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ABSTRACT: Separating the effects of waves and turbulence in oceanographic time series is an ongoing challenge because
surface wave motion and turbulence fluctuations can occur at overlapping frequencies. Therefore, simple bandpass filters
cannot effectively separate their dynamics. While more advanced decomposition techniques have been developed, they of-
ten entail restrictive assumptions about the wave and turbulence interactions, require synchronized measurements, and/or
only decompose the signal spectrally without a time series reconstruction. We present our new wave—turbulence decompo-
sition technique which uses dynamic mode decomposition (DMD). The technique is signal agnostic so it can be applied to
any time series, and our only assumptions are that the waves and turbulence can be separated and that the waves are the
most coherent features in the signal. Our approach requires minimal tuning, where the main user input is the wave fre-
quency range of interest. To demonstrate the method, we apply it to synthetic, field, and laboratory data and compare the
results to other modal decomposition methods. A sensitivity analysis on the synthetic data shows that the most sensitive pa-
rameter to the accuracy is the rank truncation in the DMD, and that the decomposition performs the best when the wave
energy in the signal is of equal or greater magnitude than that of the turbulence. Given the accuracy of our decomposition,
we are able to analyze the velocity autocorrelation of the separated turbulence time series with minimal wave contamina-
tion. Overall, our decomposition method outperforms the other decomposition methods and provides for robust separation
of the waves and turbulence, demonstrating wide applicability to ocean signal processing.

SIGNIFICANCE STATEMENT: When measuring physical, chemical, and biological quantities in the ocean, the
measurements are often influenced by both waves and turbulence. Isolating the individual effects of waves and turbu-
lence on those variables is important to a wide range of analyses, such as estimating how momentum, heat, and nu-
trients are mixed throughout the water column. In this work, we propose a new method to separate the wave and
turbulence components in ocean-data time series. When tested on laboratory, field, and synthetic data, our method was
able to separate the wave and turbulence components of a signal more effectively than previously proposed algorithms.
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1. Introduction The difficulties associated with wave—turbulence decompo-
sition lie in the overlapping frequency domains where waves
and turbulence exist—and that both can manifest as broad-
band signals with correlation in space and time. Even asserting
that these signals can be effectively decomposed is an as-
sumption, given the nonlinear interactions that can occur be-
tween waves and turbulence (Jiang et al. 1990; Magnaudet
and Thais 1995; Guo and Shen 2013). Over the years, numer-
ous methods have been developed to tackle this problem
(Benilov et al. 1974; Jiang et al. 1990; Thais and Magnaudet
1995; Trowbridge 1998; Williams et al. 2003; Gerbi et al.
2008; Huang and Wu 2008; Young and Webster 2018;
Bian et al. 2018). However, the various methods are usually
adapted to the specific data at hand (Gerbi et al. 2008;
Feddersen and Williams 2007; Jiang et al. 1990), involve re-
strictive assumptions (e.g., Benilov et al. 1974; Bricker and
Monismith 2007), and/or require multiple and often complex syn-
chronized measurements (Trowbridge 1998; Doron et al. 2001;
Feddersen and Williams 2007). As a result, we still lack an effec-
tive, universal technique for decomposing a general time series.
Our goal is to develop a decomposition method that can be
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edu plicity, we will consider a velocity time series as it is the most

As observational advances increase the amount of ocean data
available (Smith et al. 2019; Rosa et al. 2021), effectively interpret-
ing and using this information, both in postprocessing and real-
time analysis, is imperative for gaining insights into the dynamics
of the ocean. One ongoing challenge is the interpretation of fluctu-
ating data that are influenced by both turbulence and surface grav-
ity waves. This is common in data obtained from the ocean surface
and from the coastal ocean where both turbulence and surface
waves are expected to be strong. Separating the turbulence and
wave fluctuations in a signal is important for a variety of analyses:
e.g., isolating the turbulence fluctuations in any signal is necessary
for characterizing the turbulence Reynolds stress or for estimating
a scalar eddy covariance flux. And isolating the wave motion
is necessary, e.g., for quantifying wave energy or for wave energy
control strategies (Li et al. 2012; Perez et al. 2020). We refer to
this separation process as wave—turbulence decomposition.
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commonly decomposed signal in this context. Consider the
velocity decomposition:

u(x;, 1) = (u(x;, 1)) + i(x;, t) + u'(x;, 1), 1)

where u is the instantaneous horizontal velocity, (u) is the
time average, i is the wave orbital velocity, and ' is the tur-
bulence velocity fluctuation. In two dimensions, one result of
Reynolds averaging the Navier-Stokes equations with this de-
composition is the Reynolds shear stress:

= (aw) + (aw’) + W'w) + W'w’). 2)

h=R ]

The first term on the right-hand side is identically zero for ir-
rotational waves described by linear wave theory but can be
nonzero if the coordinate system is rotated, a common source
of corrupted Reynolds stress measurements (Trowbridge 1998).
The second and third terms are zero if there are no interactions
between the waves and turbulence. The fourth term is the turbu-
lence Reynolds shear stress, which is the only nonzero term as
long as the aforementioned assumptions regarding linear wave
theory and wave—-turbulence interaction hold.

Spectral filtering techniques (Benilov et al. 1974; Bricker
and Monismith 2007; Gerbi et al. 2008; Young and Webster
2018) are able to estimate bulk turbulence quantities like the
Reynolds stress with some accuracy, but they do not allow for
a time series reconstruction of the decomposed velocity sig-
nals because they are applied to the velocity power spectrum.
Methods based on nonlinear streamfunctions (Dean 1965;
Jiang et al. 1990; Thais and Magnaudet 1995, 1996) allow for a
time-resolved separation with fewer assumptions but only
work for specialized scenarios. More recent approaches in-
volve dimensionality reduction techniques (Huang et al. 1998,
2009; Bian et al. 2018) that make use of mode decomposition
to capture the coherent, oscillating nature of waves. However,
it is common for these methods to remove turbulence energy
in excess from the wave frequency range. In addition, these
methods often require tuning parameters that lack a clear phys-
ical intuition. Nevertheless, dimensionality reduction techniques
such as proper orthogonal decomposition (POD) (Lumley
1967), spectral POD (SPOD) (Towne et al. 2018; Schmidt and
Colonius 2020), and dynamic mode decomposition (DMD)
(Rowley et al. 2009; Schmid 2010) have become increasingly
popular in fluid dynamics research due to their adaptability
and effectiveness in extracting physically interpretable in-
formation from complex data. For example, POD has been
used in pattern recognition in chaotic flows (Albidah et al.
2021), flow control (Gordeyev and Thomas 2013), and un-
steady, high-Reynolds-number wake flows (Durgesh and
Naughton 2010), and SPOD has been employed in diverse
flows such as boundary layers (Tutkun and George 2017), mixing
layers (Braud et al. 2004), wakes (Araya et al. 2017), and jets
(Heidt and Colonius 2023), among others. Similarly, DMD is
widely used in the study of wakes (Schmid 2010), jets (Schmid
2010; Seena and Sung 2011; Schmid 2011; Semeraro et al. 2012),
instabilities (Duke et al. 2012; Grilli et al. 2012), and oscillations
(Seena and Sung 2011; Massa et al. 2012; Albidah et al. 2021).
However, these methods have yet to be applied to wave-
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turbulence decomposition, a problem for which they may be
well suited. DMD shows promising filtering characteristics for
an accurate wave-turbulence decomposition algorithm for single-
point velocity measurements because it is designed to capture the
time dynamics of coherent structures present in a signal.

Our approach is to develop a decomposition method that is as
general as possible. We seek a signal-agnostic framework capable
of handling one-dimensional time series data for a broad spec-
trum of flow parameters. Our methodology does not rely on se-
vere assumptions about wave nor turbulence dynamics, making
it adaptable to a variety of oceanic and environmental datasets.
Thus, we will explore the effectiveness of DMD in a variety of
datasets: synthetic data generated with no wave-turbulence inter-
actions, field data collected in a swell-dominated bottom bound-
ary layer, and laboratory data collected in a surface boundary
layer under wind-generated waves. The remainder of the article
has the following structure: Section 2 gives relevant background
on other wave-turbulence decomposition methods and lays out
the mathematical basis for the mode decomposition technique
used in our proposed method. Section 3 outlines the procedure
for our proposed decomposition method. In section 4, we de-
scribe the datasets used for validation, and we present the results
of our decomposition in section 5, including both a sensitivity
analysis and discussion. Finally, we summarize the study in
section 6 and make suggestions for future work.

