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Abstract 
Phylogenetic comparative methods are a major tool for evaluating macroevolutionary hypotheses. Methods based on the mean-reverting stochas- 
tic Ornstein–Uhlenbeck process allow for modelling adaptation on a phenotypic adaptive landscape that itself evolves and where !tness peaks 
depend on measured characteristics of the external environment and/or other organismal traits. Here, we give an overview of the conceptual 
framework for the many implementations of these methods and discuss how we might interpret estimated parameters. We emphasize that 
the ability to model a changing adaptive landscape sets these methods apart from other approaches and discuss why this aspect captures long- 
term trait evolution more realistically. Recent multivariate extensions of these methods provide a powerful framework for testing evolutionary 
hypotheses but are also more complicated to use and interpret. We provide some guidance on their usage and put recent literature on the topic 
in biological rather than mathematical terms. We further show how these methods provide a starting point for modelling reciprocal selection 
(i.e., coevolution) between interacting lineages. We then brie"y review some critiques of the methodologies. Finally, we provide some ideas for 
future developments that we think will be useful to evolutionary biologists. 
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Introduction 

“Response to selection pressure is not instantaneous, and 
inertia, in the sense of lag in following a shifting optimum, 
is an important element in evolution”—Simpson (1944) pp 
179. 
The modern synthesis of evolutionary theory has long wres- 

tled with Dobzhansky’s (1937) and many subsequent biol- 
ogists’ supposition that microevolutionary forces scale up 
to explain macroevolutionary patterns. Although the origins 
of new life forms, transitional changes, and rates of evolu- 
tion have traditionally been the focus of evolutionary biol- 
ogy, explanations for the persistent lack of change in traits 
over long time periods—the “paradox of stasis”—remains 
a signi!cant challenge ( Bradshaw, 1991 ; Eldredge & Gould,
1972 ; Futuyma, 2010 ; Hansen, 2012 ; Hansen & Houle, 2004 ; 
Williams, 1992 ), especially given the high evolvability ob- 
served in almost all quantitative traits where evolvability has 
been studied ( Hansen & Pélabon, 2021 ). 

A promising approach to understanding long-term phe- 
notypic evolution stems from Simpson’s ( 1944 ) pheno- 

typic adaptive-landscape metaphor, inspired by Wright’s 
(1931) adaptive landscape for genotypes, except that it envi- 
sions a dynamic topographical landscape of adaptive zones for 
phenotypes rather than genotypes. The topographical shape 
of Simpson’s landscape at any given time is thus de!ned 
by where current trait values are in relation to the !tness 
peaks of the adaptive zones and how strong selection towards 
those peaks is. Although early models like Lande’s (1976) in- 
"uential model of stabilizing selection and genetic drift de- 
scribe phenotypic evolution on such a landscape over gen- 
erational timescales, they often fail to capture the phyloge- 
netic correlations and degree of cross-species variation ob- 
served in macroevolution. This is because Lande’s selection- 
drift model is built for a static adaptive landscape, that over 
macroevolutionary timescales, nearly always results in a near- 
instantaneous approach to the optimum. This implies that 
there will be no phylogenetic correlations, no lingering in- 
"uence of past environments, and therefore, that phyloge- 
netic comparative methods are simply unnecessary ( Hansen 
& Martins, 1996 ). Phylogenetic signal, however, is ubiquitous 
across millions of years ( Uyeda et al., 2011 ). Simpson (1944 , 
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1953 ) and others (e.g., Arnold, 2023 ; Arnold et al., 2001 ; 
Calsbeek et al., 2012 ) have argued that the adaptive landscape 
is a dynamic entity that itself evolves over macroevolutionary 
time scales and that it is this dynamic aspect of the landscape 
that potentially generates a lag between species trait values 
and their shifting optima, observed cross-species variation lev- 
els, and phylogenetic correlations. 

Phylogenetic comparative analyses across groups of related 
species have long been used to test macroevolutionary hy- 
potheses ( Brooks & McLennan, 1991 ; Rensch, 1959 ; Ridley,
1983 ). These methods use phylogenetic relatedness to sta- 
tistically account for the non-independence of trait observa- 
tions among related species. It is less appreciated, however, 
that how much traits are dependent (or are free to vary) re- 
lies on both phylogenetic relatedness as well as the mode of 
evolution unfolding in the phylogeny. Felsenstein (1985) lu- 
cidly showed this model dependence when he developed the 
independent-contrasts algorithm, which assumes trait evolu- 
tion follows a multivariate Brownian motion, meaning evo- 
lutionary changes across the phylogeny are proportional to 
shared ancestral time. When accounting for the relatedness 
of species in statistical analyses once the model of evolution 
unfolding on the phylogeny has been accounted for, meth- 
ods like generalized least squares ( Grafen, 1989 ; Martins 
& Hansen, 1997 ; Rohlf, 2001 ), likelihood ( Lynch, 1991 ), 
or Bayesian approaches ( Had!eld, 2010 ; Uyeda & Harmon,
2014 ) can estimate model parameters by specifying the covari- 
ance among residuals. To address the dynamic adaptive land- 
scape issue, the “adaptation-inertia” phylogenetic compara- 
tive analysis framework inspired by Hansen’s (1997) work 
uses the stochastic, mean-reverting Ornstein–Uhlenbeck pro- 
cess to model trait evolution. This framework explicitly ac- 
counts for how trait values move towards speci!c adaptive 
optima, which can change with environmental variables. The 
approach builds upon a rich history of statistically rigorous, 
evolutionary-model based phylogenetic comparative methods 
developed since the 1980s ( Armbruster, 1988 ; Cheverud et al.,
1985 ; Felsenstein, 1985 , 1988 ; Pagel & Harvey, 1988 ). The 
Ornstein–Uhlenbeck process, as described below, allows for 
distinguishing between general phylogenetic signal and phy- 
logenetic inertia by controlling only for the latter de!ned as 
a lag in adaptation to evolving !tness peaks. This distinc- 
tion becomes particularly important when traits adapt to !t- 
ness peaks that themselves are phylogenetically structured (as 
would be the case when organisms, for example, track their 
ancestral niches) as this will show up as general phylogenetic 
signal in the traits, and it could potentially be a mistake to 
attempt to correct for it, which unfortunately is still common 
practice, especially when the traits do not lag behind their !t- 
ness peaks ( Hansen, 2014 ; Hansen & Orzack, 2005 ; Labra 
et al., 2009 ; Revell, 2010 ). Importantly, this framework also 
allows for !tness peaks to remain stationary over long time pe- 
riods (or inde!nitely) and for evolution to be bounded around 
such !tness peaks, thereby providing one possible explanation 
for stasis—long term stabilizing selection. The suite of meth- 
ods in the “adaptation-inertia” framework can now model 
various types of traits, continuously varying or categorical, 
and offers a robust toolset for analyzing macroevolution and 
adaptation. 

In this review, we discuss the rationale and parameter inter- 
pretation of the adaptation-inertia framework, its relationship 
to quantitative genetic models, detail its various extensions, 
and explore how its multivariate methods can illuminate trait 

interactions and coevolutionary processes by means of an ex- 
ample. It is our hope that this review will serve as a useful 
guide to this rich and rapidly expanding modelling framework 
for both new and experienced users. 
The adaptation-inertia modelling framework 
The adaptation-inertia framework models how species’ trait 
values track shifting adaptive !tness peaks, in"uenced by en- 
vironmental factors ( Hansen, 1997 ). It aims to determine if 
species in different niches have systematically distinct adap- 
tive peaks. To this end, Hansen (1997) proposed estimating 
a “primary optimum,” representing the average trait state for 
species evolving in a speci!c adaptive zone over long periods. 
Individual species have local trait optima that vary around 
this primary optimum, averaging out secondary evolutionary 
in"uences. For example, !g wasps pollinating monoecious Fi- 
cus species have on average, longer ovipositors than those pol- 
linating dioecious Ficus species ( Nefdt & Compton, 1996 ), 
re"ecting the bimodal style lengths they must navigate to suc- 
cessfully reproduce. Male monecious !g "owers, on average, 
have longer styles than the male "owers of dioecious !gs, and 
!g-species-speci!c !g wasp mothers must insert their ovipos- 
itors through these styles in either case to successfully lay an 
egg and provide their larvae with nutrition through galling 
the uni-ovulate "owers. Differences in these primary optima 
indicate the systematic in"uence of distinct primary niches 
(like the bimodal style lengths associated with monoecy vs. 
dioecy) on adaptive peak positions. To assess the importance 
of adaptation to a niche, the framework examines how differ- 
ent these primary optima are and how quickly species adapt 
to them, while also accounting for unmeasured factors in"u- 
encing local adaptive-peak changes. A simple model that al- 
lows for incorporating all these requirements is the Ornstein–
Uhlenbeck process. It consists of a deterministic part describ- 
ing the approach to the primary optimum and a stochastic 
part representing changes in adaptive peaks due to a combi- 
nation of numerous unknown and unmeasured secondary se- 
lective forces as well as other stochastic processes such as ge- 
netic drift. Mathematically, the Ornstein–Uhlenbeck process 
is described by the stochastic differential equation: 

