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Abstract

Phylogenetic comparative methods are a major tool for evaluating macroevolutionary hypotheses. Methods based on the mean-reverting stochas-
tic Ornstein-Uhlenbeck process allow for modelling adaptation on a phenotypic adaptive landscape that itself evolves and where fitness peaks
depend on measured characteristics of the external environment and/or other organismal traits. Here, we give an overview of the conceptual
framework for the many implementations of these methods and discuss how we might interpret estimated parameters. We emphasize that
the ability to model a changing adaptive landscape sets these methods apart from other approaches and discuss why this aspect captures long-
term trait evolution more realistically. Recent multivariate extensions of these methods provide a powerful framework for testing evolutionary
hypotheses but are also more complicated to use and interpret. We provide some guidance on their usage and put recent literature on the topic
in biological rather than mathematical terms. We further show how these methods provide a starting point for modelling reciprocal selection
(i.e., coevolution) between interacting lineages. We then briefly review some critiques of the methodologies. Finally, we provide some ideas for
future developments that we think will be useful to evolutionary biologists.
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Introduction typic adaptive-landscape metaphor, inspired by Wright’s
(1931)adaptive landscape for genotypes, except that it envi-

“Response to selection pressure is not instantaneous, and sions a dynamic topographical landscape of adaptive zones for

inertia, in the sense of lag in following a shifting optimum,
is an important element in evolution”—Simpson (1944) pp
179.

The modern synthesis of evolutionary theory has long wres-
tled with Dobzhansky’s (1937) and many subsequent biol-
ogists’ supposition that microevolutionary forces scale up
to explain macroevolutionary patterns. Although the origins
of new life forms, transitional changes, and rates of evolu-
tion have traditionally been the focus of evolutionary biol-
ogy, explanations for the persistent lack of change in traits
over long time periods—the “paradox of stasis”—remains
a significant challenge (Bradshaw, 1991; Eldredge & Gould,
1972; Futuyma, 2010; Hansen, 2012; Hansen & Houle, 2004;
Williams, 1992), especially given the high evolvability ob-
served in almost all quantitative traits where evolvability has
been studied (Hansen & Pélabon, 2021).

A promising approach to understanding long-term phe-
notypic evolution stems from Simpson’s (1944) pheno-

phenotypes rather than genotypes. The topographical shape
of Simpson’s landscape at any given time is thus defined
by where current trait values are in relation to the fitness
peaks of the adaptive zones and how strong selection towards
those peaks is. Although early models like Lande’s (1976) in-
fluential model of stabilizing selection and genetic drift de-
scribe phenotypic evolution on such a landscape over gen-
erational timescales, they often fail to capture the phyloge-
netic correlations and degree of cross-species variation ob-
served in macroevolution. This is because Lande’s selection-
drift model is built for a static adaptive landscape, that over
macroevolutionary timescales, nearly always results in a near-
instantaneous approach to the optimum. This implies that
there will be no phylogenetic correlations, no lingering in-
fluence of past environments, and therefore, that phyloge-
netic comparative methods are simply unnecessary (Hansen
& Martins, 1996). Phylogenetic signal, however, is ubiquitous
across millions of years (Uyeda et al., 2011). Simpson (1944,
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1953) and others (e.g., Arnold, 2023; Arnold et al., 2001;
Calsbeek et al.,2012) have argued that the adaptive landscape
is a dynamic entity that itself evolves over macroevolutionary
time scales and that it is this dynamic aspect of the landscape
that potentially generates a lag between species trait values
and their shifting optima, observed cross-species variation lev-
els, and phylogenetic correlations.

Phylogenetic comparative analyses across groups of related
species have long been used to test macroevolutionary hy-
potheses (Brooks & McLennan, 1991; Rensch, 1959; Ridley,
1983). These methods use phylogenetic relatedness to sta-
tistically account for the non-independence of trait observa-
tions among related species. It is less appreciated, however,
that how much traits are dependent (or are free to vary) re-
lies on both phylogenetic relatedness as well as the mode of
evolution unfolding in the phylogeny. Felsenstein (1985) lu-
cidly showed this model dependence when he developed the
independent-contrasts algorithm, which assumes trait evolu-
tion follows a multivariate Brownian motion, meaning evo-
lutionary changes across the phylogeny are proportional to
shared ancestral time. When accounting for the relatedness
of species in statistical analyses once the model of evolution
unfolding on the phylogeny has been accounted for, meth-
ods like generalized least squares (Grafen, 1989; Martins
& Hansen, 1997; Rohlf, 2001), likelihood (Lynch, 1991),
or Bayesian approaches (Hadfield, 2010; Uyeda & Harmon,
2014) can estimate model parameters by specifying the covari-
ance among residuals. To address the dynamic adaptive land-
scape issue, the “adaptation-inertia” phylogenetic compara-
tive analysis framework inspired by Hansen’s (1997) work
uses the stochastic, mean-reverting Ornstein—-Uhlenbeck pro-
cess to model trait evolution. This framework explicitly ac-
counts for how trait values move towards specific adaptive
optima, which can change with environmental variables. The
approach builds upon a rich history of statistically rigorous,
evolutionary-model based phylogenetic comparative methods
developed since the 1980s (Armbruster, 1988; Cheverud et al.,
19835; Felsenstein, 1985, 1988; Pagel & Harvey, 1988). The
Ornstein—Uhlenbeck process, as described below, allows for
distinguishing between general phylogenetic signal and phy-
logenetic inertia by controlling only for the latter defined as
a lag in adaptation to evolving fitness peaks. This distinc-
tion becomes particularly important when traits adapt to fit-
ness peaks that themselves are phylogenetically structured (as
would be the case when organisms, for example, track their
ancestral niches) as this will show up as general phylogenetic
signal in the traits, and it could potentially be a mistake to
attempt to correct for it, which unfortunately is still common
practice, especially when the traits do not lag behind their fit-
ness peaks (Hansen, 2014; Hansen & Orzack, 2005; Labra
et al., 2009; Revell, 2010). Importantly, this framework also
allows for fitness peaks to remain stationary over long time pe-
riods (or indefinitely) and for evolution to be bounded around
such fitness peaks, thereby providing one possible explanation
for stasis—long term stabilizing selection. The suite of meth-
ods in the “adaptation-inertia” framework can now model
various types of traits, continuously varying or categorical,
and offers a robust toolset for analyzing macroevolution and
adaptation.

In this review, we discuss the rationale and parameter inter-
pretation of the adaptation-inertia framework, its relationship
to quantitative genetic models, detail its various extensions,
and explore how its multivariate methods can illuminate trait
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interactions and coevolutionary processes by means of an ex-
ample. It is our hope that this review will serve as a useful
guide to this rich and rapidly expanding modelling framework
for both new and experienced users.

The adaptation-inertia modelling framework

The adaptation-inertia framework models how species’ trait
values track shifting adaptive fitness peaks, influenced by en-
vironmental factors (Hansen, 1997). It aims to determine if
species in different niches have systematically distinct adap-
tive peaks. To this end, Hansen (1997) proposed estimating
a “primary optimum,” representing the average trait state for
species evolving in a specific adaptive zone over long periods.
Individual species have local trait optima that vary around
this primary optimum, averaging out secondary evolutionary
influences. For example, fig wasps pollinating monoecious Fi-
cus species have on average, longer ovipositors than those pol-
linating dioecious Ficus species (Nefdt & Compton, 1996),
reflecting the bimodal style lengths they must navigate to suc-
cessfully reproduce. Male monecious fig flowers, on average,
have longer styles than the male flowers of dioecious figs, and
fig-species-specific fig wasp mothers must insert their ovipos-
itors through these styles in either case to successfully lay an
egg and provide their larvae with nutrition through galling
the uni-ovulate flowers. Differences in these primary optima
indicate the systematic influence of distinct primary niches
(like the bimodal style lengths associated with monoecy vs.
dioecy) on adaptive peak positions. To assess the importance
of adaptation to a niche, the framework examines how differ-
ent these primary optima are and how quickly species adapt
to them, while also accounting for unmeasured factors influ-
encing local adaptive-peak changes. A simple model that al-
lows for incorporating all these requirements is the Ornstein—
Uhlenbeck process. It consists of a deterministic part describ-
ing the approach to the primary optimum and a stochastic
part representing changes in adaptive peaks due to a combi-
nation of numerous unknown and unmeasured secondary se-
lective forces as well as other stochastic processes such as ge-
netic drift. Mathematically, the Ornstein—-Uhlenbeck process
is described by the stochastic differential equation:

dy=—a(y—0)dt+odW, (1)

where dy is the change in the adaptive peak over an infinitesi-
mal time interval d¢, y is the position of the adaptive peak, 6 is
the primary optimum, « (> 0) determines the rate of adapta-
tion towards the primary optimum, dW is short-hand for in-
dependent normally distributed stochastic changes with mean
zero and unit variance over a unit of time (white noise), and o
is the instantaneous standard deviation of these changes (i.e.,
W is a Brownian motion process). The model stipulates that
the rate of adaptation to the primary optimum increases lin-
early with distance from that optimum. To represent alterna-
tive niches, we can extend the basic model by allowing the
primary optimum to be a function of one or more indicators,
x;, that represent niches or environmental states. Hence, we
write & = 0(x;) in the model. Using a method developed in
Hansen & Martins (1996), Hansen (1997) derived the joint
distribution of species trait values when this process unfolds
on a phylogeny. This assumes that the states of the niche pre-
dictor variables, x;, are known on the phylogeny. The joint
distribution is multivariate normal with a predicted mean for
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Figure 1. Inertia affects trait evolution on a phylogeny. The trait is represented by a pentagon, and differential selection as two niches (dashed and solid
lines). The niche represented by the solid line is also the ancestral niche (anc), thus stabilizing selection acts continuously on the species that remain in
this niche. The dashed line represents a niche that has an elongated pentagon as a primary optimum (6ew). With low phylogenetic inertia (top panel,
large &) the new phenotypic space represented by the primary optimum associated with the dashed line niche is quickly reached on average. With
strong inertia (bottom panel, small &), trait evolution is constrained by contingency, and it takes much longer to reach the phenotypic space around the

primary optimum for the new niche.

each species i, given by
Vi = coiYa + c1i0 (x1) + €20 (x2) + ...+ cpif (x),  (2)

where y, is the ancestral state at the root of the phylogeny,
0(x1) is the primary optimum for state x; of the environmen-
tal variable, 6(x;) is the primary optimum for state x, of the
environmental variable, and so on for all k possible states of
the environment. The coefficients ¢j represent the influence
of environmental state j on species i and are functions of «
and the history of association between j and i, as described
in Hansen (1997). They are all between zero and one, and
they sum to one. The coefficient corresponding to a partic-
ular environmental state will be large when the species has
spent a lot of its history associated with this state, with re-

cent associations weighted more heavily. The larger the rate
of adaptation, &, the more the weighting shifts towards recent
environments, and when « approaches infinity, adaptation is
instantaneous and only the current environment is weighted
(Figure 1).

If the environmental states, the x;’s, are mapped on the phy-
logeny, the ¢j’s may be computed, and the (x;)’s can be esti-
mated in a linear model framework analogous to an ANOVA
or regression model. For non-ultrametric trees, such as those
that include extinct species fossil data, the ancestral trait state,
¥, can also be estimated as detailed in Hansen (1997) and
Hansen et al. (2008). Due to phylogenetic structure, we must
account for non-independence in residual deviations from the
predicted values using estimation techniques such as general-
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Figure 2. Correlated-progression model adapted from Kemp (2007). Elongation of a shape through a succession of evolutionary steps involving five
phenotypic traits (A-D). As in Kemp (2007), the traits are assumed to be mutually interconnected by slightly flexible functional linkages represented by
the lines. Changes in trait pairs A and B, as well as E and C are highly correlated to preserve bilateral symmetry. All traits can evolve (i.e., change X-Y
coordinates in the figure), but only by one increment at a time. Traits can also only be one increment ahead of any connected traits at any one time.
Evolvability of a given trait is indicated by the sum of its linkage values (shown above in square brackets for trait D), where lower values indicate less

constraint and therefore a higher probability of further change.

ized least squares or maximum likelihood. The residual co-
variances (given in the online Appendix) are dependent on
the rate of adaptation, «, and are larger when the rate of
adaptation is small. Note that both the design matrix and
residual covariance depend on & and cannot be parameterized
independently of one another. In summary, the method fits a
linear model conditional on « to a vector of species means ¥y,
given as

y=CO+r, r~N(0,V) (3)

where C is a design matrix with elements ¢;;,0 is a vector of
primary optima to be estimated, one for each niche (plus the
ancestral state in some cases), r is a vector of residuals for
each species, which follows a multivariate normal distribu-
tion with a variance matrix, V, with elements given in the
online Appendix. The elements of both C and V depend on
the phylogeny and the parameter @, and those of V also de-
pend on o.

Interpreting the parameters

The adaptation-inertia model is sometimes presented as be-
ing based on Lande’s (1976) selection-drift model (Butler &
King, 2004; Lajeunesse, 2011; Martins, 2000). As mentioned
in the introduction, this interpretation was explicitly rejected
by Hansen (1997) with the argument that it makes little sense
on the time scales of typical among-species comparative data.
It is now well established that strengths of selection, evolvabil-
ity, and rates of microevolution are so high that evolution on a
constant adaptive landscape would appear instantaneous on
time scales beyond a few hundred generations (e.g., Hansen
& Pélabon, 2021). The widespread observation of phyloge-
netic signal on million-year time scales thus implies a certain
decoupling of micro- and macroevolution and requires spe-
cific interpretation in macroevolutionary terms (see Hansen,
2024 for more detail). The simple drift-selection interpreta-
tion may, however, be relevant in cases in which time scales are
much shorter, as in some fossil time series, or possibly for cat-
egories of traits, such as gene expression or aspects of genome
architecture, that may be under extremely weak selection. If
the focus is on explaining species differences in morphology,
physiology, or life-history traits, however, a dynamic adaptive
landscape must be considered.

The adaptation-inertia model incorporates this with the
premise that adaptive peaks themselves change over time and

that it is a lag in adaptation to the changing peaks that gen-
erates the phylogenetic inertia component of observed phy-
logenetic correlations in traits. Although this interpretation
is undeniably vaguer and less well connected to population
genetic first principles than quantitative genetic models, it is
crucial for understanding how microevolutionary processes
might generate macroevolutionary patterns (Hansen, 2012,
2024). The key parameters, «, o, and 0; in the model con-
sequently cannot be interpreted in population genetic terms
but need specific macroevolutionary interpretations, as when
0 is interpreted as a primary optimum. The other parameters
have the following macroevolutionary interpretations:

The Alpha (a) Parameter: Rate of Adaptation and Phyloge-
netic Half-Life—Hansen (1997) described « as a rate of adap-
tation, indicating how quickly a trait approaches its primary
optimum. Simpson (1944) and Kemp (1982, 2006, 2007) sug-
gested that adaptation towards optima might be slow due
to what Kemp termed the correlated-progression hypothesis.
This idea posits that a focal trait is embedded in a network of
coadapted traits. Large changes might initially be detrimental
due to internal selective constraints. Instead, small changes in
the focal trait cause adjustments in other traits, which then
permit further small changes in the focal trait, creating a slow,
correlated progression. Thus, a small o could signify strong
internal selective constraints (Figure 2).

To aid interpretation, Hansen (1997) suggested that o can
be expressed as a phylogenetic half-life (¢;, = In(2)/a), which
has the same units as the branch lengths of the phylogenetic
tree. This represents the time it takes for a trait to move half
the distance from its ancestral state to a new primary opti-
mum. This half-life is invariant to the original distance to the
primary optimum because the model is set up to let the rate of
approach to the primary optimum increase linearly with dis-
tance from it. A large half-life relative to tree height, implies
substantial phylogenetic inertia, meaning that species trait val-
ues are likely to lag their optimal states, and strong phylo-
genetic correlations exist between species. If a single primary
optimum is modelled across the entire phylogeny, this half-life
also serves as a general measure of phylogenetic signal.