2. Background
a. Wave—turbulence decomposition

Wave-turbulence decomposition is a longstanding challenge
that has been approached in a variety of ways. Simpler methods
like moving average and bandpass filters are often used (Foster
1997; Smyth et al. 2002; Williams et al. 2003; Zhu et al. 2016)
due to their ease of use and time-resolved output; however,
these filters do not distinguish the waves from the turbulence in
the overlapping frequency range, resulting in the elimination of
turbulent energy.

Many spectral decomposition techniques have been devel-
oped that can estimate the Reynolds stress without allowing
for a time series reconstruction; these methods often rely
on the correlation between two separate measurements. For
example, Benilov et al. (1974) proposed a linear filtration
technique that leverages coherence between the pressure and
velocity spectra. Similarly, Trowbridge (1998) and Shaw and
Trowbridge (2001) proposed a method that leverages the
coherence between two synchronized velocity measurements
with a finite spacing. With only one velocity measurement,
Bricker and Monismith (2007) proposed a method that line-
arly filters the energy spectrum by assuming an inertial sub-
range with a —5/3 slope, whereas Gerbi et al. (2008) proposed
fitting the measured spectrum to an empirical spectrum model
to separate the waves and turbulence. While these methods
are also frequently used due to their relative simplicity, they
assume no wave-turbulence interactions and do not directly
allow for a reconstructed time series (unless further approxi-
mations are made, e.g., see Cowherd et al. 2021). Additionally,
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some of the methods require multiple synchronized measure-
ments which further restricts their use.

Some researchers sought a more rigorous characterization
of the interaction of waves and turbulence by using the nonlinear
wave streamfunction (Dean 1965), which imposed fewer assump-
tions and allowed for a time reconstruction of the filtered signal.
Jiang et al. (1990) developed a method based on this work that
consists of solving, in a least squares sense, the streamfunctions
at the free surface. Similarly, the triple decomposition method
from Thais and Magnaudet (1995, 1996) also used a streamfunc-
tion to decompose the instantaneous velocity into turbulent
fluctuation, irrotational wave, and rotational wave components.
Although these methods allow the construction of separate wave
and turbulent velocity time series, they are most well suited to
laboratory conditions where dispersive effects can be neglected
(Thais and Magnaudet 1995).

More recently, data-driven dimensionality reduction techni-
ques have been proposed to separate waves and turbulence.
Ensemble empirical mode decomposition (EEMD) is the foun-
dation of the method developed by Huang and Wu (2008). It is
based on the empirical mode decomposition (EMD), which de-
composes the signal into intrinsic mode functions (IMFs) which
define a basis dictated by the data (Huang et al. 1998). While suc-
cessful at separating a time series into different components, the
method suffers because a single IMF can contain several oscilla-
tory modes, or a single mode can be split into several IMFs.
Huang and Wu (2008) proposed the EEMD to overcome this is-
sue by introducing noise in the original signal to properly orga-
nize the different scales in the time series. The limitations of this
improvement are that a large number of iterations are needed to
remove the effects of the noise and obtain an accurate decompo-
sition. In addition, ensemble averaging may affect the physical
significance of the IMFs by artificially redistributing some energy
among the IMFs. More recently, Bian et al. (2018) proposed the
synchrosqueezed wavelet transform (SWT)-based method
(Daubechies et al. 2011; Thakur et al. 2013), which decom-
poses the signal into a number of components separated in
the time—frequency plane. This method forces the data to con-
form to a basis set determined a priori and tends to underesti-
mate the turbulence in the wave frequency range. The EEMD
and SWT are modal decomposition techniques that can be ap-
plied to a single time series and allow for a time-resolved signal
reconstruction. For these reasons, we use them to compare the
outputs of our DMD-based method in section 5.