dy = −α ( y − θ ) d t + σd W, (1) 
where dy is the change in the adaptive peak over an in!nitesi- 
mal time interval dt , y is the position of the adaptive peak, θ is 
the primary optimum, α ( ≥ 0) determines the rate of adapta- 
tion towards the primary optimum, dW is short-hand for in- 
dependent normally distributed stochastic changes with mean 
zero and unit variance over a unit of time (white noise), and σ
is the instantaneous standard deviation of these changes (i.e., 
W is a Brownian motion process). The model stipulates that 
the rate of adaptation to the primary optimum increases lin- 
early with distance from that optimum. To represent alterna- 
tive niches, we can extend the basic model by allowing the 
primary optimum to be a function of one or more indicators, 
xi , that represent niches or environmental states. Hence, we 
write θ = θ (xi ) in the model. Using a method developed in 
Hansen & Martins (1996) , Hansen (1997) derived the joint 
distribution of species trait values when this process unfolds 
on a phylogeny. This assumes that the states of the niche pre- 
dictor variables, xi , are known on the phylogeny. The joint 
distribution is multivariate normal with a predicted mean for 
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Figure 1. Inertia affects trait evolution on a phylogeny. The trait is represented by a pent agon, and differential selection as t wo niches (dashed and solid 
lines). The niche represented by the solid line is also the ancestral niche (anc), thus stabilizing selection acts continuously on the species that remain in 
this niche. The dashed line represents a niche that has an elongated pentagon as a primary optimum ( θnew ). With low phylogenetic inertia (top panel, 
large α) the new phenotypic space represented by the primary optimum associated with the dashed line niche is quickly reached on average. With 
strong inertia (bottom panel, small α), trait evolution is constrained by contingency, and it takes much longer to reach the phenotypic space around the 
primary optimum for the new niche. 
each species i , given by 

ˆ yi = c0 i ya + c1 i θ ( x1 ) + c2 i θ ( x2 ) + . . . + cki θ ( xk ) , (2) 
where ya is the ancestral state at the root of the phylogeny, 
θ (x1 ) is the primary optimum for state x1 of the environmen- 
tal variable, θ (x2 ) is the primary optimum for state x2 of the 
environmental variable, and so on for all k possible states of 
the environment. The coef!cients cji represent the in"uence 
of environmental state j on species i and are functions of α
and the history of association between j and i , as described 
in Hansen (1997) . They are all between zero and one, and 
they sum to one. The coef!cient corresponding to a partic- 
ular environmental state will be large when the species has 
spent a lot of its history associated with this state, with re- 

cent associations weighted more heavily. The larger the rate 
of adaptation, α, the more the weighting shifts towards recent 
environments, and when α approaches in!nity, adaptation is 
instantaneous and only the current environment is weighted 
( Figure 1 ). 

If the environmental states, the xj ’s, are mapped on the phy- 
logeny, the cji ’s may be computed, and the θ (xj ) ’s can be esti- 
mated in a linear model framework analogous to an ANOVA 
or regression model. For non-ultrametric trees, such as those 
that include extinct species fossil data, the ancestral trait state, 
ya can also be estimated as detailed in Hansen (1997) and 
Hansen et al. (2008) . Due to phylogenetic structure, we must 
account for non-independence in residual deviations from the 
predicted values using estimation techniques such as general- 
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Figure 2. Correlated-progression model adapted from Kemp (2007) . Elongation of a shape through a succession of evolutionary steps involving !ve 
phenotypic traits (A–D). As in Kemp (2007) , the traits are assumed to be mutually interconnected by slightly "exible functional linkages represented by 
the lines. Changes in trait pairs A and B, as well as E and C are highly correlated to preserve bilateral symmetry. All traits can evolve (i.e., change X-Y 
coordinates in the !gure), but only by one increment at a time. Traits can also only be one increment ahead of any connected traits at any one time. 
Evolvability of a given trait is indicated by the sum of its linkage values (shown above in square brackets for trait D), where lower values indicate less 
constraint and therefore a higher probability of further change. 
ized least squares or maximum likelihood. The residual co- 
variances (given in the online Appendix ) are dependent on 
the rate of adaptation, α, and are larger when the rate of 
adaptation is small. Note that both the design matrix and 
residual covariance depend on α and cannot be parameterized 
independently of one another. In summary, the method !ts a 
linear model conditional on α to a vector of species means y , 
given as 

y = C θ + r , r ∼ N ( 0 ,V ) (3) 
where C is a design matrix with elements cij ,θ is a vector of 
primary optima to be estimated, one for each niche (plus the 
ancestral state in some cases), r is a vector of residuals for 
each species, which follows a multivariate normal distribu- 
tion with a variance matrix, V , with elements given in the 
online Appendix . The elements of both C and V depend on 
the phylogeny and the parameter α, and those of V also de- 
pend on σ . 
Interpreting the parameters 
The adaptation-inertia model is sometimes presented as be- 
ing based on Lande’s (1976) selection-drift model ( Butler & 
King, 2004 ; Lajeunesse, 2011 ; Martins, 2000 ). As mentioned 
in the introduction, this interpretation was explicitly rejected 
by Hansen (1997) with the argument that it makes little sense 
on the time scales of typical among-species comparative data. 
It is now well established that strengths of selection, evolvabil- 
ity, and rates of microevolution are so high that evolution on a 
constant adaptive landscape would appear instantaneous on 
time scales beyond a few hundred generations (e.g., Hansen 
& Pélabon, 2021 ). The widespread observation of phyloge- 
netic signal on million-year time scales thus implies a certain 
decoupling of micro- and macroevolution and requires spe- 
ci!c interpretation in macroevolutionary terms (see Hansen,
2024 for more detail). The simple drift-selection interpreta- 
tion may, however, be relevant in cases in which time scales are 
much shorter, as in some fossil time series, or possibly for cat- 
egories of traits, such as gene expression or aspects of genome 
architecture, that may be under extremely weak selection. If 
the focus is on explaining species differences in morphology, 
physiology, or life-history traits, however, a dynamic adaptive 
landscape must be considered. 

The adaptation-inertia model incorporates this with the 
premise that adaptive peaks themselves change over time and 

that it is a lag in adaptation to the changing peaks that gen- 
erates the phylogenetic inertia component of observed phy- 
logenetic correlations in traits. Although this interpretation 
is undeniably vaguer and less well connected to population 
genetic !rst principles than quantitative genetic models, it is 
crucial for understanding how microevolutionary processes 
might generate macroevolutionary patterns ( Hansen, 2012 , 
2024 ). The key parameters, α, σ , and θ i in the model con- 
sequently cannot be interpreted in population genetic terms 
but need speci!c macroevolutionary interpretations, as when 
θ is interpreted as a primary optimum. The other parameters 
have the following macroevolutionary interpretations: 

The Alpha ( α) Parameter: Rate of Adaptation and Phyloge- 
netic Half-Life—Hansen (1997) described α as a rate of adap- 
tation, indicating how quickly a trait approaches its primary 
optimum. Simpson (1944) and Kemp (1982 , 2006 , 2007 ) sug- 
gested that adaptation towards optima might be slow due 
to what Kemp termed the correlated-progression hypothesis. 
This idea posits that a focal trait is embedded in a network of 
coadapted traits. Large changes might initially be detrimental 
due to internal selective constraints. Instead, small changes in 
the focal trait cause adjustments in other traits, which then 
permit further small changes in the focal trait, creating a slow, 
correlated progression. Thus, a small α could signify strong 
internal selective constraints ( Figure 2 ). 