The Sigma (o) Parameter: Stochastic Movement and Sta-
tionary Variance—The o parameter, with units of trait units
per square root of time units, quantifies the amount of stochas-
tic (random) movement in adaptive peaks that is not deter-
ministically related to the primary optimum. A large o might
indicate more change in other unmeasured selective factors in-
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fluencing local adaptive peak positions. When the Ornstein—
Uhlenbeck process reaches a stochastic equilibrium, the sta-
tionary variance among species (v = o2/2a) represents the
balance between the primary selective force (the pull to the
primary optimum) and all other secondary, unmeasured se-
lective, and random forces (of which genetic drift is only one
of several). A large v suggests a substantial amount of residual
variance not explained by the primary optima. Ultimately, it
may be easier to interpret the phylogenetic half-life (¢;,,) and
stationary variance (v) directly, as they contain the same in-
formation as @ and o but offer a more intuitive relation to the
macroevolutionary process.

The arguments above pertain to traits that are tightly linked
to fitness, but what about traits that are under weak se-
lection over long periods of time, such as gene expression
levels or protein stability? Eukaryotic protein fitness land-
scapes, for example, can sometimes stay stable for extended
periods (e.g., Latrille et al., 2024) when conserved, non-
intrinsically disordered proteins have a single long-term pri-
mary fitness optimum related to maximum stability. In such
cases, any observed “lag” in adaptation (or conversely phy-
logenetic inertia) probably does result from very weak selec-
tion on a stable landscape with a single global optimum, not
a dynamic one. Therefore, interpreting such a lag within an
“adaptation-inertia” framework, which assumes a constantly
changing landscape, can be misleading in these cases, and we
caution that interpretation of the model parameters should
be based on the likely trait dynamics and the time scale in
question.

Modelling the primary optimum: approaches and
challenges

The adaptation-inertia framework models how species’ traits
evolve towards primary optima within adaptive zones. Ini-
tially, this involved using phylogenetic character reconstruc-
tion or paleobiological information to map environmental
variables onto the phylogeny.

Fixed, categorical niches and model selection

Butler & King (2004) advanced this by treating environmental
variable assignments on the phylogeny as hypotheses, devel-
oping the OUCH (Ornstein—Uhlenbeck models for Compara-
tive Hypotheses) R package (see also Hipp & Escudero (2010)
for extensions that take variable assignment error into ac-
count). They used information-based model-selection criteria
(Burnham & Anderson, 1998), like Akaike information cri-
terion (AIC), to evaluate different arrangements of fixed, cat-
egorical environmental variables and count as parameters all
the primary optima, « and o (initially a separate ancestral trait
value at the root of the tree was also estimated, but this subse-
quently got wrapped into one of the existing primary optima
to avoid estimation issues on ultrametric trees). AIC has sev-
eral advantages over traditional significance testing because it
avoids arbitrary null hypotheses, allows comparison of non-
nested models, and can compare models with the same niches
with different mappings on the phylogeny (Lajeunesse, 2009;
Posada & Buckley, 2004). For smaller datasets, AICc (a small-
sample correction) (Hurvich & Tsai, 1989) is recommended.
Models are ranked by their AIC values, with AAIC > 2
(i.e., when the difference between a given model and the best
model’s AIC is greater than 2) indicating substantially weaker
support compared to the best model (Burnham & Anderson,

2004). Since then, increasingly sophisticated methods to de-
tect shifts in primary optima along phylogenies have been
developed:

* Ingram & Mahler (2013) introduced a stepwise AIC ap-
proach in their SURFACE (Surface Uses Regime Fitting
with AIC to model Convergent Evolution) R package to
find and collapse convergent niches into single niches.

e Ho & Ané (2014), however, noted that stepwise AIC can
over-parameterize models and proposed using a wider
range of information criteria that more heavily penalize
complexity in their PHYLOLM (PHYLOgenetic Linear
Modelling) R package.

e Uyeda et al. (2014) and Cataldn et al. (2019) adopted
a Bayesian approach [implemented in the BAYOU
(Bayesian Ornstein—Uhlenbeck models) R package and
in RevBayes] to tackle over-parameterization by incor-
porating prior information (e.g., fossil data) and using
reversible jump MCMC for regime shift detection.

e Khabbazian et al. (2016) applied Tibshirani’s (1996)
lasso method (in the /10U R package) for faster detec-
tion of optima shifts, enabling analysis on very large phy-
logenies.

Despite these statistical advancements including those that
allow for rate shifts in different parts of the tree e.g., Beaulieu
et al. (2012), PHYLOGENETICEM (Bastide et al., 2017;
Bastide et al., 2018) and PCMBASE (Mitov et al., 2020), it is
crucial to remember that even statistically well-supported hy-
potheses for predictor arrangements on a phylogeny should
be critically evaluated for biological plausibility of the esti-
mated primary optima. Uyeda et al. (2018) provide a thought-
ful perspective on what they term hypothesis testing (moti-
vated by biologically plausible alternatives and a search for
causation) and data-driven (motivated by automatic niche-
shift detection and description of macroevolutionary patterns)
approaches and how both are susceptible to bias from singu-
lar evolutionary events. Motivated by Beaulieu and O’Meara’s
(2016) application of hidden-state model principles to mod-
els of trait evolution, where background shifts in evolution-
ary regimes unrelated to the focal traits are accounted for,
Uyeda et al. (2018) argue that the two approaches can be
combined into a more powerful approach for hypothesis test-
ing, an argument that we agree with wholeheartedly. Based on
May & Moore’s (2020) mathematical groundwork, Boyko et
al. (2023) have recently extended the methods to allow for
the modelling of correlations between continuous and dis-
crete traits with a joint Ornstein—-Uhlenbeck Hidden-Markov
process. These developments are implemented in Beaulieu &
O’Meara’s (2025) OUwie R package. Additionally, fitting lay-
ered Ornstein—Uhlenbeck models to evolutionary time series
can provide further insights into adaptive landscape dynam-
ics and how well lineages track changes in adaptive peaks over
macroevolutionary timescales (Hunt et al., 2008; Reitan et al.,
2012; Voje, 2020, 2023; Holstad et al., 2024).

Moen et al. (2016) developed a method to better under-
stand why species’ traits deviate from their primary optima.
They separate the variation around current primary optima
into two parts: random deviations around current primary op-
tima and systematic deviations caused by adaptation to past
environments. This allows for quantifying how much past en-
vironments hinder adaptation to present ones. They did this
by breaking down the total variation of trait values (TSS)
around their estimated primary optima into three components
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The first term of the decomposition, or Sum of Squared De-
viations due to Random, Current Environmental Influences
(SSE) measures the variation in trait values among species liv-
ing in the same current environment. The second term, or Sum
of Squared Deviations due to History (SSH), measures the dif-
ference between average trait values and the primary optimal
traits, reflecting historical influences. The third term is the co-
variance between the first two terms that can be ignored in the
subsequent arguments as it cancels to zero upon rearrange-
ment of its sums. Mean squares are obtained for SSE (cur-
rent environmental influences) and SSH (historical deviations)
by dividing each by their degrees of freedom [(respectively,
the number of species—the number of environments, and the
number of environments—(1)], which can then be squared to
obtain variances. By comparing the variances derived from
SSH and SSE, researchers can determine the primary driver
of trait inertia. If the SSH-based variance is larger, it means
adaptation to different past environments has a greater influ-
ence on traits within a niche than their current environment.
Conversely, if SSE-based variance is larger, clade membership
(shared ancestry) has a stronger influence on inertia.

