods can sum-
marize data slices using attribute-value pairs like {age < 20, gender =
Female}, and mine combinations of attributes that correlate with model
errors [2,13-17]. The power of this approach lies in enabling a combi-
natorial explosion of possible patterns from a limited set of attributes.
This raises the question of whether we can use similar image at-
tributes to identify coherent and semantically meaningful data slices
in unstructured image datasets. Datasets with rich annotations, like
CelebA’s 40 labeled attributes per image (e.g., eyeglasses, smiling) [18],
illustrate the potential of this approach for vision. Although most
real-world datasets lack such structured annotations, images exhibit
compositional structure comprising objects, object parts, and spatial re-
lationships, which often correlate with systematic failures. This requires
attributes that can capture these compositional elements and are also
interpretable to users.

Our key insight is to leverage “visual concepts” as the core, human-
interpretable primitives for explaining behaviors of vision models.
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Fig. 1. Example visual concepts that represent objects, parts of objects, as well as abstract properties such as color and material. Visual concepts in each image
are highlighted in red and their corresponding labels are attached below. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

While visual concepts have various definitions across the literature [19-
24], in this work we define them as semantically meaningful and fre-
quently recurring image segments that can represent objects, object parts,
or abstract properties like color and material, as shown in Fig. 1.
These concepts serve as suitable primitives for slice discovery for two
reasons: (1) their semantic meaning allows practitioners to define and
understand slices in intuitive terms, similar to tabular attributes, (2)
their recurrence across the dataset enables the discovery of systematic
patterns rather than isolated failures.

We introduce Visual Concept Reviewer (VCR), framework that
operationalizes this idea for discovering systematic errors in object-
detection models. VCRbuilds upon recent advances in vision foundation
models [25,26] to automatically extract and label visual concepts, such
as “pole”, “wheel”, and “pedestrian” in a driving dataset, while still
allowing light human supervision for refinement. It then presents these
concepts to a user through an interactive interface, which enables users
to explore extracted concepts through 2D visualizations and adjust
concept granularity and definition, and guide the analysis process using
their domain expertise. VCR augments rather than replaces human
experts, automating the identification of salient visual patterns in large
datasets while keeping humans in the loop for interpretation and
refinement.

To discover problematic data slices, VCR analyzes the interactions
between these visual concepts and object-detection models’ bounding
box predictions. For example, VCR may explain a set of poor detection
results for the “car” class with the presence of the visual concept “pole”
that occludes the view. While VCR builds on frequent itemset mining
techniques to find combinations of visual concepts highly correlated
with poor model performance, a key difference is its ability to consider
the absence of concepts, which can reveal critical failure modes. For
example, if a model relies on the concept “wheel” to identify cars, its
absence could lead to misclassifications. However, naively supporting
concepts absences could lead to a combinatorial explosion of trivial
mining results dominated by absences, as concept absence is common.
To improve the interactivity of the workflow, VCR introduces pruning
optimizations based on mutual information analysis, which speeds up
the mining performance by up to two orders of magnitude in our
experiments.

In summary, we contribute:

» VCR, a human-in-the-loop slice discovery framework for object-
detection models that combines automated visual concept extrac-
tion with interactive exploration to uncover systematic model
failures.

A new evaluation benchmark for slice discovery methods in
object-detection, which includes 1713 slice discovery settings
across three widely used datasets. On this benchmark, VCR con-
sistently outperforms existing methods in recovering ground truth
error patterns.

A user study with six industry machine learning scientists and
engineers, providing qualitative evidence that VCR supports real-
world model understanding workflows and helps users identify
meaningful error patterns.

2. Visual concepts

In this section, we introduce the design considerations behind the
notion of visual concepts used in this work (Section 2.1) and describe
a preprocessing pipeline that automatically extracts visual concepts,
while allowing light human supervision for refinement (Section 2.2).

2.1. Definition and design considerations

Visual concepts have been defined in various ways across the lit-
erature. Some methods require users to provide labeled examples to
define concepts of interest [23,27,28] or interactively collaborate with
the system to identify concepts [29-32]. Others consider neurons in
deep neural networks with similar activation maps as defining visual
concepts [24,33,34] or treat semantically meaningful regions of images
as visual concepts [35].

In this work, we define visual concepts as (1) semantically mean-
ingful and (2) commonly occurring segments of natural images. These
two properties of visual concepts make them suitable primitives for
identifying and explaining systematic errors: semantically meaningful-
ness improves the interpretability of results, while common occurrence
enables the capture of systematic behaviors.

Semantically Meaningful. The first aspect of our definition, semantic
meaningfulness, is crucial for visual concepts to serve as effective build-
ing blocks for image understanding. This requires image decomposi-
tion methods that respect object boundaries. Grid-based decomposition
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methods [36] offer an overly simplistic approach by breaking images
into individual squares, failing this requirement since these boundaries
rarely align with object boundaries; objects may span multiple cells
and be fragmented into semantically ambiguous portions. We instead
leverage image segmentation techniques, which are explicitly designed
to group pixels into coherent, semantically meaningful regions. Using
segmentation masks as the foundation for visual concepts aims to
align each concept with a meaningful object or visual pattern, though
segmentation quality may vary depending on image characteristics and
model performance.

Common Occurrence. The second aspect, common occurrence, is
important as it allows us to generate a shared “visual vocabulary” to
describe image datasets. Similar segments often reappear in different
contexts, varying in location, size, and specific content. To capture the
natural recurrence of similar segments across images, we use clustering
to group semantically similar image segments into visual concepts.
Clustering, therefore, allows concepts to naturally emerge from the
dataset rather than being limited to predefined categories.

Fig. 1 shows examples of visual concepts extracted from the MS
COCO dataset [37]. Segments highlighted in red are sampled from the
corresponding visual concept. Empirically, we have found that concepts
could represent whole objects (e.g., “window blinds”, “pizza”, “bicy-
cle”), object parts (e.g.,“arm”, “hair”, “animal ears”), or properties
like colors (e.g.,“blue_color”, “dark_color”) and material (e.g., “wood”,
“concrete”). Due to the nature of clustering, the boundaries between
concepts are sometimes blurred. For instance, the “blue_color” concept
shown in Fig. 1 contains many segments of the sky, and is close to
concepts labeled as “sea”, “sky” and “cloud” in the embedding space.
A coarser clustering granularity may merge these separate concepts into
a single cluster.

2.2. Visual concept generation pipeline

With these design principles for visual concepts in mind, we present
a preprocessing pipeline to generate visual concepts from image
datasets using pre-trained vision foundation models. The pipeline con-
sists of four steps: segmentation, embedding, clustering, and an optional
labeling step.

(1) Segmentation. The first step is to extract meaningful segments
from each input image using an image segmentation model. We specif-
ically choose Meta’s Segment Anything Model (SAM) [25] for this
task, as it has an implicit notion of “objects” derived from its training
process. Given a prompt (e.g., one or more points), SAM returns a
segmentation mask containing at least one of the objects referred to
in the prompt. For example, given a point on a backpack, SAM might
return a mask for either the backpack or the person wearing it—
both semantically meaningful entities. After segmentation, we filter out
segments that occupy less than one percent of the total image area, as
they are often noisy and lack meaningful content.

(2) Embedding. The next step is to capture the semantic meanings
of these image segments. We experiment with two pre-trained vision
foundation models that generate embeddings at different resolutions:
CLIP [38] produces image-level embeddings and MaskCLIP [26] yields
pixel-wise embeddings.

For CLIP, we crop each segmentation mask to its minimum bound-
ing box, gray out non-segment pixels, and embed the result. However,
we observed that this approach performs poorly, aligning with recent
findings that pre-trained CLIP performance degrades on masked images
due to distribution shifts [39]. We therefore focus on MaskCLIP which
generates pixel level embeddings. We align these embeddings with
SAM segments by resizing the segments to match each model’s output
dimensions.