To aid interpretation, Hansen (1997) suggested that α can 
be expressed as a phylogenetic half-life ( t1/2 = ln(2)/ α), which 
has the same units as the branch lengths of the phylogenetic 
tree. This represents the time it takes for a trait to move half 
the distance from its ancestral state to a new primary opti- 
mum. This half-life is invariant to the original distance to the 
primary optimum because the model is set up to let the rate of 
approach to the primary optimum increase linearly with dis- 
tance from it. A large half-life relative to tree height, implies 
substantial phylogenetic inertia, meaning that species trait val- 
ues are likely to lag their optimal states, and strong phylo- 
genetic correlations exist between species. If a single primary 
optimum is modelled across the entire phylogeny, this half-life 
also serves as a general measure of phylogenetic signal. 

The Sigma ( σ ) Parameter: Stochastic Movement and Sta- 
tionary Variance—The σ parameter, with units of trait units 
per square root of time units, quanti!es the amount of stochas- 
tic (random) movement in adaptive peaks that is not deter- 
ministically related to the primary optimum. A large σ might 
indicate more change in other unmeasured selective factors in- 
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"uencing local adaptive peak positions. When the Ornstein–
Uhlenbeck process reaches a stochastic equilibrium, the sta- 
tionary variance among species ( v = σ 2 /2 α) represents the 
balance between the primary selective force (the pull to the 
primary optimum) and all other secondary, unmeasured se- 
lective, and random forces (of which genetic drift is only one 
of several). A large v suggests a substantial amount of residual 
variance not explained by the primary optima. Ultimately, it 
may be easier to interpret the phylogenetic half-life ( t1/2 ) and 
stationary variance ( v ) directly, as they contain the same in- 
formation as α and σ but offer a more intuitive relation to the 
macroevolutionary process. 

The arguments above pertain to traits that are tightly linked 
to !tness, but what about traits that are under weak se- 
lection over long periods of time, such as gene expression 
levels or protein stability? Eukaryotic protein !tness land- 
scapes, for example, can sometimes stay stable for extended 
periods (e.g., Latrille et al., 2024 ) when conserved, non- 
intrinsically disordered proteins have a single long-term pri- 
mary !tness optimum related to maximum stability. In such 
cases, any observed “lag” in adaptation (or conversely phy- 
logenetic inertia) probably does result from very weak selec- 
tion on a stable landscape with a single global optimum, not 
a dynamic one. Therefore, interpreting such a lag within an 
“adaptation-inertia” framework, which assumes a constantly 
changing landscape, can be misleading in these cases, and we 
caution that interpretation of the model parameters should 
be based on the likely trait dynamics and the time scale in 
question. 
Modelling the primary optimum: approaches and 
challenges 
The adaptation-inertia framework models how species’ traits 
evolve towards primary optima within adaptive zones. Ini- 
tially, this involved using phylogenetic character reconstruc- 
tion or paleobiological information to map environmental 
variables onto the phylogeny. 
Fixed, categorical niches and model selection 
Butler & King (2004) advanced this by treating environmental 
variable assignments on the phylogeny as hypotheses, devel- 
oping the OUCH (Ornstein–Uhlenbeck models for Compara- 
tive Hypotheses) R package (see also Hipp & Escudero (2010) 
for extensions that take variable assignment error into ac- 
count). They used information-based model-selection criteria 
( Burnham & Anderson, 1998 ), like Akaike information cri- 
terion (AIC), to evaluate different arrangements of !xed, cat- 
egorical environmental variables and count as parameters all 
the primary optima, α and σ (initially a separate ancestral trait 
value at the root of the tree was also estimated, but this subse- 
quently got wrapped into one of the existing primary optima 
to avoid estimation issues on ultrametric trees). AIC has sev- 
eral advantages over traditional signi!cance testing because it 
avoids arbitrary null hypotheses, allows comparison of non- 
nested models, and can compare models with the same niches 
with different mappings on the phylogeny ( Lajeunesse, 2009 ; 
Posada & Buckley, 2004 ). For smaller datasets, AICc (a small- 
sample correction) ( Hurvich & Tsai, 1989 ) is recommended. 
Models are ranked by their AIC values, with $AIC > 2 
(i.e., when the difference between a given model and the best 
model’s AIC is greater than 2) indicating substantially weaker 
support compared to the best model ( Burnham & Anderson,

2004 ). Since then, increasingly sophisticated methods to de- 
tect shifts in primary optima along phylogenies have been 
developed: ! Ingram & Mahler (2013) introduced a stepwise AIC ap- 

proach in their SURFACE (Surface Uses Regime Fitting 
with AIC to model Convergent Evolution) R package to 
!nd and collapse convergent niches into single niches. ! Ho & Ané (2014) , however, noted that stepwise AIC can 
over-parameterize models and proposed using a wider 
range of information criteria that more heavily penalize 
complexity in their PHYLOLM (PHYLOgenetic Linear 
Modelling) R package. ! Uyeda et al. (2014) and Catalán et al. (2019) adopted 
a Bayesian approach [implemented in the BAYOU 
(Bayesian Ornstein–Uhlenbeck models) R package and 
in RevBayes] to tackle over-parameterization by incor- 
porating prior information (e.g., fossil data) and using 
reversible jump MCMC for regime shift detection. ! Khabbazian et al. (2016) applied Tibshirani’s (1996) 
lasso method (in the l 1OU R package) for faster detec- 
tion of optima shifts, enabling analysis on very large phy- 
logenies. 

Despite these statistical advancements including those that 
allow for rate shifts in different parts of the tree e.g., Beaulieu 
et al. (2012) , PHYLOGENETICEM ( Bastide et al., 2017 ; 
Bastide et al., 2018 ) and PCMBASE (Mitov et al., 2020) , it is 
crucial to remember that even statistically well-supported hy- 
potheses for predictor arrangements on a phylogeny should 
be critically evaluated for biological plausibility of the esti- 
mated primary optima. Uyeda et al. (2018) provide a thought- 
ful perspective on what they term hypothesis testing (moti- 
vated by biologically plausible alternatives and a search for 
causation) and data-driven (motivated by automatic niche- 
shift detection and description of macroevolutionary patterns) 
approaches and how both are susceptible to bias from singu- 
lar evolutionary events. Motivated by Beaulieu and O’Meara’s 
(2016) application of hidden-state model principles to mod- 
els of trait evolution, where background shifts in evolution- 
ary regimes unrelated to the focal traits are accounted for, 
Uyeda et al. (2018) argue that the two approaches can be 
combined into a more powerful approach for hypothesis test- 
ing, an argument that we agree with wholeheartedly. Based on 
May & Moore’s (2020 ) mathematical groundwork, Boyko et 
al. (2023) have recently extended the methods to allow for 
the modelling of correlations between continuous and dis- 
crete traits with a joint Ornstein–Uhlenbeck Hidden-Markov 
process. These developments are implemented in Beaulieu & 
O’Meara’s (2025) OUwie R package. Additionally, !tting lay- 
ered Ornstein–Uhlenbeck models to evolutionary time series 
can provide further insights into adaptive landscape dynam- 
ics and how well lineages track changes in adaptive peaks over 
macroevolutionary timescales ( Hunt et al., 2008 ; Reitan et al.,
2012 ; Voje, 2020 , 2023 ; Holstad et al., 2024 ). 

Moen et al. (2016) developed a method to better under- 
stand why species’ traits deviate from their primary optima. 
They separate the variation around current primary optima 
into two parts: random deviations around current primary op- 
tima and systematic deviations caused by adaptation to past 
environments. This allows for quantifying how much past en- 
vironments hinder adaptation to present ones. They did this 
by breaking down the total variation of trait values (TSS) 
around their estimated primary optima into three components 
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as follows: 
TSS = k ∑ 

i =1 
ni ∑ 

j=1 
(
yi j − θi )2 

, 
=

k ∑ 
i =1 

ni ∑ 
j=1 

((
yi j − yi ) +

(
y i − θi ))2 

, 
=

k ∑ 
i =1 

ni ∑ 
j=1 

(
yi j − ȳi )2 + k ∑ 

i =1 ni ( ̄yi − θi ) 2 

+2
k ∑ 

i =1 
ni ∑ 

j=1 
(
yi j − ȳi ) ( ̄yi − θi ) . (4) 

The !rst term of the decomposition, or Sum of Squared De- 
viations due to Random, Current Environmental In"uences 
(SSE) measures the variation in trait values among species liv- 
ing in the same current environment. The second term, or Sum 
of Squared Deviations due to History (SSH), measures the dif- 
ference between average trait values and the primary optimal 
traits, re"ecting historical in"uences. The third term is the co- 
variance between the !rst two terms that can be ignored in the 
subsequent arguments as it cancels to zero upon rearrange- 
ment of its sums. Mean squares are obtained for SSE (cur- 
rent environmental in"uences) and SSH (historical deviations) 
by dividing each by their degrees of freedom [(respectively, 
the number of species—the number of environments, and the 
number of environments—(1)], which can then be squared to 
obtain variances. By comparing the variances derived from 
SSH and SSE, researchers can determine the primary driver 
of trait inertia. If the SSH-based variance is larger, it means 
adaptation to different past environments has a greater in"u- 
ence on traits within a niche than their current environment. 
Conversely, if SSE-based variance is larger, clade membership 
(shared ancestry) has a stronger in"uence on inertia. 