For instance, Moen et al. (2016) studied 167 frog species
across ten microhabitats. After removing size effects (the first
principal component after dimension reduction of various
traits), they found that for traits related to locomotion, the
variance due to history (SSH) was significantly larger than that
from random current effects (SSE). This suggests that incom-
plete adaptation as frogs transitioned between niches, rather
than current environmental factors, largely explains why sim-
ilar phenotypes do not perfectly converge in similar niches
across different geographic locations.

Runaway primary optima, infinite phylogenetic half-lives, and
the Brownian motion with a trend

When a phylogenetic half-life approaches infinity at the same
time as estimated primary optima become infinitely distant
from current species values, it does not necessarily mean
traits are not adapting. Instead, Hansen (1997) argued that
this situation requires a reparameterization of the Ornstein—
Uhlenbeck process. In such cases, the model transforms into
a Brownian motion with niche-specific, deterministic trends,
which can be reliably estimated as t; = lim,_, g @0, the aver-
age trait change per time as o approaches 0. The compositive
parameters t;, which also depend on the amount of time the
traits have been evolving in separate niches, can be reliably
estimated on non-ultrametric trees, even when « or the 6; are
individually inaccurate. These niche-specific trends are biolog-
ically interpreted as niche-specific rates of adaptation to dis-
tant, unobtainable optima, where the o2 parameter measures
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the magnitude of the perturbing forces. On ultrametric trees,
the 7; can only be estimated as contrasts such as z;, 7; be-
tween niches 7 and j (see Grabowski et al., 2023 for a recent
example).

Although less common than other trait dynamics, trends
in fossil time series do occur (Hunt, 2007; Hunt et al., 2015;
Voje, 2016). Hunt (2006) demonstrated that when such evo-
lutionary transitions follow a Gaussian distribution, a Brown-
ian motion with a trend can be used to model the dynamics. In
these cases, the mean () dictates the direction and strength of
trait evolution, and the variance (o2) captures stochastic fluc-
tuations around this trend. This model predicts that the ex-
pected change between ancestor and descendant populations
after time ¢ is normally distributed with a mean of #u and a
variance of to2.

Modelling primary optima on continuous, randomly evolving
niche variables

The adaptation-inertia framework has been extended beyond
fixed, categorical niches (like in an ANOVA, Figure 3A) to
model primary optima as continuous variables. To begin with,
we can let the primary optimum depend on a continuous en-
vironmental variable (x). Assuming a linear relationship, this
becomes a linear regression:

0 (x) =a+ bx. (5)

Here, a is the intercept and b is the slope. A non-zero slope
suggests the primary optimum is influenced by x, which could
be consistent with adaptation. If the predictor variable’s his-
torical states can be reliably mapped onto the phylogeny, this
can be fitted in much the same way as the ANOVA-like model
described above (Hansen, 1997). However, mapping continu-
ous predictors with fixed historical states is often problematic.
Hansen et al. (2008) proposed treating the predictor variable
itself as a randomly evolving variable, requiring only its end
states (Figure 3B). They suggested a Brownian motion model
for the predictor:

dy = —a(y — (a+ bx))dt + 0,dW,,
dx = 0,dW,. (6)

In this setup, the first equation describes an Ornstein—
Uhlenbeck process for trait y around a primary optimum that
is a linear function of predictor x. The second equation states
that x marginally follows a standard Brownian motion, where
dW, and dW, are independent white-noise processes, and o ,
quantifies the stochastic change in x.

The conditional expectation for this model is

Ji =k + pbx;, (7)

where k is an intercept term influenced by several parameters
(see online Appendix) and

p=1—(1—-e"")/at (8)

is a phylogenetic correction factor that accounts for phylo-
genetic inertia. Here, #; is the time from the root to species
i. The model estimates an “optimal” regression slope (b) and
an “evolutionary” regression slope (pb). Since p is between
0 and 1, it predicts that the observed evolutionary regression
will be shallower than the optimal regression due to phyloge-
netic inertia. A shallow observed slope could thus mean either
a genuinely shallow optimal relationship or that species are
simply lagging in their adaptation to a steeper one. The time
dependence of p predicts that evolutionary regression slopes
will typically be shallower at lower taxonomic levels (Burt,
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A Primary optima modeled on fixed,
discrete changes in environmental niches

B Primary optima modeled on continuous,
randomly changing environmental variables

Figure 3. Trait evolution for six species on a phylogeny where (A) the trait is modelled as an Ornstein—Uhlenbeck process with two primary optima that
are dependent on fixed, categorical states of an environmental variable (represented by the two dashed lines on the X axis, which represents an
arbitrary range of ordered trait values) and (B) the optima depend on a continuous variable that itself randomly evolves on the phylogeny (solid black line).
Note that in B, both the optima (black line) and trait have a stochastic variance component to their evolution (as indicated by random shifts on the X,
trait-value axis), but also that the trait tracks the optima closely as the process was simulated with a small half-life and a regression slope representing a

~ 1:1 between trait and the environmental variable.

1989; Deaner & Nunn, 1999; Hansen & Bartoszek, 2012), a
commonly observed pattern (Martin & Harvey, 1985).

The residual covariances in this “random-effect” model are
more complex than in the fixed-effects model and are provided
in the online Appendix. These models have also been general-
ized to include multiple predictors (Hansen et al., 2008; Labra
etal.,2009) and trends in the underlying Brownian motion for
the primary optima, as implemented in the latest SLOUCH
(Stochastic Linear Ornstein—-Uhlenbeck models for Compar-
ative Hypotheses) R package (Kopperud et al., 2020). Fixed
and random effects can be combined by replacing the inter-
cept k with the fixed primary optima from Equation 2, while
maintaining the random-effect residual covariance. A contin-
uous covariate without any phylogenetic covariance structure
can also be fit as a direct effects regression (Grabowski et al.,
2016)—this is useful when direct scaling effects, such as in-
creases in a trait value simply because it scales mechanically
with body size, need to be incorporated.

We note that although Ives and Garland (2010, 2014)
have previously introduced a logistic regression based on
the Ornstein—Uhlenbeck process, they separated the mod-
elling of stochastic residuals from the mean structure of the
model, which as discussed above, does not capture what the
adaptation-inertia methods set out to do; thus a logistic regres-
sion in the adaptation-inertia framework remains to be devel-
oped. A summary of the various estimated parameters for the

univariate models is provided in Table 1. The various software
packages for implementing the methods in the “adaptation in-
ertia” framework are reviewed elsewhere (Fuentes-Gonzalez,
in review).

Multivariate extensions

Understanding trait evolution often requires analyzing in-
teractions between traits, crucial for phenomena like phe-
notypic integration and evolutionary trade-offs Armbruster
et al., (2014). While univariate analyses can offer limited
insight into trait interaction dynamics by swapping predic-
tor/response roles, they typically miss the full picture of trait
interactions. Reducing multivariate traits to single dimensions
before phylogenetic analysis can also obscure vital evolution-
ary components (Uyeda et al., 2015).

Developing fully multivariate models is complex due to is-
sues with likelihood functions and reliance on matrix cal-
culus, making implementation and parameter interpretation
challenging. Early multivariate adaptation-inertia models sim-
plified assumptions (King & Butler, 2009) that were subse-
quently relaxed (Bartoszek, 2012; Clavel, 2015; Mitov et al.,
2019) into a more general multivariate comparative method
based on the Ornstein—Uhlenbeck process, described by the
following stochastic differential equation:

dy (t) = —A(y (t) — 0 (t)) dt + TdW(t). (9)
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Table 1. A summary of the commonly interpreted parameters estimated for the univariate Ornstein-Uhlenbeck models.