(3) Clustering. We perform K-means clustering on the segment-level
embeddings to derive visual concepts, where segments grouped into the
same cluster represent the same visual concept. Importantly, the num-
ber of clusters is a user-controlled parameter that allows practitioners
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to adjust the granularity of visual concepts based on their debugging
needs and domain expertise. For instance, practitioners debugging
autonomous vehicle models might prefer finer-grained concepts to
distinguish between different types of road signs, while those working
on general object-detection might use coarser granularity for broader
categorical understanding. Empirically, we found that hundreds to
thousands of concept clusters generally provide a good balance between
comprehensive coverage and manageable exploration for practitioners.
VCR’s interactive interface allows users to dynamically adjust this gran-
ularity and merge or split concepts based on their domain knowledge,
ensuring the visual vocabulary aligns with their specific debugging
priorities. This clustering step creates a shared “visual vocabulary”
that captures recurring patterns across the dataset while remaining
interpretable and actionable for human analysts.
(4) (Optional) Labeling. To further improve interpretability, we can
leverage the multimodal nature of CLIP-based segment-level embed-
dings to automatically assign text labels to concept clusters. This is
achieved by pairing each cluster center with the text label having
the closest embedding distance. The input labels can be sourced in-
dependently, such as from a list of commonly used English nouns or
domain-specific labels provided by users or large language models.
When multiple concepts map to the same label, we resolve conflicts
by appending numbers to create subcategories (e.g., “tree_1”, “tree_2”,
and “tree_3”). This reflects either meaningful distinctions between
concepts, or overly fine clustering granularity. For instance, in Fig. 1,
the concepts “blue_color_6” and “blue_color” represent distinct visual
patterns: the former includes background objects like ad banners and
portable toilets, while the latter contains segments of sky and sea.
The quality of generated visual concepts depends on the perfor-
mance of the underlying segmentation and embedding models. To al-
low VCR to benefit from ongoing advances in the vision community, its
concept generation pipeline is intentionally modular-practitioners can
swap in newer architectures without requiring fundamental changes to
the framework. Additionally, VCR’s interactive workflow (detailed in
Section 3) allows practitioners to refine the visual vocabulary based
on their domain expertise, further compensating for limitations in
automated segmentation or embedding.

3. VCR: Overview and user workflow

Building on the structured representation of images provided by
visual concepts, we develop VCR, an interactive slice discovery frame-
work that identifies and explains systematic errors in object-detection
models. VCR focuses on the object-detection task, as it is the most
widely used computer vision task in practice, although visual concepts
could also be used for other tasks such as image classification. In
this section, we present background on the object-detection task, and
introduce VCR’s user interface and workflow.

3.1. Background: Object-detection

Object-detection models analyze images to identify and locate ob-
jects, providing predictions in the form of bounding boxes and as-
sociated class labels. The accuracy of these models is evaluated by
comparing their predictions to ground-truth data, focusing on two
key aspects: class prediction accuracy and bounding box alignment.
The quality of bounding boxes is often assessed using the Intersection
over Union (IoU) metric, which measures the overlap between two
bounding boxes by dividing the area of intersection by the area of their
union. A key step in this evaluation process is bounding box matching,
which associates each predicted box with a corresponding ground-truth
box. Different systems implement this matching task differently: some
prioritize maximizing IoU (e.g., using the Hungarian algorithm), while
others give preference to class label confidence.

Object-detection models’ dual objectives of ensuring both correct
classification and accurate object localization lead to several potential
error types:
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Fig. 2. VCR’s user interface allows users to adjust mining settings, explore data slices and visual concepts, as well as perform refinement such as relabeling a
concept and merging clusters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

* Classification error: The bounding box is localized correctly (IoU
greater than some threshold) but classified incorrectly.

* Localization error: The bounding box is classified correctly, but the
IoU with ground truth is low, indicating poor localization.

* Background error (false positive): The model incorrectly detects the
background as objects.

» Missed ground truth (false negative): Ground truth objects are un-
detected, not covered by classification or localization errors.

These error types are essential considerations in evaluating and improv-
ing object-detection models [40]. VCR supports all of the above error

types.

3.2. User interface and workflow

Fig. 2 shows VCR’s user interface and workflow, designed to support
practitioners in iteratively building understanding of their model’s
behavior through visual concept exploration and refinement.

The Concept Exploration view (part A) displays the automatically
extracted visual concepts in a 2D UMAP projection [41], helping users
understand the overall concept space. Each color represents a different
concept, and hovering over a dot reveals the automatically gener-
ated concept label. Users can experiment with concept granularity by
changing the total number of clusters using the top panel.

Users can also delve into specific concept clusters by clicking on
them, which displays sample image segments belonging to that concept.
Part B shows example segments from a concept labeled as “clouds_1".
Upon inspection, the user may realize that this cluster contains similar
segments compared to the “clouds” cluster, so she can merge these
two concepts by renaming them the same label. Our demonstration pa-
per [42] provides additional details on handling label conflicts during
merging.

After exploring and refining concepts, users export their customized
concept set to the Mining Interface (Part C), where they can adjust set-
tings such as filtering bounding boxes via class labels, support threshold
(minimum slice size) and error type according to their specific debug-
ging goals. The mining results appear in a sortable table, where each
row represents a data slice summarized by how bounding boxes interact
with surrounding visual concepts and their metadata. For example,
the highlighted row clouds_2 = 1 represents bounding boxes labeled as
boats that interact with one segment of a clouds concept. This slice
shows an accuracy difference of —0.52, meaning that the average IoU
for this data slice predictions is 0.52 lower than the average of the
entire dataset. Users can sort the table to prioritize slices by different
criteria (e.g., size of slice, average accuracy), and save interesting slices
for later analysis in the Bookmark Page.

Finally, clicking on a specific slice reveals sample images (part
D) with four complementary views: the original image, bounding box
pairs, relevant visual concepts, and zoomed concept details. This multi-
view visualization helps practitioners understand why the model fails
on particular slices and assess whether the discovered patterns repre-
sent genuine systematic errors or spurious correlations. Beyond these
views, an additional interface (Appendix D) for exploring concept ab-
sences helps users interpret these often challenging cases. This interface
allows users to compare an itemset containing a concept absence with
its counterpart in which the same concept is present. Presenting these
cases side by side helps contextualize the absence and clarify its impact
on model behavior.

4. Concept-based slice discovery

Internally, VCR leverages frequent itemset mining techniques to
identify correlation between problematic model behaviors and the
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Fig. 3. VCR summarizes the interaction between visual concepts and the object-detection model’s predictions in a tabular format. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

presence and absence of visual concepts. Section 4.1 describes VCR’s
automated slice discovery pipeline. While classic frequent itemset min-
ing that focuses only on frequently occurring items, accounting for
the absence of items is equally valuable in our application. However,
naively supporting concepts absences leads to a combinatorial explo-
sion of mining results dominated by absences, as concept absence is
common. VCR introduces new pruning optimizations based on mutual
information analysis to address the scalability challenges of supporting
concept absences (Section 4.2).

4.1. VCR: Slice discovery pipeline

VCR operates in three main stages: concept extraction, tabular
summarization, and concept mining. In the preprocessing step, VCR
extracts visual concepts for the input dataset using methods described
in Section 2.2. Fig. 3(a) shows an example segmentation obtained using
SAM, and Fig. 3(b) shows that the input image can be represented by a
set of visual concepts such as “wall”, “bed”, “table”, and “wood”. These
visual concepts serve as primitives for analyzing an object-detection
model’s performance.

