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Abstract

Resistance evolution can undermine antiviral treatment. However, targeting antivirals to shared

viral proteins could inhibit resistance evolution if susceptible viruses sensitize resistant ones during

cellular coinfection. Pocapavir, a poliovirus capsid inhibitor, employs this sociovirological interfer-

ence strategy. While susceptible viruses significantly suppress pocapavir resistance in cell culture,

a pocapavir clinical trial found widespread resistance and limited clearance time improvements in

treated participants. To reconcile these findings, we present an intra-host eco-evolutionary model

of pocapavir-treated poliovirus, which reproduces both in vitro interference and clinical resistance

evolution. In the short term, high densities of susceptible viruses sensitize resistant ones, mirroring

cell culture results. However, over multiple replication cycles, pocapavir’s high potency collapses

viral density, reducing coinfection and enabling resistance evolution, as observed clinically. Since

resistance suppression relies on coinfection, enhancing susceptible virus survival could offer thera-

peutic advantages. Counterintuitively, we demonstrate that lessening antiviral potency can increase

coinfection, limiting resistance while also maintaining low viral load. These findings suggest that

antivirals relying on viral intracellular interactions must balance immediate neutralization with

preserving future coinfection for sustained inhibition. Explicitly considering the eco-evolutionary

feedback encompassing viral density, shared phenotypes and absolute fitness provides new insights

for effective therapy design and illuminates viral evolutionary dynamics more broadly.



Introduction

Resistance evolution can undermine otherwise successful antimicrobial treatments if drug appli-

cation permits microbes carrying resistance alleles to expand and prevent population extinction.

Implicit in these dynamics is that selection for phenotypic resistance also selects genotypic resis-

tance, which permits the trait to carry forward into future generations. While such an assumption

is often valid in bacterial populations (Figure 1A-C) [1, 2], in viruses, the association between

genotype and phenotype can be more complicated [3, 4, 5]. For example, both cellular coinfec-

tion or de novo mutation during viral replication can result in distinct genotypes occupying the

same cell. These genotypes may share intracellular protein products, and as a result, a particular

genotype may be associated, fully or partially, with the protein products of a different genotype

(Figure 1D&E) [6].

This so-called “phenotypic mixing” has important implications for resistance evolution [5, 7].

First, the disassociation between genotype and phenotype can impair selection for resistant geno-

types. Consider a cell that contains both treatment-resistant and susceptible genotypes. If resistant

genotypes do not associate with resistant protein products, those genotypes may not survive drug

application, limiting their contribution to future generations (Figure 1F). Second, phenotypic mix-

ing can limit the creation of resistant phenotypes themselves. If a drug targets an oligomeric protein

product (e.g., a capsid inhibitor that targets the capsid), susceptible proteins can act in a dominant

negative fashion to interfere with the phenotypic expression of resistance. Capsid inhibitors may

neutralize chimeric capsids composed of both susceptible and resistant subunits if enough suscep-

tible subunits are available to bind the drug. If intracellular resistant genotypes are rare (such as

after de novo mutation of a resistant mutant), cells may produce few or no phenotypically-resistant

capsids. The presence of one or both of these factors could present an opportunity to treat viral

infections while muting selection for resistance.

Exploiting phenotypic mixing to suppress resistance evolution while treating viral infections par-

tially underlies the promise of the poliovirus capsid inhibitor pocapavir [6, 8]. Pocapavir strongly

inhibits poliovirus, but mutations in the genes encoding capsid subunits VP1 or VP3 disrupt drug

binding and confer resistance [9, 10]. When resistant viruses are co-cultured with susceptible ones

and treated with pocapavir, resistant genomes are packaged in chimeric resistant-susceptible cap-



sids and are neutralized by the drug [6]. As a result, co-cultured resistant viruses have significantly

reduced viral titers compared to resistant viruses grown in isolation (Figure 2A). Promisingly,

pocapavir was used to slow disease progression in vivo in poliovirus-infected mice with no de-

tected resistance evolution [6]. However, in a larger placebo-matched human clinical trial where

participants received the live attenuated polio vaccine and were treated with pocapavir, the drug

both failed to significantly reduce time to viral clearance in three of four placebo-matched groups

and resistance evolved in nearly half of pocapavir-treated participants (Figure 2B) [11]. While

a subset of pocapavir recipients did clear their virus early without apparent resistance evolution

(and pocapavir therapy has been successfully employed in certain compassionate use cases [12, 13]),

results from the clinic have been mixed, and, to our knowledge, have not led to additional trials.

More generally, this study raises doubts about the therapeutic potential of exploiting phenotypic

mixing.

To investigate these conflicting findings, we developed a dynamical model of poliovirus replica-

tion and evolution under drug treatment. Surprisingly, we find that a single model can reproduce

the seemingly contradictory in vitro cell culture and clinical results via its behavior at different

viral densities. At high viral density, susceptible viruses mask the phenotype of resistant ones

and suppress selection for resistance, as observed in cell culture. However, as successful treatment

drives the viral density down, limited intracellular viral interaction restores the standard genotype-

phenotype association. At this point, resistant and susceptible genomes associate strongly with

their own phenotype, and drugs can efficiently select for genotypic resistance. Counterintuitively,

this suggests that, in our model, permitting more susceptible viruses to survive drug application can

better suppress resistance evolution and lead to smaller viral population sizes over time. This study

provides the first theoretical framework for evaluating viral evolutionary responses to therapies tar-

geting resistance phenotypes encoded by multiple genotypes, serves as a guide for the development

of novel antimicrobials and dosing strategies, and highlights the importance of emergent dynamical

responses when exploiting virus-virus interactions in medicine.



Results

Poliovirus eco-evolutionary model

We developed a discrete-generation dynamical model that tracks poliovirus genotypes and phe-

notypes over multiple rounds of viral replication and analyzed the model using deterministic and

stochastic simulations (see Materials & Methods, and Extended Table 1 for parameters). Briefly,

each generation consists of four steps (Figure 3A):

1. Viral entry into host cells: resistant and susceptible genomes enter cells as a function of

their respective population sizes. Coinfection is more likely if viral population sizes are large

relative to the host cell population.

2. Genome replication and mutation: intracellular viral genomes replicate up to the cell’s burst

size. Mutation can interconvert resistant and susceptible genotypes.

3. Capsid formation: initial infecting genomes produce a pool of shared capsid subunits. For

mixed infections, capsids are formed by randomly drawing 60 subunits from this pool and

can be composed of both resistant and susceptible subunits.

4. Capsid packaging : newly replicated viral genomes are packaged into assembled capsids in

proportion to their intracellular abundances.

