

1 **STRAIGHT-IN Dual: a platform for dual, single-copy**
2 **integrations of DNA payloads and gene circuits into human**
3 **induced pluripotent stem cells**

4 Albert Blanch-Asensio^{1,2,3}, Deon S. Ploessl³, Benjamin B. Johnson^{1,2}, Sara Cascione¹, Myrthe
5 R. M. Berndsen^{1,2}, Nathan B. Wang³, Valeria Orlova^{1,2}, Anna Alemany^{1,2}, Christine L.
6 Mummery^{1,2}, Kate E. Galloway^{3,*}, Richard P. Davis^{1,2,4,*}

7

8 ¹Department of Anatomy and Embryology, Leiden University Medical Center, 2300RC
9 Leiden, The Netherlands

10 ² The Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Leiden University
11 Medical Center

12 ³ Department of Chemical Engineering, Massachusetts Institute of Technology, MA 02139
13 Cambridge, USA

14 ⁴ Senior author

15 *Correspondence: katiegal@mit.edu (K.E.G), r.p.davis@lumc.nl (R.P.D)

16

17 **SUMMARY**

18 Targeting DNA payloads into human (h)iPSCs involves multiple time-consuming, inefficient
19 steps that must be repeated for each construct. Here, we present STRAIGHT-IN Dual, which
20 enables simultaneous, allele-specific, single-copy integration of two DNA payloads with 100%
21 efficiency within one week. Notably, STRAIGHT-IN Dual leverages the STRAIGHT-IN platform
22 to allow near-scarless cargo integration, facilitating the recycling of components for
23 subsequent cellular modifications. Using STRAIGHT-IN Dual, we investigated how promoter
24 choice and gene syntax influence transgene silencing, demonstrating the impact these design
25 features have on reporter gene expression and forward programming of hiPSCs into neurons,
26 motor neurons, and endothelial cells. Furthermore, we designed a grazoprevir-inducible
27 synZiFTR system to complement the widely used tetracycline-inducible system, providing
28 independent, tunable, and temporally controlled expression of different transcription factors
29 within the same cell. The unprecedented efficiency and speed with which STRAIGHT-IN Dual
30 generates homogenous genetically engineered hiPSC populations represents a major
31 advancement for synthetic biology in stem cell applications and opens opportunities for
32 precision cell engineering.

1 **INTRODUCTION**

2 The efficient and precise insertion of DNA payloads into mammalian genome remains a major
3 challenge for synthetic biology, disease modeling, and cell-based therapies. Applications
4 ranging from biosensor and reporter integration to modelling disease variants, generating
5 humanized mouse models, and programming cell fate all require reliable genomic integration
6 tools (Balmas et al., 2023; Blanch-Asensio et al., 2022; Brandão et al., 2020; Hosur et al., 2022;
7 Low et al., 2022; Pawlowski et al., 2017; M. Zhang et al., 2021). Recently, hybrid platforms
8 combining genome editing technologies such as prime editing with site-specific recombinases
9 (SSRs) have enabled the insertion of DNA fragments up to 36 kb, offering a promising route
10 for complex genome engineering (Anzalone et al., 2022; Pandey et al., 2025; Yarnall et al.,
11 2023). However, CRISPR/Cas9-based methods often suffer from off-target effects and
12 variable efficiencies, necessitating extensive clonal screening.

13 SSR-based methods provide an alternative approach, enabling efficient and high-fidelity
14 integration of large DNA payloads (>100 kb) into engineered landing pad (LP) cassettes
15 (Blanch-Asensio et al., 2022; Brosh et al., 2021; Mitchell et al., 2021; Pinglay et al., 2022).
16 Among these, the serine recombinase Bxb1 is particularly effective due to its high and
17 irreversible integration efficiency, tolerance of large cargoes, and absence of pseudo-
18 recognition sites in the human genome (Duportet et al., 2014; Hosur et al., 2022; Roelle et al.,
19 2023). However, current SSR-based platforms are typically limited to single-copy integration
20 at a single locus. While some platforms permit integration of two DNA payloads (Rosenstein
21 et al., 2024), few support precise, allele-specific insertion of multiple transgenes. Alternative
22 methods, such as cassette exchange which relies on two recombination sites (Matreyek et al.,
23 2017), remain relatively inefficient.

24 Previously, we developed STRAIGHT-IN, a modular Bxb1-based system for single-copy
25 transgene integration into human induced pluripotent stem cells (hiPSCs) (Blanch-Asensio et
26 al., 2022). Although we also evaluated the recombinase ϕ C31 for orthogonal integration of
27 two donor plasmids, its low efficiency in hiPSCs precluded practical use. Recent mechanistic
28 studies of Bxb1 recombination have engineered orthogonal *attP/attB* sites by altering the
29 central “GT” dinucleotide to “GA”, which maintained high integration efficiency with minimal
30 crossover between the recombination sequences (Jusiak et al., 2019; Roelle et al., 2023).

1 Building on these developments and aiming to address limitations of previous systems, we
2 developed STRAIGHT-IN Dual, an hiPSC acceptor line containing two orthogonal Bxb1-
3 compatible LPs. Using a single recombinase, this system enables simultaneous, and allele-
4 specific integration of two DNA payloads into distinct alleles of the *CLYBL* locus, a genetically
5 permissive site that supports stable, long-term transgene expression without perturbing
6 endogenous genes (Cerbini et al., 2015). STRAIGHT-IN Dual also supports seamless removal
7 of auxiliary sequences (e.g. selection markers and vector backbones), using the tyrosine
8 recombinases Cre and Flp. This results in markerless and near-scarless integration of the DNA
9 payload (Blanch-Asensio et al., 2022; Brosh et al., 2021; J. Li et al., 2020), reducing transgene
10 silencing and facilitating iterative genomic modifications.

11 The dual LP platform facilitates scalable synthetic and stem cell biology studies while
12 controlling for locus-specific and neighboring transgene effects. By enabling single-copy,
13 allele-specific integration of distinct payloads, STRAIGHT-IN Dual supports systematic
14 investigation of how promoter choice, gene syntax (i.e. the relative order and orientation of
15 genes), and other regulatory elements influence transgene expression and stability across
16 pluripotent and differentiated cell states. Moreover, we demonstrated that multiplexed
17 integration of a panel of constructs allows single-pot characterization and identification via
18 Sort-Seq (O'Connell et al., 2023), establishing a scalable framework for high-throughput
19 screening of genetic components, including promoter libraries and synthetic gene circuits.

20 We further used STRAIGHT-IN Dual to identify optimal strategies for forward programming of
21 hiPSCs into induced neurons (iNs), endothelial cells (iECs), and motor neurons (iMNs),
22 demonstrating that distributing transcription factors across the two LPs enhanced
23 differentiation outcomes. To expand transgene control capabilities, we adapted a
24 grazoprevir-inducible synthetic zinc finger transcription regulator (synZiFTR) system (H.-S. Li
25 et al., 2022) for use in hiPSCs. Combined with the doxycycline-inducible all-in-one Tet-On 3G
26 system, this allowed precise and independent control of dual genetic programs. Notably, we
27 used this to establish dual-fate cell lines in which we could specify distinct fates from a single
28 cell line by applying different inducers, thereby opening opportunities for spatial patterning
29 of multiple cell types from a genetically uniform background.

1 Taken together, STRAIGHT-IN Dual offers a robust and flexible platform for precise, multi-
2 transgene integration and inducible control in hiPSCs. These capabilities make it uniquely
3 suited for sophisticated cell engineering applications ranging from high-throughput genetic
4 screening to combinatorial circuit design and multi-lineage modeling.

1 **RESULTS**

2 **Bxb1 mediates allele-specific integration of two DNA payloads in *CLYBL***

3 Building upon our previously developed STRAIGHT-IN acceptor hiPSC line that contained a
4 single LP in one allele of *CLYBL* (Blanch-Asensio et al., 2023), we targeted the unedited *CLYBL*
5 allele to establish a dual STRAIGHT-IN acceptor hiPSC line. The original STRAIGHT-IN LP line
6 (LU99_ *CLYBL*-bxb-v2) contains a bxb1-GT *attP* site for allele-specific targeting with GT donor
7 plasmids, as well as an excisable fluorescent reporter (*EBFP2*) driven by the PGK promoter
8 and a selection cassette (*BleoR*) designed as a promoter trap due to the lack of an ATG
9 initiation codon and promoter sequence. The 5' and 3' ends of the LP are flanked by two
10 heterospecific *loxP* and *lox257* sites, enabling Cre recombinase (Cre) to excise the auxiliary
11 sequences both 5' and 3' of the payload following integration (**Figure 1a**).

12 Using TALENs, we targeted a novel LP containing a bxb1-GA *attP* site into the unedited *CLYBL*
13 allele, thereby permitting allele-specific targeting with GA donor plasmids (**Figure 1a**). This
14 bxb1-GA LP also includes a distinct fluorescent reporter (*mScarlet*), selection cassette (*PuroR*)
15 and heterospecific *FRT* and *F3* sites recognized by Flp recombinase. We characterized one of
16 the resulting hiPSC clones (STRAIGHT-IN Dual) expressing mScarlet by genotyping PCR, ddPCR
17 and Sanger sequencing, confirming a single copy of the novel LP in the previously unedited
18 *CLYBL* allele with no mutations in the recombination sites (**Figure 1b,c** and **Supplementary**
19 **Figure 1a**). Additionally, the genomic integrity and normal karyotypic status of the hiPSC line
20 was confirmed by ddPCR and G-band karyotyping (**Supplementary Figure 1b,c**). The hiPSC
21 clone also expressed pluripotency markers and could differentiate into all three germ layers
22 (**Supplementary Figure 1d-f**).

23 Next, we designed donor plasmids containing either *attB*-GT or *attB*-GA recombination sites.
24 In the presence of Bxb1, these donor plasmids specifically integrate into their cognate LPs –
25 *attB*-GT into the *attP*-GT allele and *attB*-GA into the *attP*-GA allele – allowing precise allele-
26 specific cargo integrations (**Figure 1a**). Each donor plasmid contains the hEF1a promoter
27 sequence and an ATG initiation codon that completes the promoter trap upon integration,
28 leading to the expression of the respective selection markers (*BleoR* for the GT allele, *PuroR*
29 for the GA allele) and conferring resistance to zeocin or puromycin.

1 We first evaluated the efficiency of GT and GA donor plasmid integration, observing
2 comparable levels for both alleles before selection ($1.09\% \pm 0.21$ for GT, $1.10\% \pm 0.02$ for GA;
3 **Figure 1d,e**). Subsequent antibiotic selection led to robust enrichment of hiPSCs containing
4 either the GT or GA donor plasmids ($95.52\% \pm 1.87$ for GT, $99.06\% \pm 0.08$ for GA; **Figure 1d,e**).
5 Additionally, co-transfection of both donor plasmids and a Bxb1 expression plasmid, followed
6 by dual antibiotic selection, resulted in $>93.9\%$ of hiPSCs containing both integrated payloads
7 (**Supplementary Figure 1g,h**).

8 To confirm allele specificity, we independently transfected either the GT or GA donor
9 plasmids and subjected cells to selection with the non-matching antibiotic. If the GT donor
10 incorrectly integrated into the *attP*-GA LP, puromycin resistance would be conferred.
11 Likewise, incorrect GA donor integration into the GT LP would lead to zeocin resistance
12 (**Figure 1f**). In both cases, selection resulted in complete cell death, confirming the
13 orthogonality of the alleles (**Figure 1f**).

14 To further validate the orthogonality of the GT and GA alleles, we cloned green and red
15 fluorescent reporters (*TurboGFP* and *mScarlet-I*, respectively) into both donor plasmids
16 (**Figure 1g**). *TurboGFP* was tagged with a nuclear localization sequence (NLS), and *mScarlet-I*
17 with an actin-targeting signal, enabling unambiguous visualization of each transgene within
18 individual cells. As expected, co-transfection of the two fluorescent payloads targeting the
19 same LP (either *attP*-GT or *attP*-GA) resulted in cells expressing only one fluorophore,
20 consistent with mutually exclusive integration. In contrast, co-transfection of *TurboGFP*-GT
21 and *mScarlet-I*-GA donor plasmids yielded dual-labeled hiPSCs (**Figure 1g**). No integration was
22 observed when the *TurboGFP*-GA donor was transfected into the parental *CLYBL*-bxv2 hiPSC
23 line which lacks the GA allele, further supporting allele specificity and excluding detectable
24 off-target integration (**Supplementary Figure 1i**). Finally, integrating the same fluorescent
25 reporter into both LPs resulted in an ~ 2 -fold increase in fluorescence signal, suggesting that
26 both *CLYBL* alleles support comparable levels of transgene expression (**Supplementary Figure**
27 **1j**).

28 **Accelerating and simplifying the STRAIGHT-IN Dual protocol improves cell line generation**
29 To streamline the generation of uniform, genetically modified hiPSCs, we optimized the
30 STRAIGHT-IN integration process to improve efficiency, increase cell yield, and shorten the

1 time before downstream experiments could be performed (**Figure 2a**). We hypothesized that
2 the lower cytotoxicity and higher transgene expression typically observed with modRNA
3 delivery compared to plasmid DNA in hiPSCs would improve integration outcomes. Indeed,
4 transfection of Bxb1 modRNA resulted in an approximate 2-fold increase in integration
5 efficiency (**Supplementary Figure 2a**).

6 Next, we explored whether co-delivery of cytoprotective factors could improve post-
7 transfection survival, as reported for CRISPR-based genome editing (Haideri et al., 2022,
8 2024). Co-transfection of *p53DD* modRNA increased the proportion of hiPSCs with an
9 integrated cargo by 12.4-fold compared to a control *mGreenLantern* modRNA
10 (**Supplementary Figure 2b**). We also evaluated four engineered Bxb1 variants with reported
11 improvements in recombination activity (Hew et al., 2024; Pandey et al., 2025), namely
12 *evoBxb1* (V74A), *eeBxb1* (V74A + E229K + V375I), *Bxb1-I87L*, and *Bxb1-I87L + A369P + E434G*.
13 Among these, *eeBxb1* delivered as modRNA, and combined with *p53DD* modRNA,
14 significantly increased pre-selection integration efficiency from 2.75% to 9.12% at the GT
15 allele, and from 1.46% to 11.7% at the GA-allele (**Figure 2b**). Other *Bxb1* variants did not
16 outperform wildtype *Bxb1*, although co-transfection of *p53DD* modRNA consistently
17 improved integration efficiencies across all experiments (**Supplementary Figure 2c**).

18 **Based on these optimization experiments, and to expedite enrichment with zeocin or**
19 **puromycin, we used modRNA for all subsequent donor plasmid integrations.** Because
20 modRNA results in more rapid *Bxb1* expression than via plasmid delivery, antibiotic selection
21 could begin one day after transfection. This reduced the time required to obtain uniform,
22 payload-carrying hiPSCs to less than one week (**Figure 2c,d**). Notably, inclusion of *p53DD*
23 modRNA enabled recovery of hiPSC colonies with both GT and GA integrations after only 3
24 days of antibiotic selection (**Figure 2e, Supplementary Figure 2d**). ddPCR confirmed single-
25 copy insertions of the GT and GA donor plasmids, with no evidence of random integration
26 (**Supplementary Figure 2e**).

27 After integration, Cre and Flp recombinases are used to excise auxiliary elements, leaving
28 behind only the DNA payload and often improving integrated transgene expression (**Figure**
29 **2f**)(Blanch-Asensio et al., 2022). While plasmid-based recombinase expression can result in
30 high excision rates with selection, it often results in few clones surviving and prolonged

1 expansion times. To improve this, we explored plasmid-free strategies using either modRNA
2 or recombinant protein delivery.

3 For the GT allele, delivery of TAT-Cre protein resulted in excision rates of 91.9% and 80.7% of
4 the *loxP*- and *lox257*-flanked sequences, respectively. A second round of TAT-Cre increased
5 this to 97.6% and 93.7% (**Figure 2g**). For the GA allele, where TAT-Flp protein is unavailable,
6 we used *Flp* modRNA. After one transfection, 61.5% and 54.8% of the hiPSCs had excised the
7 *FRT*- and *F3*-flanked sequences, respectively, increasing to 87.8% and 76.3% with a second
8 transfection (**Supplementary Figure 2f, left**). Co-delivery of *TAT-Cre* and *Flp* modRNA resulted
9 in 83.6% of hiPSCs excising all flanked auxiliary sequences after two transfection rounds
10 (**Supplementary Figure 2f, right**).

11 We hypothesized that coupling excision to selection might further enhance efficiency,
12 potentially enabling complete removal of auxiliary elements after a single transfection. To
13 test this, we integrated a donor plasmid into the GA allele, conferring puromycin resistance
14 but keeping the cells zeocin sensitive. Transfecting a modRNA encoding both Flp and BleoR
15 (*Flp-2TA-BleoR*), followed by zeocin selection starting one day later, resulted in nearly
16 complete excision of both upstream and downstream auxiliary elements within 3 days with
17 efficiencies of 99.3% and 97.2%, respectively (**Figure 2h**). However, an equivalent strategy
18 could not be replicated with Cre for donor plasmids integrated at the GT allele, as puromycin
19 selection following *Cre-T2A-PuroR* or *Cre-IRES-PuroR* modRNA transfection failed to yield
20 puromycin-resistant hiPSCs. Co-transfection of *Cre* and *PuroR* modRNAs resulted in limited
21 excision enrichment, with efficiencies only increasing from 25.7% to 44.3% for *loxP*- and from
22 22.5% to 41.7% for *lox257*-flanked sequences (**Supplementary Figure 2g**).