For instance, Moen et al. (2016) studied 167 frog species 
across ten microhabitats. After removing size effects (the !rst 
principal component after dimension reduction of various 
traits), they found that for traits related to locomotion, the 
variance due to history (SSH) was signi!cantly larger than that 
from random current effects (SSE). This suggests that incom- 
plete adaptation as frogs transitioned between niches, rather 
than current environmental factors, largely explains why sim- 
ilar phenotypes do not perfectly converge in similar niches 
across different geographic locations. 
Runaway primary optima, in!nite phylogenetic half-lives, and 
the Brownian motion with a trend 
When a phylogenetic half-life approaches in!nity at the same 
time as estimated primary optima become in!nitely distant 
from current species values, it does not necessarily mean 
traits are not adapting. Instead, Hansen (1997) argued that 
this situation requires a reparameterization of the Ornstein–
Uhlenbeck process. In such cases, the model transforms into 
a Brownian motion with niche-speci!c, deterministic trends, 
which can be reliably estimated as τ i = limα→ 0 αθ i , the aver- 
age trait change per time as α approaches 0. The compositive 
parameters τ i , which also depend on the amount of time the 
traits have been evolving in separate niches, can be reliably 
estimated on non-ultrametric trees, even when α or the θ i are 
individually inaccurate. These niche-speci!c trends are biolog- 
ically interpreted as niche-speci!c rates of adaptation to dis- 
tant, unobtainable optima, where the σ 2 parameter measures 

the magnitude of the perturbing forces. On ultrametric trees, 
the τ i can only be estimated as contrasts such as τ i , τ j be- 
tween niches i and j (see Grabowski et al., 2023 for a recent 
example). 

Although less common than other trait dynamics, trends 
in fossil time series do occur ( Hunt, 2007 ; Hunt et al., 2015 ; 
Voje, 2016 ). Hunt (2006) demonstrated that when such evo- 
lutionary transitions follow a Gaussian distribution, a Brown- 
ian motion with a trend can be used to model the dynamics. In 
these cases, the mean ( µ) dictates the direction and strength of 
trait evolution, and the variance ( σ 2 ) captures stochastic "uc- 
tuations around this trend. This model predicts that the ex- 
pected change between ancestor and descendant populations 
after time t is normally distributed with a mean of t µ and a 
variance of t σ 2 . 
Modelling primary optima on continuous, randomly evolving 
niche variables 
The adaptation-inertia framework has been extended beyond 
!xed, categorical niches (like in an ANOVA, Figure 3A ) to 
model primary optima as continuous variables. To begin with, 
we can let the primary optimum depend on a continuous en- 
vironmental variable ( x ). Assuming a linear relationship, this 
becomes a linear regression: 

θ ( x) = a + bx. (5) 
Here, a is the intercept and b is the slope. A non-zero slope 

suggests the primary optimum is in"uenced by x , which could 
be consistent with adaptation. If the predictor variable’s his- 
torical states can be reliably mapped onto the phylogeny, this 
can be !tted in much the same way as the ANOVA-like model 
described above ( Hansen, 1997 ). However, mapping continu- 
ous predictors with !xed historical states is often problematic. 
Hansen et al. (2008) proposed treating the predictor variable 
itself as a randomly evolving variable, requiring only its end 
states ( Figure 3B ). They suggested a Brownian motion model 
for the predictor: 

dy = −α(y − (a + bx ) ) d t + σy dWy , 
dx = σx dW x . (6) 

In this setup, the !rst equation describes an Ornstein–
Uhlenbeck process for trait y around a primary optimum that 
is a linear function of predictor x . The second equation states 
that x marginally follows a standard Brownian motion, where 
dWx and dWy are independent white-noise processes, and σ x 
quanti!es the stochastic change in x . 

The conditional expectation for this model is 
ˆ yi = k + ρbxi , (7) 

where k is an intercept term in"uenced by several parameters 
(see online Appendix ) and 

ρ = 1 − (
1 − e−αti ) /αti (8) 

is a phylogenetic correction factor that accounts for phylo- 
genetic inertia. Here, ti is the time from the root to species 
i . The model estimates an “optimal” regression slope ( b ) and 
an “evolutionary” regression slope ( ρb ). Since ρ is between 
0 and 1, it predicts that the observed evolutionary regression 
will be shallower than the optimal regression due to phyloge- 
netic inertia. A shallow observed slope could thus mean either 
a genuinely shallow optimal relationship or that species are 
simply lagging in their adaptation to a steeper one. The time 
dependence of ρ predicts that evolutionary regression slopes 
will typically be shallower at lower taxonomic levels ( Burt,
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Figure 3. Trait evolution for six species on a phylogeny where (A) the trait is modelled as an Ornstein–Uhlenbeck process with two primary optima that 
are dependent on !xed, categorical states of an environmental variable (represented by the two dashed lines on the X axis, which represents an 
arbitrary range of ordered trait values) and (B) the optima depend on a continuous variable that itself randomly evolves on the phylogeny (solid black line). 
Note that in B, both the optima (black line) and trait have a stochastic variance component to their evolution (as indicated by random shifts on the X, 
trait-value axis), but also that the trait tracks the optima closely as the process was simulated with a small half-life and a regression slope representing a 
∼ 1:1 between trait and the environmental variable. 
1989 ; Deaner & Nunn, 1999 ; Hansen & Bartoszek, 2012 ), a 
commonly observed pattern ( Martin & Harvey, 1985 ). 

The residual covariances in this “random-effect” model are 
more complex than in the !xed-effects model and are provided 
in the online Appendix . These models have also been general- 
ized to include multiple predictors ( Hansen et al., 2008 ; Labra 
et al., 2009 ) and trends in the underlying Brownian motion for 
the primary optima, as implemented in the latest SLOUCH 
(Stochastic Linear Ornstein–Uhlenbeck models for Compar- 
ative Hypotheses) R package (Kopperud et al., 2020) . Fixed 
and random effects can be combined by replacing the inter- 
cept k with the !xed primary optima from Equation 2 , while 
maintaining the random-effect residual covariance. A contin- 
uous covariate without any phylogenetic covariance structure 
can also be !t as a direct effects regression (Grabowski et al.,
2016) —this is useful when direct scaling effects, such as in- 
creases in a trait value simply because it scales mechanically 
with body size, need to be incorporated. 

We note that although Ives and Garland ( 2010 , 2014 ) 
have previously introduced a logistic regression based on 
the Ornstein–Uhlenbeck process, they separated the mod- 
elling of stochastic residuals from the mean structure of the 
model, which as discussed above, does not capture what the 
adaptation-inertia methods set out to do; thus a logistic regres- 
sion in the adaptation-inertia framework remains to be devel- 
oped. A summary of the various estimated parameters for the 

univariate models is provided in Table 1 . The various software 
packages for implementing the methods in the “adaptation in- 
ertia” framework are reviewed elsewhere (Fuentes-González, 
in review). 
Multivariate extensions 
Understanding trait evolution often requires analyzing in- 
teractions between traits, crucial for phenomena like phe- 
notypic integration and evolutionary trade-offs Armbruster 
et al., (2014) . While univariate analyses can offer limited 
insight into trait interaction dynamics by swapping predic- 
tor/response roles, they typically miss the full picture of trait 
interactions. Reducing multivariate traits to single dimensions 
before phylogenetic analysis can also obscure vital evolution- 
ary components ( Uyeda et al., 2015 ). 