Viruses then exit cells and pocapavir can bind and neutralize free virions according to their

capsid phenotype. We parametrized viral neutralization rates based on the reduction in viral

titers measured experimentally in pocapavir-treated populations of mixed resistant and susceptible

cultures (see Materials & Methods—Parameter inference). Capsids composed solely of resistant

subunits survive pocapavir application with probability 1, while those composed of fully susceptible

subunits survive with probability 4×10−4 (Figure 3B). Our model recapitulates the observations

in Tanner et al. [6] that titers of resistant viruses (specifically, viral genomes encoding resistant

subunits) decrease when co-infected alongside susceptible viruses when treated with pocapavir

(Figure 3C&D).



Resistance suppression is dependent on susceptible virus density

We first assessed the conditions under which pocapavir resistance evolution is suppressed during

a single round of replication with pocapavir treatment. Specifically, we measured the change in

resistance frequency as a function of the total multiplicity of infection (MOI—viral density, defined

as the ratio of the total number of viruses to the total number of infectable host cells). We initialized

simulations with the resistant genotype frequency set at fRes = 10−4, consistent with levels observed

in untreated poliovirus populations [6, 10].

At high MOIs (MOI ≈ 102), genotypic resistance increased in frequency by less than 10−3 after

a single round of replication in the presence of pocapavir (Figure 4A). These results are consis-

tent with Tanner et al. [6] and the logic underlying phenotypic mixing. However, this resistance

suppression did not extend to populations that were initialized at lower MOIs. At MOI ≤ 1, the

resistant genotype frequency increased to more than 12% of the population in a single round of

replication. These results can be understood in the context of the MOI controlling the degree of

coinfection, and subsequently the strength of the genotype-phenotype association. At high MOIs,

coinfection is ubiquitous and rare genotypes are not often associated with their capsid phenotype

(Figure 4B, Extended Figure 1). However, at low MOIs, coinfection is rare and genotypes and

phenotypes associate directly (Figure 4C), allowing resistant genotypes to directly benefit from

their encoded phenotype without interference.

We next considered that infections are dynamic processes, and the degree of viral suppression or

proliferation in one generation may determine viral density in subsequent generations. If pocapavir

treatment drastically reduces the viral density (and consequently the total MOI), this may lead

to conditions in which resistance can emerge. We therefore performed an in silico serial passaging

experiment in which we inoculated cell populations at a high MOI (MOI = 100) with predominantly

susceptible viruses (resistant genotype frequency fRes = 1× 10−4). We allowed viruses to replicate

and be neutralized by pocapavir, and seeded the surviving viruses on fresh cell populations over

multiple generations.

Consistent with single step experiments at high MOI, the viral population decreased in abun-

dance after one round of replication in the presence of pocapavir (Figure 4D). As a result, the

surviving viral progeny infected cells at significantly reduced MOI and resistant genomes increased



in both frequency and abundance after a second and third round of passaging. Once the viral

population had recovered enough for widespread coinfection, resistant genotypes outnumbered sus-

ceptible ones over 100-fold, and susceptible subunits no longer sensitized their resistant counterparts

(Extended Figure 2). Rather, resistant viruses appeared to shield rare susceptible genomes in

a form of socially-encoded cross protection. These dynamics can be understood by tracking the

change in MOI and resistance frequency on a stepwise phase diagram, initiating simulations across

a range of initial total MOIs and resistance frequencies (Figure 4E). Initial conditions with low

resistance frequencies and sufficiently high MOI lead first to a rapid reduction in the MOI, which

then permits increases in the genotypic frequency of resistance. Note, one way to understand this

sequence is that the low viral titer output of Figure 4B is the low MOI input of Figure 4C,

enabling the spread of resistant viruses. Regardless of the initial conditions in our deterministic

model (MOI > 0, fRes ∈ [0, 1]), resistance becomes the dominant genotype over time. Despite

phenotypic mixing effectively suppressing resistance at high MOIs, rapid population contraction in

response to pocapavir ultimately undermines that suppression.

Stochastic model replicates clinical trial outcomes

While our deterministic model can explain how resistance to pocapavir may have emerged in clin-

ical trial participants despite phenotypic mixing, it cannot recapture the clinical trial observation

that a subset of pocapavir recipients clear their infections early with little to no resistance evolu-

tion (Figure 2B) [11]. To investigate the dynamics driving the clinical trial clearance times, we

implemented a stochastic version of the model in which simulated viral elements were drawn from

probability distributions at each replication step in a finite host cell population with an immune

system that responds to infection (see Materials & Methods—Immune clearance). In brief, we

modeled viral immune clearance via a non-specific, ramping innate immune response that removes

viruses irrespective of capsid phenotype, and parameterized clearance rate and host cell population

size based on the clearance dates in the clinical trial placebo group. We used this model to simulate

an in silico pocapavir clinical trial by running 93 simulations (representing 93 trial participants)

until viral extinction. The infections were initialized with one susceptible virus per host cell, and no

resistant viruses. Pocapavir was administered after 24 hours (three rounds of replication, n = 23)

or 72 hours (nine rounds of replication, n = 70), as in the clinical trial.



Our model broadly recaptures the clearance time and resistance evolution outcomes observed

in Collett et al. [11]. Specifically, viral populations exhibit a bifurcation of outcomes, in which they

clear shortly after pocapavir initiation (< 7 days post infection) with little genotypic resistance, or

clear later (≥ 7 days post infection) with widespread genotypic resistance (Figure 4F). Analysis

of the simulated population trajectories revealed that both early clearers and late clearers experi-

enced sharp population bottlenecks and low MOIs shortly after pocapavir initiation (Figure 4G,

Extended Figure 3). In late clearers, this bottleneck allowed for rapid, resistance emergence

according to the dynamics explored above, while in early clearers, this bottleneck led to stochas-

tic extinction. Repeating clinical trials with different host cell population sizes led to changes in

the relative probabilities of these two outcomes (Extended Figure 4), but not their qualitative

behavior.

Collett et al. [11] also observed that a greater proportion of participants treated at 24 hours

exhibited resistance than the 72 hour treatment group (15/23 versus 25/70, Fisher’s exact test,

p = 0.0163), which is potentially unexpected given that more resistant genomes are expected to

exist after 72 hours. Under certain starting conditions in our model, this pattern can emerge

as resistant genomes produced before ubiquitous coinfection can be more tightly linked to their

resistant phenotype counterbalancing their lesser numbers (Extended Figure 5). In sum, our

model can explain counterintuitive and divergent participant outcomes among pocapavir recipients

in Collett et al. [11].