23 Finally, to further streamline the protocol, we performed donor plasmid integration and
24 auxiliary element excision in the same well without needing to passage the cells. The hiPSCs
25 were co-transfected with *eeBxb1* and *p53DD* modRNA along with a GA donor plasmid
26 encoding *EGFP*, followed by puromycin selection days 1-3 post-transfection. On day 4, y *Flp-*
27 *T2A-BleoR* modRNA was transfected, and zeocin selection applied from days 5-8 (**Figure 2i**).
28 Within 9 days, hiPSCs showed near uniform EGFP expression and excision of auxiliary
29 elements (**Figure 2j,k**), demonstrating a rapid, one-well protocol for precise, near-scarless
30 single-copy genome integration with >98% efficiency.

1 **Identifying promoter sequences supporting stable transgene expression in hiPSCs**

2 Transgenes are essential tools for tracking cellular processes and modulating cell behavior
3 and identity (Peterman et al., 2024). However, in hiPSCs, genome-integrated transgenes are
4 susceptible to transcriptional silencing, particularly during prolonged culture or upon
5 differentiation. Promoter choice plays a critical role in determining both expression strength
6 and silencing susceptibility (**Figure 3a**)(Cabrera et al., 2022; Seczynska et al., 2022). Although
7 the CMV early enhancer/chicken β-actin (CAG) and human elongation factor 1-alpha (hEF1a)
8 promoters are commonly used for constitutive transgene expression across diverse cell types
9 (Dou et al., 2021), their comparative activity in hiPSCs remains poorly defined.

10 To directly compare their activity, we generated a dual reporter hiPSC line in which
11 divergently oriented CAG and hEF1a promoters drove expression of *mRuby2* and
12 *mGreenLantern*, respectively. While all puromycin-resistant hiPSC colonies showed uniform
13 *mRuby2* expression, only a subset expressed *mGreenLantern* despite confirmed integration
14 of the hEF1a-driven cassette, indicating transcriptional silencing. This effect became more
15 pronounced with passaging (**Supplementary Figure 3a**).

16 To exclude reporter-specific effects and promoter interference, we replaced *mGreenLantern*
17 with *mStayGold*, the brightest monomeric GFP reported to date (H. Zhang et al., 2024).
18 Additionally, we integrated the two reporters into separate *CLYBL* alleles. Again, only the
19 hEF1a-driven *mStayGold* was silenced (**Supplementary Figure 3b**). Swapping promoter-
20 reporter pairs also confirmed this, with strong expression of CAG-driven *mStayGold* while
21 hEF1a-driven *mRuby2* was silenced (**Supplementary Figure 3c**).

22 We next screened a panel of 11 promoters to identify sequences capable of driving low,
23 medium, or high levels of transgene expression. In addition to hEF1a and CAG, the panel
24 included ubiquitous promoters (UbC, β-actin, PGK), viral (CMV, RSV, SV40) promoters,
25 truncated CAG variants (CBh, shortCAG), and CpG-depleted hEF1a variant (CpG-free). We
26 introduced the promoters either separately or in a multiplexed format to demonstrate the
27 feasibility of integrating plasmid libraries using STRAIGHT-IN. This also enabled direct
28 comparison of pooled versus individual outcomes (**Figure 3b**). While all promoters initially
29 produced detectable *mStayGold* expression 24 h after transfection, their expression profiles
30 diverged markedly following single-copy genomic integration at the *CLYBL* locus, indicating

1 potential context-dependent differences between episomal and integrated transgene
2 expression (**Supplementary Figure 4a,b**).

3 Among the candidates tested, full-length CAG consistently supported the strongest
4 expression of mStayGold, followed by its truncated derivative CBh. The UbC and β -actin
5 promoter sequences produced intermediate and low expression levels respectively,
6 suggesting their potential utility in applications requiring tighter control. In contrast, the
7 remaining promoters, including hEF1a, CMV, and CpG-free, either failed to promote
8 homogenous mStayGold expression or were rapidly silenced upon passaging (**Figure 3c**).
9 Longitudinal monitoring over ten passages showed sustained mStayGold expression from
10 CAG and UbC promoters, while with hEF1a it remained silenced in most cells (**Supplementary**
11 **Figure 4c**).

12 We next evaluated promoter behavior in a pooled context. All 11 promoter constructs were
13 detected in the bulk population by next generation sequencing (**Supplementary Figure 4d**).
14 Cells were then binned into four mStayGold-based expression clusters (negative, low,
15 medium, and high), and the specific promoter sequences in each sorted cluster were mapped
16 (**Figure 3d,e** and **Supplementary Figure 4e**). The expression patterns closely matched those
17 from individually integrated lines, with CAG and CBh enriched in the high expression cluster,
18 UbC in the intermediate, β -actin in the low, and hEF1a, PGK and the remaining promoters
19 predominantly appearing in the negative cluster.

20 To assess whether these results were locus dependent, we integrated 6 of the promoter
21 constructs (hEF1a, CAG, UbC, CBh, β -actin, PGK) into a hiPSC line containing a STRAIGHT-IN
22 LP at the *AAVS1* locus (Blanch-Asensio et al., 2023) (**Supplementary Figure 5a**). As observed
23 at the *CLYBL* locus, CAG again drove strong and stable transgene expression across multiple
24 passages at *AAVS1*, whereas constructs containing hEF1a and PGK underwent silencing
25 (**Supplementary Figure 5b**). Notably, UbC, CBh and β -actin displayed greater variability in
26 both silencing and expression levels between the two loci, indicating that both the promoter
27 and locus influence the stability and strength of transgene expression.

28 These findings guided further optimization of the STRAIGHT-IN donor plasmids. Since CAG
29 consistently supported strong and stable transgene expression and hEF1a was more prone to
30 silencing, we designed the GT and GA donor plasmids to place the CAG promoter upstream

1 of the transgene cloning site (**Supplementary Figure 6a**). Additionally, as the original GA
2 donor plasmid relied on hEF1a to drive *PuroR* expression in the LP, we hypothesized that this
3 might limit the recovery of puromycin-resistant colonies. To test this, we replaced hEF1a with
4 CAG, UbC or CBh (**Supplementary Figure 6b**). Following puromycin selection, we observed
5 1.45x, 2.29x and 3.84x increases in the colony numbers respectively, indicating that poor
6 hEF1a activity was impairing selection efficiency (**Supplementary Figure 6c**).

7 **Gene syntax influences induction efficiency in the Tet-On 3G system in hiPSCs**

8 Beyond promoter selection, the relative arrangement of transcriptional units, often referred
9 to as gene syntax, can influence the expression of adjacent genes (Engreitz et al., 2016;
10 Johnstone & Galloway, 2022; Patel et al., 2023). While placing different elements of genetic
11 circuits, such as inducible systems, at separate genomic loci may prevent suboptimal
12 interactions between genes, integration at separate sites also requires integrating additional
13 genetic cargo. To systematically compare how different designs of multi-component genetic
14 circuits perform, we used STRAIGHT-IN Dual to elucidate key design principles, focusing on
15 the Tet-On 3G system and examining trade-offs between co-localized and dual locus
16 integration.

17 We first constructed a *trans* design of the Tet-On 3G system, with the transcriptional units
18 integrated into the separate *CLYBL* alleles (**Figure 4a**). The inducible gene (*mScarlet*) was
19 driven by a tetracycline response element (TRE) containing seven tetracycline operator (*TetO*)
20 repeats. Having determined the CAG promoter resists silencing in hiPSCs, we used this
21 promoter to drive expression of the transactivator gene *rtTA* in a bicistronic cassette which
22 also expressed a nuclear-localized blue fluorescent reporter (*mTagBFP2-NLS*) as a proxy
23 readout for *rtTA* levels.

24 We also generated *cis* designs of the Tet-On 3G system, where both the constitutive (*rtTA-*
25 *T2A-mTagBFP2-NLS*) and inducible (*mScarlet*) transcriptional units were integrated into the
26 same allele. This allowed us to investigate how gene syntax, specifically the relative
27 orientation and order of the transcriptional units, affects induction. We created four possible
28 syntaxes: convergent, divergent, downstream tandem and upstream tandem (**Figure 4a**). As
29 the auxiliary sequences remaining in the GA allele could confound potential interactions
30 between the constitutive and inducible genes **due to the presence of two copies of mScarlet**,

1 we examined mTagBFP2 and mScarlet expression both before (**Supplementary Figure 7**) and
2 after excision of the sequences (**Figure 4**).

3 In the *trans* configuration, induced mScarlet expression was weak, whereas several *cis* designs
4 showed robust induction (**Figure 4b**), suggesting that spatial proximity between the
5 constitutive and inducible genes improves expression in the Tet-On 3G system. Notably,
6 *mTagBFP2* expression levels remained unchanged in the *trans* configuration, indicating that
7 resource burden was not a limiting factor in induction (**Figure 4c,d**).

8 Prior to induction, we observed clear bimodality in mTagBFP2 expression for the convergent
9 syntax, which was most pronounced in unexcised cells (**Supplementary Figure 7c**), and
10 aligned with biophysical models of transcription (Johnstone & Galloway, 2022). In contrast,
11 the other syntaxes exhibited unimodal mTagBFP2 expression, which remained stable upon
12 induction with 1 μ M doxycycline (**Supplementary Figure 7c**). Interestingly, in pre-excised
13 cells, induction resulted in slight repression of mTagBFP2 across all syntaxes (**Supplementary**
14 **Figure 7d**). However, after excision, syntax-specific differences in mTagBFP2 expression
15 emerged (**Figure 4c,d**). Most notably, the downstream tandem syntax exhibited an \sim 5-fold
16 reduction in mTagBFP2 expression, while the convergent syntax showed no significant
17 change. The divergent and upstream tandem syntaxes showed increased mTagBFP2
18 expression, in line with biophysical model predictions (**Figure 4c,d**).

19 Upon induction with 1 μ M doxycycline, striking syntax-specific differences also emerged in
20 mScarlet expression. Although these differences became more pronounced after excision
21 (**Figure 4b-d**), similar trends were observed before excision (**Supplementary Figure 7e,f**). The
22 divergent and downstream tandem syntaxes resulted in strong mScarlet induction, while the
23 convergent and upstream tandem syntaxes showed poorer induction, characterized by weak,
24 bimodal, or broad expression distribution. Interestingly, excision significantly improved
25 induction for the convergent syntax, possibly due to the increased expression of mTagBFP2
26 and therefore rtTA. However, excision did not improve induction for the upstream tandem
27 syntax (**Figure 4c,d**).

28 Given the robust mScarlet induction observed in the downstream tandem *cis* design, we
29 further explored its utility in 3D stem cell-derived cardiac organoids (cardioids), which provide
30 a more complex cellular environment for disease modeling and developmental studies. We

1 found that mScarlet expression could be modestly adjusted by varying doxycycline
2 concentration (**Figure 4e**). Additionally, altering the duration of doxycycline treatment
3 modulated mScarlet expression, with longer inductions leading to higher expression (**Figure**
4 **4f**). Even in developed cardioids, robust mScarlet expression could be achieved when adding
5 doxycycline from day 7, demonstrating the potential to dynamically modulate transgene
6 expression in complex 3D systems.

7 **Dual payload inducible system enables forward programming of hiPSCs into iNs and iMNs**
8 Forward programming of hiPSCs into specific cell types is typically achieved by overexpressing
9 lineage-defining transcription factors. However, suboptimal gene syntax may impair
10 transcription factor expression and thereby inhibit cell fate conversion (**Figure 5a**). Given the
11 striking differences we observed between the two tandem orientations (**Figure 4d**), we
12 investigated whether gene syntax also influenced forward programming outcomes when
13 overexpressing *Ngn2*, a pioneer transcription factor for neurons (Y. Zhang et al., 2013). To
14 evaluate this, we constructed Tet-On 3G all-in-one systems for regulating *Ngn2* expression.
15 To enable rapid cloning of *Ngn2* and other genes of interest (GOIs) into the STRAIGHT-IN LPs,
16 we developed a modular set of tandem and divergent Tet-On 3G donor plasmids
17 (**Supplementary Figure 8a**). These vectors included a constitutive nuclear BFP reporter for
18 visualization and a LacZ cassette to facilitate blue/white screening of bacterial colonies
19 containing the cloned inserts. After assembly, >85% of white colonies carried the correct
20 cargo (**Supplementary Figure 8b,c**). This streamlined workflow allowed rapid generation of
21 donor plasmids with diverse inducible cargoes and, using the rapid integration protocol, the
22 establishment within 1 week of hiPSC lines that uniformly expressed the nuclear BFP reporter
23 (**Supplementary Figure 8d,e**).

24 Induction of *Ngn2* from the downstream tandem syntax led to the rapid generation of TUJ1⁺
25 MAP2⁺ hiPSC-derived iNs within 7 days (**Figure 5b** and **Supplementary Figure 9a**). In contrast,
26 the upstream tandem configuration produced very few iNs (**Figure 5c**), consistent with its
27 weaker expression profile observed earlier (**Figure 4c,d**). qPCR analysis confirmed reduced
28 induction of *Ngn2* and other neuronal genes in the upstream tandem syntax, while

1 pluripotency-associated genes were downregulated in the downstream tandem orientation
2 following doxycycline induction (**Figure 5d**).

3 To demonstrate the utility of STRAIGHT-IN Dual for co-expressing multiple transgenes, we
4 integrated *Ngn2* and a genetically encoded calcium indicator (*zRCaMP1b*) into the separate
5 *CLYBL* alleles using two TRE-controlled donor plasmids (**Supplementary Figure 9b**). With
6 doxycycline as a single inducer, this configuration resulted in rapid and robust forward
7 programming of hiPSCs into iNs while simultaneously allowing the monitoring calcium signals
8 (**Supplementary Figure 9c-e**), illustrating how the Dual system enables the coupling of lineage
9 conversion with real-time functional readouts.

10 We next investigated whether distributing the transcription factors required for motor
11 neuron (iMN) specification (*Ngn2*, *ISL1* and *LHX3*) across both LPs would improve the
12 homogeneity of forward programming outcomes. Specifically, we compared a dual-cassette
13 configuration in which *Ngn2* and the *ISL1/LHX3* cassette were integrated separately (GT-Ngn2
14 + GA-ISL1-LHX3; GT-N + GA-IL) to a single-cassette configuration where all three factors were
15 encoded in tandem within a single LP (GT-Ngn2-ISL1-LHX3; GT-NIL; **Figure 5e**). The single-
16 cassette GT-NIL configuration led to a high proportion of proliferative, non-neuronal cells that
17 rapidly overtook the culture (**Supplementary Figure 9f**). In contrast, the dual-cassette
18 strategy resulted in improved neuronal differentiation, yielding a purer population of iMNs
19 (**Supplementary Figure 9f**). While in the single-allele approach, the non-neuronal cells were
20 selectively eliminated by treatment with the antimitotic reagent EdU, this step was not
21 required for the dual-cassette design (**Supplementary Figure 9g,h**).

22 After 10 days of differentiation, live-cell imaging with Hoechst and propidium iodide showed
23 increased cell death in EdU-treated single-cassette cultures, consistent with the higher
24 proportion of non-neuronal, EdU-sensitive cells (**Supplementary Figure 10a-d**). Additionally,
25 calcein AM staining and image quantification revealed that cells derived from the dual-
26 cassette configuration were significantly larger, exhibited increased neurite branching, and
27 had longer dendrites (**Supplementary Figure 10a-d**). Furthermore, qPCR confirmed that
28 expression of *Ngn2*, *ISL1*, and *LHX3* was lower in the single-cassette configuration, while the
29 dual-cassette cultures showed robust upregulation of motor neuron markers, including HB9,
30 ChAT and VaChT, compared to *Ngn2* alone (**Supplementary Figure 10e**).

1 To evaluate the effect of copy number, allele configuration (cis versus trans), and transcript
2 architecture, we generated 3 additional lines. First, to separate the effect of the tricistronic
3 cassette while maintaining expression from a single allele, we expressed the transcription
4 factors either as three separate inducible transcription units in a downstream tandem
5 orientation (GA-N+I+L D-Tand), or as two units in a divergent syntax with one encoding *Ngn2*
6 and the other carrying a bicistronic *ISL1–LHX3* cassette (GA-N+IL Div; **Supplementary Figure**
7 **11a,b**). To investigate whether expression of the transcription factors from the tricistronic NIL
8 cassette could be increased, we introduced a second identical copy into the GA allele of the
9 GT-NIL line (GT-NIL + GA-NIL; **Figure 5e**). As expected, dual integration resulted in an
10 approximately two-fold increase in *mTagBFP2* expression (**Figure 5f**), and after three days of
11 doxycycline induction this line exhibited the highest levels of all three transcription factors
12 among the six lines analyzed (**Supplementary Figure 11c**).

13 By day 10 of differentiation, cell morphology and qPCR analysis of motor neuron genes
14 indicated more robust motor neuron differentiation in the two dual-allele lines (GT-N+GA-IL
15 and GT-NIL+GA-NIL), consistent with their elevated transcription factor expression (**Figure 5g**
16 and **Supplementary Figure 11d,e**). Immunofluorescence staining for HB9 further confirmed
17 motor neuron identity (**Figure 5h** and **Supplementary Figure 11f**). Quantification of HB9⁺
18 nuclei relative to total DAPI⁺ nuclei showed that >85% of cells in the GT-N+GA-IL line
19 expressed HB9 at day 10, whereas approximately 40% of cells were HB9⁺ in the dual GT-
20 NIL+GA-NIL line and <20% in the remaining lines (**Figure 5i** and **Supplementary Figure 11g**).
21 Altogether, these data suggest that the single-transcript design may impede effective
22 differentiation by limiting transcription factor expression. While increasing copy number
23 improved both expression and differentiation, this alone did not achieve a differentiation
24 efficiency similar to the split-allele design of the GT-N+GA-IL line.