Parameter Definition

o Controls how fast a trait reaches a primary optimum in expectation

b The optimal regression slope for the relationship between a trait and a continuous,
randomly evolving environmental variable

0 A Phylogentic correction factor. The evolutionary (generalized least squares) regression slope
for the relationship between a trait and a continuous, randomly evolving environmental
variable is a composite parameter consisting of the optimal regression slope (b) multiplied
by the phylogenetic correction factor (p, see main text for details)

a?y The instantaneous variance (rate of change due to stochastic influences) of the trait being
modelled by an Ornstein—Uhlenbeck process

0; Primary optima, modelled on fixed, categorical predictors describing a niche for which the

ancestral states are typically reconstructed on the phylogeny. This is the mean expected
adaptive trait value for groups of species evolving in the same niche or adaptive zone

tip = (In2/a)

Phylogenetic half-life—a non-linear transformation of « that allows one to interpret the

degree of phylogenetic inertia on the same scale as the phylogenetic branch lengths.
Interpreted as the “time” it takes for half the influence of ancestral state values to disappear
from current trait values as they evolve towards their niche optima. Also used as an estimate
of phylogenetic signal when a single niche optimum is modelled for the entire tree

vy (= ozy/Zot)

Stationary variance of a trait’s evolution (i.e., the variance once the process has stabilized

after a long time) should the predictors of the model be fixed and not randomly evolving

Here, the scalar trait values (y) and primary optimum (6)
from the univariate model in Equation 1 become vectors, and
W is a multi-dimensional Brownian motion. The univariate
stochastic movement (o) and rate of adaptation («) parame-
ters are replaced by a £ matrix and an A matrix , respectively.
The ¥ matrix mediates potentially correlated stochastic per-
turbations to each trait.

The generalized, fully parameterizable A matrix offers sig-
nificant advantages for interpreting multivariate trait adapta-
tion, allowing tests of various hypotheses about evolutionary
interactions. The real part of A’s eigenvalues acts like the uni-
variate o parameter, determining the joint rate of trait conver-
gence to their stationary distribution. When transformed as
In(2)/eigenvalue, each transformed eigenvalue represents the
phylogenetic half-life for a particular dimension of multivari-
ate trait evolution. Off-diagonal entries of A show how one
trait’s approach to its optimum effects other traits’ evolution-
ary trajectories. A diagonal A matrix implies traits adapt in-
dependently to environmentally determined primary optima.
A nondiagonal A matrix means traits influence each other’s
primary optima. Upper or lower triangular A matrices model
unidirectional influences. Below, we describe, by means of ex-
ample, how the A matrix of the currently available methods
can potentially be used to infer coevolutionary processes.

For non-deterministic influences, a diagonal ¥ matrix in-
dicates independent stochastic effects on each trait’s evolu-
tion. Triangular ¥ matrices model interactions between these
stochastic influences, which can arise from shared develop-
mental constraints, pleiotropy, or linkage disequilibrium with
unmeasured traits under selection. These concepts are detailed
in a series of recent studies (Bartoszek et al., 2023a, 2023b;
Bartoszek et al., 2024).

A biological example: figs and their pollinating
wasps

The biological example

Weiblen (2004) studied the correlated evolution of ovipositor
lengths in fig wasps and style lengths of fig flowers that the
wasps lay their eggs in. These respective lengths must closely
match to allow for successful egg laying as the wasps must in-

sert their ovipositors into the styles and be able to reach and
lay their eggs specifically between the integument and nucellus
for them to successfully hatch. Using phylogenetic indepen-
dent contrasts, Weiblen (2004) showed that changes in these
traits are more strongly correlated with each other than with
phylogenetic position or body size. This example provides us
with an opportunity to showcase the additional information
that can be gained through the adaptation-inertia framework
with its focus on parameter interpretation and ability to model
dynamic adaptive landscapes in different ways. For the sake
of brevity, we provide only the key parameter estimates and
a verbal description of their interpretation. The full repertoire
of parameters estimated, confidence in the estimates, and an
interpretive description, along with the R code used to imple-
ment all models, is given in the Supplementary Material.

Fixed, categorical regimes analysis

As Weiblen (2004), we investigated if fig wasp ovipositor
length adapts to the style length of their host figs, expecting
shorter ovipositors in wasps pollinating dioecious figs (which
generally have shorter styles) compared to those pollinating
monoecious figs (with longer styles). Using maximum like-
lihood to reconstruct fig host states on the pollinator phy-
logeny (Figure 4), we fitted an Ornstein—Uhlenbeck model
with two primary optima for ovipositor length (corresponding
to monoecious and dioecious hosts). This two-optima model
outperformed both Brownian motion and a single-optimum
model (AAICc = 36.44 and 24.635, respectively), explaining
62% of the variance. The two-optima model showed a phy-
logenetic half-life of essentially zero (best estimate = 0.0 with
0.0 to 3.8% of tree height 2-log-likelihood support interval).
Based on the time-scaled cladogram presented in Cruaud et al.
(2012), the genera studied here had a common ancestor 75.1
mya, indicating that in years, the phylogenetic half-life esti-
mate falls between 0.0 and 2.6 million years with a best esti-
mate of 0.0 years, indicating that species’ traits closely track
shifts in primary optima with little lag. In contrast, a single-
optimum model estimated a phylogenetic half-life of 8.5%
of tree height, or 6.3 million years, where the support inter-
val excludes 0 (3.0 to 18.8 my). This demonstrates that the
phylogenetic signal observed in simpler models largely reflects
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Dolichoris vasculosae
iporrhopalum virgatae
Iporrhopalum gibbosae

Ceratosolen fusciceps
Ceratosolen capensis

eratosolen nexilis
eratosolen emarginatus
eratosolen vissali
Ceratosolen blommersi
eratosolen nanus
eratosolen hooglandi
eratosolen dentifer
eratosolen corneri
eratosolen bisulcatus
eratosolen appendiculatus
eratosolen kaironkensis
eratosolen armipes
eratosolen abnormis
eratosolen riparianus
eratosolen medlerianus
eratosolen grandii
iebesia punctatae
iebesia frustrata
iebesia brusi
Pleistodontes rigisamos
Pleistodontes rieki
Pleistodontes plebejus
Platyscapa fischeri
Platyscapa corneri
Waterstoniella brevigena

Eupristina verticillata
lastophaga malayana
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Figure 4. Phylogeny (from Weiblen, 2004, estimated from 18s rRNA
sequences, made ultrametric and scaled to a height of 1) representing
the relationships between the fig wasps studied here and an ancestral
state reconstruction (see main text for details) of whether they pollinate
dioecious (black) or monoecious (gray) fig trees.

adaptive evolution to phylogenetically structured optima,
cautioning against removing all phylogenetic signal in anal-
yses as it can inadvertently erase adaptive effects

The estimated primary optima for ovipositor length were
0.31 £ 0.04 mm for dioecious fig pollinators and 0.88 + 0.06
mm for monoecious fig pollinators. Although the measured
average fig style lengths (0.54 mm for dioecious, 1.25 mm for
monoecious) were slightly longer than ovipositors (likely due
to measuring mature figs rather than those receptive to pol-
lination), the substantial difference between the two ovipos-
itor optima strongly supports our hypothesis. The estimated
stationary variance was 0.04 mm?, meaning species were, on
average, within \/2v/7 = 0.16 mm of their primary optima.
This difference suggests that the average dioecious fig polli-
nator would struggle to lay eggs in monoecious figs and vice
versa, highlighting the precise adaptation.

Convergent evolution inertia decomposition

Although our best estimate for the phylogenetic half-life was
zero (implying traits perfectly track their optima), we can still
demonstrate Moen et al.’s decomposition of deviations to il-
lustrate its utility. When forcing the phylogenetic half-life to be
10% of tree height, we calculated the mean ovipositor lengths
for wasps pollinating dioecious figs as 0.31 mm (optimum:

0.30 mm) and for monoecious figs as 0.87 mm (optimum:
0.96 mm). Our analyses show the ancestral state was dioe-
cious fig pollination, with five transitions to monoecious pol-
lination among the 39 lineages. Using these values, the sum
of squared deviations due to random, current environmental
influences (SSE) was 5.14 mm?, and the sum of squared devi-
ations due to history (SSH) was 0.08 mm?. After dividing by
their degrees of freedom, their mean squares were 5.14 mm?
and 0.002 mm?, respectively. Comparing these variances, we
would conclude that clade membership influences the distance
from primary optima far more than adaptation to historical
habitats. This result makes intuitive sense given our finding
of a zero phylogenetic half-life in the actual best-fit model,
because when there is no lag, historical adaptation does not
hinder current adaptation.