Developing fully multivariate models is complex due to is- 
sues with likelihood functions and reliance on matrix cal- 
culus, making implementation and parameter interpretation 
challenging. Early multivariate adaptation-inertia models sim- 
pli!ed assumptions ( King & Butler, 2009 ) that were subse- 
quently relaxed ( Bartoszek, 2012 ; Clavel, 2015 ; Mitov et al.,
2019 ) into a more general multivariate comparative method 
based on the Ornstein–Uhlenbeck process, described by the 
following stochastic differential equation: 

dy ( t ) = −A ( y ( t ) − θ ( t) ) dt + #d W( t) . (9) 
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Table 1. A summary of the commonly interpreted parameters estimated for the univariate Ornstein–Uhlenbeck models. 
Parameter De!nition 
α Controls how fast a trait reaches a primary optimum in expectation 
b The optimal regression slope for the relationship between a trait and a continuous, 

randomly evolving environmental variable 
ρ A Phylogentic correction factor. The evolutionary (generalized least squares) regression slope 

for the relationship between a trait and a continuous, randomly evolving environmental 
variable is a composite parameter consisting of the optimal regression slope ( b ) multiplied 
by the phylogenetic correction factor ( ρ, see main text for details) 

σ 2 
y The instantaneous variance (rate of change due to stochastic in"uences) of the trait being 

modelled by an Ornstein–Uhlenbeck process 
θ i Primary optima, modelled on !xed, categorical predictors describing a niche for which the 

ancestral states are typically reconstructed on the phylogeny. This is the mean expected 
adaptive trait value for groups of species evolving in the same niche or adaptive zone 

t1/2 = (ln2/ α) Phylogenetic half-life—a non-linear transformation of α that allows one to interpret the 
degree of phylogenetic inertia on the same scale as the phylogenetic branch lengths. 
Interpreted as the “time” it takes for half the in"uence of ancestral state values to disappear 
from current trait values as they evolve towards their niche optima. Also used as an estimate 
of phylogenetic signal when a single niche optimum is modelled for the entire tree 

vy ( = σ 2 
y /2 α) Stationary variance of a trait’s evolution (i.e., the variance once the process has stabilized 

after a long time) should the predictors of the model be !xed and not randomly evolving 
Here, the scalar trait values ( y ) and primary optimum ( θ) 

from the univariate model in Equation 1 become vectors, and 
W is a multi-dimensional Brownian motion. The univariate 
stochastic movement ( σ ) and rate of adaptation ( α) parame- 
ters are replaced by a # matrix and an A matrix , respectively. 
The # matrix mediates potentially correlated stochastic per- 
turbations to each trait. 

The generalized, fully parameterizable A matrix offers sig- 
ni!cant advantages for interpreting multivariate trait adapta- 
tion, allowing tests of various hypotheses about evolutionary 
interactions. The real part of A ’s eigenvalues acts like the uni- 
variate α parameter, determining the joint rate of trait conver- 
gence to their stationary distribution. When transformed as 
ln(2)/eigenvalue, each transformed eigenvalue represents the 
phylogenetic half-life for a particular dimension of multivari- 
ate trait evolution. Off-diagonal entries of A show how one 
trait’s approach to its optimum effects other traits’ evolution- 
ary trajectories. A diagonal A matrix implies traits adapt in- 
dependently to environmentally determined primary optima. 
A nondiagonal A matrix means traits in"uence each other’s 
primary optima. Upper or lower triangular A matrices model 
unidirectional in"uences. Below, we describe, by means of ex- 
ample, how the A matrix of the currently available methods 
can potentially be used to infer coevolutionary processes. 

For non-deterministic in"uences, a diagonal # matrix in- 
dicates independent stochastic effects on each trait’s evolu- 
tion. Triangular # matrices model interactions between these 
stochastic in"uences, which can arise from shared develop- 
mental constraints, pleiotropy, or linkage disequilibrium with 
unmeasured traits under selection. These concepts are detailed 
in a series of recent studies ( Bartoszek et al., 2023a , 2023b ; 
Bartoszek et al., 2024 ). 
A biological example: !gs and their pollinating 
wasps 
The biological example 
Weiblen (2004) studied the correlated evolution of ovipositor 
lengths in !g wasps and style lengths of !g "owers that the 
wasps lay their eggs in. These respective lengths must closely 
match to allow for successful egg laying as the wasps must in- 

sert their ovipositors into the styles and be able to reach and 
lay their eggs speci!cally between the integument and nucellus 
for them to successfully hatch. Using phylogenetic indepen- 
dent contrasts, Weiblen (2004) showed that changes in these 
traits are more strongly correlated with each other than with 
phylogenetic position or body size. This example provides us 
with an opportunity to showcase the additional information 
that can be gained through the adaptation-inertia framework 
with its focus on parameter interpretation and ability to model 
dynamic adaptive landscapes in different ways. For the sake 
of brevity, we provide only the key parameter estimates and 
a verbal description of their interpretation. The full repertoire 
of parameters estimated, con!dence in the estimates, and an 
interpretive description, along with the R code used to imple- 
ment all models, is given in the Supplementary Material . 
Fixed, categorical regimes analysis 
As Weiblen (2004) , we investigated if !g wasp ovipositor 
length adapts to the style length of their host !gs, expecting 
shorter ovipositors in wasps pollinating dioecious !gs (which 
generally have shorter styles) compared to those pollinating 
monoecious !gs (with longer styles). Using maximum like- 
lihood to reconstruct !g host states on the pollinator phy- 
logeny ( Figure 4 ), we !tted an Ornstein–Uhlenbeck model 
with two primary optima for ovipositor length (corresponding 
to monoecious and dioecious hosts). This two-optima model 
outperformed both Brownian motion and a single-optimum 
model ( $AICc = 36.44 and 24.65, respectively), explaining 
62% of the variance. The two-optima model showed a phy- 
logenetic half-life of essentially zero (best estimate = 0.0 with 
0.0 to 3.8% of tree height 2-log-likelihood support interval). 
Based on the time-scaled cladogram presented in Cruaud et al.
(2012) , the genera studied here had a common ancestor 75.1 
mya, indicating that in years, the phylogenetic half-life esti- 
mate falls between 0.0 and 2.6 million years with a best esti- 
mate of 0.0 years, indicating that species’ traits closely track 
shifts in primary optima with little lag. In contrast, a single- 
optimum model estimated a phylogenetic half-life of 8.5% 
of tree height, or 6.3 million years, where the support inter- 
val excludes 0 (3.0 to 18.8 my). This demonstrates that the 
phylogenetic signal observed in simpler models largely re"ects 
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Figure 4. Phylogeny (from Weiblen, 2004 , estimated from 18s rRNA 
sequences, made ultrametric and scaled to a height of 1) representing 
the relationships between the !g wasps studied here and an ancestral 
state reconstruction (see main text for details) of whether they pollinate 
dioecious (black) or monoecious (gray) !g trees. 
adaptive evolution to phylogenetically structured optima, 
cautioning against removing all phylogenetic signal in anal- 
yses as it can inadvertently erase adaptive effects 

The estimated primary optima for ovipositor length were 
0.31 ± 0.04 mm for dioecious !g pollinators and 0.88 ± 0.06 
mm for monoecious !g pollinators. Although the measured 
average !g style lengths (0.54 mm for dioecious, 1.25 mm for 
monoecious) were slightly longer than ovipositors (likely due 
to measuring mature !gs rather than those receptive to pol- 
lination), the substantial difference between the two ovipos- 
itor optima strongly supports our hypothesis. The estimated 
stationary variance was 0.04 mm2 , meaning species were, on 
average, within √ 

2 v/π = 0.16 mm of their primary optima. 
This difference suggests that the average dioecious !g polli- 
nator would struggle to lay eggs in monoecious !gs and vice 
versa, highlighting the precise adaptation. 
Convergent evolution inertia decomposition 
Although our best estimate for the phylogenetic half-life was 
zero (implying traits perfectly track their optima), we can still 
demonstrate Moen et al.’s decomposition of deviations to il- 
lustrate its utility. When forcing the phylogenetic half-life to be 
10% of tree height, we calculated the mean ovipositor lengths 
for wasps pollinating dioecious !gs as 0.31 mm (optimum: 