Resistance cost, but not dominance effects, can change simulation outcomes

We tested if variations of the fitness function which either imposed a fitness cost of resistance or

altered the phenotypic dominance of resistant subunits (i.e., how many are needed to confer drug

survival), affected our results. Introducing a resistance cost slowed resistance evolution, reduced

equilibrium resistance, and increased stochastic clearance during bottlenecks (Extended Figure

6). However, this effect may not be clinically relevant, as pocapavir resistance mutations do not

appear costly in cell culture [6, 9, 10]. In contrast, varying dominance had no qualitative effect on

resistance outcomes (Extended Figure 7, Supplemental Text 1).



Reduced drug potency can enhance long-term control of resistance and lower

viral burden

The critical liability of pocapavir identified above is that effective neutralization of the virus disrupts

susceptible viruses’ abilities to interfere with resistant phenotypes via coinfection. We hypothesized

that increased survival of susceptible viruses would enhance resistance suppression by maintaining

higher rates of coinfection over time. Furthermore, since high viral loads follow resistance emer-

gence, suppressing resistance could reduce total burden despite survival of susceptible viruses. We

therefore considered the effects of hypothetically less potent drugs (or alternatively, lower doses of

pocapavir) that permitted greater degrees of survival by virions with fully or partially susceptible

capsids (Figure 5A, see Materials & Methods—Variation in drug strength).

Reducing drug potency led to smaller gains in resistant genotype frequency in a single round of

replication, in line with evolutionary expectations for weaker selective pressures (Extended Fig-

ure 8A). However, reducing drug efficacy also led to a less rapid decline in the absolute number of

susceptible genomes. For example, a drug with a 100-fold reduced efficacy reduced the MOI after

a single generation to approximately 10, whereas pocapavir reduced the MOI to substantially less

than one virus per cell (Figure 5B). As a result of this sustained moderate MOI, genotypic resis-

tance increased minimally (up to 0.16% of the population) over the next 6 passages while genotypic

resistance under pocapavir reached near 100%. Because resistance remained suppressed, the pop-

ulation did not undergo full viral rebound and the total MOI after 6 passages was approximately

20 times smaller under the 100× less potent drug than pocapavir. This suggests that reducing

antiviral potency can, under some circumstances, improve multiple aspects of viral control.

To evaluate the potential clinical implications of reducing antiviral potency, we simulated in

silico clinical trials of 100 individuals treated with reduced potency drugs (Figure 5C&D, assessed

across a greater range in Extended Figure 8B&C). We found that pocapavir had an earlier mean

clearance time compared to the less potent hypothetical drugs. Reduced drug potency weakened

population bottlenecks, preventing stochastic extinction of viral populations at small population

sizes when treated with drugs weaker than pocapavir.

In contrast, reducing drug potency had more complex effects on the frequency of resistance

and the sum total viral population size over the course of infection (Figure 5D). Reducing drug



potency by a factor of 10 resulted in near ubiquitous resistance evolution and high viral population

sizes across trial participants. This reflects that a 10× reduced potency is a strong enough selective

pressure to bring viral populations into a regime in which cells are singly infected and resistance can

evolve, but does not cause the severe bottlenecks and stochastic extinctions seen with pocapavir.

In contrast, reducing drug potency by a factor of 100× created gradual enough viral decay during

initial drug application that resistant-susceptible coinfection was durably maintained. While this

rate of viral decay was not strong enough to cause stochastic extinction during bottlenecks, the

sustained coinfection reduced the rate of resistance evolution and subsequently the total viral load

compared to pocapavir. Finally, a very strong reduction of drug potency by a factor of 1, 000×

selected for almost no resistance evolution, but also did not restrict the viral population relative

to an untreated control. This suggests that while reducing drug potency can improve multiple

important clinical metrics within the context of our model, not all reductions in drug potency will

have favorable effects and there is an optimal balance between preserving susceptible virus and

limiting total infection burden.

Discussion

In this paper, we show that a single model of poliovirus population dynamics and genetics can

reconcile seemingly divergent outcomes of pocapavir treatment in cell culture [6] and clinical trial

settings [11]. Our key insight is that therapeutic strategies that rely on interaction between viruses

must account for the demographic effects of therapeutic success. If the long-term efficacy of these

therapies depends on the durability of intracellular interactions, lowering viral density through suc-

cessful treatment can decrease coinfection rates and thus the potential for therapeutically beneficial

interactions between viral genomes and their encoded proteins.

There is growing interest in exploiting interactions between viral genomes for therapy. Most

efforts rely on defective genomes that parasitize replication-competent viruses rather than on sensi-

tization mechanisms like those we model here[14, 15, 16]. Perhaps the most promising of these such

strategies are therapeutic interfering particles (TIPs—replication-incompetent mutants that sup-

press replication-competent viruses during coinfection), because their interference can strengthen

as their population grows. Although TIPs are an active area of investigation, Pitchai et al. [17] re-



cently demonstrated an effective proof of concept for using TIPs to treat HIV over short timescales.

The demographic feedback considered in our model highlights potential challenges with such an

approach - over longer periods of time, if TIPs drive replication-competent viruses to near but not

complete eradication, TIPs may lose their ability to self-renew and themselves become eliminated.

This could ultimately lead to the unencumbered rebound of replication-competent viruses, espe-

cially in the case of a virus such as HIV that can reactivate from a latent reservoir after TIPs have

been eliminated.

If intracellular interactions are crucial for the success of these treatments, how can they be

maintained in the face of demographic collapse? In the case of TIPs, Weinberger, Schaffer, and

Arkin [15] found that weaker interference between TIPs with their wild-type counterparts favors the

long-term success of TIP therapy [15]. Indeed, all successful demonstrations of TIPs in rodents [18,

19, 20] or mosquitoes [20] allow sufficient wild-type replication to maintain therapeutic pressure in

subsequent generations. In our model of poliovirus and pocapavir, we achieve sustained intracellular

interaction through a similar therapeutic intervention—decreasing drug intensity. Modifying drug

intensity through dosage or administration frequency may allow more fine-tuned calibration of

intracellular interactions than identifying TIPs with the appropriate degree of interference. To be

clear, this is not a clinical recommendation, and many important model assumptions would need to

be rigorously evaluated in experimental settings before altering any therapeutic approach. However,

similar strategies to prolong drug efficacy by exploiting interactions between different genotypes

are also being explored in non-virology settings. For example, in drug-treated bacterial [2, 1] and

cancer [21, 22] populations, moderate-dose or pulsed strategies can prolong competition between

susceptible and resistant cells, thereby lowering overall population size over time and delaying

treatment failure.

Although these treatment strategies reckon with similar demographic dynamics presented here,

they may require different medical and public health considerations. For example, managing disease

severity and resistance evolution without eliminating the replicating population may be acceptable

in cancer treatment; however, prolonged infections could lead to more opportunities for disease

spread in the case of a transmissible pathogen. Further, while we focused on virus-virus interac-

tions causing interference in this study, there are other instances where these interactions may be

beneficial [23, 24, 25, 4, 7, 26] (Supplemental Text 2). When considering viral evolution in these



settings, models that bridge intra- and inter-host dynamics, and consider positive demographic

feedback loops, could be valuable.