25 **Rapid generation of hiPSC-iECs and promoter activity profiling in differentiated lineages**
26 **using STRAIGHT-IN Dual**

27 To further demonstrate the versatility and efficiency of our all-in-one Tet-On 3G downstream-
28 tandem vector system for generating inducible hiPSC lines, we cloned and overexpressed
29 *ETV2*, a pioneer transcription factor that directs endothelial lineage specification
30 (**Supplementary Figure 12a**). Upon doxycycline induction, cells rapidly acquired an

1 endothelial-like morphology and, by day 4, expressed key markers of endothelial identity,
2 including CD31, ZO1, and CD144 (**Supplementary Figure 12b-d**).

3 To evaluate promoter activity following lineage commitment, we integrated the previously
4 characterized panel of 11 promoters into the GA allele of hiPSC lines harboring doxycycline-
5 inducible *Ngn2* or *ETV2* in the GT allele. This enabled side-by-side comparison of promoter
6 activity in iNs and iECs, as well as hiPSCs (**Supplementary Figure 13**).

7 Promoter behavior in iNs and iECs largely mirrored that observed in undifferentiated hiPSCs.
8 As in the pluripotent state, the CAG promoter drove strong and uniform mStayGold
9 expression in both iNs and iECs (**Supplementary Figure 13b,c**). Similarly, the UbC and β -actin
10 promoters also remained active, producing moderate and low levels of reporter expression,
11 respectively. In contrast, the remaining promoters, including hEF1a, PGK and CBh, either
12 failed to produce detectable reporter signals or exhibited transgene silencing, consistent with
13 observations in undifferentiated hiPSCs.

14 **Orthogonal inducible systems support dual-fate programming of genetically uniform hiPSCs**

15 To achieve independent control over two separate cargoes within a single hiPSC line, we
16 introduced a second, orthogonal inducible system alongside the Tet-On 3G system. We
17 selected a synZiFTR system which couples ZF10 as a DNA-binding domain to a grazoprevir
18 (GZV)-responsive NS3 module and a p65 transcriptional activator (H.-S. Li et al., 2022). An all-
19 in-one synZiFTR expression cassette was constructed in the downstream tandem
20 configuration and integrated into the GA allele (**Supplementary Figure 14a,b**). Induction of a
21 *mGreenLantern* reporter revealed toxicity at GZV concentrations above 250 nM, with 125 nM
22 selected as the optimal concentration for robust transgene induction with minimal
23 cytotoxicity (**Supplementary Figure 14c**). At this concentration, synZiFTR-mediated *Ngn2*
24 expression efficiently generated TUJ1⁺/MAP2⁺ iNs within 7 days (**Figure 6a,b**).

25 To demonstrate independent dual gene regulation, we combined both inducible systems
26 using STRAIGHT-IN Dual. *Ngn2* was integrated into the GA allele under synZiFTR control, while
27 mScarlet was targeted to the GT allele under Tet-On 3G regulation (**Figure 6c**). GZV was
28 maintained in the culture media throughout the 7-day differentiation procedure, with
29 doxycycline added from day 3. By day 7, most iNs expressed mScarlet (**Figure 6d** and
30 **Supplementary Figure 14d**).

1 To exploit this modularity, we established dual-fate hiPSC lines capable of differentiating into
2 distinct lineages based on inducer choice. In one configuration, *Ngn2* expression was
3 controlled by the synZiFTR system and *ETV2* by Tet-On 3G, while in another, this arrangement
4 was reversed (**Figure 6e**). Exposure to GZV or doxycycline resulted in rapid and efficient
5 differentiation into either iNs or iECs (**Figure 6f**). Lineage-specific commitment was supported
6 by qPCR analysis and flow cytometry, with GZV-induced iECs expressing CD31 and CD144
7 (**Figure 6g** and **Supplementary Figure 12e**). These findings highlight the versatility of
8 STRAIGHT-IN Dual for independently controlling multiple transcriptional programs in a single,
9 genetically uniform hiPSC line. This capability provides a flexible framework for implementing
10 orthogonal gene circuits and generating mixed or patterned cell populations for advanced
11 applications.

1 **DISCUSSION**

2 In this study, we present STRAIGHT-IN Dual, a platform enabling rapid, efficient, and allele-
3 specific integration of two independent DNA payloads into the *CLYBL* locus in hiPSCs.
4 Following protocol optimization, genetically modified hiPSC lines could be generated in less
5 than one week with nearly 100% efficiency. For the GA allele, both integration and excision
6 procedures were achievable within nine days without requiring cell passaging.

7 STRAIGHT-IN Dual supports simultaneous integration of two payloads with orthogonal
8 precision, exploiting the highly specific GT and GA Bxb1 recombination sequences (Jusiak et
9 al., 2019). By using eeBxb1, a hyperactive Bxb1 mutant developed via directed evolution
10 (Pandey et al., 2025), we achieved significantly higher integration efficiencies compared to
11 wild-type Bxb1. Notably, this improvement was more pronounced at the GA allele. This may
12 be due to the attP/attB-GA sequence being included in some of the circuits used during the
13 directed evolution of Bxb1 to eeBxb1 (Pandey et al., 2025), potentially biasing the enzyme
14 toward enhanced recombination at these sites. However, the precise mechanism by which
15 the central dinucleotide sequence influences recombination efficiency remains unclear and
16 requires further investigation.

17 Since Bxb1 catalyzes recombination through DNA double-strand breaks (Xu et al., 2013), we
18 also investigated whether co-delivering modRNA encoding a dominant-negative truncated
19 p53 (p53DD) to dampen the p53-mediated DNA damage response would enhance cell survival
20 after recombination (Haideri et al., 2024; M. Li et al., 2022; Rosenstein et al., 2024).
21 Combining eeBxb1 and p53DD resulted in approximately a 10-fold increase in integration
22 efficiency.

23 The platform also supports near-scarless genomic modifications by excising auxiliary
24 elements, such as reporters, selection markers, and plasmid backbones. Consistent with prior
25 findings (Blanch-Asensio et al., 2024), removal of these auxiliary sequences reduced
26 transgene silencing in both undifferentiated and differentiated hiPSCs. Excision also allows
27 reuse for further genomic modifications. STRAIGHT-IN Dual facilitated near-complete excision
28 efficiency from both alleles using TAT-Cre and *Flp-T2A-BleoR* modRNA, with the entire
29 procedure for the GA allele achieved without cell passaging. This streamlined approach
30 simplifies the generation of multiple modified hiPSC lines, either individually or pooled,

1 facilitating integration of plasmid libraries and high-throughput combinatorial studies at
2 single-copy resolution. These optimized processes also make STRAIGHT-IN Dual compatible
3 with automated pipelines, making it ideal for large-scale functional screens and high-
4 throughput studies.

5 Importantly, dual integration of the same payload into both alleles effectively doubled
6 transgene expression, indicating that both LPs perform comparably. We recently
7 demonstrated that such uniform biallelic integration is critical for high-resolution genome
8 folding profiling and enables precise measurements of transcriptional activation effects on
9 chromatin architecture using Region Capture Micro-C (Johnstone et al., 2025).

10 Our work also highlights current limitations of standard molecular tools used in hiPSCs. For
11 example, the commonly used hEF1a promoter was rapidly silenced, corroborating earlier
12 studies (Bertero et al., 2016). To identify promoter sequences that resist silencing, we
13 screened a library of 11 promoters integrated either individually or as a pool into STRAIGHT-
14 IN Dual hiPSCs. Next-generation sequencing of pooled integrations confirmed complete
15 library representation, demonstrating the suitability of STRAIGHT-IN for scalable, high-
16 throughput characterization of diverse DNA elements.

17 While transient assays initially showed detectable transgene expression from all promoters,
18 over half underwent significant silencing following genomic integration. Viral promoters
19 (CMV, RSV, SV40), a truncated CAG promoter variant (shortCAG), and a CpG-depleted short
20 hEF1a promoter (CpG-free) were silenced rapidly, while PGK and hEF1a promoters showed
21 progressive silencing over time. In contrast, CAG, CBh, UbC, and β -actin promoters
22 maintained stable reporter expression at the *CLYBL* locus over extended passaging in hiPSCs,
23 although only CAG maintained long-term activity at the *AAVS1* locus. When assessed in
24 forward programmed neurons and ECs, most promoter behaviors mirrored that in
25 undifferentiated hiPSCs. Notably, CAG, UbC, and β -actin promoters remained active,
26 supporting their utility for stable gene expression in cell types derived from different germ
27 layers.

28 The superior stability of the full-length CAG promoter likely arises from its synthetic
29 architecture, which integrates several regulatory elements that collectively confer resistance
30 to transcriptional silencing. CAG combines the cytomegalovirus (CMV) immediate-early

1 enhancer, the chicken β -actin promoter with its first intron, and a rabbit β -globin splice
2 acceptor (Niwa et al., 1991). These elements contain numerous transcription factor binding
3 sites, can recruit chromatin remodelers and prevent DNA methylation (Brown et al., 2014). In
4 contrast, truncated variants such as CBh, shortCAG, and CMV alone, lack at least the β -globin
5 splice acceptor, and showed reduced resistance to silencing. Nonetheless, the large size and
6 high GC content of CAG presents practical cloning challenges, highlighting the need to
7 systematically develop and evaluate alternative synthetic promoters that retain the robust,
8 stable expression characteristics of CAG but offer improved ease of use. STRAIGHT-IN Dual
9 offers not only rapid, locus-controlled screening of promoter sequence libraries but also the
10 possibility to evaluate other regulatory elements, such as insulators or ubiquitous chromatin
11 opening elements, that have been proposed to mitigate transgene silencing in hiPSCs and
12 their differentiated derivatives (Uenaka et al., 2025; Yanagi et al., 2025; Guichardaz et al.,
13 2024).

14 We also demonstrated the utility of STRAIGHT-IN Dual for systematically analyzing gene
15 syntax, identifying divergent and downstream tandem orientations as optimal configurations
16 for induction with the all-in-one Tet-On 3G system. Most studies have favored these two
17 orientations in mammalian cells (Jillette et al., 2019; Kelkar et al., 2020; Ng et al., 2021; Otomo
18 et al., 2023; Randolph et al., 2017), with convergent and upstream tandem syntaxes typically
19 performing poorly unless extensively optimized (Haenebalcke et al., 2013; Shin et al., 2024).

20 Based on the clear differences in expression observed between the two tandem syntaxes, we
21 evaluated both for forward programming of hiPSCs into iNs via inducible *Ngn2* expression.
22 We selected the downstream tandem syntax over the divergent orientation due to its higher
23 transgene induction levels prior to excising the flanking auxiliary elements, thereby obviating
24 the need to perform this step and allowing the initiation of overexpression studies within one
25 week. Functional iNs were only obtained when using the downstream tandem syntax,
26 confirming its superior performance which is consistent with an upstream dominance effect
27 driven by supercoiling-mediated feedback that regulates the expression of neighboring genes
28 in a syntax-specific manner (Johnstone et al., 2025). The downstream tandem syntax also
29 proved effective for *ETV2* overexpression, enabling efficient differentiation of hiPSCs into iECs
30 within four days. While similar outcomes have been reported previously, these studies relied
31 on hyperactive transposase-based delivery systems that randomly inserted >50 copies of the

1 construct throughout the genome and potentially led to unintended genomic disruption
2 (Rieck et al., 2024; Ding et al., 2025). In contrast, we demonstrate that a single, site-specific
3 integration of *ETV2* is sufficient to forward program the entire hiPSC population into iECs and
4 suggests that high transgene copy numbers are not a prerequisite for rapid and uniform cell
5 fate specification when expression is tightly controlled.

6 Our comparative analysis of transcription factor cassette configurations demonstrates that
7 transcript architecture and allelic arrangement strongly influence both expression efficiency
8 and downstream motor neuron differentiation. Neither the downstream tandem orientation
9 with three separate inducible transcription units nor the divergent bicistronic design
10 increased transcription factor output or improved conversion of hiPSCs into iMNs, indicating
11 that simply reorganizing transcriptional units is insufficient to overcome intrinsic expression
12 constraints imposed by the single tricistronic NIL cassette (Wang et al., 2025). Introducing a
13 second NIL cassette into the other allele increased overall expression as expected, confirming
14 that copy number contributes in a predictable manner to transcriptional output. However,
15 despite this improvement, the dual NIL configuration did not achieve differentiation
16 efficiencies comparable to the split-allele GT-N+GA-IL design. The GT-N+GA-IL line, which
17 distributes a single copy of the transcription factors across two alleles, consistently showed
18 superior induction of motor neuron markers and the highest proportion of HB9⁺ cells, possibly
19 because it avoids position effects common to 2A-linked polycistronic constructs (Liu et al.,
20 2017). Future work may identify improved design strategies for multicistronic cassettes that
21 overcome these limitations. More broadly, STRAIGHT-IN Dual enables systematic screening
22 of transcription factor combinations for lineage specification, which has previously largely
23 relied on pooled viral strategies that offer limited control over transcription factor
24 stoichiometry (Joung et al., 2023; Ng et al., 2021).

25 Moreover, STRAIGHT-IN Dual allows combinatorial or sequential transgene expression using
26 independent inducible systems, such as Tet-On 3G and synZiFTRs. This enabled precise
27 temporal control of both reporters and lineage-specifying transcription factors. Using this
28 dual-inducible framework, we generated dual-fate programmable hiPSC lines that could be
29 directed toward either neuronal or endothelial lineages, depending on inducer choice.
30 Previous multi-fate approaches have relied on mixing or printing genetically distinct cell
31 populations (Skylar-Scott et al., 2022). In contrast, our strategy enables spatial patterning of

1 distinct lineages from a single cell line using small molecules alone, without the need for
2 complex bioprinting. The platform also opens possibilities to combine cell fate programming
3 with independent expression of biosensors or inducible modeling of sporadic or acquired
4 mutations in differentiated cells. Furthermore, these inducible DNA payloads can be
5 expressed in complex in vitro systems, such as organoids, organs-on-chips, and 3D tissue
6 constructs, expanding the possibilities for cell-based modelling and engineered tissue design.

7 Several limitations of the current study should be acknowledged. First, all engineered hiPSC
8 lines were derived from a single parental clone. Although beneficial for reducing variability,
9 this genetic uniformity limits the immediate generalizability of our findings. Further validation
10 using hiPSC lines from diverse genetic backgrounds and donors is **therefore warranted, with**
11 **STRAIGHT-IN Dual LPs currently being targeted in additional hiPSC lines.** Second, most
12 payloads were integrated into the *CLYBL* locus, with limited comparisons at *AAVS1*. Therefore,
13 locus-specific effects cannot be excluded, and transgene behavior could differ across genomic
14 sites. Third, the transgene sequence also influences transgene silencing (Karbassi et al., 2024).
15 Here, promoter activity was primarily assessed using fluorescent reporter genes. Further
16 testing of promoter activity for a broader range of relevant payloads is warranted in future
17 studies.

18 In summary, STRAIGHT-IN Dual enables the rapid generation of complex, precisely engineered
19 hiPSC lines with dual, orthogonal genetic control. This versatile platform supports scalable
20 screening, combinatorial transgene interrogation, and precise control of cell fate, and
21 provides a powerful toolkit for biomedical and synthetic biology research.

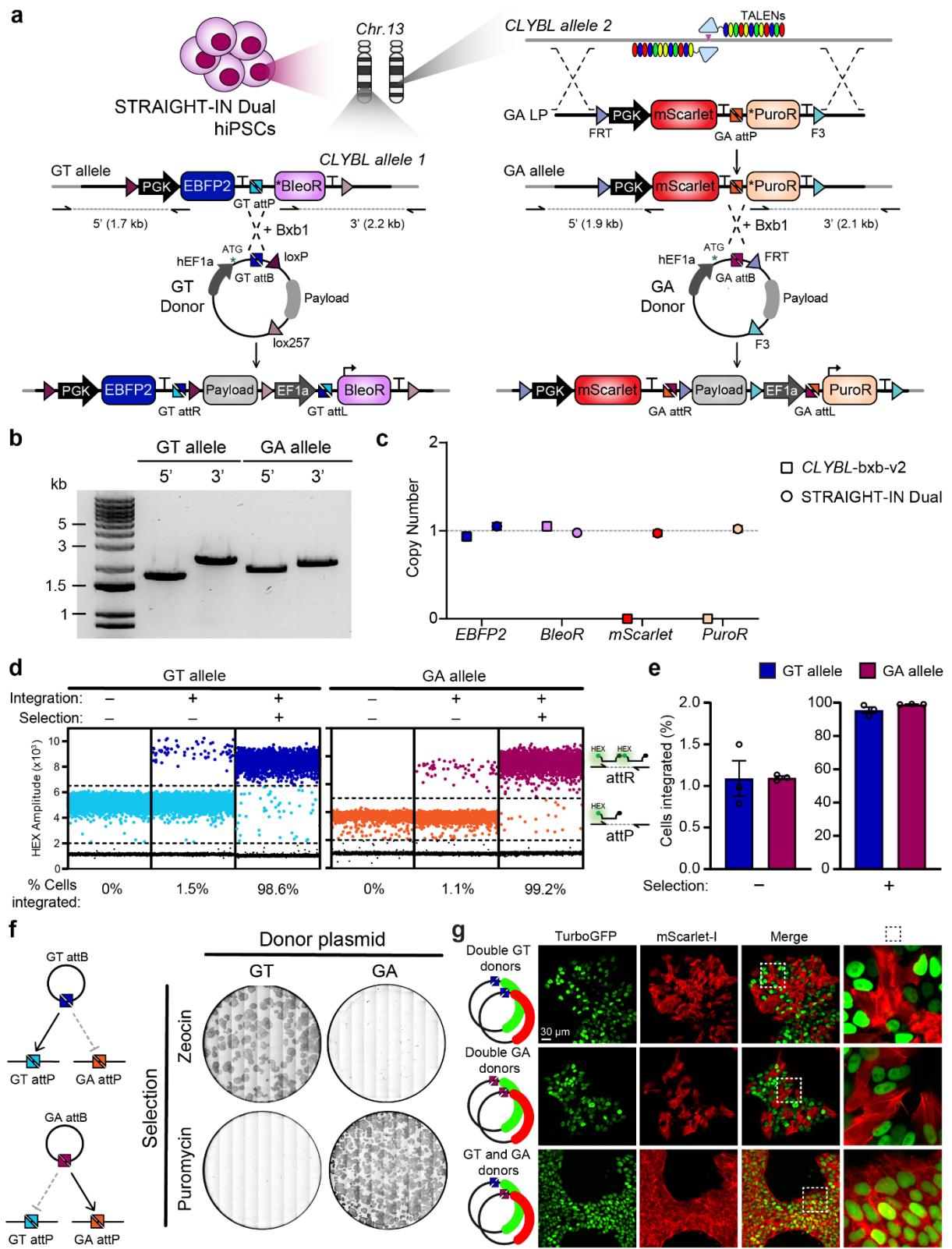
22 **ACKNOWLEDGEMENTS**

23 We thank Niels Geijsen and Peng Shang for providing TAT-Cre protein, the LUMC flow
24 cytometry facility for sorting the cells, and the Laboratory for Diagnostic Genome Analysis
25 (LUMC) for karyotyping. Some schematics in figures were created with BioRender.com. This
26 work was supported by the Netherlands Organ-on-Chip Initiative, a Gravitation project of the
27 Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), funded by the Ministry
28 of Education, Culture, and Science of the government of the Netherlands (grant no.
29 024.003.001); the NWO-funded LymphChip project (grant no. NWAORC 2019 1292.19.019)