Tabular Summarization. VCR uses visual concepts to contextualize
the object-detection model’s predictions. For each pair of predicted
and ground truth bounding boxes, VCR identifies all visual concepts
that have significant pixel overlap with the boxes. A fixed padding
(e.g., 50 px) is applied around each box to capture additional nearby
concepts, as bounding boxes are generally tightly fitted around the
object. For instance, in Fig. 3(c), two segments (in teal color) from the
“table” concept overlap with the bounding box. These interactions are
summarized in a tabular format, where each row corresponds to a pair
of matched bounding boxes, each column represents a different visual
concept, and cell values indicate the number of image segments from
each concept interacting with each bounding box pair.

Concept Mining. Given the tabular summarization, VCR uses the
Apriori algorithm to identify visual concept patterns that correlate
with poor model performance. We chose Apriori because its level-
wise bottom-up approach allows us to easily enforce constraints on
concept absences paired with presences at each support threshold,
bubbling up incrementally for increasing itemset lengths. This property
is particularly valuable for our pruning optimizations (Section 4.2),
where we disallow multiple absences in size-2 itemsets to prevent
their propagation to longer itemsets. Alternative frequent pattern min-
ing algorithms like FP-growth [43], while often faster for traditional
mining tasks, build compressed tree structures (FP-trees) that make

it challenging to selectively control the generation of specific itemset
combinations based on absence constraints during tree construction.
VCR considers various error types, including classification error, lo-
calization error, background error (false positive), and missed ground
truth (false negative), as discussed in Section 3.1. Given an error type
and an IoU threshold (default at 0.5 as in [40,44]), VCR marks a subset
of the bounding box pairs as problematic according to the error metrics.
VCR then outputs common patterns among problematic predictions
as frequent itemsets, ranked by accuracy divergence—a metric that
quantifies how much a slice’s performance deviates from the overall
average [14]. For a slice S with error metric M, accuracy divergence is
calculated as 4,..(S) = M(S)— M (avg), where negative values indicate
worse-than-average performance. This ranking helps practitioners pri-
oritize the most problematic systematic errors for investigation. Users
can specify a minimum slice size (minimum support) parameter, and
VCR identifies all data slices above this threshold.

VCR supports itemsets that are conjunctions of predicates with both
image metadata attributes and attributes enabled by visual concepts.
These include bounding box statistics (relative size, aspect ratio, and
position), crowding information (number of nearby overlapping bound-
ing boxes), image metadata (class labels, time of day, location), and
the count of each type of visual concept that interacts with the model
prediction. Numeric attributes, such as bounding box area, are auto-
matically discretized into ten bins using quartiles. Then, an example
slice for a barely visible car in a busy intersection may look like
{gt_bbox_area € [0,0.25], crowding € (5,10]} where the bounding box
area of the car is in the bottom twenty-five percentile and there are
five to ten other cars surrounding it.

Limitations. Co-occurrence-based concept mining can surface spurious
correlations where identified patterns reflect coincidental associations
rather than true causal relationships. Visual concepts should therefore
be treated as discovery aids that guide practitioners toward error
patterns and require expert validation. As shown in our user study
(Section 5.3), spurious correlations that group together similar error
patterns can still serve as effective starting points for inspection.

4.2. Challenge: Supporting concept absences

In the context of concept mining, VCR differs from classic frequent
itemset mining techniques by considering not only the presence of
items but also their absence. This is crucial for explaining the behavior
of object-detection models, as the absence of certain concepts can be
just as informative as their presence. For instance, a model trained to
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identify cars based on the presence of wheels may fail when wheels are
not visible in an image.

However, supporting concept absence mining introduces two sig-
nificant challenges: scalability and result redundancy. The scalability
issue arises from the sparsity of concepts. For a dataset with many
concepts, most concepts would be absent for a given predicted and
ground truth bounding box pair. Therefore, naively treating absent
concepts as frequent items would lead to a combinatorial explosion
of results dominated by concept absences. For example, POEM ex-
perienced significant performance degradation in mining beyond 15
concepts when considering absence [24]. Second, concept absence
introduces additional redundancies in the mined itemsets. For example,
{sky = 1,sea = 0} might represent a similar set of bounding-boxes
as {sky = 1,land = 0}. Presenting multiple itemsets that essentially
represent the same data can be confusing for users. Furthermore,
accumulating concept absences in itemsets can produce uninformative
results like {sky = 1,sea = 0,land = 0,toaster = 0, potato = 0}, which
add little value to the analysis.

Mutual Information Analysis. To understand when concept absences
are meaningful, we analyze the information gain between two itemsets
using normalized mutual information (NMI).

Consider two itemsets A and B where B is a subset of A (e.g.,
B contains one additional item on top of A). We want to evaluate
the additional information B provides given A using NMI, defined as
NMI(A,B) = %, where H(A) and H(B) are the entropies of A
and B, and I(A; B) is their mutual information. NMI is scaled between
0 and 1, with 1 indicating complete dependence between two events. A
higher NMI suggests that B does not add much new information beyond
A.

Proposition 4.1. Consider two itemsets A and B. Assume that B is a
subset of A, and that P(A) = p, P(B) = q. NM (A, B) decreases as p — q
increases.

The proof is available in Appendix A. We note two special cases of
the proposition. When A and B are identical (6 = 0), NMI(A,B) = 1.
When B is rare (g — 0), NMI(A, B) — 0, regardless of A’s probability.

This analysis helps distinguish between meaningful and trivial con-
cept absences. Specifically,

+ Frequent co-occurrence: Suppose A = {sea = 1} and B = {sea =
1, boat = 0}. Since “sea” and “boat” frequently co-occur (large §),
B might be worth investigating.

Rare co-occurrence: Suppose A = {sea = 1} and B = {sea =
1, carrot = 0}. Since “carrots” rarely appear with “sea” (small §),
B is not likely to add much new information on top of A. In fact,
if “carrots” and “sea” never co-occur, A and B are identical and
redundant.

Rare concept: Suppose A = {sky =1} and B = {sky = 1, unicorn =
1}. Rare concepts could be informative if it occurs. However, their
absences are not interesting: the absence of a unicorn in the sky
is so common that it does not provide meaningful information
beyond knowing there is sky in the image. We do not consider
very rare concepts, as each itemset needs to pass the minimal
support threshold.

Pruning and Duplication Optimization. Based on the analysis above,
we introduce two optimizations that significantly improve the mining
performance for concept absences, as demonstrated in Section 5.2.

In our first optimization, we implement a threshold-based filtering
mechanism, where an absence is only included if it contributes a
threshold amount of new information. In the implementation, we use
the relative change in support as an approximation to NMI, as it is
computationally more efficient and strongly correlated with NMI. Given
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Table 1

Overview of our slice discovery evaluation benchmark.
Datasets Color Aspect ratio Size Semantic #Settings
Coco 287 156 153 184 780
Visual Genome 217 143 140 113 613
BDD 100K 100 65 75 80 320

itemset A and concept absence {c}, the relative support change in
B=An{c}is Agp(A, B= AN {c}) = Sup(An{c})/Sup(A).

Empirical Calibration. We validate the above approximation by gener-
ating 100 synthetic parent—child itemset scenarios at varying densities
p (the percentage of data covered by the parent itemset), with each
scenario evaluated on 100,000 samples. For each scenario, we compute
the exact NMI and relative support change. Fig. 4 shows the resulting
curves stratified by p. The inverse relationship is nearly linear across
all densities, with coefficient of determination R? ranging from 0.701
for dense itemsets (p = 0.9) to 0.997 for very sparse ones (p = 0.1).
Since sparse itemsets (p < 0.5) dominate our mining results and achieve
R? > 0.955, the approximation is highly reliable in practice.