To summarize, traditional decomposition methods applied in
spectral space are limited to scenarios with no wave-turbulence
interactions, often require specific assumptions and do not di-
rectly give a time series reconstruction. To address these limita-
tions, methods based on modeling waves using streamfunctions
were developed, but they are only effective under ideal condi-
tions that are not commonly found in nature. Finally, newer
modal decomposition methods have been successful in generating
a time-resolved filtered signal, but they can have a significant
impact on the turbulence in the wave frequency range.

b. Modal decomposition of flow data

In this section, we present a summary of relevant modal
decomposition algorithms; for a more in-depth reference, see
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Schmid (2022). Modal decomposition refers to the identifica-
tion and separation of modes, or patterns in data from a
dynamical system. This type of decomposition is favorable be-
cause the general motion of a system, even nonlinear and
nonstationary systems, can be approximated by a linear super-
position of its modes. In the context of fluid dynamics, modal
decomposition refers to the identification and separation of
features in flow data. The singular value decomposition (SVD) is
the basis for the implementation of several dimensionality reduc-
tion techniques such as POD (Lumley 1967) and DMD (Schmid
2010).

1) SVD aND POD

The SVD decomposes a matrix M € R"™*" into the product
of three matrices as follows:

M = UV,

where U € R™ and Ve€R"™" are unitary matrices and
3 € R™" is a diagonal matrix with nonnegative real values.
The singular values that make up the diagonal values o) € %
are in descending order and weight the modes. In other
words, they are ordered based on how much of the total en-
ergy of the original data matrix they possess. The columns of
U (expressed as uy) and the columns of V (expressed as vy)
are known as the left singular vectors and right singular vec-
tors of M, respectively. A reduced-order approximation of the
matrix M can be achieved by truncation as

,
~ T
M ~ 1;1 TV,

where M, is a rank r approximation of M using the r = min
(m, n) most energetic singular modes.

The POD is simply an SVD applied to a specifically con-
structed M matrix. It was introduced in fluid mechanics by
Lumley (1967, 2007), Sirovich (1987a,b,c), and Aubry et al.
(1988). The matrix M is constructed as follows: given n snap-
shots of flow data in a discrete spatial grid of m points, each
consecutive snapshot is reshaped into a corresponding column
vector of a data matrix, M € R”*" where the kth column of
M, denoted as x,, contains all the spatial data of a singular
snapshot at time kAt or, similarly, each row contains a time se-
ries of the flow data at a single point in space (Scherl et al.
2020). Thus, we obtain

2) DMD

Dynamic mode decomposition (Schmid 2010) is used to
determine the temporal periodicity of coherent structures
present in flow data. DMD captures the system dynamics
in the eigenvectors (modes) and eigenvalues of an infinite-
dimensional linear operator, known as the Koopman operator.
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Wave time
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F1G. 1. Workflow of the proposed DMD wave-turbulence separation methodology.

DMD can separate system dynamics into modes that evolve
over time. Additionally, DMD is tailored to recover oscillat-
ing dynamics without any prior knowledge of the system.

To compute DMD, one begins with n time steps of data across
m dimensions. Each time step is shaped into a column vector of a
present-state data matrix X € R™*"~1 that contains time steps 1
ton — 1, and a future-state data matrix X’ € R”*"~Y that con-
tains time steps 2 to n. Thus, we have

[ |
X=[x; x, SR

X=|x, X3 X, .. X

Similar to POD, the kth column of either X or X’, denoted as
X,, contains all the data of a single time step at time kAt or,
similarly, each row contains a time series of the data for a sin-
gle dimension. The DMD algorithm attempts to find the best-
fit linear operator A : X—X’ € R"*™ that advances the current
state of the system X one time step into the future X’ as

X' ~ AX. 3)

The solution to Eq. (3) can be approximated by a matrix A
that minimizes || X’ — AX||- as

A= X'X", 4)

where ||| is the Frobenius norm and X* is the pseudoinverse
of the matrix X. Instead of directly finding the pseudoinverse,
the SVD of X yields X = UXVT where U, 3, and V are unitary
and, therefore, can be used to express the pseudoinverse as
X" = V2 'UT, which yields

A=XV3'UT, (5)

where the eigenvalues and eigenvectors (DMD modes) of A
capture the dynamics of the system. The eigenvalues of A are
complex numbers that capture the growth/decay and oscilla-
tion of its corresponding DMD modes in their real and imagi-
nary components, respectively. The DMD modes of A capture
the spatial oscillatory patterns.
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Typically, calculating A directly would be computationally
intractable. Instead, a truncation of the matrices U, ¥, and
V to retain only the first r singular values results in the
reduced-rank matrices U,, 3,, and V, and yields a best-fit
linear operator A € R™" by projecting A onto the spatial
modes U, as follows:

A=U'Au, =Uu"xV 3 (6)

The operator A has the same discrete-time eigenvalues A as
A. The eigenvectors W of A can be calculated as AW = WA
and converted to the high-dimensional eigenvalues ® of A, as
follows (Tu et al. 2014):

®=XV3 W (7)

From the leading eigenvalues A and eigenvectors @, the solu-
tion of the system can be recreated as

X = @exp(Q)b = i ¢ exp(w, )b, 8)
k=1

where = log(A)/At is the continuous-time eigenvalue of A
and b = ®\X(¢y) is the initial condition of the system.

3. Methods

Figure 1 shows a diagram summarizing the algorithm work-
flow, which is described below. For the method we propose,
the input matrix contains a one-dimensional time series of dis-
crete, pointwise flow measurements such as one velocity com-
ponent (u, v, or w), or other variables like water elevation,
scalar concentration, pressure, etc. These measurements are
collected at a sampling frequency f; over a specified duration
T, for N = Tf; total observations in the given time series. Our
approach is to use DMD to extract the most coherent features
of the signal, which we assume to be the waves, as low-rank
structures and subtract them from the raw signal to isolate the
turbulence. Although other order-reduction techniques exist,
they have limitations. For example, POD identifies correctly
the rank of the system, but since this method is based entirely
on energy (or contained variance), the modes are not tempo-
rally orthogonal. In other words, POD can hierarchically rank
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coherent features in the signal based on their energy content,
but it cannot offer insights into how these patterns evolve
over time. This is not ideal for our problem because we expect
waves to be represented as modes that have coherent oscilla-
tions in time. In contrast, DMD can separate the dynamics in
the system and can identify their temporal oscillation frequency.
This allows us to identify a specific frequency per mode that we
can associate with wave motion (Kutz et al. 2016).

In frequency space, waves can be narrow banded when com-
pared with turbulence, but their energy can still span over multi-
ple orders of magnitude in frequency. The broader the wave
frequency range, the larger the number of DMD modes will be
needed to represent the waves. However, the number of modes
that DMD can extract is limited by the rank of the input data ma-
trix. Because we want to extract a range of wave modes, we need
to increase the rank of our time series before we apply DMD.

Hence, we propose to address this problem and increase
the rank of the input data matrix by constructing a delay em-
bedding of the time series signals, i.e.,

XX Xy .. .. X,
X, X3
Xy :
H= , ©))
XN-2
Xn-2 XNn-1
(X, oo e Xy, Xy Xy

where m = N — n is the number of time lags and » is the num-
ber of columns. Note that the matrix H can have multiple
rows besides the time-delay process if one has multiple data
series (e.g., see Filho and Lopes dos Santos 2019; Fujii et al.
2019; Lydon et al. 2025). The introduction of the time delay
serves a crucial role in increasing the rank of the data by
increasing the “information” content of the matrix (Takens
1981). Physically, this increase in rank can be analogous to
Taylor’s frozen turbulence hypothesis, since the time observa-
tions of the signals are converted to spatial observations.

To filter the signal using DMD, we first need to determine
the wave frequency range, the dimension of the time-delayed
matrix H, and the rank truncation r. Visual inspection of the
signal’s power spectrum helps determine the wave frequency
range by identifying the points where the wave peak meets
the expected turbulence energy spectrum. For the construction
of the time-delayed matrix, the number of columns » needs to
be large enough to capture the lowest wave frequencies of in-
terest in each row. Based on our sensitivity analysis described
below, we find that a good rule of thumb is within the range
n/N =~ [1/3, 1/2]; however, in our data, the decomposition is
not as sensitive to this parameter as it is to the rank truncation
r, especially given a sufficiently long time series. In general, we
suspect that this parameter might require some tuning to de-
termine the appropriate dimensions of H. From this new con-
figuration H of the input data, the present and future-state
matrices X and X’ are constructed as indicated in section 2 as
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input for the DMD algorithm. To determine the rank trunca-
tion r, we perform a POD decomposition of H = UHEHVL
and compute the spectral density of each column v; € Vy
(known as time expansion coefficients) as C = |7 {vj}lz/(fsN),
where .77 {-} is the Fourier transform operator. The vector C;
contains the energy content at each frequency of the jth POD
mode of H (Towne et al. 2018). Plotting the energy content of
each singular value mode C as a function of frequency helps us
visualize which modes contain wave and/or turbulence energy.
Next, we identify and discard the highest modes that do not con-
tain wave energy. The parameter r consists of the lowest modes
that contain wave energy. This truncation allows us to remove
the higher-frequency turbulence from the data directly.