1 as part of the NWA research program “Research on Routes by Consortia (ORC)”; funding from
2 the NWO Open Competition XS program (grant no. OCENW.XS23.4.123); a ZonMw PSIDER
3 consortium grant (grant no. 10250022120002; GREAT); and a Marie Skłodowska-Curie
4 fellowship (grant no. 101152209) under the European Union’s Horizon 2020 research and
5 innovation program. It also forms part of the project “Innovative Stem Cell Technology
6 Infrastructure for Human Organ and Disease Models”, funded by the NWO Large-Scale
7 Research Infrastructure program (grant no. 184.036.006). The Novo Nordisk Foundation
8 Center for Stem Cell Medicine (reNEW) is supported by a Novo Nordisk Foundation grant
9 (NNF21CC0073729). Additional support was provided by the National Institute of General
10 Medical Sciences of the National Institutes of Health (award no. R35-GM143033 to K.E.G), the
11 National Science Foundation under the NSF-CAREER award (grant no. 2339986), and with
12 funding from Institute for Collaborative Biotechnologies (W911NF-19-2-0026), by the Air
13 Force Research Laboratory MURI (FA9550-22-1-0316), and the Pershing Square Foundation
14 MIND Prize. This study also received funding from European Research Council (ERC) under
15 the European Union’s Horizon 2000 research and innovation program (grant no.101042634).

16 **AUTHOR CONTRIBUTIONS**

17 A.B-A developed and optimized the protocols described in this manuscript, designed and
18 performed the experiments, analyzed data and wrote the manuscript. D.S.P developed and
19 optimized some of the protocols described in this manuscript, designed and performed some
20 of the experiments, contributed to drafting the manuscript and revised it for important
21 intellectual content. S.C, B.B.J, M.B and N.B.W, designed and performed some of the
22 experiments, and contributed to drafting the manuscript. V.O contributed intellectual
23 content. A.A analyzed data, contributed to drafting the manuscript and revised it for
24 important intellectual content. C.L.M acquired some of the funding and revised the
25 manuscript for important intellectual content. K.E.G and R.P.D. supervised the study, acquired
26 some of the funding and revised the manuscript for important intellectual content. All authors
27 approved the final manuscript.


1 **DECLARATION OF INTEREST**

2 C.L.M. is a co-founder of Pluriomics B.V. (now Ncardia B.V.) and has advisory roles in
3 HeartBeat.bio AG, Angios GmbH, Mogrify Limited and Sartorius AG. C.L.M. and R.P.D. declare
4 previous research funding from Sartorius AG for an unrelated study. A.B-A, D.S.P, S.C, B.B.J,
5 M.R.M.B, N.B.W, V.O, A.A and K.E.G declare no competing interests.

6 **MATERIALS AVAILABILITY**

7 All new plasmids generated in this study have been deposited on Addgene
8 (<https://www.addgene.org/browse/article/28252243/>). The hiPSC lines are available under
9 an MTA. Requests should be directed to Dr Richard P. Davis (r.p.davis@lumc.nl).

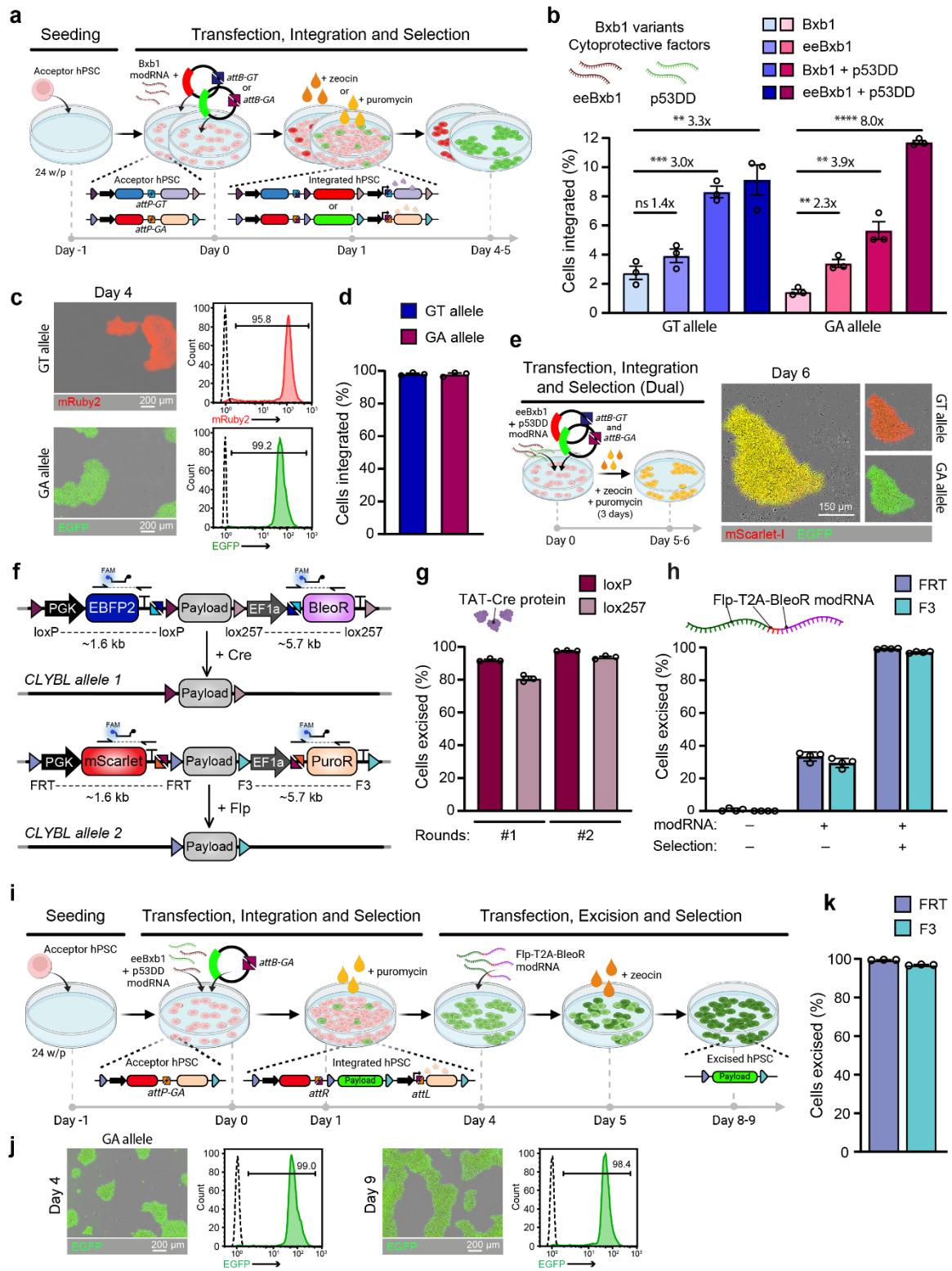
Figure 1

1 **Figure 1. Allele-specific targeting of bxb1-GT and bxb1-GA payloads in the STRAIGHT-IN Dual
2 hiPSCs**

3 **(a)** Schematic of TALEN-mediated targeting of the GA-LP cassette into the second allele of the
4 citrate lyase beta-like (*CLYBL*) locus and Bxb1 recombinase-mediated integration of GT and
5 GA donor plasmids into their cognate LPs. Expression of the antibiotic resistance markers is
6 activated only upon correct donor plasmid integration, which supplies the missing initiation
7 codon (*). Half arrows indicate junction PCR primer sites. “Payload” indicates the location of
8 the desired DNA cargo for targeting in both the donor plasmid and following genomic
9 integration. “T” denotes polyadenylation sequences.

10 **(b)** Junction PCR analysis confirming targeting of GT and GA LPs in the *CLYBL* locus.

11 **(c)** ddPCR validating single-copy genomic integration of each LP cassette. The *CLYBL*-bxb-v2
12 hiPSC line serves as a control. Error bars, Poisson 95% CI.


13 **(d)** Representative ddPCR dot plots showing GT and GA donor plasmid integration before and
14 after antibiotic selection. Dots represent droplets containing the indicated sequence (*attR* or
15 *attP*), with percentages showing the calculated integration efficiencies.

16 **(e)** Mean integration efficiencies of GT and GA donor plasmids before (-) and after (+)
17 antibiotic selection. N=3 independent transfections; error bars, \pm SEM.

18 **(f)** Schematic illustrating Bxb1-GT/GA recombination specificity (*left*), and alkaline
19 phosphatase staining (*right*) confirming orthogonal payload integration at the GT and GA LPs.

20 **(g)** Fluorescence images showing allele-specific expression of TurboGFP (GT) and mScarlet-I
21 (GA) following donor plasmid integration.

Figure 2

1 **Figure 2. Optimized STRAIGHT-IN protocol improved integration and excision efficiencies**
2 **while reducing timelines**

3 **(a)** Schematic of the rapid integration procedure.

4 **(b)** Mean integration efficiencies of GT and GA donor plasmids using modRNA combinations
5 of Bxb1, eeBxb1 and p53DD prior to selection. N=3 independent transfections; error bars,
6 \pm SEM; not significant (ns), $P>0.05$; *, $P\leq0.05$; **, $P\leq0.01$; ***, $P\leq0.001$; ****, $P\leq0.0001$
7 (unpaired t test).

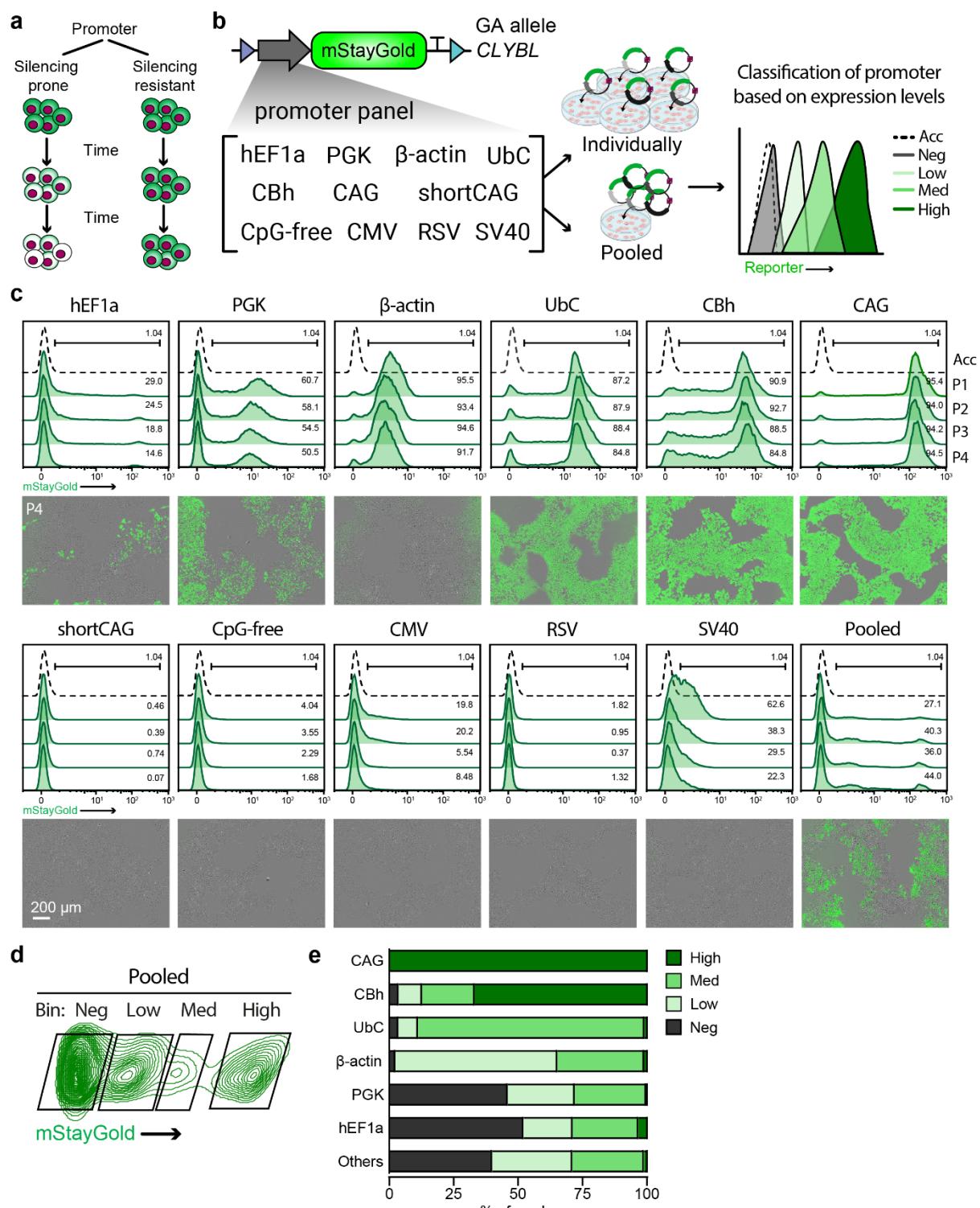
8 **(c)** Overlay of fluorescence and phase contrast images (*left*) and flow cytometry analysis
9 (*right*) showing reporter expression following rapid integration of GT or GA donor plasmids
10 encoding *mRuby2* or *EGFP*, respectively. Dashed lines denote untransfected STRAIGHT-IN
11 Dual acceptor hiPSCs.

12 **(d)** Mean integration efficiencies of GT and GA donor plasmids following antibiotic selection.
13 N=3 independent transfections; error bars, \pm SEM.

14 **(e)** Schematic of the dual payload integration and selection procedure (*left*), and overlay of
15 fluorescence and phase contrast images (*right*) after co-delivery of GT and GA donor plasmids
16 encoding *mScarlet-I* and *EGFP*, respectively.

17 **(f)** Schematic for excising selection cassettes and plasmid backbones using Cre or Flp
18 recombinases. Dashed lines indicate the sequences excised, and half arrows indicate primer
19 sites for ddPCR analysis.

20 **(g)** Mean percentages of hiPSCs with indicated flanking regions excised following 1 (#1) or 2
21 (#2) administrations of TAT-Cre protein, as determined by ddPCR. N=3 independent
22 transfections; error bars, \pm SEM.


23 **(h)** Mean percentages of hiPSCs with indicated flanking regions excised following *Flp-2TA-*
24 *BleoR* modRNA transfection, with (+) or without (-) zeocin selection, as determined by ddPCR.
25 N=4 independent transfections; error bars, \pm SEM.

26 **(i)** Schematic of the complete rapid integration and excision workflow.