For our second optimization, we restrict itemsets from containing
multiple concept absences. We expect important multiple absences to
show up as single absences in other itemsets, so this constraint main-
tains similar itemset quality while significantly reducing computational
overhead, particularly addressing the problem of accumulating ab-
sences. We implement this restriction when generating itemsets of size
two, which effectively precludes the creation of itemsets with multiple
absences in itemsets of arbitrary length, per the Apriori principle.

Finally, we post-process the itemsets to remove near-duplicate re-
sults.

We use a lightweight, greedy deduplication algorithm that aims
to preserve interesting itemsets while maximizing the diversity. The
algorithm iterates through the itemsets in order of decreasing accuracy
divergence, marking the bounding box pairs covered by each included
itemset. We only include new itemsets when they contain a significant
portion of unique bounding box pairs, controlled by the parameter
5 € [0,1]. In practice, we set 5 = 0.5 by default. Example results
illustrating the greedy deduplication step and its diversity impact are
provided in Appendix B.

5. Evaluation

We create a large-scale evaluation benchmark comprising 1713
slice discovery settings across three widely used datasets, enabling
quantitative comparisons of slice discovery methods in object-detection
tasks. VCR consistently outperforms baselines in identifying problem-
atic subgroups and that the pruning optimization significantly speeds
up discovery (Section 5.2). To complement the quantitative evaluation,
we conduct a user study with six industry machine learning scientists
and engineers to provide qualitative insights into VCR’s real-world
usability (Section 5.3).

5.1. Evaluation methodology

Few real-world object-detection datasets specify data slices where
a model systematically underperforms. Following existing practices [1,
45,46], we programmatically generate 1713 slice discovery settings to
enable quantitative performance comparison. Table 1 summarizes our
evaluation benchmark.

Slice discovery settings. We evaluate on three widely-used datasets in
object-detection tasks: COCO 2014 [37], Visual Genome [47], and BDD
100K [48]. We consider two types of reasons that cause the model to
underperform: metadata-based and content-based. Slices derived from
metadata can exhibit better visual consistency, while those derived
from content will have better semantic coherency. Accordingly, we
create four error scenarios based on:
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Fig. 4. Relationship between exact NMI and relative support change across multiple itemset densities p. Least-squares fits (dashed) highlight the strong monotonic
trend that justifies using support change as a computationally efficient proxy, especially for sparse itemsets.
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Fig. 5. VCR leads to consistent improvement in slice discovery performance compared to baselines across three datasets and four error scenarios.

Color: Ground truth bounding boxes are resized into 50 x 50
squares, followed by K-Means clustering on raw pixel values to
assign them into different color clusters. We use 20 color clusters
for each class of objects, and each cluster forms a slice.

Size and Aspect Ratio: Bounding boxes are sorted into bins based
on width*height for size and width/height for aspect ratio. We
use a randomly chosen number of bins between 5 and 15 for each
object class, and each bin forms a slice.

Semantic: Inspired by [46], we extract semantically coherent slices
such as “[object class] next to [setting/object]” (e.g., “person next
to water”). For COCO and Visual Genome, we use their image
captions, embed them with CLIP embeddings, and retrieve up to
500 images closest in the embedding space to our target prompts.
For BDD, we use the provided annotations to define slices based
on weather conditions, time of day, and scene (e.g., highway,
residential); VCR does not directly use these metadata as slicing
dimensions.

We discard slices with fewer than 25 samples. Once a slice is generated,
we synthetically increase its localization error rate by perturbing the
predicted bounding box location to lower the IoU. We model the
IoU errors as a Gaussian distribution centered at 0.4, just below the
standard 0.5 IoU error threshold. This allows us to create ground truth
problematic slices for evaluation. While we focus on localization error,
other error types can be supported similarly.

Our default object detector is Faster-RCNN from MMDetection [49,
50] trained on the MS-COCO Dataset’s 2017 train split. We provide
additional details of the slice discovery setting generation, as well as
samples of ground truth slices (Appendix C).

Methods of Comparison. We consider the following methods:

Domino [1]: Similar to VCR, Domino leverages external, pre-
trained models to generate image embeddings for slice discovery.
Specifically, we configure it to use CLIP embeddings and set up
its Gaussian Mixture Model with 100 clusters and y = 40 after
hyperparameter tuning. We also provide Domino IoU values as
its error metric.

VCR (concept): VCR using concept interactions as the only slicing
dimension (i.e. without metadata). This baseline is similar to
POEM [24], which also only uses visual concepts as explanation
primitives.

VCR (metadata): VCR with only metadata attributes in the item-
sets. This baseline is similar to SliceTeller [51], which slices
datasets based on predefined metadata attributes.

VCR: By default, we use 500 concepts, a support count threshold
of 10, limit the maximum itemset length to 3, and the greedy
de-duplication algorithm with an overlap threshold § 50%.
For models, VCR uses SAM’s ViT-L for segments and MaskCLIP
Vit-B/16 for pixel-level embeddings. We show that VCR’s perfor-
mance is not sensitive to specific parameters in Appendix B.1 of
the technical report [52].
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Since previous works do not support object-detection tasks, we
simplify the tasks by cropping images from ground-truth bounding-
box annotations and treating them as image classification tasks for
baselines. We apply additional pixel padding to enhance the quality
of image crops, which provides important contextual information and
improves the performance of baselines.

Evaluation Metric. We use Precision@k to evaluate the performance
of slice discovery methods. This metric measures the proportion of
the top-k most erroneous samples in a discovered slice that are also
present in the ground truth problematic slice. We set k = 10 and report
the maximum precision across the top 10 discovered slices for each
method. For VCR, samples are ranked by their error contribution. For
Domino, which uses a Gaussian Mixture Model, samples are ranked by
their membership probability to a given slice.

5.2. Quantitative comparison

Slice Discovery Performance. Fig. 5 summarizes the performance of
VCR and baselines across all slice discovery settings. Overall, VCR con-
sistently outperforms Domino, and both visual concepts and metadata
contribute meaningfully to VCR’s performance. For the metadata tests,
VCR’s mean difference with Domino in precision score is 0.244 (60.9%
increase), 0.206 (48.2% increase), and 0.292 (87.8% increase) in the
COCO, Visual Genome (VG), and BDD datasets, respectively. For the
semantic tests, VCR’s mean difference with Domino in the precision
score is .008, 0.100 (14.0% increase), and 0.170 (25.9% increase) in
the three datasets, respectively.

Domino sees its best performance on the semantic slice tests and is
not far behind VCR. This is expected as Domino uses CLIP embeddings
of images to form semantically coherent clusters. Understandably, VCR
(metadata) cannot differentiate semantic attributes and experiences
decreased precision in most semantic settings.

However, in BDD’s semantic test cases, we find VCR (metadata) can
perform relatively well. While semantic tests in COCO and VG were
derived from classes’ relations to other objects or settings (e.g., indoors),
BDD’s semantic tests featured both concrete dimensions with “scene” as
well two abstract ones, “timeofday” and “weather”. We find that VCR
(metadata) achieves higher precision than Domino in “time of day” and
“weather”, only losing in the scenes test. When combined with VCR
(concepts), metadata enables a significant increase in precision. This
highlights the importance of metadata attributes even in the semantic
setting.

For metadata slices on bounding box size and aspect ratio, VCR sees
the biggest improvements over Domino, outperforming by 0.255-0.465
precision points in the three datasets. This is because VCR utilizes
bounding box statistics as slicing dimensions, while Domino’s semantic-
based slicing is a poor fit for these object-detection-specific error sce-
narios. For color clusters, all methods exhibit relatively poor perfor-
mance since neither metadata nor visual concepts explicitly capture the
concept of color. Color clusters also tend to be more noisy compared
to other test cases, particularly as we directly utilized raw pixel values.
However, for specific classes like traffic lights and umbrellas, coherent
color clusters (e.g., Fig. C.11) could be formed. VCR still outperforms
Domino by 0.04 to 0.13 precision points across datasets.