A central assumption in our model is that the number of viruses per host cell is the primary

driver of coinfection rate. While this assumption is common [27, 28, 29, 4], diverse viral behaviors

can modulate coinfection. For example, the first virus infecting a cell can prevent others from

entering in a process called superinfection exclusion [30]. Conversely, en bloc transmission, in

which viruses are packaged and transmitted collectively, can enhance coinfection [31, 32]. To

our knowledge, poliovirus does not exhibit superinfection exclusion [33, 34], but growing evidence

suggests that en bloc transmission [31, 35, 32] and even shuttling of poliovirus by enteric bacteria

[36] can be common during infection. These factors could elevate poliovirus coinfection rates beyond

what we consider in our model, or change which genotypes coinfect together.

Host and environmental factors could also affect the realized frequency of coinfection and sub-

sequent evolutionary dynamics. We assume that cells are equally susceptible to poliovirus infection

and spatially well-mixed. In practice, expression of poliovirus’ primary receptor CD155 varies con-

siderably among cells [37] and at different stages of disease [38]. This could concentrate virus into

a smaller number of cells, enhancing interference, or result in certain cells that can only be infected

by few virions, potentially allowing greater expression of phenotypic resistance. The organization of

host cells in a tissue also stands to impact coinfection dynamics [39]. Limited viral dispersal could

increase coinfection and therefore interference, but it might also concentrate resistant genomes into

the tissue sections in which they initially arose, limiting the degree to which susceptible genomes

could interfere with resistant spread. This effect might also vary across organ systems. Notably,

the limited resistance evolution observed in pocapavir-treated mice may relate to increased viral

density in neuronal infections [6, 40] relative to the gut epithelial infections of the pocapavir clinical

trial in which resistance evolution was common. Investigating the importance of intra-host spatial

and environmental variation is an important future area of research.

A second potentially important form of spatial organization is intracellular. Many viruses,

including poliovirus, form membrane-associated structures that can sequester viral components

near their encoding genomes [41, 42]. This effect could limit protein diffusion and reduce phenotypic

mixing. Poliovirus capsids are tethered to their membranes during virion assembly [43], so it is

possible that some degree of intracellular segregation contributes to our observation that even very



rare resistant genomes in a cell impart partial phenotypic resistance. Despite this, Tanner et al. [6]

observed that phenotypically-distinct capsid proteins intermingle in single chimeric virions, so the

exact extent of intracellular mixing of poliovirus capsid subunits remains unknown. Nevertheless,

the organization of viruses within a cell is likely to be a key determinant of therapeutic strategies

built around intracellular resource sharing.

More broadly, our study contributes to a growing body of work framing viral coinfection through

the lens of ploidy, drawing parallels to how multiple gene copies shape phenotype in cellular or-

ganisms [44, 7, 45, 46]. In classical diploid genetics, a single biallelic locus can produce up to

three phenotypes, depending on the interactions between the alleles (i.e., the “dominance” of one

allele over the other). Although the frequency of these phenotypes can shift between generations,

the ploidy level itself remains fixed. Among viruses, the number of genomes that contribute to a

phenotype can vary between host cells and dynamically over the course of an infection [7]. The

association of several viral genomes in a host cell can lead to more complex and varied phenotypes

than is possible in a diploid model [47]. The model that we explore here has a classical analog to

incomplete dominance in a standard diploid framework, in which the addition of more resistant

proteins always partially benefits a capsid in the presence of the drug. However, recent work has

also described instances of apparent over- or underdominance in which coinfecting viruses have in-

creased or decreased fitness relative to non-mixed infections [48, 49, 50, 51]. Regardless of the exact

form of intracellular “dominance,” shared phenotypes can clearly determine viral fitness. Because

absolute fitness within a population governs viral density in the immediate future, it therefore im-

pacts the degree of viral intracellular interaction moving forward, and thus how new phenotypes are

realized. Therefore, viral “ploidy” not only changes over time, but feeds back into itself (Figure

6). Although our model centers on poliovirus and pocapavir, its core principles—density-driven

coinfection, transient genotype-phenotype associations, and demographic feedback with the envi-

ronment —are likely to be broadly relevant for designing therapies that exploit the social lives of

viruses, and viral evolutionary dynamics more broadly.



Materials & Methods

We developed both stochastic and deterministic versions of a discrete-time dynamical model of

poliovirus replication that integrates viral entry, genome replication, mutation, capsid formation,

pocapavir neutralization, and immune clearance. We describe the stochastic version here, but

the deterministic version follows the same probability distributions but accounts for each possible

outcome (i.e., integrates over the probability distribution) instead of drawing specific values. Full

details are provided in the Supplemental Materials & Methods. All simulations and analyses were

performed in R, version 4.1.0 [52]. Data visualization was performed with the ggplot2 package [53].

Viral entry

At time t, the total viral population, vtot,t, consists of rtot,t resistant and stot,t susceptible genomes,

yielding

vtot,t = rtot,t + stot,t.

We assume that viruses are equally likely to infect any of the γ host cells in the population,

and that there is no superinfection exclusion. The number of resistant and susceptible genomes

entering a cell (random variables Rinf and Sinf, respectively) are modeled by binomial distributions,

Rinf ∼ Bin

(

rtot,t,
1

γ

)

Sinf ∼ Bin

(

stot,t,
1

γ

)

. (1)

The total number of viruses that have infected a given cell, vinf, can be described by the equation:

vinf = rinf+ sinf, where rinf and sinf represent realizations of the binomial distributions described in

Equation 1. Thus, on average, vinf will equal
vtot,t
γ

, the multiplicity of infection (MOI).

We note that in the deterministic model, rtot,t and stot,t need not be integers, rendering the

binomial distribution undefined. We describe a weighted sampling scheme to circumvent this issue

in Supplemental Materials – Viral Entry.

Genome replication and mutation

For each infected cell, progeny production (Vrep) follows a Poisson distribution with a mean of the

inferred average effective burst size, β, which accounts for the number of infectious particles that



leave the cell (i.e., Vrep ∼ Pois(β) for vinf > 0). Replicated resistant genomes (Rrep) are modeled as

Rrep ∼ Bin

(

vrep,
rinf

vinf

)

.

Given that Rrep takes on some value, rrep, the number of newly replicated susceptible genomes in

a cell, srep, is given by:

srep = vrep − rrep.

Mutation between genotypes occurs per replication event at rate µ = 2 × 10−5 [9], so that

resistant and susceptible mutants (the random variables Rmut and Smut, respectively) are found by:

Rmut ∼ Bin (srep, µ) and Smut ∼ Bin (rrep, µ) .