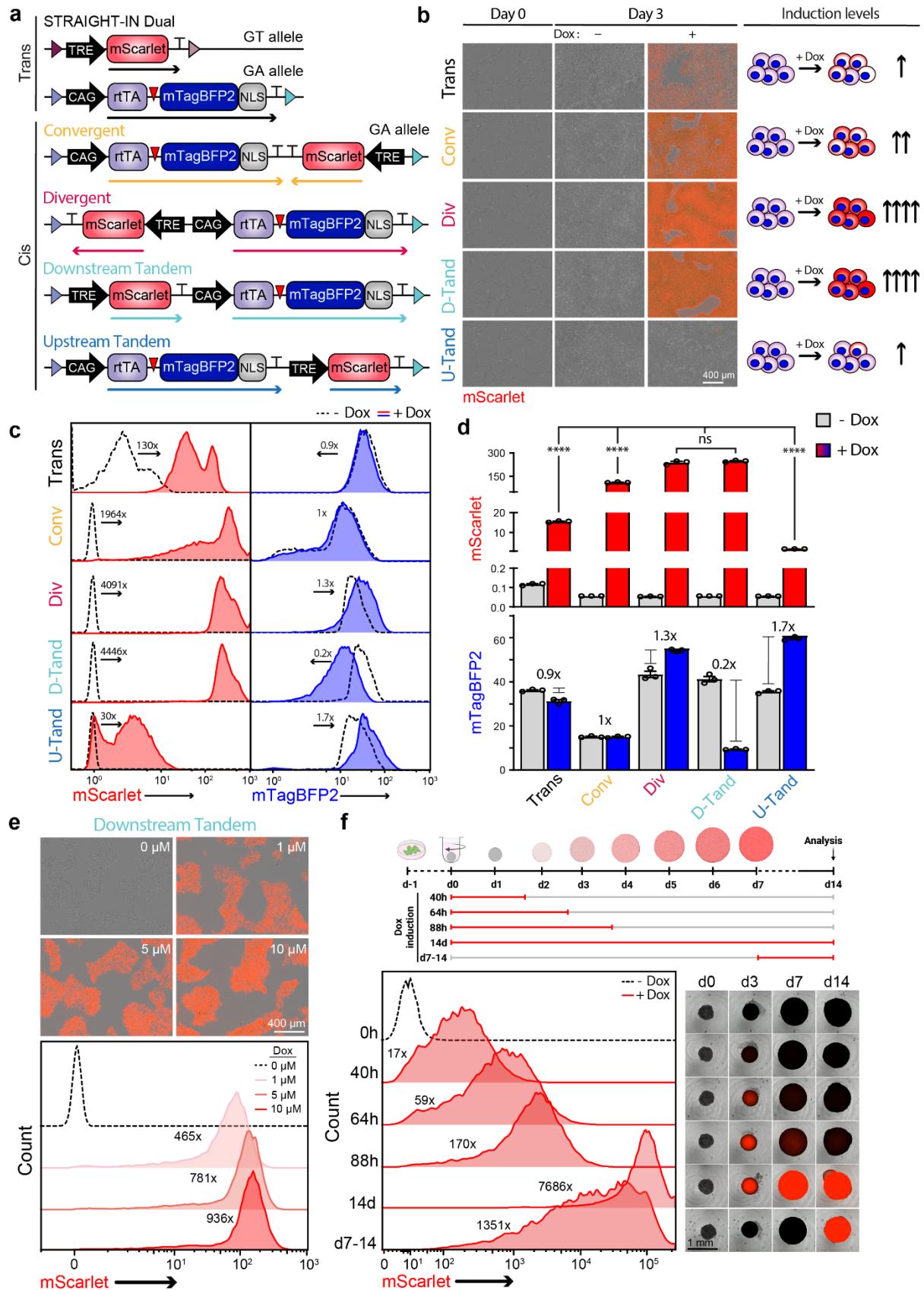
27 **(j)** Representative fluorescence and phase contrast images, and flow cytometry analysis of
28 hiPSCs transfected with a GA-*EGFP* donor plasmid on days 4 and 9 of the STRAIGHT-IN rapid
29 integration and excision workflow. Dashed lines represent untransfected STRAIGHT-IN Dual
30 acceptor hiPSCs.

31 **(k)** Mean percentage of hiPSCs with indicated flanking regions excised after *Flp-2TA-BleoR*
32 modRNA transfection and zeocin selection, as determined by ddPCR. N=3 independent
33 transfections; error bars, \pm SEM.

Figure 3

1 **Figure 3. Evaluation of transgene silencing using STRAIGHT-IN**

2 **(a)** Conceptual schematic illustrating transgene silencing over time following genomic
3 integration.


4 **(b)** Schematic of the panel of 11 different promoters, each driving expression of a *mStayGold*
5 reporter integrated into the *CLYBL* locus. Donor plasmids were delivered either individually
6 or as a pooled library to identify promoter sequences supporting high, medium and low
7 transgene expression levels.

8 **(c)** Representative flow cytometry analysis (*top*), and overlaid fluorescence and phase-
9 contrast images (*bottom*) over 4 passages of mStayGold expression in hiPSCs following
10 individual promoter integration. Dashed lines indicate untransfected STRAIGHT-IN Dual
11 acceptor hiPSCs.

12 **(d)** Flow cytometry analysis of the pooled integration approach, with the bulk population
13 sorted into four mStayGold expression clusters: negative (neg), low, medium (med), and high.

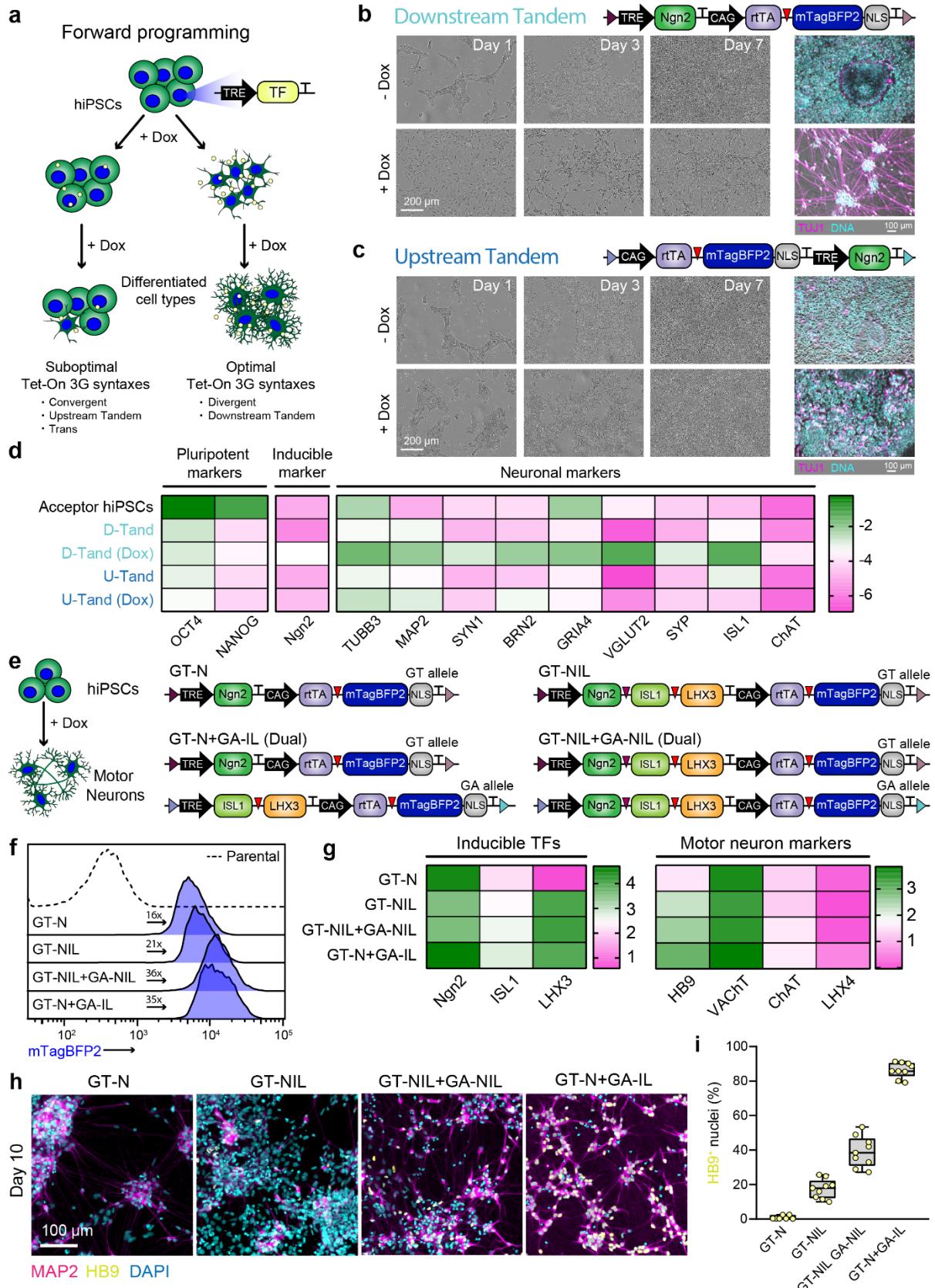
14 **(e)** Bar graph showing the distribution of sequencing reads for the indicated promoter
15 sequences mapping to each of the four expression clusters.

Figure 4

1 **Figure 4. Gene syntax modulates performance of the Tet-On 3G system in hiPSCs**

2 **(a)** Schematic overview of a trans design and the four possible all-in-one Tet-On 3G syntaxes,
3 defined by the relative orientation and order of the constitutive (*rtTA-T2A-mTagBFP2*) and
4 doxycycline-inducible (TRE-*mScarlet*) transcriptional units. Arrows indicate transcriptional
5 direction.

6 **(b)** Representative fluorescence/phase-contrast images (*left*) of hiPSCs carrying the
7 integrated constructs shown in **(a)**, cultured in the absence (-) or presence (+) of doxycycline
8 for 3 days. The schematic (*right*) summarizes relative mScarlet expression across syntaxes.

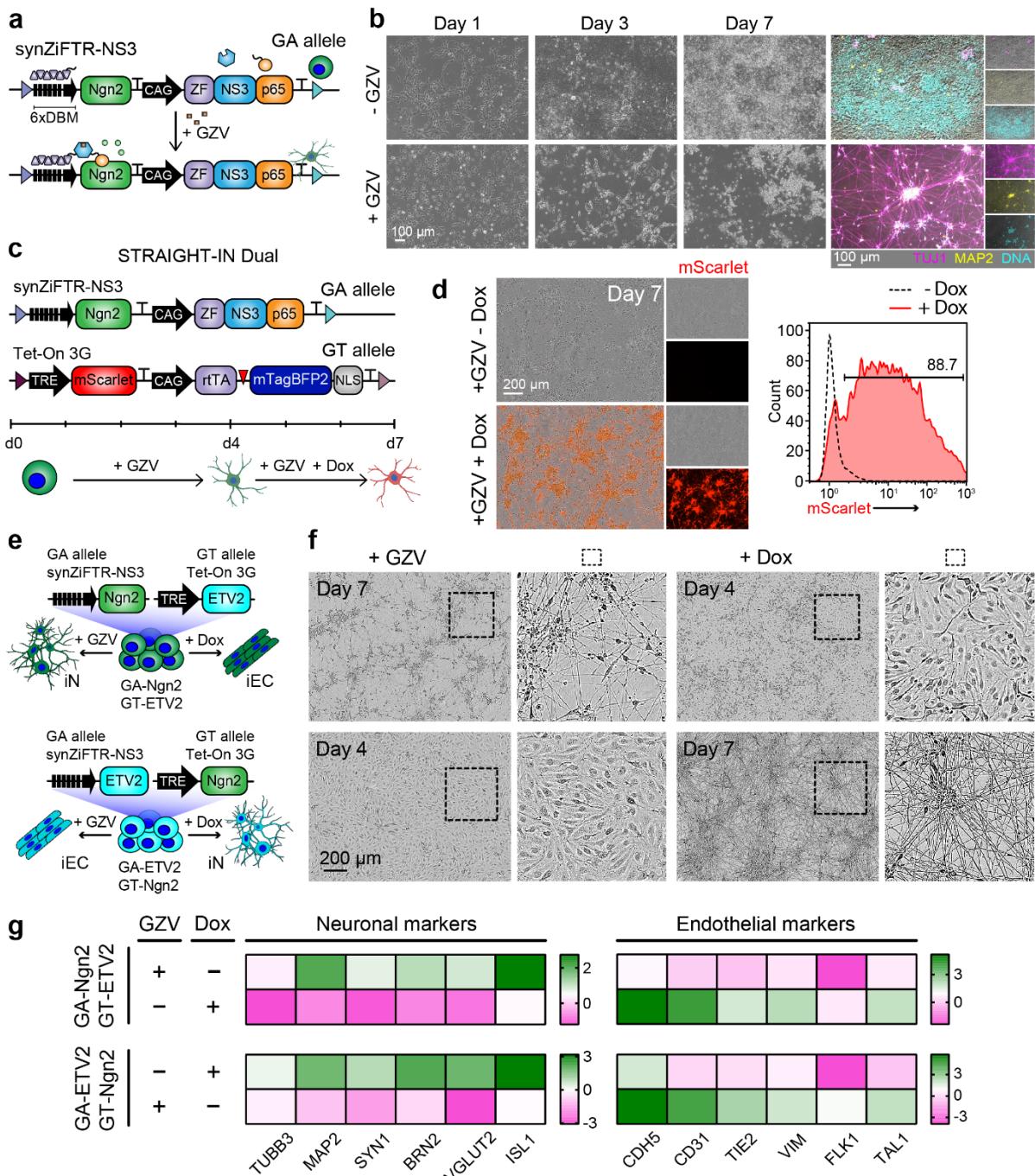

9 **(c)** Flow cytometry analysis of mScarlet and mTagBFP2 expression in hiPSCs carrying each of
10 the integrated constructs, in the absence (*dashed line*) or presence (*red/blue*) of doxycycline
11 for 3 days. Values indicate fold change which is based on geometric mean fluorescence
12 intensity (G-mean).

13 **(d)** Quantification of G-mean values for mScarlet and mTagBFP2 expression in the absence
14 (*grey*) or presence (*red/blue*) of doxycycline for 3 days. N=3 biological replicates; mean \pm SEM;
15 ns, P>0.05; ****, P≤0.0001 (one-way ANOVA).

16 **(e)** Dose–response of doxycycline-induced mScarlet expression in hiPSCs harbouring the
17 downstream tandem construct. Representative fluorescence/phase-contrast images (*top*)
18 and flow cytometry analysis with values indicating fold changes based on the G-mean
19 (*bottom*).

20 **(f)** Inducible mScarlet expression in cardioids carrying the downstream tandem construct.
21 Schematic of the induction protocols (*top*). Flow cytometry analysis showing mScarlet
22 expression in the absence (*dashed line*) or presence (*red*) of doxycycline for the indicated
23 periods (*bottom left*). Fold change values (x) are based on the G-mean values relative to
24 untreated cardioids. Representative fluorescence/phase-contrast images at different
25 timepoints for the same indicated periods of doxycycline induction (*bottom right*).

Figure 5



1 **Figure 5. Doxycycline-inducible expression of multiple transcription factors using**
2 **STRAIGHT-IN Dual**

3 **(a)** Schematic of forward programming strategy to generate specific cell types by inducible
4 overexpression of transcription factors.

5 **(b)** Schematic of a downstream tandem all-in-one doxycycline-inducible *Ngn2* cassette (*top*).
6 Phase contrast and immunofluorescence images (TUJ1, magenta; DNA, cyan) of cells at
7 indicated days treated with (+) or without (-) doxycycline (*bottom*).
8 **(c)** Schematic of an upstream tandem all-in-one doxycycline-inducible *Ngn2* cassette (*top*),
9 with corresponding images to those shown in **(b)** (*bottom*).
10 **(d)** Expression analysis of pluripotency and neuronal marker genes in untransfected hiPSCs
11 and cells containing inducible *Ngn2* cassettes from **(b)** or **(c)**, treated with (+) or without (-)
12 doxycycline for 7 days. Values are normalized to *RPL37A* and log₁₀-transformed. N=3
13 independent differentiations.
14 **(e)** Schematic of representative single- and dual-cassette configurations tested for forward
15 programming hiPSCs to iMNs.
16 **(f)** Flow cytometry analysis of mTagBFP2 expression in hiPSC lines with the indicated cassettes
17 integrated in the GT or GA alleles. Dashed line represents untransfected STRAIGHT-IN Dual
18 acceptor hiPSCs, with values indicating G-mean fold change relative to the untransfected
19 parental cell line.
20 **(g)** Gene expression analysis of inducible transcription factors and motor neuron markers in
21 cells containing the indicated single- or dual-cassette configurations and cultured with
22 doxycycline for 10 days. Values are normalized to *RPL37A* and shown relative to uninduced
23 conditions (log₁₀-transformed). N=3 independent differentiations.
24 **(h)** Immunofluorescence images (MAP2, magenta; HB9, yellow; DNA, cyan) of the indicated
25 cell lines treated with doxycycline for 10 days.
26 **(i)** Box plots showing the percentage of HB9⁺ nuclei relative to DAPI⁺ nuclei from images
27 acquired as in **(h)**.

Figure 6

1 **Figure 6. Dual-fate programming via orthogonal, inducible transcription factor expression**
2 **using STRAIGHT-IN Dual**

3 **(a)** Schematic of a downstream tandem synZiFTR-based *Ngn2* cassette integrated into the GA
4 allele, enabling GZV-inducible expression.

5 **(b)** Phase contrast and immunofluorescence images of cells at indicated time points, cultured
6 with (+) or without (-) GZV (TUJ1, magenta; MAP2, yellow; DNA, cyan).

7 **(c)** Schematic of STRAIGHT-IN Dual hiPSCs with a doxycycline-inducible *mScarlet* cassette in
8 the GT allele and the GZV-inducible *Ngn2* cassette in the GA allele, enabling sequential and
9 combinatorial induction.

10 **(d)** Representative fluorescence and phase contrast images (*left*), and flow cytometry analysis
11 (*right*) of GZV-induced iNs cultured with (*red line*) or without (*dashed line*) doxycycline.

12 **(e)** Schematic of dual-fate STRAIGHT-IN Dual lines with all-in-one downstream tandem
13 inducible *Ngn2* or *ETV2* cassettes regulated by synZiFTR (GA allele) or Tet-On 3G (GT allele)
14 systems.

15 **(f)** Representative phase contrast images of hiPSC directed into iNs or iECs in the presence of
16 either GZV or doxycycline for the indicated days.

17 **(g)** Gene expression analysis of neuronal and endothelial markers from the cells in **(f)**. Values
18 are normalized to *RPL37A* and shown relative to uninduced condition (\log_{10} -transformed).

19 N=3 independent differentiations.

1 **METHODS**

2 **hiPSC line culture**

3 All hiPSCs were maintained in StemFlex™ Medium (ThermoFisher) or mTeSR™ Plus Medium
4 (STEMCELL Technologies) on tissue culture plates coated with Laminin-521 (BioLamina or
5 STEMCELL Technologies) at 1.5 µg/cm². Cells were passaged twice weekly using either 1x
6 TrypLE Select (ThermoFisher) or Gentle Cell Dissociation Reagent (STEMCELL Technologies).