Randomly evolving environment analysis

To explicitly test if ovipositor length adapts directly to style
length, we used style length as a continuous, randomly evolv-
ing predictor for ovipositor length optima, modelling it as
a Brownian motion with ovipositor length tracking it via
an Ornstein—Uhlenbeck process (Hansen et al., 2008). This
model yielded a significantly better fit than the previous best
2-fixed optima model (AAICc = 27.54), explaining 80% of
the variance. The estimated phylogenetic half-life was re-
markably short: 0.07% of tree height [~50,000 years, sup-
port interval = 0.0-3.8 my (Figure 5)], indicating rapid
adaptation. This contrasts sharply with the 9.3-million-year
half-life of a global-optimum model, reinforcing that most
phylogenetic signal stems from phylogenetically structured
niches rather than inherent inertia. The estimated optimal
relationship between ovipositor and style length (Figure 5)
showed a regression slope of 0.75 + 0.06, nearly identical to
the evolutionary regression slope (0.74 £ 0.06) and the or-
dinary least squares slope (0.74 + 0.06). This congruence is
expected given the short phylogenetic half-life, meaning cur-
rent trait values are very close to their optima. The estimated
stationary variance was 0.02 mm?, corresponding to an av-
erage deviation of approximately 0.11 mm from the optima.
With the 95% confidence interval for the optimal slope (0.62
to 0.86 mm) excluding zero, and style length explaining 80%
of ovipositor length variance, we conclude that style length
has a large and statistically significant effect on ovipositor
length optima. Furthermore, the short phylogenetic half-life
(50,000 years) relative to the tree height indicates that ovipos-
itor length adapts rapidly to changes in fig style length.

Mixed-model and multiple regression analysis
To determine if ovipositor length adapts primarily to style
length or also to fig reproductive mode, we fitted an
ANCOVA-style mixed model. This model, which combines a
fixed categorical predictor (reproductive mode) with a ran-
domly evolving continuous predictor (style length), was nearly
as well-supported as our best model (AAICc = 0.64). Ex-
amining the estimated intercepts for this mixed model, how-
ever (Dioecious: —0.03 4 0.06 mm; Monoecious: 0.09 £+ 0.12
mm), their overlapping 95% confidence intervals suggest that
fig reproductive mode itself does not significantly influence
primary optima beyond the effect of style length.

Following Weiblen’s (2004) approach, we then used multi-
ple regression in SLOUCH to assess if wasp body size (thorax
width) also predicts ovipositor length. We treated body size
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Figure 5. (A) Optimal (dashed line) and evolutionary (solid line) regressions for fig wasp ovipositor length modelled on randomly evolving fig style length.
(B) The 2-unit log-likelihood support surface for the phylogenetic half-life and stationary variance for the regression model applied in A.

as a fixed covariate, as we wanted to test direct, mechanical
scaling effects. The multiple regression model, including fixed
body size and randomly evolving style length, yielded a non-
significant direct thorax-width slope (—0.003 % 0.12). It was
also AAICc = 2.62 units worse than the best single-predictor
(randomly evolving style length) model, and it only explained
an additional 1% of variance (total 81%). A model with only
fixed body size as a predictor was far worse (AAICc = 52.43)
than the best model, explaining only about 6 % of the variance.
Thus, consistent with Weiblen (2004), our univariate analyses
confirm that style length is the single most important influ-
ence on the adaptive optima for ovipositor lengths among all
predictors considered.

Multivariate analysis

Weiblen (2004) emphasized the coevolutionary nature of
ovipositor and style length evolution, and thus far, we have
been modelling the relationship between them as one in which
the latter evolves independently of the former. An implied as-
sumption of this approach is that ovipositor length tracks
the evolution of style length, but not vice versa. The alter-
native can be studied by fitting the same model but with
switched variables, i.e., ovipositor length evolving randomly
in the phylogeny as a Brownian motion with style length
tracking it through an Ornstein—-Uhlenbeck process. Although
this switched variable approach can offer insights into the di-
rectionality of the pattern (Davis et al., 2012; Pienaar et al.,
2013), it is still restrictive in the sense that one of the vari-
ables is forced to evolve independently of the other. Consider-
ing that figs depend solely on fig wasps for their pollination,
this restriction is undesirable as it excludes the possibility that
ovipositor and style length are reciprocally exerting selection
on each other [i.e., it leaves out reciprocal selection, which is at
the core of textbook definitions of coevolution e.g., Futuyma
& Kirkpatrick (2023)]. A multivariate approach is better
suited to address this type of specific coevolution hypothe-
sis because it makes less assumptions about how the vari-

ables evolve, allowing for the possibility that both traits in-
fluence each other’s evolutionary trajectory. This possibility is
facilitated by modelling each variable as an Ornstein—
Uhlenbeck process where the primary optima are allowed to
reciprocally influence each other. The mvSLOUCH R pack-
age (Bartoszek et al., 2012) allows for contrasting four gen-
eral scenarios for this analysis with information criteria: (i) as
in Hansen et al. (2008) one trait is modelled as an Ornstein—
Uhlenbeck process tracking an optimum affected by one or
more other traits each modelled as a Brownian motion pro-
cess, henceforth the “OUBM” model; (ii) vice versa (i.e.,
the OUBM model with switched variables); (iii) a model in
which the trait values, as well as the association between
the two traits is mediated by stochastic perturbations only
(i.e., as a multivariate Brownian motion process, henceforth
“BMBM?” model); (iv) a model in which both traits are mod-
elled as an Ornstein—-Uhlenbeck process (i.e., as a multivari-
ate Ornstein—Uhlenbeck process as described above, hence-
forth the “OUOU” model) each with their own primary opti-
mum. To test for coevolution specifically, we can parametrize
the OUOU models in such a way that the two traits’ pri-
mary optima reciprocally affect each other’s dynamics. When
more variables and more hypotheses are available, any custom
model can be built from any combination of these four gen-
eral scenarios, and fixed categorical predictors can also be in-
cluded, but for the fig wasp example, we are only interested in
(1) whether the specific coevolution model (an OUOU model
with symmetric off-diagonal elements in the A matrix as dis-
cussed below) outperforms the others and (2) if so, how do
we interpret the parameter estimates?

The more nuanced multivariate approach requires contrast-
ing various matrix parameterizations to determine whether
the associations between traits are mediated through the
stochastic perturbations (through non-zero off-diagonals in
¥), coadaptation (through non-zero off-diagonals in A), or
both. For the fig-wasp example, the best fitting candidate (by
AICc criteria, Table 2 and Supplementary Material) was an
OUOU model parameterization with non-zero, equal-value-
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Table 2. Hypothesis testing for multivariate scenarios.

"

Hypothesis Model A-matrix Y-matrix AICc r

Specific coevolution Oouou Symmetric- Single-value- 0.85 0.90
positive-definite diagonal

Style primary optimum affects ovipositor primary Oouou Upper-triangular Single-value- 2.44 0.90

optimum diagonal

Ovipositor primary optimum affects style primary Oouou Lower triangular Single-value- 2.64 0.90

optimum diagonal

Adaptation to independent primary optima with Oouou Single-value- Upper-triangular 8.95 0.90

stochastically generated correlation diagonal

Style adapts to randomly evolving ovipositor OUBM Scalar Scalar 10.89 0.97

Ovipositor adapts to randomly evolving style OUBM Scalar Scalar 10.91 0.97

Correlated evolution without adaptation to primary BMBM - Lower triangular 44.39 0.76

optima

off-diagonals in A and symmetrical, equal-value-diagonals  rearranging:

with zero off-diagonals in ¥ (Table 2). In fact, all models
within 2 AICc units of the best model were OUOU mod-
els with zero off-diagonals in ¥ and either symmetric, up-
per, or lower triangular A matrix models indicating that the
primary optima do affect each other (either reciprocally or
unidirectionally) and that the trait correlations are caused by
these deterministic effects. The first model to include non-zero
off-diagonals in ¥ was 4.81 AICc units away from the best
model but still also includes an A matrix with non-zero off-
diagonals, meaning that if this was the correct model, some
of the trait correlations could also be attributed to unmea-
sured stochastic influences. The first model with diagonal A
and off-diagonal ¥ was 8.10 AICc units from the best model;
thus, there is far more support for a coevolution model than
one that stipulates adaptation to independent primary optima
with trait correlations generated by stochastic influences. The
rest of the OU models all had far less support, so we do not
discuss them further here.