0.30 mm) and for monoecious !gs as 0.87 mm (optimum: 
0.96 mm). Our analyses show the ancestral state was dioe- 
cious !g pollination, with !ve transitions to monoecious pol- 
lination among the 39 lineages. Using these values, the sum 
of squared deviations due to random, current environmental 
in"uences (SSE) was 5.14 mm2 , and the sum of squared devi- 
ations due to history (SSH) was 0.08 mm2 . After dividing by 
their degrees of freedom, their mean squares were 5.14 mm2 
and 0.002 mm2 , respectively. Comparing these variances, we 
would conclude that clade membership in"uences the distance 
from primary optima far more than adaptation to historical 
habitats. This result makes intuitive sense given our !nding 
of a zero phylogenetic half-life in the actual best-!t model, 
because when there is no lag, historical adaptation does not 
hinder current adaptation. 
Randomly evolving environment analysis 
To explicitly test if ovipositor length adapts directly to style 
length, we used style length as a continuous, randomly evolv- 
ing predictor for ovipositor length optima, modelling it as 
a Brownian motion with ovipositor length tracking it via 
an Ornstein–Uhlenbeck process ( Hansen et al., 2008 ). This 
model yielded a signi!cantly better !t than the previous best 
2-!xed optima model ( $AICc = 27.54), explaining 80% of 
the variance. The estimated phylogenetic half-life was re- 
markably short: 0.07% of tree height [ ∼50,000 years, sup- 
port interval = 0.0–3.8 my ( Figure 5 )], indicating rapid 
adaptation. This contrasts sharply with the 9.3-million-year 
half-life of a global-optimum model, reinforcing that most 
phylogenetic signal stems from phylogenetically structured 
niches rather than inherent inertia. The estimated optimal 
relationship between ovipositor and style length ( Figure 5 ) 
showed a regression slope of 0.75 ± 0.06, nearly identical to 
the evolutionary regression slope (0.74 ± 0.06) and the or- 
dinary least squares slope (0.74 ± 0.06). This congruence is 
expected given the short phylogenetic half-life, meaning cur- 
rent trait values are very close to their optima. The estimated 
stationary variance was 0.02 mm2 , corresponding to an av- 
erage deviation of approximately 0.11 mm from the optima. 
With the 95% con!dence interval for the optimal slope (0.62 
to 0.86 mm) excluding zero, and style length explaining 80% 
of ovipositor length variance, we conclude that style length 
has a large and statistically signi!cant effect on ovipositor 
length optima. Furthermore, the short phylogenetic half-life 
(50,000 years) relative to the tree height indicates that ovipos- 
itor length adapts rapidly to changes in !g style length. 
Mixed-model and multiple regression analysis 
To determine if ovipositor length adapts primarily to style 
length or also to !g reproductive mode, we !tted an 
ANCOVA-style mixed model. This model, which combines a 
!xed categorical predictor (reproductive mode) with a ran- 
domly evolving continuous predictor (style length), was nearly 
as well-supported as our best model ( $AICc = 0.64). Ex- 
amining the estimated intercepts for this mixed model, how- 
ever (Dioecious: −0.03 ± 0.06 mm; Monoecious: 0.09 ± 0.12 
mm), their overlapping 95% con!dence intervals suggest that 
!g reproductive mode itself does not signi!cantly in"uence 
primary optima beyond the effect of style length. 

Following Weiblen’s (2004) approach, we then used multi- 
ple regression in SLOUCH to assess if wasp body size (thorax 
width) also predicts ovipositor length. We treated body size 
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Figure 5. (A) Optimal (dashed line) and evolutionary (solid line) regressions for !g wasp ovipositor length modelled on randomly evolving !g style length. 
(B) The 2-unit log-likelihood support surface for the phylogenetic half-life and stationary variance for the regression model applied in A. 
as a !xed covariate, as we wanted to test direct, mechanical 
scaling effects. The multiple regression model, including !xed 
body size and randomly evolving style length, yielded a non- 
signi!cant direct thorax-width slope ( −0.003 ± 0.12). It was 
also $AICc = 2.62 units worse than the best single-predictor 
(randomly evolving style length) model, and it only explained 
an additional 1% of variance (total 81%). A model with only 
!xed body size as a predictor was far worse ( $AICc = 52.43) 
than the best model, explaining only about 6% of the variance. 
Thus, consistent with Weiblen (2004) , our univariate analyses 
con!rm that style length is the single most important in"u- 
ence on the adaptive optima for ovipositor lengths among all 
predictors considered. 
Multivariate analysis 
Weiblen (2004) emphasized the coevolutionary nature of 
ovipositor and style length evolution, and thus far, we have 
been modelling the relationship between them as one in which 
the latter evolves independently of the former. An implied as- 
sumption of this approach is that ovipositor length tracks 
the evolution of style length, but not vice versa. The alter- 
native can be studied by !tting the same model but with 
switched variables, i.e., ovipositor length evolving randomly 
in the phylogeny as a Brownian motion with style length 
tracking it through an Ornstein–Uhlenbeck process. Although 
this switched variable approach can offer insights into the di- 
rectionality of the pattern ( Davis et al., 2012 ; Pienaar et al.,
2013 ), it is still restrictive in the sense that one of the vari- 
ables is forced to evolve independently of the other. Consider- 
ing that !gs depend solely on !g wasps for their pollination, 
this restriction is undesirable as it excludes the possibility that 
ovipositor and style length are reciprocally exerting selection 
on each other [i.e., it leaves out reciprocal selection, which is at 
the core of textbook de!nitions of coevolution e.g., Futuyma 
& Kirkpatrick (2023) ]. A multivariate approach is better 
suited to address this type of speci!c coevolution hypothe- 
sis because it makes less assumptions about how the vari- 

ables evolve, allowing for the possibility that both traits in- 
"uence each other’s evolutionary trajectory. This possibility is 
facilitated by modelling each variable as an Ornstein–
Uhlenbeck process where the primary optima are allowed to 
reciprocally in"uence each other. The mvSLOUCH R pack- 
age ( Bartoszek et al., 2012 ) allows for contrasting four gen- 
eral scenarios for this analysis with information criteria: (i) as 
in Hansen et al. (2008) one trait is modelled as an Ornstein–
Uhlenbeck process tracking an optimum affected by one or 
more other traits each modelled as a Brownian motion pro- 
cess, henceforth the “OUBM” model; (ii) vice versa (i.e., 
the OUBM model with switched variables); (iii) a model in 
which the trait values, as well as the association between 
the two traits is mediated by stochastic perturbations only 
(i.e., as a multivariate Brownian motion process, henceforth 
“BMBM” model); (iv) a model in which both traits are mod- 
elled as an Ornstein–Uhlenbeck process (i.e., as a multivari- 
ate Ornstein–Uhlenbeck process as described above, hence- 
forth the “OUOU” model) each with their own primary opti- 
mum. To test for coevolution speci!cally, we can parametrize 
the OUOU models in such a way that the two traits’ pri- 
mary optima reciprocally affect each other’s dynamics. When 
more variables and more hypotheses are available, any custom 
model can be built from any combination of these four gen- 
eral scenarios, and !xed categorical predictors can also be in- 
cluded, but for the !g wasp example, we are only interested in 
(1) whether the speci!c coevolution model (an OUOU model 
with symmetric off-diagonal elements in the A matrix as dis- 
cussed below) outperforms the others and (2) if so, how do 
we interpret the parameter estimates? 

The more nuanced multivariate approach requires contrast- 
ing various matrix parameterizations to determine whether 
the associations between traits are mediated through the 
stochastic perturbations (through non-zero off-diagonals in 
#), coadaptation (through non-zero off-diagonals in A ), or 
both. For the !g-wasp example, the best !tting candidate (by 
AICc criteria, Table 2 and Supplementary Material ) was an 
OUOU model parameterization with non-zero, equal-value- 
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Table 2. Hypothesis testing for multivariate scenarios. 
Hypothesis Model A-matrix #-matrix AICc r 
Speci!c coevolution OUOU Symmetric- 

positive-de!nite Single-value- 
diagonal 0.85 0.90 

Style primary optimum affects ovipositor primary 
optimum OUOU Upper-triangular Single-value- 

diagonal 2.44 0.90 
Ovipositor primary optimum affects style primary 
optimum OUOU Lower triangular Single-value- 

diagonal 2.64 0.90 
Adaptation to independent primary optima with 
stochastically generated correlation OUOU Single-value- 

diagonal Upper-triangular 8.95 0.90 
Style adapts to randomly evolving ovipositor OUBM Scalar Scalar 10.89 0.97 
Ovipositor adapts to randomly evolving style OUBM Scalar Scalar 10.91 0.97 
Correlated evolution without adaptation to primary 
optima BMBM - Lower triangular 44.39 0.76 

off-diagonals in A and symmetrical, equal-value-diagonals 
with zero off-diagonals in # ( Table 2 ). In fact, all models 
within 2 AICc units of the best model were OUOU mod- 
els with zero off-diagonals in # and either symmetric, up- 
per, or lower triangular A matrix models indicating that the 
primary optima do affect each other (either reciprocally or 
unidirectionally) and that the trait correlations are caused by 
these deterministic effects. The !rst model to include non-zero 
off-diagonals in # was 4.81 AICc units away from the best 
model but still also includes an A matrix with non-zero off- 
diagonals, meaning that if this was the correct model, some 
of the trait correlations could also be attributed to unmea- 
sured stochastic in"uences. The !rst model with diagonal A 
and off-diagonal # was 8.10 AICc units from the best model; 
thus, there is far more support for a coevolution model than 
one that stipulates adaptation to independent primary optima 
with trait correlations generated by stochastic in"uences. The 
rest of the OU models all had far less support, so we do not 
discuss them further here. 