7 **Construction of Bxb1-GA LP targeting plasmid**

8 To generate the *CLYBL*-Bxb1-LP-Dual-TC plasmid (Addgene, #229776), the *CLYBL*-Bxb1-LP-v2-
9 TC plasmid (Addgene, #194327) was first digested with NheI and PmeI (both NEB). A LP
10 fragment (composed of an *FRT* site, PGK promoter, *mScarlet* reporter, *attP*-GA site, a
11 puromycin resistance gene lacking an initiation codon (**PuroR*) and a *F3* site) was PCR
12 amplified from a separate plasmid source. The *CLYBL* R-HA homology arm fragment was PCR
13 amplified from the *CLYBL*-Bxb1-LP-v2-TC plasmid. All components were amplified using
14 PrimeSTAR® Max DNA Polymerase (Takara Bio), treated with DpnI (NEB), purified using the
15 Wizard® SV Gel and PCR Clean-Up System kit (Promega) and assembled using the NEBuilder®
16 HiFi DNA Assembly Cloning kit (NEB).

17 **Generation of STRAIGHT-IN Dual hiPSC line**

18 To generate the STRAIGHT-IN Dual hiPSC line (**Supplementary Figure 15**), the GA-specific LP
19 plasmid (*CLYBL*_Bxb1-GA_LP_Dual_TC) was targeted to the second allele of the *CLYBL* locus
20 in LU99_*CLYBL*-bxv-v2 hiPSCs (LUMCi004-A-2). A total of 500 ng of the targeting plasmid and
21 500 ng each of the TALEN expression vectors pZT-C13-L1 and pZT-C13-R1 (Addgene #62196
22 and #62197)(Cerbini et al., 2015) were co-transfected using Lipofectamine™ Stem
23 Transfection Reagent (ThermoFisher), according to the manufacturer's instructions.

24 Following recovery and expansion, mScarlet⁺ cells were clonally isolated using the single-cell
25 deposition function of a BD FACSaria III (BD Bioscience). The hiPSC clones were expanded and
26 putative targeted clones (52/54, 94.5% targeting efficiency) were identified by PCR screening
27 over the 5' junction as previously described (Blanch-Asensio et al., 2022). Targeting was
28 further validated by PCR screening of the 3' junction, and by Sanger sequencing. Primer
29 sequences are listed in **Supplementary Table 1**.

30 The LU99_*CLYBL*-bxv-v3_Dual hiPSC line (STRAIGHT-IN Dual; hPSCreg: LUMCi004-A-8) was

1 assessed for: (i) pluripotency marker expression; (ii) trilineage differentiation potential; (iii)
2 mycoplasma contamination; and (iv) genomic integrity by G-banding karyotype analysis as
3 well as with the iCS-digital™ PSC 24-probes kit (Stemgenomics). For G-band karyotyping, 20
4 metaphase spreads were examined with samples of sufficient quality to detect numerical and
5 large structural abnormalities. Alkaline phosphatase staining was performed using the
6 Alkaline Phosphatase Detection Kit (Merck) according to the manufacturer's instructions.

7 **Donor plasmid assembly**

8 Donor plasmids containing fluorescent reporters were assembled with isothermal cloning
9 using the NEBuilder® HiFi DNA Assembly Cloning kit (NEB) or Golden Gate (Weber et al., 2011)
10 cloning, as previously described (Blanch-Asensio et al., 2024; Kabaria et al., 2024; Love et al.,
11 2025). Briefly, for payloads that were overexpressed using the Tet-On 3G system, the Bxb1-
12 GT_AIO-TetOn_Down-Tandem Donor plasmid (Addgene, #229783) was digested with NotI
13 (NEB), the genes of interest (GOIs) were PCR-amplified from other sources and assembled
14 into the digested donor using the NEBuilder® HiFi DNA Assembly Cloning kit. Blue-white
15 screening was performed by adding X-Gal (20 mg/mL, ThermoFisher) into the LB agar plate.
16 A similar strategy was applied for the synZiFTR donor plasmid (Bxb1-GA_AIO-GZV-
17 SynZiFTR_Down-Tandem donor; Addgene #229787). This plasmid was assembled using the
18 NEBuilder® HiFi DNA Assembly Cloning kit from DNA fragments that were PCR-amplified from
19 the pMN-334 plasmid (Addgene #195468)(H.-S. Li et al., 2022). **For the promoter panel, the**
20 **promoter sequences were PCR-amplified from the following plasmids: CMV (Addgene**
21 **#40651), SV40 (Addgene #229779), RSV (Addgene #12253), PGK (Addgene #229776), CpG-**
22 **free (Addgene #96945), shortCAG (Addgene #238347), hEF1a (Addgene #229779), CAG**
23 **(Addgene #229790), UbC (Addgene #20342), CBh (Addgene #62988) and β-actin (Addgene**
24 **#13680). The amplified promoter fragments were then cloned upstream of mStayGold in a**
25 **linearized donor vector using the NEBuilder® HiFi DNA Assembly Cloning kit or Golden Gate**
26 **cloning.**

27 ***In vitro* transcription**

28 The plasmid templates used for modRNA synthesis contained the 5'-UTR of human β-globin,
29 a Kozak sequence, the coding sequences for the associated protein products, and the 3'-UTR
30 of human β-globin. Linear templates used for *in vitro* transcription (IVT) were generated via
31 PCR using Q5 DNA Polymerase (New England Biolabs) using a forward primer (5'-

1 AGCTATAATACGACTCACTATAAGctcctggcaacgtgctg-3'), which encoded the T7 promoter
2 compatible with the CleanCap AG reagent (upper-case bases, TriLink BioTechnologies) and
3 annealed to the 5' UTR located on the plasmid template (lower-case bases) and a reverse
4 primer (5'-poly(T)₁₁₆-GCAATGAAAATAATGTTTTTATTAGGCAGAAT-3'), which encoded the
5 polyA sequence and annealed to the 3'-UTR on the plasmid template. PCR products were
6 isolated from a 1% agarose gel, excised, and purified using the Monarch PCR and DNA Cleanup
7 Kit (New England Biolabs). 200 ng of a purified product was used as a template in a 20 μ L IVT
8 reaction using the HiScribe T7 High Yield RNA Synthesis Kit (New England Biolabs), substituting
9 UTP with N1-methylpseudouridine-5'-phosphate (TriLink Biotechnologies) and co-
10 transcriptionally capping with CleanCap Reagent AG. IVT reactions were incubated at 37 °C
11 for 2-4 h, at which point reactions were diluted to 50 μ L, treated with 2 μ L DNase I
12 (ThermoFisher), and incubated at 37 °C for an additional 30 min to degrade the IVT PCR
13 template DNA. Synthesized modRNAs were column purified and eluted with 60 μ L water using
14 the 50 μ g Monarch RNA Cleanup Kit (New England Biolabs). The RNA concentration was
15 determined using a spectrophotometer and the full-length product verified on a native
16 denaturing gel. All modRNAs were stored at -80 °C.

17 **Donor plasmid integration and enrichment**

18 Unless otherwise stated, donor plasmids (300 ng per cm²) were co-transfected into the *CYBL*-
19 bxb-v3 Dual hiPSC line alongside 400 ng of either a Bxb1 expression plasmid (pCAG-NLS-HA-
20 Bxb1; Addgene #51271)(Hermann et al., 2014) or Bxb1 modRNA, using Lipofectamine™ Stem
21 Transfection Reagent.

22 Approximately 3-4 days after transfection, hiPSCs were harvested and reseeded (~5 x 10⁵ cells
23 per well) on 12 well-plates. The next day, either zeocin (15 μ g/ml, ThermoFisher) or
24 puromycin (1 μ g/ml, Invivogen) was added to the culture medium for 3 days.

25 Donor plasmid integration was confirmed via ddPCR using the *attP/attB* v2 and v3 integration
26 assays as previously described (Blanch-Asensio et al., 2024). For the STRAIGHT-IN rapid
27 protocol, either zeocin (15 μ g/ml) or puromycin (1 μ g/ml) was added to the culture medium
28 one day post-transfection and maintained for 3 days.

29 **Auxiliary element excision**

1 hiPSCs containing integrated DNA payloads were seeded at a density of 2×10^5 cells per well
2 in 24-well plates. The following day, cells were transfected using Lipofectamine™ Stem
3 Transfection Reagent with 400 ng of either StemMACS™ Cre Recombinase or StemMACS™ *Flp*
4 Recombinase modRNA (both Miltenyi Biotec).

5 For *Flp*-mediated excision using *Flp*-2TA-BleoR modRNA, 500 ng were transfected per well,
6 and selection with zeocin (15 μ g/mL) was initiated 24 h post-transfection and maintained for
7 3 days. Alternatively, TAT-*Cre* protein (1 μ M) was added to the culture medium 1 day after
8 passaging and maintained for 24 h, as previously described (Blanch-Asensio et al., 2024).

9 Once the cells were ~80% confluent (~2-3 days after transfection), the hiPSCs were passaged
10 and maintained. The hiPSCs that were not replated were collected for gDNA extraction.

11 **Genomic DNA (gDNA) extraction**

12 gDNA from hiPSCs cultured in 96 well-plates was extracted using QuickExtract™ (Lucigen).
13 Briefly, the cells were resuspended in 30 μ l of QuickExtract and incubated at 65°C for 15 min,
14 followed by 68°C for 15 min and 98°C for 10 min. gDNA from hiPSCs cultured in 24 or 12 well-
15 plates was extracted using the High Pure PCR Template Preparation Kit (Roche) or the DNeasy
16 *Blood & Tissue Kit* (QIAGEN) according to the manufacturer's instructions.

17 **Droplet digital PCR (ddPCR)**

18 ddPCR was performed and analyzed using a thermocycler, the Q200 AutoDG and QX200™
19 Droplet Digital PCR System, and QuantaSoft software (all Bio-Rad) as previously described
20 (Blanch-Asensio et al., 2024). For all reactions, ~100 ng of gDNA was digested with HindIII
21 (NEB). For copy number assays, the autosomal gene *RPP30* was used as a reference. The
22 primers and probes for the ddPCR assays are listed in **Supplementary Table 2**.

23 **DNA library preparation, bead cleanup and NGS analysis**

24 Integrated promoter sequences were PCR-amplified from 100 ng of genomic DNA using the
25 NEBNext® High-Fidelity 2X PCR Master Mix (NEB). Primer sequences and corresponding
26 annealing temperatures are listed in **Supplementary Table 3**. PCR cycling conditions were as
27 follows: initial denaturation at 98°C (30 s); 14 cycles of 98°C (10 s), annealing at the specified
28 temperature (30 s), and extension at 72°C (30 s); followed by a final extension at 72°C (2 min).

1 PCR products were purified using AMPure XP Beads (Beckman Coulter) at a 1:1 beads:sample
2 volume ratio. Samples were incubated for 10 min at room temperature to allow binding,
3 before placed on a magnetic stand for 5 min, after which the supernatant was removed. The
4 samples were washed twice with 80% ethanol for 30 s each time. After brief centrifugation,
5 excess ethanol was removed, and the beads air-dried on a magnetic stand for 10 min. The PCR
6 products were eluted in nuclease-free water by incubating for 5 min, followed by magnetic
7 separation for an additional 5 min.

8 A second PCR amplification was performed using Illumina TruSeq small RNA adapters under
9 the same thermocycling conditions, with annealing at 60°C. Final libraries were cleaned up
10 using two additional bead purifications at 1:1 and 0.9:1 beads:sample volume ratio,
11 respectively. Libraries were sequenced on an Illumina MiSeq platform using 300 bp paired-
12 end reads. Sequencing reads were aligned to a custom reference file containing all expected
13 promoter amplicons using BWA-MEM (version 0.7.17) with default parameters. Read counts
14 for each promoter were determined independently from Read 1 and Read 2, yielding highly
15 concordant results.

16 **Cardioid differentiation**

17 Cardioids were generated as previously described (Hofbauer et al., 2021) with minor
18 adaptations. Briefly, hiPSCs were harvested using 1x TrypLE Select Enzyme for 5 min at 37°C,
19 and 5 x 10⁴ cells/well were seeded in U-bottom 96-well ultra-low attachment plates
20 (PrimeSurface) in 200 µL of mBEL medium (Camposrini et al., 2021) containing 4 µM
21 CHIR99021 (Axon Medchem), 30 ng/ml FGF-2 (Miltenyi Biotec), 5 µM LY294002 (Tocris
22 Bioscience), 50 ng/ml Activin A (Miltenyi Biotec), 10 ng/ml BMP4 (R&D systems) and 1 µg/ml
23 human insulin (Gibco). This medium was also supplemented with 1x CEPT cocktail to improve
24 cell viability (Chen et al., 2021). After 40 h, the cells were refreshed with 200 µL of mBEL
25 medium containing 8 ng/ml FGF-2, 10 ng/ml BMP4, 10 µg/ml human insulin, 0.25 µM IWPL6
26 (Abmole), 5 µM XAV939 (Tocris Bioscience), 0.05 µM retinoic acid (Sigma-Aldrich). Cardioids
27 were refreshed daily with this medium until day 7, when it was replaced with mBEL medium
28 containing 8 ng/ml FGF-2, 10 ng/ml BMP4 and 10 µg/ml human insulin). From day 7, cardioids
29 were maintained in mBEL medium containing 10 µg/ml human insulin with refreshment every
30 other day. Doxycycline (1 µM, ThermoFisher) was added to the medium as specified in **Figure**
31 **4F**. On day 14, cardioids from the same conditions were pooled and a single-cell suspension

1 obtained by dissociating the cardioids with 5x TrypLE Select for 10 min at 37°C and filtering
2 the cell suspension. Data was acquired using a MacsQuant VYB (Miltenyi Biotec).

3 **Forward programming to neurons and motor neurons**

4 All hiPSC lines were dissociated into single cells with Gentle Cell Dissociation Reagent or 1x
5 TrypLE Select and plated in 24-well plates coated with Laminin 521, at a density of 2.5×10^4
6 cells per well. Forward programming toward neurons (iNs) was initiated on the day of passage
7 as described elsewhere (Pawlowski et al., 2017). Briefly, induction was performed in
8 DMEM/F12 containing L-glutamine (Corning), non-essential amino acids (100x, Gibco), N2
9 supplement (100x, Fisher Scientific), penicillin/streptomycin (100x, Fisher Scientific), and
10 doxycycline (1 μ M). After 2 days, the medium was changed to Neurobasal™ Medium (Gibco)
11 supplemented with Glutamax™ supplement (100x, Gibco), non-essential amino acids, B27
12 supplement (50x, Gibco), N2 supplement, BDNF (10 ng/ml, Peprotech), NT3 (10 ng/ml,
13 Peprotech), Penicillin/Streptomycin and doxycycline (1 μ M). Forward programming using the
14 synZiFTR inducible system was performed by adding grazoprevir (125 nM, MedChemExpress)
15 for 7 days. Additionally, 40 μ M EdU was added to the cells from day 3 for a period of 48 h.
16 Differentiation to motor neurons (iMNs) by forward programming was performed similarly,
17 but with the cells treated with doxycycline (1 μ M) for 10 days. For the GT-NIL line, 40 μ M EdU
18 was additionally required from day 3 until day 5.

19 **Forward programming to endothelial cells**

20 The hiPSCs were dissociated into single cells with 1x TrypLE Select and plated in 24-well plates
21 coated with Laminin 521, at a density of 2.5×10^4 cells per well. Induction was initiated on the
22 day of passage in human endothelial SFM medium (Invitrogen) containing human serum from
23 platelet poor plasma (100x, Sigma-Aldrich), human FGF (20 ng/ml, Miltenyi Biotec), human
24 VEGF (30 ng/ml, Miltenyi Biotec), Penicillin/Streptomycin (100x), and doxycycline (1 μ M).
25 Doxycycline was only added for the first 72 h. Forward programming using the synZiFTR
26 inducible system was performed by adding grazoprevir (500 nM) instead of doxycycline for
27 the first 3 days.

28 **RNA extraction, cDNA synthesis, and RT-qPCR**

29 RNA was extracted using the NucleoSpin RNA kit (Macherey-Nagel) and reverse transcribed
30 with the iScript cDNA synthesis kit (Bio-Rad). Quantitative PCR mixtures were prepared using

1 the iQ SYBR Green Supermix (Bio-Rad) with the samples run on a CFX Opus 384 Real-Time PCR
2 System (Bio-Rad). The results were analyzed using the delta cycle threshold method (ΔCt). CT
3 values were normalized to the housekeeping gene *RPL37A* and \log_{10} transformed. Sequences
4 of primers used in this study are listed in **Supplementary Table 4**.

5 **Flow cytometry analysis**

6 Single cell suspensions of hiPSCs were obtained by dissociating the cells with 1x TrypLE Select
7 and subsequently filtered to remove cell aggregates. Flow cytometry data was acquired using
8 either MacsQuant VYB (Miltenyi Biotec) or Attune™ NxT (ThermoFisher) flow cytometers, and
9 analyzed using FlowJo software (v. 10.2, FlowJo). An example of the gating strategy is shown
10 in **Supplementary Figure 16**. For assessment of pluripotency markers, the hiPSCs were fixed
11 and permeabilized using the FIX and PERM™ Cell Permeabilization Kit (ThermoFisher) and
12 incubated with the conjugated antibodies OCT3/4-BV421, NANOG-PE and SSEA4-FITC (all BD
13 Biosciences). For assessment of endothelial cell markers, cells were incubated with the
14 conjugated antibodies CD144-FITC (1:50, Invitrogen, 53-1449-42) and CD31-APC (1:100,
15 Invitrogen, 50-149-40), or CD144-PE (1:50, Miltenyi Biotec, 130-135-356) and CD31-FITC
16 (1:50, Miltenyi Biotec, 130-117-390).