Concept Mining Scalability. We compare VCR against two repre-
sentative tabular slice discovery frameworks, DivExplorer [14] and
SliceLine [15], using their open-source Python implementations [53,
54]. DivExplorer supports Apriori and FP-growth, while SliceLine uses a
linear-algebra-based method. We use binary concept presence/absence
data extracted from the COCO dataset with 100,000 rows and 200
columns (concepts). All methods use a support threshold of 0.03 and
generate itemsets with presence/absence up to length 3. Fig. 6 reports
the mining runtime versus concept count in log scale, averaged over
five runs. DivExplorer with FP-Growth takes over an hour at 75 con-
cepts, and SliceLine triggers the out-of-memory killer at 100 concepts.
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Table 2

Effect of number of clusters (k) and deduplication threshold (§) on VCR’s
precision on the COCO dataset. The rows in bold represent the default
experiment configuration.

Configurations Color Aspect ratio Size Semantic
k = 500 0.409 0.737 0.767 0.792
k = 400 0.408 0.728 0.746 0.762
k = 300 0.409 0.722 0.732 0.749
k = 200 0.405 0.750 0.764 0.751
6 =50% 0.409 0.737 0.767 0.792
5=25% 0.411 0.740 0.768 0.790
6 =0% (No Dedup) 0.324 0.664 0.674 0.687

In contrast, VCR finishes within 10 s even at 200 concepts, indicating
at least two orders of magnitude speedup, mainly due to the absence
pruning optimization.

Sensitivity Analysis. Table 2 presents VCR’s performance across vary-
ing deduplication thresholds (§) and concept cluster counts (k). While
deduplication enhances VCR’s performance, VCR is not sensitive to the
overlap threshold 6. VCR is also robust to changes in the number of
clusters. Moreover, users can dynamically adjust concept counts and
labels through our concept explorer interface.

5.3. Qualitative evaluation with domain experts

To gain qualitative insights into how practitioners leverage VCR’s
interactive capabilities to discover model failures, we conducted user
studies with six expert users who used the system to analyze systematic
errors in an object-detection model trained on the COCO dataset.

Expert User Demographics. We interviewed six expert users (industry
ML scientists and engineers). All experts have two or more years of
experience with machine learning (5.67 + 2.49 years) and are familiar
with object-detection (four have trained detection models before, and
two have used but not trained these models). Five of the experts have
a PhD in STEM, and one has a Masters Degree. The experts are not
authors of this paper.

Interview Protocol. Each interview lasted 45 min and proceeded as
follows: First, the user filled out a demographics questionnaire (5 min).
Next, we demoed the system capabilities using the object “car”, allow-
ing the experts to identify the model problems in the data slices and
answer any questions they had (10 min). We then asked the experts
to use VCR to identify and understand the model limitations, i.e.,
problematic data slices, in other objects (20 min). Finally, we asked
them for feedback, including positive aspects, negative aspects, and
points of improvement (10 min). We also used a 5-point Likert scale
questionnaire to assess the perception of the system’s functionality and
usability.

Expert user analysis and insights. While our sample size limits gen-
eralizability, the expert sessions provided valuable qualitative insights
into VCR’s usage patterns and utility in practice. We highlight the key
themes that emerged.

The experts evaluated two to three objects per session (see Fig. 7).
A shared strategy involved initially examining the worst-performing
slices. This allowed them to pinpoint where the models struggled with
object-detection. Next, they inspected the slices where the models
outperformed the average, indicating scenarios where the model could
easily detect the objects. Here, we list some of their findings:
1. Occlusion was frequently listed as a fundamental reason for subpar
detection performance. This issue was identified in the objects “car”
and “chair”. During the system demo using the “car” object, experts
immediately found that the poorest performing data slice was defined
by the itemset {pole = 1,road = 0} (4, = —0.218), indicating the

presence of a pole near the undetected object in the image. Upon
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Fig. 7. Example data slices investigated by expert users. Concepts are highlighted in bright colors. The green bounding box indicates ground truth, and the blue
bounding box indicates prediction. Top: data slice identified for the object “car”, where poles obstruct the detection of the object. Bottom: data slice identified

for the object “book”, where crowding hampers the detection of the object. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

. Strong. Disagree . Disagree B nNeutral . Agree - Strong. Agree

The system is easy to use l_
The visual concepts are easy to understand ._
The visual concepts are accurate --

| can refine the visual concepts using VCR —
The data slice descriptions are easy to understand ._
The data slice descriptions are accurate .-_

| can identify the model limitations using the system I_

| would use the system to evaluate object detection _

models in the future 00 = o0

Fig. 8. Expert ratings of VCRacross usability dimensions (n = 6), using a 5-point Likert Scale questionnaire.
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further examination, it was observed that the pole was obstructing
the car in the picture. Similarly, when the experts were inspecting the
“chair” object, they found that undetected chairs were frequently due
to occlusion by babies or toddlers, as indicated in the slice {baby =
1, diningtable = 0} (4,.. = —0.248).

2. Crowding was also a frequent error identified by the experts. For
example, when exploring the data slices belonging to “book” object,
they noticed that the slice {bookshelf = 1} (4,.. = —0.141) had poor
detection performance. Upon inspecting the images and detections,
they noticed that the model had trouble identifying an object among
objects of the same type. Similarly, when exploring the “boat” object
data slices, they found that most of the mistakes in the boat class arose
from object crowding, e.g., multiple boats next to each other.

3. Ground truth errors were also identified. The first type of error
found in this category is related to crowding errors: experts found
that slices containing multiple boats often had inconsistent annotations:
sometimes, a single boat was boxed, while other times, multiple boats
were included in the box. This issue is also present in other objects,
such as “broccoli” (multiple pieces on a plate) and “books” (multiple
books on a bookshelf). A second type of error occurs when only part
of an object is included in the bounding box. For example, in the chair
detection, one slice corresponded to chairs where only part of the object
was included in the box.

4. Easily detected objects. Experts also explored the data slices with
the best performance, gaining additional insight into the model. For
example, when exploring the “chair” object, experts found that the
model performs best when the chair is large or looks like a sofa
({floor = 0,s0fa = 1}, 4, = 0.195). Another interesting case comes
from the “boat” object. When experts investigated the best-performing
slice ({water = 1,boat = 1}, 4,.. = 0.339), they noticed that kayak, a
particular type of boat, was easy to detect.

5. Spurious correlations arise due to the slice-finding method’s reliance
on co-occurrence to identify problematic slices. This can sometimes
lead to the identification of slices that are the result of coincidental
correlations rather than actual problems. A common example of this
issue was found when exploring the “boat” class. The slice that had
the poorest performance was characterized by the {clouds = 1} (4,., =
—0.518) itemset. However, the experts found the association of missed
detection with clouds to be incorrect. Upon further investigation, they
discovered that the errors were not due to the presence of clouds.
Instead, the errors were the result of overcrowding issues (multiple
boats in close proximity to each other) and labeling problems (boxes
containing more than one boat). Similar spurious correlations happened
with the slices containing sky ({sky = 1}). Despite the slice itemset
indicating a false correlation between clouds and incorrect detections,
the grouping of these similar errors together still allowed users to
identify the mistake with relative ease.