Given that Rmut and Smut take on the values rmut and smut, respectively, post-mutation genome

counts per cell (rpool and spool) are then found as follows:

rpool = rrep − smut + rmut, spool = srep − rmut + smut.

Capsid formation

Let σ represent the number of subunits in a capsid. Each progeny genome is packaged into a capsid

comprised of 60 subunits (σ = 60). The number of resistant subunits per virion (the random

variable I ) is modeled binomially, where:

I ∼ Bin

(

σ,
rinf

vinf

)

,

assuming that both resistant and susceptible genomes contribute equally to the pool of capsid

subunits. The probability that a capsid has i subunits is:

pi = Pr(I = i | {vinf, rinf}),

where i takes on a discrete value between 0 and σ.

Genomes are assigned to capsids via a multinomial sampling process for each infected cell in



the population. The number of replicated resistant genomes that are packaged into a capsid with i

resistant subunits is the random variable Rpack,i. Each Rpack,i can be collected into a vector Rpack,

where:

Rpack ∼ Multinom(rpool, p0, . . . , pσ)

with analogous sampling for susceptible genomes. At this point, virions leave their cells and are

pooled into groups according to their capsid subunit composition and genotype.

Pocapavir neutralization

Drug neutralization is modeled by assigning each virion a survival probability, ω(i, t), that depends

on its capsid composition (number of resistant subunits i) and on the time of drug administration

tpoc. For t < tpoc, ω(i, t) = 1 (that is, before drug application, virions are not affected by the drug).

When t ≥ tpoc, survival is given by a scaled logistic function:

ω(i, t) = y0 + (yσ − y0) ·
L(i)− L(0)

L(σ)− L(0)
,

where L(i) is the standard form of the logistic function:

L(i) =
1

1 + e−k(i−i0)
.

The variables y0 and yσ represent the survival probabilities of fully susceptible and fully resistant

capsids, respectively, and k and i0 are inferred by fitting the function to cell culture survival

probabilities from Tanner et al. [6]. Under drug pressure, the survival of virions carrying resistant

genomes (the random variable Rsurv,i) is then found by binomial sampling rpack,i:

Rsurv,i ∼ Bin (rpack,i, ω(i, t)) ,

for each capsid subunit state (and similarly for susceptible virions). Rsurv,i then takes on the

specific values rsurv,i. After pocapavir neutralization, the total number of resistant genomes, rsum,

is calculated by summing across all rsurv,i:



rsum =
σ
∑

i=0

rsurv,i.

A similar sum is used to calculate total number of susceptible genomes.

Immune clearance

Following pocapavir neutralization, immune clearance is applied after a specified number of repli-

cations, timm, via the survival function d(t). For t < timm, d(t) = 1. For t ≥ timm, survival is given

by an exponential decay function,

d(t) = e(−Iinit(t−timm)),

where the initial immune sensitivity, Iinit, is drawn from a lognormal distribution,

Iinit ∼ Lognormal(ξ, τ2).

The parameters governing Iinit (timm, ξ and τ) and the host cell population size, γ, were inferred

by maximizing the log-likelihood of observing simulation clearance times, given matched placebo

clearance times from the pocapavir clinical trial reported by Collett et al. [11].

The virions that survive pocapavir treatment and carry resistant genomes are represented by

Rimm. This is found by binomially sampling rsum:

Rimm ∼ Bin(rsum, d(t)).

Note, immune clearance is considered in the stochastic model only.

Initializing the next generation

In the stochastic model, draws from Rimm and Simm represent the number of resistant and suscep-

tible genomes that can infect cells in the next generation (i.e., rtot,t+1 and stot,t+1). If the realized

values of rtot,t+1 and stot,t+1 both equal zero, the simulation is terminated.



Variation in phenotypic dominance

To explore the impact of susceptible dominance over the resistant phenotype, we changed the drug

neutralization function to simulate different relationships between resistant subunit composition

and virion survival. Using the standard logistic function as our base, we used a steepness coefficient

of k = 100 to simulate a step-like function, and varied i0 to set the inflection point, corresponding

to the minimum number of resistant subunits needed to render a virion phenotype resistant to drug.

Otherwise, simulations were initialized with the same parameters as the pocapavir simulations.

Fitness cost of resistance

We examined fitness costs of resistance through a linear fitness function in which each additional

resistant subunit in a capsid was associated with a κ decrease in virion extracellular survival

probability, regardless of drug pressure (κ ∈ [0, 0.0165], Extended Figure 6). Unless otherwise

noted, κ = 0.

Variation in drug strength

To explore the impact of drug strength on clinical outcomes, we scaled the original pocapavir fitness

function such that,

ω′(i, t) = y′0 +
(ω(i, t)− y0)(yσ − y′0)

yσ − y0
,

where y0 is the fitness of a fully susceptible capsid in the presence of pocapavir, yσ is the fitness

of a fully resistant capsid in the presence of pocapavir, and y′0 is the new survival probability of a

virion composed entirely of susceptible subunits. Otherwise, simulations were initialized with the

same parameters as the pocapavir simulations.

Parameter inference

Parameters were inferred by numerical optimization in R (version 4.1.0) [52]. The specific objective

function varied by model and is described below.



Estimation of viral burst size

We inferred the effective viral burst size by fitting model outputs to mixed cell culture data from

Tanner et al. [6], using matched initial multiplicities of infection (MOIs). We specifically compared

our simulated data to reported results of pure Mahoney strain PV with the VP3-A24V mutation

in cell culture. This mutation is one of the most commonly observed in experiments selecting

for resistance [9, 10], and was the only strain/mutation pairing for which there was a negative

control reported in Tanner et al. [6]. We evaluated model fit by minimizing the sum of squared

differences between the log-values of the observed and simulated PFU after one round of replication.

Specifically, we minimized:

∑

l

(

log(real pful)− log(sim pful)
)2

,

where l is the set of resistant MOI and susceptible MOI co-infected pairs reported by Tanner et al.

[6]. Fit values and their empirically measured comparisons are reported in Extended Table 1.

Estimation of immune clearance parameters

Parameters governing immune clearance and host cell population size were estimated by fitting

a stochastic model of infection and clearance (assuming no drug effect; i.e., survival = 1 for all

phenotypes at all time points) to placebo group clearance data from Collett et al. [11]. Since

participants were not sampled daily, Collett et al. reported the clearance date as the first sample

at which no virus was detected (Figure 2). To replicate this, we rounded each simulated clearance

time up to the next available sampling day, following the trial design.