The parameter estimates of the best model can be expressed
in terms of Equation 9 as

_ 75 my= ' =55 my ! 0.53 mm
dy(t) = - [—55 my™' 50 my™! Y ()= 082 mm ) %

1.77mm/ /ny 0 mm/./my
+[ 0 mm/Jmy 1.7 mm/m] AW (1),

where dy(t) is a 2-dimensional vector consisting of the trait
values for the ovipositor length (z;) in mm of species i = 1 to
n, and the style length of the specific Ficus species the wasps
pollinate (x;) in mm. Similarly, W(t) is a 2-dimensional stan-
dard Wiener process for each trait. Thus, for ovipositor length
we can write

dz; = —74.58 (z; — 0.53) + 54.98 (x; — 0.82) + 1.77dW,,
which can be rearranged to give
dzi=—74.58(z; —0.53+ 0.74 (x; — 0.82)) + 1.77dW,

which shows us that ovipositor length follows an Ornstein—
Uhlenbeck process with central state, or primary optimum for
a fixed value of x; equal to 0.53 mm + 0.74(x,—0.82) mm
meaning that the optimum for ovipositor length is a linearly
increasing function of style length with a slope of 0.74 (since
we used the same units for ovipositor and style length). The
optimal ovipositor length, when style length is at its optimum,
is 0.53 mm.

We can perform the same operations on the predictive
equation for ovipositor length, where, after rewriting and

dx; = —49.63 (x; — 0.82) + 54.98 (z; — 0.53) + 1.77dWh.

We obtain 0.82 mm + 1.11(z;=0.53) mm. Thus, the optimal
style length, when ovipositor length is at its optimum, is 0.82
mm; otherwise, the optimal style length is a linearly increasing
function of ovipositor length with a slope of 1.11. We used
these equations to generate the expected optimal relationships
in Figure 6.

The phylogenetic half-life (1st eigenvalue) for this joint
Ornstein—Uhlenbeck process is less than one percent (0.6%)
of the tree height, or 44k years. The size of the stochastic fluc-
tuations for ovipositor length, (1.77)%/2%75 = 0.02 mm/my
gives the stationary variance of the ovipositor for a fixed style
length. Hence the expected distance to the optimum for a fixed
style length is {/2(0.02)7 = 0.11 mm. Note that X is a single-
value-diagonal matrix, indicative of uncorrelated stochastic
evolutionary changes with the same phenotypic rate of change
for both variables; thus, the expected distance to the optimum
of style length for a fixed ovipositor length is also 0.11 mm.
The strong correlation (0.90) between ovipositor and style
length associated with this model (Table 2) can be explained
in terms of reciprocal selection. In particular, the symmetric
A matrix indicates that the traits influence each other’s paths
towards their optima.

Interestingly, the worst fitting scenario (BMBM) is the one
that reports the lowest correlation between variables (Table
2). This is not surprising considering that, as shown above, the
association can be explained by coadaptation, while BMBM
can only explain it in terms of correlated stochastic pertur-
bations. Unable to capture the proper evolutionary dynam-
ics, BMBM is most likely underestimating the strength of
the association. Also using Brownian motion as the underly-
ing process, Adams & Nason (2018) presented a multivari-
ate permutation-based phylogenetic generalized least squares
procedure for testing correlated evolution between traits of
coexisting sets of lineages and showcased it with the dataset
of Weiblen (2004). Adams & Nason (2018) argued that the
high correlation found when ignoring phylogeny (0.90) over-
estimated the strength of the association between style and
ovipositor length given that their method, which accounted
for both the plant and pollinator phylogeny in the analysis, re-
ported a much lower correlation (0.55). But if it is true, as our
results suggest, that the relationship between ovipositor and
style lengths is mediated by selection, the method of Adams &
Nason (2018) cannot be expected to fully recover it because its
underlying evolutionary process (Brownian motion) is incon-
sistent with adaptation towards optimal states. Their method
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Figure 6. The observed relationship between fig-wasp ovipositor length and fig style length (open circles) with the optimal predictions (see main text) of
the multivariate analysis (solid lines). The dashed lines represent where the primary optima for the two traits intersect (i.e., the primary optimum for trait
1 when trait 2 is at its primary optimum). The panel on the left represents the partial regression of ovipositor length on style length, whereas that on the

right represents the partial regression of style length on ovipositor length.

is more geared towards evaluating the degree of trait covaria-
tion while accounting for the lack of independence between in-
teracting lineages. The problem is that when the dependencies
arise from adaptive patterns that are phylogenetically struc-
tured (like in the case of interacting lineages that exert se-
lective pressures on each other), such an approach is prone
to removing the very same evolutionary patterns that are ob-
ject of study (Hansen, 2014; Labra et al., 2009). These phylo-
genetically structured adaptive interactions are quite possible
for figs and fig wasps for which highly specialized associa-
tion precedes the radiation of either lineage, with the fossil
record indicating that no major innovations have evolved in
this mutualism for at least 34 million years (Compton et al.,
2010). From this point of view, it is quite possible that the
non-phylogenetic correlation reported by Adams & Nason
(2018) did not overestimate the strength of the association be-
tween style and ovipositor length (as suggested by the authors)
but, like our BMBM here (Table 2), that the phylogenetically
corrected correlation was the one underestimating it (in fact,
notice that the non-phylogenetic correlation reported by the
authors is quite close to the correlations under our Ornstein—
Uhlenbeck models, which incorporate phylogenetic informa-
tion). The approach proposed by Adams & Nason (2018) is
valuable in the sense that it allows for testing evolutionary as-
sociations involving more than one phylogeny. Coevolution,
however, regardless of whether it is specific or diffuse, is most
commonly defined by reciprocally mediated selection between
interacting species (Nuismer, 2017; Thompson, 2013), and its
analysis thus requires analytical approaches that are consis-
tent with selective processes. The adaptation-inertia frame-
work offers the suite of properties required for this task, and
some progress has been made in this direction (Drury et al.,
2016; Manceau et al., 2017). Still, a more comprehensive ap-
proach combining the multivariate Ornstein—Uhlenbeck setup
presented above with the simultaneous analysis of several
phylogenies as in Adams & Nason (2018) constitutes a
promising avenue to rigorously tackle the long-held, but ac-
cording to Althoff et al. (2014), still untested, assumption that
most observed trait variation is a result of coevolutionary pro-
cesses between ecologically interacting species.

Critical evaluation of the adaptation-inertia
framework

Throughout our analysis, we have focused on demonstrating
the adaptation-inertia framework, setting aside measurement
variance (actual measurement error and within-species vari-
ation). This can significantly affect parameter estimates and
should be included whenever it is available (unfortunately
availability is not always the case, especially for older data
sets). For an in-depth discussion, we refer readers to Hansen &
Bartoszek (2012) and the forthcoming review of the software
for implementing methods of the adaptation-inertia frame-
work (Fuentes-Gonzilez, in review).