17 **Immunocytochemistry staining**

18 For the trilineage differentiation, the hiPSCs were seeded on 96-well imaging microplates
19 (Corning) and the trilineage differentiation was performed using the STEMdiff™ Trilineage
20 differentiation kit (STEMCELL Technologies) following the manufacturer's instructions.
21 Differentiated cells were fixed using 4% paraformaldehyde (PFA, ThermoFisher) in phosphate
22 buffered saline without Ca^{2+} and Mg^{2+} (PBS $^{-/-}$) at room temperature for 15 min, and
23 permeabilized and blocked using 0.05% Triton X-100 (Merck) and 10% fetal calf serum in
24 PBS $^{+/-}$. Subsequently, the cells were incubated overnight with the conjugated primary
25 antibodies (all from Cell Signaling Technology). For endoderm these were anti-FOXA2 (1:500,
26 8186) and anti-GATA4 (1:200, 36966); for ectoderm were anti-Nestin (1:200, 33475) and anti-
27 PAX6 (1:200, 60433); and for mesoderm were anti-Brachyury/T (1:200, 81694) and anti-
28 Vimentin (1:400, 5741). The next day, the cells were incubated at room temperature for 5
29 min with DAPI (1 $\mu\text{g}/\text{mL}$, ThermoFisher). Images were acquired using an EVOS™ M7000 cell
30 imaging system (ThermoFisher) at 20x magnification.

1 The iNs were fixed in 4% PFA/PBS^{-/-} at 4°C for 1 h, followed by three PBS^{-/-} washes. Fixed
2 samples were then permeabilized and incubated with blocking solution (5% fetal bovine
3 serum, 0.5% Tween-20 in PBS^{-/-}) at 4°C overnight. Primary antibodies were diluted in 250 µL
4 blocking solution per well for a 24 well-plate and incubated with the fixed cells overnight at
5 4°C. The cells were washed three times with 1 mL PBS^{-/-}. Conjugated secondary antibodies
6 also diluted in 250 µL blocking solution with 0.1 µg/mL DAPI were incubated with samples for
7 1 h at 4°C. Samples were then washed using the same method and imaged. The following
8 primary antibody dilutions were used: goat anti-Choline acetyltransferase (ChAT) (1:500,
9 Sigma-Aldrich, AB144P), rabbit anti-microtubule-associated protein 2 (MAP2) (1:500, Cell
10 Signaling Technology, 4542), mouse anti-tubulin beta 3 (TUBB3/TUJ1) (1:500, Biolegend,
11 801201). The following conjugated secondary antibody dilutions were used: Alexa Fluor® 647
12 AffiniPure™ donkey anti-goat IgG (1:500, Jackson ImmunoResearch, 705-605-147), Alexa
13 Fluor® 594 donkey anti-rabbit IgG (1:500, ThermoFisher, A-21207), and Alexa Fluor® 647
14 donkey anti-mouse IgG (1:500, ThermoFisher, A-31571). Samples were imaged and processed
15 using a Keyence™ all-in-one fluorescence microscope BZ-X800. Briefly, a maximum-intensity
16 projection across a z-stack for each fluorescent channel was used to create the final images.
17 The iMNs were fixed in 4% PFA/PBS^{-/-} at RT for 10 min, washed once with PBS^{-/-} and incubated
18 for 5 min at RT with permeabilization solution (0.1% Triton X-100 in PBS^{-/-}). Cells were then
19 incubated with blocking solution (1% bovine serum albumin in PBS^{-/-}) at RT for 1 h. Primary
20 antibodies mouse anti-MNR2/HB9 (1:100, DSHB, 81.5C10) **and rabbit anti-MAP2 (1:250, Cell**
21 **Signaling Technology, 4542S**) were diluted in 70 µL blocking solution per well for a 96 well-
22 plate and incubated with the fixed cells overnight at 4°C. The cells were washed twice with
23 100 µL PBS^{-/-}. The conjugated secondary antibodies Alexa Fluor® 488 donkey anti-mouse IgG
24 (1:300, ThermoFisher, A-21202) **and Alexa Fluor® 647 donkey anti-rabbit IgG (1:300,**
25 **ThermoFisher, A-31573**) were diluted in 70 µL blocking solution with 0.1 µg/mL DAPI and
26 incubated with the cells for 1 h at RT. Samples were then washed twice and imaged using the
27 Dragonfly high-speed confocal microscope (ANDOR) at 40x magnification.
28 The iECs were fixed and stained as described above. The following primary antibody dilutions
29 were used: sheep anti-hCD31 (PECAM-1) (1:200, R&D Systems, AF806) and mouse anti-hZO-
30 1 (1:200, Invitrogen, 33-9100). The following conjugated secondary antibody dilutions were
31 used: Alexa Fluor® 647 donkey anti-sheep IgG (1:300, Invitrogen, A21448) and Alexa Fluor®

1 488 donkey anti-mouse IgG (1:300, Invitrogen, A21202).

2 **Live-cell imaging and calcium recordings**

3 Live imaging of fluorescent reporter gene expression was performed using one of the
4 following systems: the BZ-X810 all-in-one fluorescence microscope (Keyence) at 10x or 20x
5 magnification, the Incucyte S3 live cell analysis system (Sartorius) at 10x magnification, or the
6 Dragonfly high-speed confocal microscope at 40x magnification. For intracellular calcium
7 recordings, 20-second time-lapse videos were acquired on day 9 using the BZ-X810
8 microscope at 10x magnification with a frame rate of 10 frames per second. Calcium
9 transients were analyzed using ImageJ (NIH), and intensity traces were plotted from three
10 user-defined regions of interest.

11 **Viability imaging of iMNs**

12 Live cell imaging of iMNs was performed using Calcein AM (Invitrogen). Cells were incubated
13 with Calcein AM (5 μ M) for 30 min at 37°C, followed by a PBS^{-/-} wash step and imaged at 10x
14 magnification using the EVOS Auto2 microscope (ThermoFisher). For nuclear and viability
15 staining, iMNs were also incubated with Hoechst 33342 (5 μ g/mL, Invitrogen) and propidium
16 iodide (10 μ g/mL, Merck) for 1 h at 37°C, washed with PBS^{-/-}, and imaged using the same
17 microscope and settings.

18 **Quantification of iMNs**

19 The TWOMBLI plugin (Wershof et al., 2021) for ImageJ was adapted to quantify total dendritic
20 area, the number of branching points, and the overall dendritic length of iMNs stained with
21 Calcein AM. TWOMBLI identified dendritic extensions by mapping ridgelines revealed through
22 thresholding of Calcein AM-stained images, using predefined parameters. The total mapped
23 length was calculated as the sum of all masked fiber lengths within each image, while the
24 number of branch points was defined as the count of fiber intersections per image.

25 In parallel, a custom CellProfiler pipeline was developed to identify Hoechst-stained nuclei
26 (DNA, blue) and propidium iodide-stained nuclei (non-viable cells, red). Red nuclei were
27 masked over blue nuclei to eliminate co-localized signals, allowing for accurate quantification
28 of surviving (blue-only) nuclei. The percentage of surviving nuclei was calculated based on this
29 filtered count. **For quantification of HB9 and DAPI signals, a custom CellProfiler pipeline was**
30 **developed to enhance low-intensity images, identify nuclei, and perform cell counting. RGB**

1 images were separated into individual color channels, followed by intensity rescaling and a
2 minor Gaussian blur to reduce noise. Nuclei were segmented from the rescaled images using
3 intensity-based thresholding, enabling the separation of clustered objects. HB9⁺ nuclei (red
4 channel) were then masked over the DAPI signal (blue channel) to identify the HB9⁻
5 population. The total number of HB9⁺ nuclei was used to calculate the percentage of HB9-
6 expressing cells per image.

7 **Statistical analysis**

8 Unless otherwise stated, data is presented as mean \pm SEM. Statistical analysis was performed
9 using GraphPad Prism 8 software (v8.2.0, GraphPad). Sample sizes and statistical analyses are
10 reported in the figure legends.

1 REFERENCES

2 Anzalone, A. V., Gao, X. D., Podracky, C. J., Nelson, A. T., Koblan, L. W., Raguram, A., Levy, J. M., Mercer,
3 J. A. M., & Liu, D. R. (2022). Programmable deletion, replacement, integration and inversion of large
4 DNA sequences with twin prime editing. *Nature Biotechnology*, 40(5), 731–740.
5 <https://doi.org/10.1038/s41587-021-01133-w>

6 Balmas, E., Sozza, F., Bottini, S., Ratto, M. L., Savorè, G., Becca, S., Snijders, K. E., & Bertero, A. (2023).
7 Manipulating and studying gene function in human pluripotent stem cell models. *FEBS Letters*,
8 597(18), 2250–2287. <https://doi.org/10.1002/1873-3468.14709>

9 Bertero, A., Pawlowski, M., Ortmann, D., Snijders, K., Yangou, L., De Brito, M. C., Brown, S., Bernard,
10 W. G., Cooper, J. D., Giacomelli, E., Gambardella, L., Hannan, N. R. F., Iyer, D., Sampaziotis, F., Serrano,
11 F., Zonneveld, M. C. F., Sinha, S., Kotter, M., & Vallier, L. (2016). Optimized inducible shRNA and
12 CRISPR/Cas9 platforms for in vitro studies of human development using hPSCs. *Development*, 143(23),
13 4405–4418. <https://doi.org/10.1242/dev.138081>

14 Blanch-Asensio, A., Grandela, C., Brandão, K. O., de Korte, T., Mei, H., Ariyurek, Y., Yangou, L., Mol, M.
15 P. H., van Meer, B. J., Kloet, S. L., Mummery, C. L., & Davis, R. P. (2022). STRAIGHT-IN enables high-
16 throughput targeting of large DNA payloads in human pluripotent stem cells. *Cell Reports Methods*,
17 2(10), 100300. <https://doi.org/10.1016/j.crmeth.2022.100300>

18 Blanch-Asensio, A., Grandela, C., Mummery, C. L., & Davis, R. P. (2024). STRAIGHT-IN: a platform for
19 rapidly generating panels of genetically modified human pluripotent stem cell lines. *Nature Protocols*.
20 <https://doi.org/10.1038/s41596-024-01039-2>

21 Blanch-Asensio, A., Vaart, B. Van Der, Vinagre, M., Groen, E., Arendzen, C., Freund, C., Geijsen, N.,
22 Mummery, C. L., & Davis, R. P. (2023). Generation of AAVS1 and CLYBL STRAIGHT-IN v2 acceptor
23 human iPSC lines for integrating DNA payloads. *Stem Cell Research*, 66, 102991.
24 <https://doi.org/10.1016/j.scr.2022.102991>

25 Brandão, K. O., Brink, L. van den, Miller, D. C., Grandela, C., van Meer, B. J., Mol, M. P. H., de Korte, T.,
26 Tertoolen, L. G. J., Mummery, C. L., Sala, L., Verkerk, A. O., & Davis, R. P. (2020). Isogenic Sets of hiPSC-
27 CMs Harboring Distinct KCNH2 Mutations Differ Functionally and in Susceptibility to Drug-Induced
28 Arrhythmias. *Stem Cell Reports*, 15(5), 1127–1139. <https://doi.org/10.1016/j.stemcr.2020.10.005>

1 Brosh, R., Laurent, J. M., Ordoñez, R., Huang, E., Hogan, M. S., Hitchcock, A. M., Mitchell, L. A., Pinglay,
2 S., Cadley, J. A., Luther, R. D., Truong, D. M., Boeke, J. D., & Maurano, M. T. (2021). A versatile platform
3 for locus-scale genome rewriting and verification. *Proceedings of the National Academy of Sciences of*
4 *the United States of America*, 118(10), 1–11. <https://doi.org/10.1073/pnas.2023952118>

5 Brown, A. J., Sweeney, B., Mainwaring, D. O., & James, D. C. (2014). Synthetic Promoters for CHO Cell
6 Engineering. *Biotechnol. Bioeng.*, 111, 1638–1647. <https://doi.org/10.1002/bit.25227/abstract>

7 Cabrera, A., Edelstein, H. I., Glykofrydis, F., Love, K. S., Palacios, S., Tycko, J., Zhang, M., Lensch, S.,
8 Shields, C. E., Livingston, M., Weiss, R., Zhao, H., Haynes, K. A., Morsut, L., Chen, Y. Y., Khalil, A. S.,
9 Wong, W. W., Collins, J. J., Rosser, S. J., ... Deans, T. L. (2022). The sound of silence: Transgene silencing
10 in mammalian cell engineering. *Cell Systems*, 13(12), 950–973.
11 <https://doi.org/10.1016/j.cels.2022.11.005>

12 Campostrini, G., Meraviglia, V., Giacomelli, E., van Helden, R. W. J., Yiangou, L., Davis, R. P., Bellin, M.,
13 Orlova, V. V., & Mummery, C. L. (2021). Generation, functional analysis and applications of isogenic
14 three-dimensional self-aggregating cardiac microtissues from human pluripotent stem cells. *Nature*
15 *Protocols*, 16(April), 2213–2256. <https://doi.org/10.1038/s41596-021-00497-2>

16 Cerbini, T., Funahashi, R., Luo, Y., Liu, C., Park, K., Rao, M., Malik, N., & Zou, J. (2015). Transcription
17 activator-like effector nuclease (TALEN)-mediated CLYBL targeting enables enhanced transgene
18 expression and one-step generation of dual reporter human induced pluripotent stem cell (iPSC) and
19 neural stem cell (NSC) lines. *PLoS ONE*, 10(1), 1–18. <https://doi.org/10.1371/journal.pone.0116032>

20 Chen, Y., Tristan, C. A., Chen, L., Jovanovic, V. M., Malley, C., Chu, P. H., Ryu, S., Deng, T., Ormanoglu,
21 P., Tao, D., Fang, Y., Slamecka, J., Hong, H., LeClair, C. A., Michael, S., Austin, C. P., Simeonov, A., &
22 Singeç, I. (2021). A versatile polypharmacology platform promotes cytoprotection and viability of
23 human pluripotent and differentiated cells. *Nature Methods*, 18(5), 528–541.
24 <https://doi.org/10.1038/s41592-021-01126-2>

25 Ding, Y., Tamhankar, S., Du, F., Christopherson, T., Schlueter, N., Cohen, J. R., Shusta, E. V., & Palecek,
26 S. P. (2025). ETV2 Overexpression Promotes Efficient Differentiation of Pluripotent Stem Cells to
27 Endothelial Cells. *Biotechnology and Bioengineering*, 122(7), 1914–1928.
28 <https://doi.org/10.1002/bit.28979>

29 Dou, Y., Lin, Y., Wang, T. Y., Wang, X. Y., Jia, Y. L., & Zhao, C. P. (2021). The CAG promoter maintains
30 high-level transgene expression in HEK293 cells. *FEBS Open Bio*, 11(1), 95–104.
31 <https://doi.org/10.1002/2211-5463.13029>

1 Duportet, X., Wroblewska, L., Guye, P., Li, Y., Eyquem, J., Rieders, J., Rimchala, T., Batt, G., & Weiss, R.
2 (2014). A platform for rapid prototyping of synthetic gene networks in mammalian cells. *Nucleic Acids*
3 *Research*, 42(21), 13440–13451. <https://doi.org/10.1093/nar/gku1082>

4 Engreitz, J. M., Haines, J. E., Perez, E. M., Munson, G., Chen, J., Kane, M., McDonel, P. E., Guttman, M.,
5 & Lander, E. S. (2016). Local regulation of gene expression by lncRNA promoters, transcription and
6 splicing. *Nature*, 539(7629), 452–455. <https://doi.org/10.1038/nature20149>

7 Guichardaz, M., Bottini, S., Balmas, E., & Bertero, A. (2024). Overcoming the Silencing of Doxycycline-
8 Inducible Promoters in hiPSC-derived Cardiomyocytes. *Open Research Europe*, 4(266).
9 <https://doi.org/10.12688/openreseurope.19024.1>

10 Haenebalcke, L., Goossens, S., Dierickx, P., Bartunkova, S., D'Hont, J., Haigh, K., Hochepied, T., Wirth,
11 D., Nagy, A., & Haigh, J. J. (2013). The ROSA26-iPSC Mouse: A Conditional, Inducible, and Exchangeable
12 Resource for Studying Cellular (De)Differentiation. *Cell Reports*, 3(2), 335–341.
13 <https://doi.org/10.1016/j.celrep.2013.01.016>

14 Haideri, T., Howells, A., Jiang, Y., Yang, J., Bao, X., & Lian, X. L. (2022). Robust genome editing via
15 modRNA-based Cas9 or base editor in human pluripotent stem cells. *Cell Reports Methods*, 2(9),
16 100290. <https://doi.org/10.1016/j.crmeth.2022.100290>

17 Haideri, T., Lin, J., Bao, X., & Lian, X. L. (2024). MAGIK: A rapid and efficient method to create lineage-
18 specific reporters in human pluripotent stem cells. *Stem Cell Reports*, 19(5), 744–757.
19 <https://doi.org/10.1016/j.stemcr.2024.03.005>

20 Hermann, M., Stillhard, P., Wildner, H., Seruggia, D., Kapp, V., Sánchez-Iranzo, H., Mercader, N.,
21 Montoliu, L., Zeilhofer, H. U., & Pelczar, P. (2014). Binary recombinase systems for high-resolution
22 conditional mutagenesis. *Nucleic Acids Research*, 42(6), 3894–3907.
23 <https://doi.org/10.1093/nar/gkt1361>

24 Hew, B. E., Gupta, S., Sato, R., Waller, D. F., Stoytchev, I., Short, J. E., Sharek, L., Tran, C. T., Badran, A.
25 H., & Owens, J. B. (2024). Directed evolution of hyperactive integrases for site specific insertion of
26 transgenes. *Nucleic Acids Research*, 52(14), e64. <https://doi.org/10.1093/nar/gkae534>

27 Hofbauer, P., Jahn, S. M., Papai, N., Giesshammer, M., Deyett, A., Schmidt, C., Penc, M., Tavernini,
28 Grdseloff, N., Meledeth, C., Ginistrelli, L. C., Ctortecka, C., Šalic, Š., Novatchkova, M., & Mendjan, S.
29 (2021). Cardioids reveal self-organizing principles of human cardiogenesis. *Cell*, 184(12), 3299–
30 3317.e22. <https://doi.org/10.1016/j.cell.2021.04.034>