We simulated 480 placebo recipients (10× the original sample size) and calculated the prob-

ability of clearance on each sampled day. These model-based probabilities were compared to the

empirical distribution using a multinomial log-likelihood. Specifically, after adding a small pseudo-

count to avoid log-zero issues, we computed:

logL =
∑

x

nx · log px

where nx is the number of placebo participants observed to clear on day x, and px is the model-



derived probability of clearance on day x. If a simulated participant cleared after day 43 (the final

sampling day), we could not compare this outcome to empirical data and instead returned a fixed

log-likelihood value of 1000 to penalize these parameter settings. Fit values and their empirically

measured comparisons are reported in Extended Table 1.

We note that the relevant in vivo cellular population size γ is not well-described in the literature,

and its fit value in our optimization routine is sensitive to starting conditions, suggesting that it

does not drive likelihoods. We present results with the fit value of γ = 37, 041 in the main text, as

it broadly matches clearance outcomes in the treated group, with two additional γ values resulting

from different optimization initial conditions in the Supplement (Extended Figure 4). We further

analytically characterize the dependence of the extinction probability on γ × µ in Supplemental

Materials & Methods – In vivo cellular population size and Supplemental Figure 1.

A complete account of the model equations, parameter inference, and simulation details is

provided in the Supplemental Materials & Methods.

Data Availability

All data used for the analyses are available via Zenodo at https://doi.org/10.5281/zenodo.
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Code Availability
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Figure Legends

Figure 1 legend

Genotype-phenotype associations can limit resistance evolution. In bacterial populations,

resistance-conferring genotypes exist at low frequencies prior to treatment (A). Because genotypes

are directly associated with the phenotypes they encode (B), drug application that selectively

favors the survival of resistant phenotypes drives the expansion of resistant genotypes (C). In

viruses, multiple genotypes (i.e., resistant and susceptible) may co-infect the same cell via mu-

tation or superinfection and the protein products they encode can mix intracellularly (D). The

resulting chimeric phenotypes can be associated with either genotype (E) and even those pheno-

types that are partially composed of resistant proteins may be susceptible to drug neutralization

(F). Throughout the figure, red and blue represent resistant and susceptible variants, respectively,

and yellow triangles represent antimicrobials that can bind to susceptible proteins.

Figure 2 legend

Pocapavir-treated poliovirus outcomes diverged between cell culture and clinical trial

settings. (A) In vitro experiments by Tanner et al. [6] demonstrated that coinfection of drug-

resistant (res.) and susceptible (sus.) poliovirus strains suppresses the yield of resistant virus under

pocapavir treatment (MOI—multiplicity of infection, the ratio of viruses to host cells, PFU– plaque

forming units). (B) In the clinical trial reported by Collett et al. [11], pocapavir failed to signif-

icantly reduce time to infection clearance compared to a placebo in three of four matched groups



of participants administered the live attenuated poliovirus vaccine and resistance was enriched in

the pocapavir group. Points represent the clearance dates of individual trial participants and are

colored by resistance status (resistance in red, susceptible in blue) and gray boxes indicate dates

that were not sampled during the trial (DPI—days post infection).

Figure 3 legend

Discrete-time model of poliovirus replication, mutation and survival under pocapavir

treatment. (A) We simulate intracellular poliovirus dynamics in four stages: (1) viral entry

into host cells, (2) genome replication with mutation, (3) production of capsid subunits, and (4)

assembly and packaging of progeny virions. (B) Capsid-mediated survival is modeled by culling

progeny virions according to their capsid composition. Capsid survival probability as a function

of the number of resistant subunits (line) was fit from cell culture experimental data from Tanner

et al. [6] (points). Resistant viral yield under different intensities of susceptible virus coinfection

shows a density-dependent effect in vitro [6] (C) and in silico under our model (D). Throughout

the figure, resistant variants are illustrated in red and susceptible variants are illustrated in blue.

Figure 4 legend

Resistance suppression is MOI-dependent and resistance emerges if bottlenecks do not

lead to extinction. (A) Change in resistance frequency in a single generation (∆fRes) depends

on the MOI (initial fRes = 1 × 10−4). (B) At high MOI, rare resistant genomes are encapsidated

by phenotypically susceptible capsids, muting genotypic selection. Although nearly all capsids are

phenotypically susceptible, some survive pocapavir administration (a fraction greatly exaggerated

for this cartoon), as observed in cell culture. (C) At low MOI, viruses singly infect cells, and

rare resistant genomes are encapsidated by phenotypically resistant capsids, enabling selection for

resistance. (D) Over multiple generations, pocapavir treatment transiently reduces viral population

size for both resistant and susceptible genomes but leads to viral rebound of a primarily genetically

resistant population following low population density. (E) Discrete step phase diagram shows the

joint change in genotypic resistance frequency and MOI from different initial conditions. Arrows

are shortened by 80% to increase legibility. The trajectory from part (D) is overlaid in grey. (F)

Clearance dates from the observed clinical trial and one simulated clinical trial of n = 93 viral



populations treated with pocapavir. The dashed line indicates the date of the earliest placebo

clearance. (G) Late and early clearers both experienced drops in resistant and susceptible viral

population size with diverging outcomes following the population bottleneck. Throughout the

figure, resistant variants are illustrated in red and susceptible variants are illustrated in blue.

Figure 5 legend

Drugs less potent than pocapavir can better suppress resistance and maintain lower

viral loads. (A) We modeled hypothetical drugs 10×, 100× and 1,000× weaker than pocapavir

and plot the probability of virion survival as a function of the number of resistant capsid subunits

under these drug conditions. (B) In deterministic serial passage experiments, the 100× weaker

drug maintained a lower total viral population than pocapavir (resistant genomes, red; susceptible

genomes, blue). We simulated clinical trials of individuals treated with drugs 1×, 10×, 100×, and

1,000× weaker than pocapavir. Reducing drug potency delayed mean clearance time measured

by days post infection (C) but had a non-monotonic effect on the sum viral load over the course

of the infection (D) (n = 100 for each group). In both (C) and (D), dots represent individual

simulations and are colored based on the frequency of resistance in the population over the course

of the infection (scale in (D)). Error bars show mean (black dash) ± variance. For an expanded

range of drug potencies, see Extended Figure 8 B&C.