The adaptation-inertia approach and its statistical aspects
have undergone critical evaluation Ho and Ané (2014).
showed that the accuracy of parameter estimates, particularly
for « (rate of adaptation), decreases with smaller « values and
that statistical power for « is lower than for other parame-
ters. This emphasizes the need to consider parameter accuracy
when drawing conclusions. They also highlighted the pres-
ence of ridges in the log-likelihood surface, which can make
finding maximum likelihood estimates challenging and lead
to non-convergence during optimization. This does not inval-
idate Ornstein—-Uhlenbeck models, but it means conclusions
about inertia, stationary variances, and regression parame-
ters require careful consideration of the likelihood surface’s
topology. Repeating numerical optimizations from different
starting points is crucial due to the potential for multiple
peaks in parameter-rich models (e.g., Bartoszek et al., 2023a,
2023b).

Cressler et al. (2015) simulated data to identify parame-
ter combinations where the models might break down. They
used transformations of the parameters «, 6 and o, to assess
their influence on model-selection power. Their findings essen-
tially reiterate observation that «’s magnitude primarily af-
fects the precision and accuracy of its estimate, especially for
small sample sizes. Smaller simulation studies (Hansen et al.,
2008) also found low estimation precision and accuracy of
the & parameter with small & values and few species, but ac-
curacy improves dramatically with larger sample sizes and «
values.
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Multivariate extensions of the framework have also been
critically examined. Adams & Collyer (2018) argued that mul-
tivariate phylogenetic comparative methods, including those
in the adaptation-inertia framework, (1) become more prone
to misidentifying evolutionary processes as trait dimensional-
ity increases and (2) are prone to rotation invariance issues in
that the likelihood of a given model can change after orthog-
onal linear transformation of its variables. Bartoszek et al.,
(2023b) provide a comprehensive treatment of how these is-
sues arise and how they can be alleviated and even used to
our advantage. The first issue is due to the traditional practice
of explicitly constructing the whole among-species—among-
traits variance matrix V and then calculating the likelihood
directly from the multivariate normal density. In practice, V'
is often ill-conditioned, which leads to substantial numerical
errors and potential likelihood biases towards more complex
models. This issue is alleviated by Mitov et al.’s (2020)fast-
likelihood calculation algorithm, implemented in the PCM-
BASE package, which performs calculations branch by branch
rather than on the entire V matrix. The latest versions of pack-
ages such as mvSLOUCH (Bartoszek, 2024) use PCMBASE
as their computational engines. Furthermore, the significantly
faster calculations allow for many more iterations of numeri-
cal optimizers on large phylogenies. These improvements to-
gether lead to more stable likelihood estimates, substantially
alleviating the potential bias towards more complex models.
The rotation invariance issue is more convoluted and is related
to likelihood instability rather than true rotation invariance
and is potentially an issue with any method that uses numeri-
cal rather than analytical optimization procedures. Bartoszek
et al., (2023b), however, argue that the different likelihoods
achieved by different rotations of the data could be used to
our advantage in that they could be used to determine model
convergence as well as to ease estimation as some rotations
may lead to more independent data points than others.

Future directions

Modelling trait evolution on a dynamical adaptive landscape
is one of the great strengths of the adaptation-inertia ap-
proach. Hundreds of studies have implemented the methods
of the adaptation-inertia framework on traits ranging from
brain volume to gene expression. A quantitative meta-analysis
of these and future studies to determine (a) how often adaptive
hypotheses provide the best explanation for trait change; (b)
how fast adaptation occurs, and (c) what the relative contribu-
tions of adaptive versus stochastic change are would be highly
informative. Unfortunately, relevant parameters from the fit-
ted Ornstein—Uhlenbeck models, or tree heights, or measure-
ment error are sporadically reported, which lowers the power
of the suggested meta-analysis. We therefore encourage future
users of the adaptation-inertia approach to always report all
model parameters, at least as supplements if space require-
ments prohibit this, with units and their confidence estimates
so that the barriers to informative meta-analysis might be al-
leviated.

One challenge with the adaptation-inertia approach is that
the model parameters are somewhat open for interpretation
compared to stricter microevolutionary interpretations when
describing trait dynamics in a static landscape (e.g., Lande,
1976). Whereas a phylogenetic comparative study of young
populations that have diversified over a few thousand years
may allow for interpreting the Ornstein—-Uhlenbeck process
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parameters in line with quantitative genetic models, rather
than in the more-vague “macroevolutionary” terms, most
across-species comparative data span many millions of years.
Analyzing comparative data covering different timescales and
assessing when the microevolutionary interpretation of the
model parameters breaks down could add insight into how
to connect microevolutionary processes with the larger-scale
patterns of phenotypic evolution observed at macroevolution-
ary timescales.

“Chicken or egg” type questions abound when it comes to
inferring patterns of transitional evolutionary changes, and
the phylogenetic comparative methods we have described can
contribute to such inference. Consider the study of Davis et
al. (2012), which concerns the evolution of egg and body size
in geometrid moths. The two traits are strongly correlated
across species, and the question of whether increasing body
size drives larger egg size or whether it is the other way around
arose. The following logic was used to infer which trait drives
the relationship: first an Ornstein—Uhlenbeck model with no
predictor variables was fit for each trait independently, which,
as discussed above, is a way to quantify the degree of phy-
logenetic signal in a trait (captured by the phylogenetic half-
life). Then each trait was modelled on optima regressed on the
other trait to determine which model exhibited the highest de-
gree of phylogenetic inertia (again measured by the phyloge-
netic half-life). Using this approach, we are essentially asking
(as in Labra et al., 2009) if the phylogenetic signal observed
in a trait is due to inertia in evolution of the trait itself or
whether it is rapidly tracking another variable or trait that
is phylogenetically structured. For Davis et al. (2012), strong
phylogenetic signal was observed in egg size, but when re-
gressed on body size, a significant regression with almost no
phylogenetic inertia was observed. For body size, both strong
phylogenetic signal and phylogenetic inertia were observed,
despite the strong regression relationship. From these obser-
vations, we can conclude that the strong correlation between
the traits exists because egg size is likely tracking changes in
body size rather than vice versa. This logic has further been
used to infer which life history traits in passerines are the
likely drivers of evolutionary change (Pienaar et al., 2013),
although see Uyeda et al. (20135) for a relevant critique of di-
mensional reduction prior to the use of phylogenetic compar-
ative methodologies. The multivariate, generalized Ornstein—
Uhlenbeck framework (Bartoszek et al., 2012) uses more re-
fined logic to make inferences regarding which traits are driv-
ing an observed relationship and suggests that inference is
not as straight forward as argued above. The ability to es-
timate generalized non-symmetrical A matrices that include
off-diagonal elements allow us to infer to what degree traits
influence each other’s evolution and potentially which traits
are driving observed correlations. For models where two or
more traits are evolving as a multivariate Ornstein—-Uhlenbeck
process, the estimated parameters, along with the A matrix as-
sociated eigenvectors and eigenvalues, allow for inferences re-
garding which variables influence each other. Garcia-Cabello
et al. (2022) recently used this logic to infer that the evolution
of superfetation precedes the evolution of advanced placen-
totrophy in poecilid fish.

The existing multivariate formulations of the adaptation-
inertia framework allow for testing hypotheses that involve
comparison of trait interactions within individuals, such as
evolutionary trade-offs. The ability to analyze adaptive trait
interactions between two or more unrelated sets of lineages,
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such as those that occur between coevolving lineages, would
provide an invaluable tool for biodiversity researchers and, we
argue, could also potentially explain some of the phenomena
observed in macroevolutionary data, such as the commonly
observed pervasive trait fluctuations around a fixed mean
punctuated with burst of change (Uyeda et al., 2011). Fur-
thermore, most phylogenic comparative methods use bifurcat-
ing trees to inform their residual covariance structures. The
reticulate nature of many, if not most, species trees due to hy-
bridization or horizontal gene transfer is becoming ever more
apparent—the continued development of methods to incor-
porate such reticulations, such as network structures (Bastide
etal.,2018), in our opinion, will likely also inform methods to
study more widespread diffuse coevolution in a phylogenetic
comparative framework and are thus well worth pursuing.
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