Expert feedback. The expert users generally found the system useful
for their workflow. They valued how the data slices could provide
potential reasons for a model’s errors, aiding them in considering
various contributing factors. The simplicity of the interface was also
well-received, along with the four views used to display results (original
images, detection boxes, semantic segmentation, and a zoomed-in seg-
mentation). Users also appreciated how segmentations facilitated their
understanding of the model’s mistakes. However, some experts noted
occasional inaccuracies in the segmentation labels. While they valued
the ability to alter the labels of visual concepts, they also expressed
a desire to refine segments in real time, such as splitting a cluster of
segments containing multiple objects. Additionally, they found data
slices with concept absences occasionally difficult to comprehend, for
example, the detection of the object “chair” performing poorly when
no wall was present. At the end of the interview, the expert users
were asked to fill out a Likert scale questionnaire about their expe-
rience with the system. Fig. 8 shows the user’s responses. Overall,
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the responses to this questionnaire coincide with the other feedback
provided.

Study Limitations. Our user study with six experts provides qualitative
insights into VCR’s real-world utility but has limitations in general-
izability due to the small sample size. The 45-minute sessions with
industry experts were challenging to scale. These findings complement
our primary quantitative evaluation (Section 5.2) by illustrating how
practitioners interact with the system in practice.

6. Related work

Our work draws from several research areas: interpretability frame-
works for computer vision models, slice discovery methods for identify-
ing systematic model failures, and visual concept extraction techniques.
We organize the related work into these three main categories based on
the core methodologies and application domains.

6.1. Explainable artificial intelligence

Our work contributes to the broader field of Explainable Artificial
Intelligence (XAI), which aims to make AI systems and their results
more understandable to humans [55-57]. XAl methods range from
creating inherently interpretable white-box or gray-box models [58-
60] to developing post-hoc explanations for black-box models through
techniques like feature importance analysis [61-64] or counterfac-
tual reasoning [65-67]. A key distinction among post-hoc explanation
methods is between local explanations that interpret individual predic-
tions [63,68,69] and global explanations that characterize overall model
behavior [23,28].

VCR is most closely related to feature importance methods such as
LIME [63] and SHAP [64], which explain how input features contribute
to a model’s outputs. VCR uses visual concepts as interpretable features
and identifies correlations between these features and systematic errors
through frequent itemset mining, therefore providing global explana-
tions that characterize failure patterns across data slices. Importantly,
VCR’s treatment of concept absences is related to but distinct from
classic feature importance methods. For example, SHAP uses additive
feature attribution, decomposing a model’s output into contributions
from individual features based on Shapley values. A key property of
this formulation is missingness: absent features are assumed to have zero
effect on the prediction [55]. In contrast, VCR explicitly examines when
the absence of a concept itself is informative about a model’s failure
modes.

XAl evaluation remains challenging, as criteria such as interpretabil-
ity and explainability are not easily quantified. In the XAI literature,
interpretability and explainability are closely related concepts that lack
universal definitions [70,71]: interpretability focuses on understanding
how a model arrives at its decisions (the internal mechanisms and
logic), while explainability focuses on communicating why a specific
decision was made in terms meaningful to users (building trust and jus-
tifying outputs). Although researchers agree that anecdotal inspection
is insufficient for robust verification, the XAl community has yet to es-
tablish standardized evaluation metrics beyond often-reported anecdo-
tal evidence showing individual, convincing examples [72-74]. VCR’s
evaluation addresses this challenge by combining quantitative metrics
for slice discovery accuracy with qualitative evaluation through our
user study, moving beyond anecdotal evidence toward more rigorous
validation of explanation quality

6.2. Slice discovery methods

VCR builds upon the success of slice discovery methods in tabular
datasets [2,13-17]. These methods identify problematic data subgroups
using predicates over predefined attributes (e.g., age = 25-40, gender
= Male). DivExplorer [14], SliceLine [15], and Macrobase [16] employ
optimized frequent itemset mining algorithms such as Apriori [75] and
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Table 3
Feature comparison between VCR and representative frameworks for identify-
ing systematic errors in image classification tasks.

VCR SliceTeller Domino POEM ESCAPE

(Ours) [51] [1] [24] [31]
Model agnostic v v v X v
Segment-level concepts v X X v v
Leverage metadata v v X X X
Automated discovery v v v v X
Object-detection v X X X X

FP-growth [43], while Slice Finder [2,13] uses decision trees and lattice
search techniques. VCR uses Apriori, with optimizations specifically
designed to support concept absences. When applied to image datasets,
these methods rely on predefined metadata attributes. SliceTeller [51]
applies frequent itemset mining to annotated attributes in datasets like
CelebA [18], while Uni-Evaluator [76] handles both discrete (e.g., class
labels) and continuous metadata (e.g., aspect ratios, size, direction)
across classification, detection, and segmentation tasks. VCR extends
beyond metadata-based approaches by automatically discovering visual
concepts that provide additional, interpretable slicing dimensions.

A number of automated slice discovery methods seek to evalu-
ate performance of image classification models beyond predefined
metadata [1,24,32,45,77-80]. For example, Spotlight [78] identifies
problematic slices of images by searching for contiguous regions in the
final layer representation space of a neural network that align with
errors. Domino [1] and FACTS [79] fit an error-aware Gaussian mixture
model on CLIP embeddings [38] or some specialized feature space to
generate data slices (clusters). Most related to us are methods that use
visual concepts to explain vision model behaviors. POEM [24] uses a
pre-trained semantic segmentation model on Unified Perceptual Parsing
(UPP) [81] to label visual concepts and identifies a filter activation map
in image classifier CNNs that overlaps with the visual concepts to use
for explanations. In contrast, VCR’s visual concepts are model-agnostic
and not limited to predefined labels in UPP. EAC [80] uses SAM to
generate segments for each image as visual concepts and uses Shapley
values to explain each concept’s contribution to the model’s prediction,
whereas VCR’s notion of visual concepts focuses on the recurrences
across images to capture systematic behavior. Table 3 summarizes the
main features offered by representative frameworks.

6.3. Visual concept discovery

Visual concepts are conceptually related to the Bag of Visual Words
(BoVW) model, which has been used to build image representations
prior to deep learning methods [19-21]. The BoVW method extracts
local features from images, such as via SIFT descriptors [22], and
clusters these features to create a “visual vocabulary”. Each image
is then represented as a histogram of these visual words, analogous
to how documents are represented by their constituent words and
frequencies.

Modern approaches to extracting visual concepts fall into three
paradigms based on supervision requirements: supervised methods re-
quire users to provide labeled examples for concepts of interest [23,
27,28], automated methods that aim to extract semantically mean-
ingful concepts without supervision [33-35], interactive approaches
that allow users to collaborate with the system [29-32]. For example,
ESCAPE [31] provides a workflow that allows users to select a set
of semantically coherent segments to be defined as a visual concept.
Similarly, VLSlice [32] is a human-in-the-loop tool that aids users
in discovering data slices, but requires them to first specify the bias
dimension of interest as an initial query. VCR provides automatic
concept discovery by leveraging vision foundation models by default
but also allows users to fine-tune the concepts in an interactive manner.

Saliency Maps and Attention Mechanisms. Saliency maps and visual
concepts both aim to identify important image regions, but serve
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fundamentally different purposes. Saliency maps visualize which image
regions contribute most to a model’s prediction through gradient-based
methods like GradCAM [68], GradCAM++ [82], and HiResCAM [83],
or gradient-free alternatives like Eigen-CAM [84] and Ablation-CAM
[85]. These pixel-level importance maps explain individual predictions
by highlighting where the model “looks” for each decision. While com-
plementary to VCR, saliency maps differ in key aspects: they explain
individual predictions rather than systematic patterns, operate at the
pixel level without semantic labels, and their gradient-based variants
depend on specific model architectures and often require access to
model internals. POEM [24] represents a hybrid approach that aligns
visual concepts with model attention via saliency maps before min-
ing patterns, but it is limited to CNN classifiers. In contrast, VCR is
model-agnostic and focuses on discovering recurring semantic patterns
correlated with systematic errors across data slices. In Appendix E,
we provide additional visual comparisons between saliency maps and
visual concepts.