The parameter estimates of the best model can be expressed 
in terms of Equation 9 as 
dy ( t ) = − [

75 my−1 −55 my−1 
−55 my−1 50 my−1 ] (

y ( t ) − 0 . 53 mm 
0 . 82 mm 

)
dt 

+
[
1 . 77mm /√ 

my 0 mm /√ 
my 

0 mm /√ 
my 1 . 77 mm /√ 

my 
]

dW ( t) , 
where dy (t ) is a 2-dimensional vector consisting of the trait 
values for the ovipositor length ( zi ) in mm of species i = 1 to 
n , and the style length of the speci!c Ficus species the wasps 
pollinate ( xi ) in mm. Similarly, W (t) is a 2-dimensional stan- 
dard Wiener process for each trait. Thus, for ovipositor length 
we can write 
dzi = −74 . 58 ( zi − 0 . 53 ) + 54 . 98 ( xi − 0 . 82 ) + 1 . 77dW1 , 

which can be rearranged to give 
dzi = −74 . 58 ( zi − 0 . 53 + 0 . 74 ( xi − 0 . 82 ) ) + 1 . 77dW1 , 
which shows us that ovipositor length follows an Ornstein–

Uhlenbeck process with central state, or primary optimum for 
a !xed value of xi equal to 0.53 mm + 0.74( xi –0.82) mm 
meaning that the optimum for ovipositor length is a linearly 
increasing function of style length with a slope of 0.74 (since 
we used the same units for ovipositor and style length). The 
optimal ovipositor length, when style length is at its optimum, 
is 0.53 mm. 

We can perform the same operations on the predictive 
equation for ovipositor length, where, after rewriting and 

rearranging: 
dxi = −49 . 63 ( xi − 0 . 82 ) + 54 . 98 ( zi − 0 . 53 ) + 1 . 77dW2 . 

We obtain 0.82 mm + 1.11( zi –0.53) mm. Thus, the optimal 
style length, when ovipositor length is at its optimum, is 0.82 
mm; otherwise, the optimal style length is a linearly increasing 
function of ovipositor length with a slope of 1.11. We used 
these equations to generate the expected optimal relationships 
in Figure 6 . 

The phylogenetic half-life (1st eigenvalue) for this joint 
Ornstein–Uhlenbeck process is less than one percent (0.6%) 
of the tree height, or 44k years. The size of the stochastic "uc- 
tuations for ovipositor length, (1.77)2 /2 ∗75 = 0.02 mm/my 
gives the stationary variance of the ovipositor for a !xed style 
length. Hence the expected distance to the optimum for a !xed 
style length is √ 

2(0 . 02 ) π = 0.11 mm. Note that # is a single- 
value-diagonal matrix, indicative of uncorrelated stochastic 
evolutionary changes with the same phenotypic rate of change 
for both variables; thus, the expected distance to the optimum 
of style length for a !xed ovipositor length is also 0.11 mm. 
The strong correlation (0.90) between ovipositor and style 
length associated with this model ( Table 2 ) can be explained 
in terms of reciprocal selection. In particular, the symmetric 
A matrix indicates that the traits in"uence each other’s paths 
towards their optima. 

Interestingly, the worst !tting scenario (BMBM) is the one 
that reports the lowest correlation between variables ( Table 
2 ). This is not surprising considering that, as shown above, the 
association can be explained by coadaptation, while BMBM 
can only explain it in terms of correlated stochastic pertur- 
bations. Unable to capture the proper evolutionary dynam- 
ics, BMBM is most likely underestimating the strength of 
the association. Also using Brownian motion as the underly- 
ing process, Adams & Nason (2018) presented a multivari- 
ate permutation-based phylogenetic generalized least squares 
procedure for testing correlated evolution between traits of 
coexisting sets of lineages and showcased it with the dataset 
of Weiblen (2004) . Adams & Nason (2018) argued that the 
high correlation found when ignoring phylogeny (0.90) over- 
estimated the strength of the association between style and 
ovipositor length given that their method, which accounted 
for both the plant and pollinator phylogeny in the analysis, re- 
ported a much lower correlation (0.55). But if it is true, as our 
results suggest, that the relationship between ovipositor and 
style lengths is mediated by selection, the method of Adams & 
Nason (2018) cannot be expected to fully recover it because its 
underlying evolutionary process (Brownian motion) is incon- 
sistent with adaptation towards optimal states. Their method 
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Figure 6. The observed relationship between !g-wasp ovipositor length and !g style length (open circles) with the optimal predictions (see main text) of 
the multivariate analysis (solid lines). The dashed lines represent where the primary optima for the two traits intersect (i.e., the primary optimum for trait 
1 when trait 2 is at its primary optimum). The panel on the left represents the partial regression of ovipositor length on style length, whereas that on the 
right represents the partial regression of style length on ovipositor length. 
is more geared towards evaluating the degree of trait covaria- 
tion while accounting for the lack of independence between in- 
teracting lineages. The problem is that when the dependencies 
arise from adaptive patterns that are phylogenetically struc- 
tured (like in the case of interacting lineages that exert se- 
lective pressures on each other), such an approach is prone 
to removing the very same evolutionary patterns that are ob- 
ject of study ( Hansen, 2014 ; Labra et al., 2009 ). These phylo- 
genetically structured adaptive interactions are quite possible 
for !gs and !g wasps for which highly specialized associa- 
tion precedes the radiation of either lineage, with the fossil 
record indicating that no major innovations have evolved in 
this mutualism for at least 34 million years (Compton et al.,
2010) . From this point of view, it is quite possible that the 
non-phylogenetic correlation reported by Adams & Nason 
(2018) did not overestimate the strength of the association be- 
tween style and ovipositor length (as suggested by the authors) 
but, like our BMBM here ( Table 2 ), that the phylogenetically 
corrected correlation was the one underestimating it (in fact, 
notice that the non-phylogenetic correlation reported by the 
authors is quite close to the correlations under our Ornstein–
Uhlenbeck models, which incorporate phylogenetic informa- 
tion). The approach proposed by Adams & Nason (2018) is 
valuable in the sense that it allows for testing evolutionary as- 
sociations involving more than one phylogeny. Coevolution, 
however, regardless of whether it is speci!c or diffuse, is most 
commonly de!ned by reciprocally mediated selection between 
interacting species ( Nuismer, 2017 ; Thompson, 2013 ), and its 
analysis thus requires analytical approaches that are consis- 
tent with selective processes. The adaptation-inertia frame- 
work offers the suite of properties required for this task, and 
some progress has been made in this direction ( Drury et al.,
2016 ; Manceau et al., 2017 ). Still, a more comprehensive ap- 
proach combining the multivariate Ornstein–Uhlenbeck setup 
presented above with the simultaneous analysis of several 
phylogenies as in Adams & Nason (2018) constitutes a 
promising avenue to rigorously tackle the long-held, but ac- 
cording to Althoff et al. (2014) , still untested, assumption that 
most observed trait variation is a result of coevolutionary pro- 
cesses between ecologically interacting species. 

Critical evaluation of the adaptation-inertia 
framework 
Throughout our analysis, we have focused on demonstrating 
the adaptation-inertia framework, setting aside measurement 
variance (actual measurement error and within-species vari- 
ation). This can signi!cantly affect parameter estimates and 
should be included whenever it is available (unfortunately 
availability is not always the case, especially for older data 
sets). For an in-depth discussion, we refer readers to Hansen & 
Bartoszek (2012) and the forthcoming review of the software 
for implementing methods of the adaptation-inertia frame- 
work (Fuentes-González, in review). 