Figure 6 legend

Targeting viral traits affected by multiple intracellular viral genomes requires an un-

derstanding of eco-evolutionary feedback. Viral density determines the degree of intracellular

interactions, which determines realized phenotypes, which determine absolute fitness, which feed

back into viral density in the next generation.
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Figure 1: Genotype-phenotype associations can limit resistance evolution. In bacterial
populations, resistance-conferring genotypes exist at low frequencies prior to treatment (A). Be-
cause genotypes are directly associated with the phenotypes they encode (B), drug application that
selectively favors the survival of resistant phenotypes drives the expansion of resistant genotypes
(C). In viruses, multiple genotypes (i.e., resistant and susceptible) may co-infect the same cell via
mutation or superinfection and the protein products they encode can mix intracellularly (D). The
resulting chimeric phenotypes can be associated with either genotype (E) and even those pheno-
types that are partially composed of resistant proteins may be susceptible to drug neutralization
(F). Throughout the figure, red and blue represent resistant and susceptible variants, respectively,
and yellow triangles represent antimicrobials that can bind to susceptible proteins.
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Figure 2: Pocapavir-treated poliovirus outcomes diverged between cell culture and clin-

ical trial settings. (A) In vitro experiments by Tanner et al. [1] demonstrated that coinfection
of drug-resistant (res.) and susceptible (sus.) poliovirus strains suppresses the yield of resistant
virus under pocapavir treatment (MOI—multiplicity of infection, the ratio of viruses to host cells,
PFU– plaque forming units). (B) In the clinical trial reported by Collett et al. [2], pocapavir failed
to significantly reduce time to infection clearance compared to a placebo in three of four matched
groups of participants administered the live attenuated poliovirus vaccine and resistance was en-
riched in the pocapavir group. Points represent the clearance dates of individual trial participants
and are colored by resistance status (resistance in red, susceptible in blue) and gray boxes indicate
dates that were not sampled during the trial (DPI—days post infection).
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Figure 3: Discrete-time model of poliovirus replication, mutation and survival under

pocapavir treatment. (A) We simulate intracellular poliovirus dynamics in four stages: (1) viral
entry into host cells, (2) genome replication with mutation, (3) production of capsid subunits, and
(4) assembly and packaging of progeny virions. (B) Capsid-mediated survival is modeled by culling
progeny virions according to their capsid composition. Capsid survival probability as a function
of the number of resistant subunits (line) was fit from cell culture experimental data from Tanner
et al. [1] (points). Resistant viral yield under different intensities of susceptible virus coinfection
shows a density-dependent effect in vitro [1] (C) and in silico under our model (D). Throughout
the figure, resistant variants are illustrated in red and susceptible variants are illustrated in blue.
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Figure 4: Resistance suppression is MOI-dependent and resistance emerges if bottle-

necks do not lead to extinction. (A) Change in resistance frequency in a single generation
(∆fRes) depends on the MOI (initial fRes = 1×10−4). (B) At high MOI, rare resistant genomes are
encapsidated by phenotypically susceptible capsids, muting genotypic selection. Although nearly
all capsids are phenotypically susceptible, some survive pocapavir administration (a fraction greatly
exaggerated for this cartoon), as observed in cell culture. (C) At low MOI, viruses singly infect
cells, and rare resistant genomes are encapsidated by phenotypically resistant capsids, enabling se-
lection for resistance. (D) Over multiple generations, pocapavir treatment transiently reduces viral
population size for both resistant and susceptible genomes but leads to viral rebound of a primarily
genetically resistant population following low population density. (E) Discrete step phase diagram
shows the joint change in genotypic resistance frequency and MOI from different initial conditions.
Arrows are shortened by 80% to increase legibility. The trajectory from part (D) is overlaid in
grey. (F) Clearance dates from the observed clinical trial and one simulated clinical trial of n = 93
viral populations treated with pocapavir. The dashed line indicates the date of the earliest placebo
clearance. (G) Late and early clearers both experienced drops in resistant and susceptible viral
population size with diverging outcomes following the population bottleneck. Throughout the fig-
ure, resistant variants are illustrated in red and susceptible variants are illustrated in blue.
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Figure 5: Drugs less potent than pocapavir can better suppress resistance and maintain

lower viral loads. (A) We modeled hypothetical drugs 10×, 100× and 1,000× weaker than
pocapavir and plot the probability of virion survival as a function of the number of resistant capsid
subunits under these drug conditions. (B) In deterministic serial passage experiments, the 100×
weaker drug maintained a lower total viral population than pocapavir (resistant genomes, red;
susceptible genomes, blue). We simulated clinical trials of 100 individuals treated with drugs 1×,
10×, 100×, and 1,000× weaker than pocapavir. Reducing drug potency delayed mean clearance
time measured by days post infection (C) but had a non-monotonic effect on the sum viral load
over the course of the infection (D). In both (C) and (D), dots represent individual simulations and
are colored based on the frequency of resistance in the population over the course of the infection
(scale in (D)). Error bars show mean (red triangle) ± variance. For an expanded range of drug
potencies, see Figure S?? B&C.
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Figure 6: Targeting viral traits affected by multiple intracellular viral genomes requires

an understanding of eco-evolutionary feedback. Viral density determines the degree of
intracellular interactions, which determines realized phenotypes, which determine absolute fitness,
which feed back into viral density in the next generation.



Extended Data Figure 1: Distribution of capsid subunit compositions following viral repli-

cation. For cellular populations infected by viruses with different frequencies of genotypic resis-
tance (fRes ∈ {0.01, 0.1, 0.5, 0.9, 0.99}, rows) and at different multiplicities of infection (MOI ∈
{0.1, 1, 10, 100}, columns), we plot the densities of virions emerging from these cells whose capsids
contain different numbers of resistant capsid subunits. Outcomes are plotted separately based on
if virions contain a susceptible genome (blue) or a resistant one (red). Simulations were run using
standard model parameters reported in Extended Data Table 1. At low MOIs (0.1 and 1), progeny
genomes are predominantly encapsidated in capsids reflecting their own genotype (i.e., homoge-
neous capsids). At higher MOIs (10 and 100), progeny genomes are more frequently encapsidated
in mixed capsids due to increased coinfection. Capsid composition is most mixed when resistant
and susceptible genotypes are present at similar frequencies.



Extended Data Figure 2: Distribution of capsid subunit compositions over time in a

serial passaging experiment. For each timestep in the serial passaging experiment shown in
Figure 4D (rows), we plot the density of capsid subunit compositions (i.e., the number of resistant
capsid subunits) for pre-neutralization virions based on whether they contain a susceptible (blue)
or resistant (red) genome. The population was initialized with fRes = 104 and an MOI of 100. At t
= 0, both resistant and susceptible genomes are packaged in highly susceptible capsids, but as the
MOI drops, resistant and susceptible genomes are increasingly packaged in capsids matching their
phenotypes. While MOI remains low and susceptible genomes become increasingly rare (t = 3), the
phenotypic variance of susceptible genomes becomes large based on whether or not they coinfect
with resistant ones. After rebound (t 4), both resistant and susceptible genomes are packaged in
highly resistant capsids.