7. Discussion and future work

While VCR provides interpretable concept labels and an interactive
interface for refinement, it does not explicitly model individual users’
familiarity with different visual concepts. Adapting explanations based
on user expertise represents a promising direction for making VCR more
effective across users with varying domain knowledge.

Several practical approaches could enhance the system’s ability
to tailor explanations to user familiarity. First, concept prioritization
could boost slices containing familiar concepts higher in ranked lists,
helping users quickly identify patterns in domains they understand
well while still surfacing critical unfamiliar patterns when accuracy
divergence is exceptionally high. Second, the concept exploration in-
terface could automatically adjust the level of detail based on user
expertise, for example, showing fine-grained concepts (e.g., “sedan”,
“SUV”, “pickup truck”) in familiar domains while presenting coarser
categories (e.g., “vehicle”) for less familiar areas. The system could also
use progressive disclosure that starts with high-level familiar concepts
and allows users to drill down to unfamiliar details on demand, and
familiarity indicators (such as visual badges or color coding) that help
users quickly distinguish between new concepts and those they have
previously explored.

User familiarity could be learned implicitly from interaction pat-
terns, such as time spent viewing concepts, which concepts are clicked
versus skipped, and which concepts users merge or refine, or captured
explicitly through ratings or “mark as familiar” buttons. A key chal-
lenge for these personalization mechanisms is balancing the surfacing
of comfortable, familiar concepts with enabling discovery of unfamiliar
but important error patterns. We leave the design and evaluation of
such personalization approaches as future work.

8. Conclusion

In summary, VCR is an interactive framework for understanding
systematic errors in object-detection models through visual concepts—
semantically meaningful image segments that serve as interpretable
primitives for slice discovery. By combining automated concept ex-
traction with human expertise, practitioners can explore their datasets,
refine concept definitions, and discover meaningful error patterns that
traditional approaches miss. Through our large-scale evaluation bench-
mark with 1713 slice discovery settings, we show that VCR consis-
tently outperforms alternatives in identifying problematic data slices. A
user study with six industry experts provides qualitative evidence that
VCR facilitates identification and explanation of errors in real-world
object-detection models.
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Appendix A. Mutual information analysis

Proposition A.1. Consider two itemsets A and B. Assume that B is a
subset of A, and that P(A) = p, P(B) = q. NM (A, B) decreases as p— q
increases.

Proof. By definition, we have P(A =1,B=1)=¢,P(A=0,B=1) =
0,P(A=1,B=0)=p—qP(A=0,B=0)=1-p So the mutual
information for A and B is:

H(A) = —plog(p) — (1 — p)log(1 — p) (A1)
H(B) = —qlog(q) — (1 — ¢)log(1 — q) (A.2)
H(A, B) = —qlog(q) — (p — @) log(p — q) — (1 — p) log(1 — p) (A.3)
I(A; B) = H(A)+ H(B) — H(A, B) (A.4)
= —plog(p) — (1 —g)log(1 —q) + (p — @) log(p — q) (A.5)
Let6=p—q.
I(A; B) = —plog(p) — (1 = (p = 8))log(1 — (p — §)) + 5 1og(5)
oI(A;B) _ log( B )
95 l—p+6

H(A)+ H(B) = —plog(p) — (1 — p)log(1 — p) — (p — 6) log(p — 6)
= (1= (p-d)log(1 - (p—48)

d(H(A) + H(B)) p—26
Y = log(5 )
—p+6
— I(A;B)
NMI(A,B)=2x T HB)’ therefore
ONMI(A.B) 108(mms)(H(A) + H(B) +log(=5)I(A: B) 6
a6 B (H(A) + H(B))?
Plug in Eq (A.4), we also have
ONMI(A, B)
026 )
(log(=2) + log(ZZ)(H(A) + H(B) — log(;=)H (4, B) (A7)

(H(A) + H(B)?

There are two cases:
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Table B.4

Greedy deduplication increases diversity as the maximum allowed overlap
5 decreases. At 6 = 0.90, average pairwise Jaccard drops by an order of
magnitude compared to no deduplication (6 = 1.0), and continues to fall with
stricter thresholds.

B} Average pairwise similarity
1.00 0.166626
0.95 0.023640
0.90 0.016797
0.50 0.004768
0.10 0.001252

Case 1: p — 6 < 0.5. Since denominator of Eq (A.6), H(A), H(B),
I(A; B) are all non negative, we only need to check the sign of the

numerator. When p < 1 and § > 0, 17; 5 < 1,50 log( 17; 5) <0, and the
first term in the numerator is negative. When p—§ < 0.5, p—6 < 1—(p—94),
so log( ; f ;i 5) < 0, and the second term in the numerator is also negative.
So INMIAB) _ o

Case 2: p — § > 0.5. Similarly, we analyze the sign of the numerator
of Eq. (A.7). When p—6 > 0.5 > 0, so the second term in the numerator
is negative. Let us look at the first term:

5 p—9 o(p—6)
1 +1 = log(—22—%)
08y ) Hloely 55 = lee(— =57
5
log(—2—) <0,
< 0g(1—p+5)<

where the first inequality follows from p—6 > 1 —p+ 6, and the second
inequality follows from p < 1. Therefore, the first term in the numerator
of Eq. (A.6) is also negative. So overall W <0. O

Appendix B. Effect of greedy deduplication on itemset diversity

Fig. B.9 provides a qualitative example of the greedy deduplication
step and quantifies its effect on result diversity. The example shows
how near-duplicate itemsets (e.g., {bookcase = 1, person_12 = 0}
and {bookcase = 1}) are removed while preserving representative,
high-divergence slices.

To assess diversity quantitatively, we compute the average pairwise
Jaccard similarity among the top-50 itemsets (ranked by accuracy
divergence) after applying greedy deduplication at varying maximum
overlap thresholds 6. Results are from our COCO 2017 Validation
dataset under 500 concept columns and 36,780 rows (bounding-box
pairs). Lower Jaccard similarity indicates higher diversity.

Overall, Table B.4 shows that greedy deduplication substantially
increases itemset diversity. At 6 = 0.5 we observe a ~97% reduction in
average pairwise overlap versus no deduplication (0.0048 vs. 0.1666).
We therefore adopt 6 = 0.5 as the default threshold in our experiments.

Appendix C. Detailed description of datasets and slice settings

COCO 2014. The COCO 2014 Validation dataset is a subset of the larger
Microsoft Common Objects in Context (COCO) dataset, covering a wide
range of objects and scenes for a total of 40504 images. Furthermore,
each image is annotated with five descriptive captions, which we
leverage in the semantic slice generation process. We chose the 2014
split over the 2017 split since our detection model was directly trained
on the 2017 split.

For generating semantic slices, we focus on the top 15 object
classes in the dataset, ranked by the frequency of their annotations.
Specifically, among these top classes, we generate semantic slices by:

» Filtering Images: For each class, we filter down to images con-
taining at least one ground truth instance of that object class.

+ Generating Image Representations: We represent each image
by embedding its captions in the CLIP embedding space. For a
single image, we average the embeddings for each caption and
normalize the resultant vector, denoted as v;.
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0.010359
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accuracy
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car next to sign

. Right: itemsets after greedy deduplication using an overlap threshold § = 0.5.

a:d

£\

H

g
_FE 1

¥

"B Ll
Hs N

o —
o
o
4

ENdEN
N R

#

person next to snowboard

Fig. C.10. Example semantic ground truth slices generated from the COCO 2014 dataset.
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Fig. C.11. Example color slices generated from the COCO 2014 dataset. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

» Generating Contexts: We use the template “[object class] next to
[setting]” to create categories for the slices. We extract settings by
considering the most frequent words in the captions of the object-
filtered dataset, removing stop words (e.g., “the”, “a”, “of’) and
choosing a selection of the top nouns as settings.