The adaptation-inertia approach and its statistical aspects 
have undergone critical evaluation Ho and Ané (2014) . 
showed that the accuracy of parameter estimates, particularly 
for α (rate of adaptation), decreases with smaller α values and 
that statistical power for α is lower than for other parame- 
ters. This emphasizes the need to consider parameter accuracy 
when drawing conclusions. They also highlighted the pres- 
ence of ridges in the log-likelihood surface, which can make 
!nding maximum likelihood estimates challenging and lead 
to non-convergence during optimization. This does not inval- 
idate Ornstein–Uhlenbeck models, but it means conclusions 
about inertia, stationary variances, and regression parame- 
ters require careful consideration of the likelihood surface’s 
topology. Repeating numerical optimizations from different 
starting points is crucial due to the potential for multiple 
peaks in parameter-rich models (e.g., Bartoszek et al., 2023a , 
2023b ). 

Cressler et al. (2015) simulated data to identify parame- 
ter combinations where the models might break down. They 
used transformations of the parameters α, θ and σ , to assess 
their in"uence on model-selection power. Their !ndings essen- 
tially reiterate observation that α’s magnitude primarily af- 
fects the precision and accuracy of its estimate, especially for 
small sample sizes. Smaller simulation studies ( Hansen et al.,
2008 ) also found low estimation precision and accuracy of 
the α parameter with small α values and few species, but ac- 
curacy improves dramatically with larger sample sizes and α
values. 
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Multivariate extensions of the framework have also been 
critically examined. Adams & Collyer (2018) argued that mul- 
tivariate phylogenetic comparative methods, including those 
in the adaptation-inertia framework, (1) become more prone 
to misidentifying evolutionary processes as trait dimensional- 
ity increases and (2) are prone to rotation invariance issues in 
that the likelihood of a given model can change after orthog- 
onal linear transformation of its variables. Bartoszek et al.,
(2023b) provide a comprehensive treatment of how these is- 
sues arise and how they can be alleviated and even used to 
our advantage. The !rst issue is due to the traditional practice 
of explicitly constructing the whole among-species–among- 
traits variance matrix V and then calculating the likelihood 
directly from the multivariate normal density. In practice, V 
is often ill-conditioned, which leads to substantial numerical 
errors and potential likelihood biases towards more complex 
models. This issue is alleviated by Mitov et al.’s (2020) fast- 
likelihood calculation algorithm, implemented in the PCM- 
BASE package, which performs calculations branch by branch 
rather than on the entire V matrix. The latest versions of pack- 
ages such as mvSLOUCH ( Bartoszek, 2024 ) use PCMBASE 
as their computational engines. Furthermore, the signi!cantly 
faster calculations allow for many more iterations of numeri- 
cal optimizers on large phylogenies. These improvements to- 
gether lead to more stable likelihood estimates, substantially 
alleviating the potential bias towards more complex models. 
The rotation invariance issue is more convoluted and is related 
to likelihood instability rather than true rotation invariance 
and is potentially an issue with any method that uses numeri- 
cal rather than analytical optimization procedures. Bartoszek 
et al., (2023b ), however, argue that the different likelihoods 
achieved by different rotations of the data could be used to 
our advantage in that they could be used to determine model 
convergence as well as to ease estimation as some rotations 
may lead to more independent data points than others. 
Future directions 
Modelling trait evolution on a dynamical adaptive landscape 
is one of the great strengths of the adaptation-inertia ap- 
proach. Hundreds of studies have implemented the methods 
of the adaptation-inertia framework on traits ranging from 
brain volume to gene expression. A quantitative meta-analysis 
of these and future studies to determine (a) how often adaptive 
hypotheses provide the best explanation for trait change; (b) 
how fast adaptation occurs, and (c) what the relative contribu- 
tions of adaptive versus stochastic change are would be highly 
informative. Unfortunately, relevant parameters from the !t- 
ted Ornstein–Uhlenbeck models, or tree heights, or measure- 
ment error are sporadically reported, which lowers the power 
of the suggested meta-analysis. We therefore encourage future 
users of the adaptation-inertia approach to always report all 
model parameters, at least as supplements if space require- 
ments prohibit this, with units and their con!dence estimates 
so that the barriers to informative meta-analysis might be al- 
leviated. 

One challenge with the adaptation-inertia approach is that 
the model parameters are somewhat open for interpretation 
compared to stricter microevolutionary interpretations when 
describing trait dynamics in a static landscape (e.g., Lande,
1976 ). Whereas a phylogenetic comparative study of young 
populations that have diversi!ed over a few thousand years 
may allow for interpreting the Ornstein–Uhlenbeck process 

parameters in line with quantitative genetic models, rather 
than in the more-vague “macroevolutionary” terms, most 
across-species comparative data span many millions of years. 
Analyzing comparative data covering different timescales and 
assessing when the microevolutionary interpretation of the 
model parameters breaks down could add insight into how 
to connect microevolutionary processes with the larger-scale 
patterns of phenotypic evolution observed at macroevolution- 
ary timescales. 

“Chicken or egg” type questions abound when it comes to 
inferring patterns of transitional evolutionary changes, and 
the phylogenetic comparative methods we have described can 
contribute to such inference. Consider the study of Davis et 
al. (2012) , which concerns the evolution of egg and body size 
in geometrid moths. The two traits are strongly correlated 
across species, and the question of whether increasing body 
size drives larger egg size or whether it is the other way around 
arose. The following logic was used to infer which trait drives 
the relationship: !rst an Ornstein–Uhlenbeck model with no 
predictor variables was !t for each trait independently, which, 
as discussed above, is a way to quantify the degree of phy- 
logenetic signal in a trait (captured by the phylogenetic half- 
life). Then each trait was modelled on optima regressed on the 
other trait to determine which model exhibited the highest de- 
gree of phylogenetic inertia (again measured by the phyloge- 
netic half-life). Using this approach, we are essentially asking 
(as in Labra et al., 2009 ) if the phylogenetic signal observed 
in a trait is due to inertia in evolution of the trait itself or 
whether it is rapidly tracking another variable or trait that 
is phylogenetically structured. For Davis et al. (2012) , strong 
phylogenetic signal was observed in egg size, but when re- 
gressed on body size, a signi!cant regression with almost no 
phylogenetic inertia was observed. For body size, both strong 
phylogenetic signal and phylogenetic inertia were observed, 
despite the strong regression relationship. From these obser- 
vations, we can conclude that the strong correlation between 
the traits exists because egg size is likely tracking changes in 
body size rather than vice versa. This logic has further been 
used to infer which life history traits in passerines are the 
likely drivers of evolutionary change ( Pienaar et al., 2013 ), 
although see Uyeda et al. (2015) for a relevant critique of di- 
mensional reduction prior to the use of phylogenetic compar- 
ative methodologies. The multivariate, generalized Ornstein–
Uhlenbeck framework ( Bartoszek et al., 2012 ) uses more re- 
!ned logic to make inferences regarding which traits are driv- 
ing an observed relationship and suggests that inference is 
not as straight forward as argued above. The ability to es- 
timate generalized non-symmetrical A matrices that include 
off-diagonal elements allow us to infer to what degree traits 
in"uence each other’s evolution and potentially which traits 
are driving observed correlations. For models where two or 
more traits are evolving as a multivariate Ornstein–Uhlenbeck 
process, the estimated parameters, along with the A matrix as- 
sociated eigenvectors and eigenvalues, allow for inferences re- 
garding which variables in"uence each other. García-Cabello 
et al. (2022) recently used this logic to infer that the evolution 
of superfetation precedes the evolution of advanced placen- 
totrophy in poecilid !sh. 

The existing multivariate formulations of the adaptation- 
inertia framework allow for testing hypotheses that involve 
comparison of trait interactions within individuals, such as 
evolutionary trade-offs. The ability to analyze adaptive trait 
interactions between two or more unrelated sets of lineages, 
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such as those that occur between coevolving lineages, would 
provide an invaluable tool for biodiversity researchers and, we 
argue, could also potentially explain some of the phenomena 
observed in macroevolutionary data, such as the commonly 
observed pervasive trait "uctuations around a !xed mean 
punctuated with burst of change ( Uyeda et al., 2011 ). Fur- 
thermore, most phylogenic comparative methods use bifurcat- 
ing trees to inform their residual covariance structures. The 
reticulate nature of many, if not most, species trees due to hy- 
bridization or horizontal gene transfer is becoming ever more 
apparent—the continued development of methods to incor- 
porate such reticulations, such as network structures ( Bastide 
et al., 2018 ), in our opinion, will likely also inform methods to 
study more widespread diffuse coevolution in a phylogenetic 
comparative framework and are thus well worth pursuing. 
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