Extended Data Figure 3: Population dynamics of individual simulations in the simulated

pocapavir clinical trial. For each simulated viral population in the pocapavir clinical trial
summarized in Figure 4F, we plot the viral density (genomes/cell) for resistant (red) and susceptible
(blue) genomes over time. We stratify populations into early clearers (top) or late clearers (bottom)
based on if the clearance time was earlier that 7 days post infection (DPI) or later than or equal to
7 DPI. As in the clinical trial, simulations were administered pocapavir beginning either 24 or 72
hours post infection, which causes the two asynchronous drops in viral density 1 and 3 days post
infection.

Extended Data Figure 4: Smaller host cell population sizes lead to more frequent early

clearance in simulated clinical trials. Immune clearance parameters were optimized starting
from three different initial host cell population sizes (15,000, 30,000, and 60,000) and converged to
values similar to their starting conditions (15,935, 37,041, and 68,992, respectively). The frequency
of early (¡ 7 days, black) versus late ( 7 days, grey) clearance was dependent on host cell population
size, where early clearance was more common in simulations with smaller host cell population sizes
(n = 93 simulations). In the main text, results are shown with the intermediate initial conditions
( = 37, 041).



Extended Data Figure 5: Intracellular protein sharing can increase the frequency of resis-

tance evolution during early treatment. Collett et al. [1] found that a greater proportion of
viral populations treated 24 hours post-infection developed resistance than those treated 72 hours
post- infection (15/23 versus 25/70; p = 0.0163, Fisher’s exact test). We examined the emergence
of this behavior using the model in this manuscript (in which genomes can be encapsidated by
any available intracellular capsid proteins), and a model without intra-cellular mixing (in which
genomes are encapsidated only by capsid proteins corresponding to their genotype). (A, B) We
compared the rates of resistance evolution in the 24 and 72 hour treatment groups across host cell
population sizes () and initial numbers of infecting susceptible viruses (n = 150 per group and
parameter set, fRes 50% defined as resistant). We identified conditions in which earlier treatment
was associated with more resistance evolution in the 24 hour treatment group than the 72 hour
treatment group (shown in green) in the intra-cellular mixing model (A) but not the non-mixing
model (B). (C-D) Example rows from (A) and (B) show the proportion of resistant infections in
the 24 hour (green) versus 72 hour (purple) treatment groups under example initial conditions.
Clinical resistance frequencies from Collett et al. [1] at the 24 hour and 72 hour treatment times
are shown as dotted and dashed lines, respectively.



Extended Data Figure 6: Fitness cost of phenotypic resistance impairs the spread of

resistance and results in more favorable clinical outcomes. (A-C) We generated compound
fitness curves that accounted for both the standard fitness cost imposed by pocapavir and a linear
fitness cost associated with greater numbers of resistant subunits per virion. The fitness of a fully
resistant capsid is noted above its respective curve. Deterministic model simulations using the
fitness functions in A-C reveal that greater costs of resistance slow the rate of resistance evolution
and reduce viral densities over 6 passages (initial MOI = 100, initial fRes = 104, D-F) and reduce
the equilibrium values of both total MOI and fRes (G-I). Clinical trials simulated with the same
immune parameters and pocapavir treatment times as in Figure 4F, but incorporating fitness costs (
[0, 0.0165]), showed earlier average clearance (J), reduced total viral loads (K), and lower resistance
frequencies (fRes; legend in K applies to point colors in J; horizontal line indicates mean value,
bars show ± standard deviation).



Extended Data Figure 7: More ”dominant” drugs do not suppress resistance better than

pocapavir. (A) We considered a hypothetical drug to which drug resistant capsid subunits only
conferred a survival advantage if all 60 subunits were resistant (i.e., susceptible subunits fully
dominate resistant ones). We compared this fully dominant drug (dashed grey) to pocapavir (solid
black). (B) In single passage simulations assessing the change in resistance frequency (δfRes) as
a function of the initial MOI, the fully dominant drug suppressed resistance marginally better
than pocapavir at high MOI (initial fRes = 104). (C) However, in a deterministic serial passage
experiment, both drugs (pocapavir, solid; the fully dominant drug, dashed) led to similar population
trajectories for susceptible and resistant viral densities over time. In (A-C), we considered that a
capsid must have 60 resistant subunits to have any increased survival probability. We next consider
how lowering that threshold to generate a resistance response (i.e., 100% survival probability when
treated with pocapavir) from 60 affects clinical outcomes. Five such thresholds are plotted in (D),
but 2000 trials were run across a range of threshold values. Threshold values do not affect clearance
date (E) or sum total viral load over the course of infection (F). Each point represents an individual
simulation with a given resistant capsid threshold value to confer resistance, and points are colored
by the frequency of genotypic resistance observed in the simulation over the course of infection.
For both (E) and (F), the black line shows a rolling mean and the gray ribbon shows the variance
around the mean.



Extended Data Figure 8: Reducing drug potency lowers selection for resistance and can

maintain lower viral loads over time. (A) In single passage simulations assessing the change in
resistance frequency (δfRes) as a function of the initial MOI, less potent drugs (10×, 100×, 1000×
weaker) led to smaller increases in the frequency of resistance than pocapavir (initial fRes = 104).
Note, clinical trial outcomes for these specific drugs are plotted in Figure 5. We also ran 2000 clinical
simulations exploring drugs with a range of potency reductions between 1× and 2147× weaker. (B)
Drugs weaker than pocapavir had later clearance times due to the reduced probability of population
bottlenecks leading to early extinction. (C) However, we observed a non-monotonic relationship
between drug weakness and the sum total viral load, in which drugs with intermediate weakness
( 100× weaker) best reduce sum total viral load. For both (B) and (C), each point represents an
individual simulation with a given resistant capsid threshold value to confer resistance, and points
are colored by the frequency of genotypic resistance observed in the simulation over the course
of infection (legend in (C)). The black line shows a rolling mean and the gray ribbon shows the
variance around the mean.



Parameter Estimates

Parameter Variable Estimated Value Empirical Comparison

Burst size β 5890 particles per cell 860 - 10, 000 particles per cell [3, 4]

P:PFU ϕ 29 : 1 Particles per PFU 36 : 1 Particles per PFU [5]

Host cell population, Clinical model γ 1× 104 cells -

Immune clearance delay timm 72 hours 72 to 125 hours [6]

Mean probability of initial immune clearance distribution (Iinit) ξ −1.37 -

Standard deviation of initial immune clearance distribution (Iinit) τ 0.48 -

Table S 1: Estimated model parameters and their associated notation, estimated values and empirical comparisons. Parameter estimates
were obtained by fitting the model to cell culture and clinical trial data. In brief, burst size and P:PFU were estimated by fitting to cell
culture data reported in Tanner et al. [1], and host cell population and immune clearance parameters were estimated by fitting to clinical
data from a placebo-treated group reported by Collett et al. [2] (see Materials & Methods—Parameter inference).