Generating Context RepresentationS' We format each context

9«

string into template strings (e.g., “a photo of a big”, “a photo of
a small”) and generate embeddings using CLIP. By using these
templates, we can generate a variety of contexts that describe

the object class in different ways, such as its size, quality, or

13

appearance. We average the CLIP embeddings and normalize the
resultant vector, denoted as c;, representing one context.

Finding Closest Semantic Slice: To categorize the image rep-
resentations, we find the context vector, < with the smallest
distance to the image vector, v;, indicating the closest semantic
slice. Once the closest semantic slice is determined, every instance

of the object class in that image is assigned to that category.

Fig. C.10 shows a few examples of semantic ground truth slices
generated via this approach. For the three metadata-based settings,
we again use the 15 classes with the most number of labels. For
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person next to water

Fig. C.12. Example semantic ground truth slices generated from the Visual Genome dataset.

both size and aspect ratio bounding box metadata settings, we bucket
bounding boxes into 5-15 different bins according to their size/aspect
ratio. For color clusters, we extract 50 x 50 square crops of ground-
truth bounding boxes and run them through the K-Means clustering
algorithm for k = 20 total clusters. Fig. C.11 shows examples of color
slices generated for this dataset.

Visual Genome. The Visual Genome (VG) dataset is a large-scale
image dataset covering a wide range of everyday scenes and objects,
with more than 108,000 images, each annotated with dense object
annotations, attributes, and relationship graphs. Instead of using all
108,000 images, we start with the first half of the dataset VG_100K
(where the second half is VG_100K_2) and filter it down the images
further to include only images that have any of the 80 COCO labels.
Additionally, VG is known to have image overlaps with COCO. As such,
we ignore any of the images that have an associated COCO “id” with
it.

In order to generate semantic slices we perform the following steps:

» Filtering Images: For each class, we filter down to images con-
taining at least one ground truth instance of that object class.
Image Representation: We generate a set of captions for each
image by selecting a diverse set of regions within the image. This
selection includes:

« A subset of the largest regions by bounding box area, rep-
resenting the most prominent objects.

» Middle-sized regions, providing contextual information and
additional details.

» A random sample of the smallest regions, offering diversity
and capturing less prominent elements.

We concatenate the phrases from these regions in groups of three
to generate a set of captions for the image. This helps to form
captions that encapsulate the image’s coarse and fine details. We
embed these captions in the CLIP embedding space and take the
average of the embeddings to represent the image. This average
serves as the image representation v;.

Generating Contexts: We use the text template “[object class]
next to [settings]” to generate contexts for the slice categories.
We find the settings by selecting from the most common nouns
found in the phrases associated with each region in an image after
filtering out stop words.

Context Representation: We format each context into template
strings (e.g., “a photo of”’, “a photo of a small”) to generate

14

a variety of contexts that describe the object class in different
ways, such as its size, quality, or appearance. We generate em-
beddings using CLIP for each context template, average the CLIP
embeddings, and normalize the resultant vector, denoted as c;,
representing one context.

Finding Closest Semantic Slice: To categorize the image repre-
sentations, we find the context vector ¢; with the smallest distance

to the image vector v;, indicating the closest semantic slice. This
is done by calculating the L2 distance ||v; —c; |> and selecting the
context vector c¢; that minimizes this distance. Once the closest
semantic slice is determined, every instance of the object class in
that image is assigned to that category.

We display a few of these semantic slices in Fig. C.12. For the three
metadata based settings, we do the same as with the COCO dataset,
bucketing the different sizes and aspect ratios for the bounding boxes,
and using K-Means to form color clusters.

BDD100K. The BDD100K dataset consists of 100,000 images taken
from the perspective of a car, featuring diverse scenes across various
times and conditions. Unlike COCO and VGG, BDD100OK has a very
limited number of classes, most of which overlap with COCO’s. To make
sure BDD100K’s detection annotations align with those of our object
detector, we remove the “traffic sign” label and merge “rider” and
“pedestrian” into “person”. We further created our own 10K split of
BDD100K after filtering for images that contain object-detections after
finding that the provided BDD10K did not always have detection labels.
From this subset of BDD data, we then created semantic slices based
directly on metadata provided by BDD (no CLIP needed). Specifically,
we used the following metadata attributes to create semantic slices:

« timeofday: daytime, night, dawn, dusk, undefined

- weather: rainy, snowy, clear, overcast, partly cloudy, foggy, un-
defined

+ scene: tunnel, residential, parking lot, city street, gas stations,
highway, undefined

This leads to slices of the form “[object class] in [metadata attribute]”.
We display a few of these semantic slices in Fig. C.13.

For the three metadata based settings, we do the same as with the
COCO dataset, bucketing the different sizes and aspect ratios for the
bounding boxes, and using K-Means to form color clusters.
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timeofday: night timeofday: dawn/dusk
label: car label: bike

Fig. C.13. Example semantic ground truth slices generated from the BDD dataset. The first line under each image represents the semantic setting, the second
line represents the target class.

Selected Itemset Images With Presence (Absence — Presence)

Itemset: pavement 3=0,car 2=1 Itemset: pavement 3=1,car 2=1

Support: 0.0645 Support Count: 181 Accuracy: 03011 d_Accuracy: -0.0055 Support: 0.0064 Support Count: 18 Accuracy: 08889 d_Accuracy: 0.0823
orgna

Concepts Concepts.

Fig. D.14. Visualization panel for comparing concept absences versus presences. The left panel shows an itemset with concept absence, {pavement_3 = 0, car_2
= 1}, where glare from car lights introduces visual noise and obscures the roadway, resulting in poor IoU. The right panel displays the alternative scenario,
{pavement_3 = 1, car_2 = 1}, where the road is clearly present and the model achieves high IoU for the car.

Appendix D. Visualization of concept absence users to better contextualize how the presence or absence of specific
concepts influences the overall interpretation.

To help users interpret the effects of concept absences, we introduce Appendix E. Comparison with saliency maps
a comparison-based visualization mechanism to our interface as seen in
Fig. D.14. Specifically, when a concept is absent, users can now view an While saliency maps provide pixel-level importance for individual
alternative visualization in which that concept is present, while keeping predictions, VCR visual concepts offer semantic, segment-level repre-
the rest of the itemset unchanged. This side-by-side presentation allows sentations that recur across images to identify systematic error patterns.
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(b) GradCAM applied to DETR model.

(d) SAM segmentations as visual concepts.

Fig. E.15. Comparison between saliency maps and visual concepts. Saliency maps (b, c¢) provide pixel-level attention for individual predictions without semantic
labels, while VCR’s visual concepts (d) produce semantically-labeled segments that can be mined across images to identify systematic error patterns.

Fig. E.15 illustrates this distinction using the same input image. The
original image (a) shows the ground truth bounding boxes detected by
the model. Both GradCAM applied to DETR [86] (b) and Eigen-CAM
applied to Faster R-CNN (c) highlight pixel-level regions of impor-
tance for individual predictions, but these heatmaps are prediction-
specific and lack semantic labels. Note that different saliency meth-
ods are required for different architectures: DETR’s transformer-based
architecture supports gradient-based methods like GradCAM, while
Faster R-CNN requires gradient-free alternatives like Eigen-CAM. In
contrast, our SAM-based segmentation approach (d) produces inter-
pretable, semantically-coherent segments (e.g., “car”, “road”, “sky”)
that serve as visual concepts. These concepts can be mined across
images to discover systematic failure patterns, whereas saliency maps
explain only individual decisions without revealing recurring error
correlations.

Data availability

Data will be made available on request.
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