1 Hosur, V., Low, B. E., & Wiles, M. V. (2022). Programmable RNA-Guided Large DNA Transgenesis by
2 CRISPR/Cas9 and Site-Specific Integrase Bxb1. *Frontiers in Bioengineering and Biotechnology*, 10,
3 910151. <https://doi.org/10.3389/fbioe.2022.910151>

4 Jillette, N., Du, M., Zhu, J. J., Cardoz, P., & Cheng, A. W. (2019). Split selectable markers. *Nature
5 Communications*, 10, 4968. <https://doi.org/10.1038/s41467-019-12891-2>

6 Johnstone, C. P., & Galloway, K. E. (2022). Supercoiling-mediated feedback rapidly couples and tunes
7 transcription. *Cell Reports*, 41(3), 111492. <https://doi.org/10.1016/j.celrep.2022.111492>

8 Johnstone, C. P., Love, K. S., Kabaria, S. R., Jones, R. D., Blanch-Asensio, A., Ploessl, D. S., Peterman, E.
9 L., Lee, R., Yun, J., Oakes, C. G., Mummery, C. L., Davis, R. P., DeKosky, B. J., Zandstra, P. W., & Galloway,
10 K. E. (2025). Gene syntax defines supercoiling-mediated transcriptional feedback. *BioRxiv*. Published
11 online January 19, 2025. <https://doi.org/10.1101/2025.01.19.633652>

12 Joung, J., Ma, S., Tay, T., Geiger-Schuller, K. R., Kirchgatterer, P. C., Verdine, V. K., Guo, B., Arias-Garcia,
13 M. A., Allen, W. E., Singh, A., Kuksenko, O., Abudayyeh, O. O., Gootenberg, J. S., Fu, Z., Macrae, R. K.,
14 Buenrostro, J. D., Regev, A., & Zhang, F. (2023). A transcription factor atlas of directed differentiation.
15 *Cell*, 186(1), 209–229. <https://doi.org/10.1016/j.cell.2022.11.026>

16 Jusiak, B., Jagtap, K., Gaidukov, L., Duportet, X., Bandara, K., Chu, J., Zhang, L., Weiss, R., & Lu, T. K.
17 (2019). Comparison of Integrases Identifies Bxb1-GA Mutant as the Most Efficient Site-Specific
18 Integrase System in Mammalian Cells. *ACS Synthetic Biology*, 8(1), 16–24.
19 <https://doi.org/10.1021/acssynbio.8b00089>

20 Kabaria, S. R., Bae, Y., Ehmann, M. E., Beitz, A. M., Lende-Dorn, B. A., Peterman, E. L., Love, K. S.,
21 Ploessl, D. S., & Galloway, K. E. (2024). Programmable promoter editing for precise control of
22 transgene expression. *BioRxiv* Published Online July 14, 2024.
23 <https://doi.org/10.1101/2024.06.19.599813>

24 Karbassi, E., Padgett, R., Bertero, A., Reinecke, H., Klaiman, J. M., Yang, X., Hauschka, S. D., & Murry,
25 C. E. (2024). Targeted CRISPR activation is functional in engineered human pluripotent stem cells but
26 undergoes silencing after differentiation into cardiomyocytes and endothelium. *Cellular and
27 Molecular Life Sciences*, 81(1), 95. <https://doi.org/10.1007/s00018-023-05101-2>

28 Kelkar, A., Zhu, Y., Groth, T., Stolfa, G., Stablewski, A. B., Singhi, N., Nemeth, M., & Neelamegham, S.
29 (2020). Doxycycline-Dependent Self-Inactivation of CRISPR-Cas9 to Temporally Regulate On- and Off-
30 Target Editing. *Molecular Therapy*, 28(1), 29–41. <https://doi.org/10.1016/j.ymthe.2019.09.006>

1 Li, H.-S., Israni, D. V., Gagnon, K. A., Ann Gan, K., Raymond, M. H., Sander, J. D., Roybal, K. T., Keith
2 Joung, J., Wong, W. W., & Khalil, A. S. (2022). Multidimensional control of therapeutic human cell
3 function with synthetic gene circuits. *Science*, 378(6625), 1227–1234.
4 <https://doi.org/10.1126/science.ade0156>

5 Li, J., Li, Y., Pawlik, K. M., Napierala, J. S., & Napierala, M. (2020). A CRISPR-Cas9, Crelox, and Flp-FRT
6 Cascade Strategy for the Precise and Efficient Integration of Exogenous DNA into Cellular Genomes.
7 *CRISPR Journal*, 3(6), 470–486. <https://doi.org/10.1089/crispr.2020.0042>

8 Li, M., Zhong, A., Wu, Y., Sidharta, M., Beaury, M., Zhao, X., Studer, L., & Zhou, T. (2022). Transient
9 inhibition of p53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent
10 stem cells. *Nature Communications*, 13(1), 6354. <https://doi.org/10.1038/s41467-022-34045-7>

11 Liu, Z., Chen, O., Wall, J. B. J., Zheng, M., Zhou, Y., Wang, L., Ruth Vaseghi, H., Qian, L., & Liu, J. (2017).
12 Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. *Scientific
13 Reports*, 7(1). <https://doi.org/10.1038/s41598-017-02460-2>

14 Love, K. S., Johnstone, C. P., Peterman, E. L., Gaglione, S., Birnbaum, M. E., & Galloway, K. E. (2025).
15 Model-guided design of microRNA-based gene circuits supports precise dosage of transgenic cargoes
16 into diverse primary cells. *Cell Systems*, 16(6), 101269. <https://doi.org/10.1016/j.cels.2025.101269>

17 Low, B. E., Hosur, V., Lesbirel, S., & Wiles, M. V. (2022). Efficient targeted transgenesis of large donor
18 DNA into multiple mouse genetic backgrounds using bacteriophage Bxb1 integrase. *Scientific Reports*,
19 12, 5424. <https://doi.org/10.1038/s41598-022-09445-w>

20 Matreyek, K. A., Stephany, J. J., & Fowler, D. M. (2017). A platform for functional assessment of large
21 variant libraries in mammalian cells. *Nucleic Acids Research*, 45(11), e102.
22 <https://doi.org/10.1093/nar/gkx183>

23 Mitchell, L. A., McCulloch, L. H., Pinglay, S., Berger, H., Bosco, N., Brosh, R., Bulajic, M., Huang, E.,
24 Hogan, M. S., Martin, J. A., Mazzoni, E. O., Davoli, T., Maurano, M. T., & Boeke, J. D. (2021). De novo
25 assembly and delivery to mouse cells of a 101 kb functional human gene. *Genetics*, 218(1), iyab038.
26 <https://doi.org/10.1093/genetics/iyab038>

27 Ng, A. H. M., Khoshakhlagh, P., Rojo Arias, J. E., Pasquini, G., Wang, K., Swiersy, A., Shipman, S. L.,
28 Appleton, E., Kiaee, K., Kohman, R. E., Vernet, A., Dysart, M., Leeper, K., Saylor, W., Huang, J. Y.,
29 Graveline, A., Taipale, J., Hill, D. E., Vidal, M., ... Church, G. M. (2021). A comprehensive library of

1 human transcription factors for cell fate engineering. *Nature Biotechnology*, 39(4), 510–519.

2 <https://doi.org/10.1038/s41587-020-0742-6>

3 Niwa, H., Yamamura, K.-I., & Miyazaki, J.-I. (1991). Efficient selection for high-expression transfectants

4 with a novel eukaryotic vector. *Gene*, 108, 193–200. [https://doi.org/10.1016/0378-1119\(91\)90434-D](https://doi.org/10.1016/0378-1119(91)90434-D)

5 O'Connell, R. W., Rai, K., Piepergerdes, T. C., Samra, K. D., Wilson, J. A., Lin, S., Zhang, T. H., Ramos, E.

6 M., Sun, A., Kille, B., Curry, K. D., Rocks, J. W., Treangen, T. J., Mehta, P., & Bashor, C. J. (2023). Ultra-

7 high throughput mapping of genetic design space. *BioRxiv*. Published Online March 17, 2023.

8 <https://doi.org/10.1101/2023.03.16.532704>

9 Otomo, J., Woltjen, K., & Sakurai, H. (2023). Uniform transgene activation in Tet-On systems depends

10 on sustained rtTA expression. *IScience*, 26(10), 107685. <https://doi.org/10.1016/j.isci.2023.107685>

11 Pandey, S., Gao, X. D., Krasnow, N. A., McElroy, A., Tao, Y. A., Duby, J. E., Steinbeck, B. J., McCreary, J.,

12 Pierce, S. E., Tolar, J., Meissner, T. B., Chaikof, E. L., Osborn, M. J., & Liu, D. R. (2025). Efficient site-

13 specific integration of large genes in mammalian cells via continuously evolved recombinases and

14 prime editing. *Nature Biomedical Engineering*, 9, 22-39. <https://doi.org/10.1038/s41551-024-01227-1>

16 Patel, H. P., Coppola, S., Pomp, W., Aiello, U., Brouwer, I., Libri, D., & Lenstra, T. L. (2023). DNA

17 supercoiling restricts the transcriptional bursting of neighboring eukaryotic genes. *Molecular Cell*,

18 83(10), 1573-1587.e8. <https://doi.org/10.1016/j.molcel.2023.04.015>

19 Pawlowski, M., Ortmann, D., Bertero, A., Tavares, J. M., Pedersen, R. A., Vallier, L., & Kotter, M. R. N.

20 (2017). Inducible and Deterministic Forward Programming of Human Pluripotent Stem Cells into

21 Neurons, Skeletal Myocytes, and Oligodendrocytes. *Stem Cell Reports*, 8(4), 803–812.

22 <https://doi.org/10.1016/j.stemcr.2017.02.016>

23 Peterman, E. L., Ploessl, D. S., & Galloway, K. E. (2024). Accelerating Diverse Cell-Based Therapies

24 Through Scalable Design. *Annual Review of Chemical and Biomolecular Engineering*, 15, 267–292.

25 <https://doi.org/10.1146/annurev-chembioeng>

26 Pinglay, S., Bulajić, M., Rahe, D. P., Huang, E., Brosh, R., Mamrak, N. E., King, B. R., German, S., Cadley,

27 J. A., Rieber, L., Easo, N., Lionnet, T., Mahony, S., Maurano, M. T., Holt, L. J., Mazzoni, E. O., & Boeke,

28 J. D. (2022). Synthetic regulatory reconstitution reveals principles of mammalian Hox cluster

29 regulation. *Science*, 377(6601), eabk2820. <https://doi.org/10.1126/science.abk2820>

1 Randolph, L. N., Bao, X., Zhou, C., & Lian, X. (2017). An all-in-one, Tet-On 3G inducible PiggyBac system
2 for human pluripotent stem cells and derivatives. *Scientific Reports*, 7(1), 1549.
3 <https://doi.org/10.1038/s41598-017-01684-6>

4 Rieck, S., Sharma, K., Altringer, C., Hesse, M., Triantafyllou, C., Zhang, Y., Busskamp, V., & Fleischmann,
5 B. K. (2024). Forward programming of human induced pluripotent stem cells via the ETS variant
6 transcription factor 2: rapid, reproducible, and cost-effective generation of highly enriched, functional
7 endothelial cells. *Cardiovascular Research*, 120(12), 1472-1482. <https://doi.org/10.1093/cvr/cvae129>

8 Roelle, S. M., Kamath, N. D., & Matreyek, K. A. (2023). Mammalian Genomic Manipulation with
9 Orthogonal Bxb1 DNA Recombinase Sites for the Functional Characterization of Protein Variants. *ACS*
10 *Synthetic Biology*, 12(11), 3352–3365. <https://doi.org/10.1021/acssynbio.3c00355>

11 Rosenstein, A. H., Sambathkumar, R., Murareanu, B. M., Dhaliwal, N. K., Sun, F., Zhao, X., Dadvar, A.,
12 Al-Attar, R., Chai, A., Gulati, N., Yin, T., Nguyen, M., Serra, D., Devina, T., Gilbert, P., Kunath, T.,
13 Laflamme, M. A., Ogawa, S., Muffat, J., ... Garton, M. (2024). FAST-STEM: A Human pluripotent stem
14 cell engineering toolkit for rapid design-build-test-learn development of human cell-based therapeutic
15 devices. *BioRxiv Published Online May 24, 2024*. <https://doi.org/10.1101/2024.05.23.595541>

16 Seczynska, M., Bloor, S., Cuesta, S. M., & Lehner, P. J. (2022). Genome surveillance by HUSH-mediated
17 silencing of intronless mobile elements. *Nature*, 601(7893), 440–445.
18 <https://doi.org/10.1038/s41586-021-04228-1>

19 Shin, S. W., Min, H., Kim, J., & Lee, J. S. (2024). A Precise and Sustainable Doxycycline-Inducible Cell
20 Line Development Platform for Reliable Mammalian Cell Engineering with Gain-of-Function
21 Mutations. *Metabolic Engineering*, 86, 12-28. <https://doi.org/10.1016/j.ymben.2024.09.004>

22 Skylar-Scott, M. A., Huang, J. Y., Lu, A., Ng, A. H. M., Duenki, T., Liu, S., Nam, L. L., Damaraju, S., Church,
23 G. M., & Lewis, J. A. (2022). Orthogonally induced differentiation of stem cells for the programmatic
24 patterning of vascularized organoids and bioprinted tissues. *Nature Biomedical Engineering*, 6(4),
25 449–462. <https://doi.org/10.1038/s41551-022-00856-8>

26 Uenaka, T., Napole, A. B., Saha, A. D., Sun, D., Singavarapu, A., Calzada, L., Chen, J., Erlebach, L.,
27 McQuade, A., Ramos, D., Rigamonti, A., Salazar, L., Samelson, A. J., Sedov, K., Welsh, N. J., Wild, K.,
28 Wu, Q., Arenas, E., Bassett, A. R., ... Wernig, M. (2025). Prevention of Transgene Silencing During
29 Human Pluripotent Stem Cell Differentiation. *BioRxiv Published Online April 11, 2025*.
30 <https://doi.org/10.1101/2025.04.07.647695>

1 Wang, N. B., Adewumi, H. O., Lende-Dorn, B. A., Beitz, A. M., O'Shea, T. M., & Galloway, K. E. (2025).
2 Compact transcription factor cassettes generate functional, engraftable motor neurons by direct
3 conversion. *Cell Systems*, 16(4), 101206. <https://doi.org/10.1016/j.cels.2025.101206>

4 Weber, E., Engler, C., Gruetzner, R., Werner, S., & Marillonnet, S. (2011). A modular cloning system for
5 standardized assembly of multigene constructs. *PLoS ONE*, 6(2), e16765.
6 <https://doi.org/10.1371/journal.pone.0016765>

7 Wershof, E., Park, D., Barry, D. J., Jenkins, R. P., Rullan, A., Wilkins, A., Schlegelmilch, K., Roxanis, I.,
8 Anderson, K. I., Bates, P. A., & Sahai, E. (2021). A FIJI macro for quantifying pattern in extracellular
9 matrix. *Life Science Alliance*, 4(3). <https://doi.org/10.26508/LSA.202000880>

10 Xu, Z., Thomas, L., Davies, B., Chalmers, R., Smith, M., & Brown, W. (2013). Accuracy and efficiency
11 define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA
12 into the human genome. *BMC Biotechnology*, 13, 1–17. <https://doi.org/10.1186/1472-6750-13-87>

13 Yanagi, T., Phen, S. F., Ayala, J., Aydin, D. E., Jaramillo, S., & Truong, D. M. (2025). Termination
14 sequence between an inducible promoter and ubiquitous chromatin opening element (UCOE) reduces
15 gene expression leakage and silencing. *Journal of Biological Engineering*, 19(1).
16 <https://doi.org/10.1186/s13036-025-00499-8>

17 Yarnall, M. T. N., Ioannidi, E. I., Schmitt-Ulms, C., Krajeski, R. N., Lim, J., Villiger, L., Zhou, W., Jiang, K.,
18 Garushyants, S. K., Roberts, N., Zhang, L., Vakulskas, C. A., Walker, J. A., Kadina, A. P., Zepeda, A. E.,
19 Holden, K., Ma, H., Xie, J., Gao, G., ... Gootenberg, J. S. (2023). Drag-and-drop genome insertion of
20 large sequences without double-strand DNA cleavage using CRISPR-directed integrases. *Nature
21 Biotechnology*, 41, 500–512. <https://doi.org/10.1038/s41587-022-01527-4>

22 Zhang, H., Lesnov, G. D., Subach, O. M., Zhang, W., Kuzmicheva, T. P., Vlaskina, A. V., Samygina, V. R.,
23 Chen, L., Ye, X., Nikolaeva, A. Y., Gabdulkhakov, A., Papadaki, S., Qin, W., Borshchevskiy, V., Perfilov,
24 M. M., Gavrikov, A. S., Drobizhev, M., Mishin, A. S., Piatkevich, K. D., & Subach, F. V. (2024). Bright and
25 stable monomeric green fluorescent protein derived from StayGold. *Nature Methods*, 21(4), 657–665.
26 <https://doi.org/10.1038/s41592-024-02203-y>

27 Zhang, M., Yang, C., Tasan, I., & Zhao, H. (2021). Expanding the Potential of Mammalian Genome
28 Engineering via Targeted DNA Integration. *ACS Synthetic Biology*, 10(3), 429–446.
29 <https://doi.org/10.1021/acssynbio.0c00576>

1 Zhang, Y., Pak, C. H., Han, Y., Ahlenius, H., Zhang, Z., Chanda, S., Marro, S., Patzke, C., Acuna, C., Covy,
2 J., Xu, W., Yang, N., Danko, T., Chen, L., Wernig, M., & Südhof, T. C. (2013). Rapid single-step induction
3 of functional neurons from human pluripotent stem cells. *Neuron*, 78(5), 785–798.
4 <https://doi.org/10.1016/j.neuron.2013.05.029>