DMD is then applied to H, using the rank truncation r that
we just determined. Following the procedure outlined in the
previous section, we obtain the eigenvalues A, eigenvectors
(or modes) ®, and amplitudes b, which capture the coherent
structures in the matrix H. The jth DMD mode ¢; and its cor-
responding eigenvalue A; have a distinct oscillation frequency
f; that can be calculated as

_ Imflog(A)]

I 2mAe (10)

The modes with frequencies within the wave range are re-
ferred to as wave modes and are transformed to the time do-
main as a wave time series using Eq. (8). The wave time series
is then subtracted from the raw signal, leaving the turbulence
component of the signal.

4. Dataset descriptions

We test our method on three distinct datasets to show its
broad applicability: a synthetic dataset with known wave and
turbulence components, a field dataset collected on a swell-
dominated coastal shelf in a bottom boundary layer published
in Reimers and Fogaren (2021), and laboratory data we col-
lected in a surface boundary layer in a wind-driven wave tank.
Table 1 shows some flow and DMD parameters used in our
proposed decomposition method for each dataset. Addition-
ally, it shows the relative wave intensity i /u; ., which is
estimated as the ratio of the wave to the turbulence root-
mean-square velocity obtained from the DMD-based decom-
position. Note that we cover a range of wave intensities, and
that the field and laboratory waves are the most and least in-
tense, respectively.

a. Synthetic data

Synthetic data allow us to test our wave-turbulence decom-
position by comparing our decomposed velocities to the
ground-truth signals directly. To create the dataset, we line-
arly add a wave & and turbulence u’ velocity time series. In
this case, wave—turbulence interactions are exactly zero and
7/p = —(u'w’). The turbulence data come from a streamwise
velocity time series collected with hot-wire anemometry in a
wind tunnel sampled at 60 kHz (Castro and Vanderwel 2021).
The turbulence spectrum has a developed inertial range be-
tween 0.13 and 0.6 Hz.
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TABLE 1. Summary of dataset characteristics including some input and output parameters from the wave-turbulence decomposition.
Characteristics include length of time series N, sampling frequency f;, wave peak period T, and wave frequency range. We also report
the optimal number of rows m and columns # of the time-delayed matrix H, the optimal rank truncation r used, and the number of wave
DMD modes iyaye, including the relative rank r/n used to separate high-frequency turbulence unaffected by the wave and .../r used

to reconstruct the wave time series. The final column reports the relative wave intensity i /u

For the synthetic data, the true wave intensity is & /u;, . = 1.81.

s Using the DMD-separated velocities.

Data type N fs(Hz) T,(s) Wave range (Hz) m n r Yave rin wavelt T Uy
Synthetic 10000 10 5 0.117-0.6 3000 5911 173 104 0.029 0.601 1.91
Field 7200 8 14.29 0.031-0.175 5700 1500 48 34 0.027 0.708 8.05
Laboratory, u 18000 30 0.5 1.02-3.16 13000 5000 1000 506 0.200 0.506 0.30
Laboratory, w 18000 30 0.5 1.02-3.16 12500 6500 1300 732 0.200  0.563 0.72

The wave amplitude spectrum S(w) was generated using a
Joint North Sea Wave Project JONSWAP) model (Hasselmann
et al. 1973) as follows:

S(w) = “—gfexp[_é(&)}v“”“‘“’“’f"”“ﬁzh (1)
o 4\ow

where a = 0.01 is the intensity of the JONSWAP spectrum,
g is the acceleration of gravity, w is the angular frequency, w,
is the angular frequency of the peak of the spectrum, y = 3.3,
and the factor B = 0.07 for v = w, and B = 0.09 for w > w,.
The peak period T, was chosen to be 5 s, which results in
w, = 1.26 rad s'. At a point below the surface where x = 0
and z = —2 m, linear wave theory was used to generate the ve-
locity time series from the sum of N,, = 500 wave components:

Nw
iux, z,t) = 'ZlUi cos(kx — wt + ¢,)exp(k;z), (12)
i=
where U; = q,w; is the wave velocity amplitude vector, a; =
W is the amplitude of the spectrum at frequency w;,
k; = w?/g is the wavenumber that satisfies the deep-water lin-
ear dispersion relation, and ¢; is the phase which is randomly
sampled from the interval [0, 27).

The turbulence time series was decimated from 60 kHz to
10 Hz to match the sampling frequency of the JONSWAP
waves time series. The total detrended horizontal component
of velocity u is obtained from adding the wave and turbulence
components of horizontal velocity, defined in Eq. (1), as
u=u' + ii. The power spectrum of u, shown in Fig. 2b, pre-
serves the turbulence developed inertial range between 0.13
and 0.6 Hz and shows that the wave energy is concentrated
around the wave peak frequency at 0.2 Hz.

b. Field data

The field data consist of long waves measured in a turbulent
boundary layer above the coastal shelf. The data come from a
published dataset in Reimers and Fogaren (2021). We are an-
alyzing their acoustic Doppler velocimeter (ADV) data col-
lected during a campaign to measure oxygen eddy covariance.
The ADV captures a time series of the three perpendicular
velocity components and pressure at a single point in space.
We analyze only a time series of u velocity components from
their data. The measurements were collected from a lander
deployment along the Oregon shelf above a sandy seafloor.
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The ADV probe’s sampling volume was 30 cm above the bot-
tom of the sea floor in 80 m of water and was sampling at a
frequency of f; = 64 Hz, which was then downsampled to
fs = 8 Hz. Each deployment was broken down into 15-min
(7200 observations) long bursts, and we consider only one
burst in our study. The mean current of the analyzed burst time
series is 0.11 m s~ !, the peak wave period T, is 1428 s (see
Fig. 8b), and for reference, the significant wave height was esti-
mated to be 3.4 m. We chose this specific burst because it pre-
sented a mix of high and low amplitude waves, as shown in
Fig. 8c. For further details about the data acquisition, please con-
sult the original study (Reimers and Fogaren 2021).

c¢. Laboratory data

To contrast the bottom boundary layer field data, we col-
lected laboratory data in a wind-driven surface boundary layer
with short intermittently breaking waves. The data were col-
lected during experiments conducted in the Washington Air—
Sea Interaction Facility (WASIRF) which is a 12.2-m-long,
0.91-m-wide wind-wave tank. Freshwater was filled to a depth
of 0.6 m leaving 0.6 m of headspace above for air circulation.
To create wind, a suction fan propelled air through the test sec-
tion’s headspace and recirculated it via an overhead duct. See
Baker and DiBenedetto (2023) for more details on the facility.

We collected a time series of three-dimensional velocity
at a height of 19 cm below the water surface with an ADV
(Nortek Vectrino) under a wind speed of 16 m s™' at a fetch
of 7.5 m. The data were collected over 20 min at a sampling
frequency f; = 30 Hz. The wave energy spans the frequency
range of 1-3 Hz, with a peak at 2 Hz (Figs. 9b and 10b). We
postprocessed the data using the despiking method proposed
by Goring and Nikora (2002). Even after despiking the data,
there is still some noise present in the data due to intermittent
wave breaking which generated bubbles which affected the
data quality. These noisy data provide another challenge to
the decomposition. We apply our decomposition method to
both the horizontal and vertical components of velocity be-
cause they present contrasting conditions. The horizontal ve-
locity data have high turbulence fluctuations when compared
to the wave velocities, whereas the vertical velocity has
wave and turbulence fluctuations with similar magnitude (see
Table 1). Finally, we note that due to the strong anisotropy in
the surface boundary layer flow, we see deviation from the
—5/3 slope in the inertial range (Fig. 9b).
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FIG. 2. DMD wave-turbulence decomposition of u-component velocity of synthetic data. (a) POD spectrum of
time-delayed matrix H. (b) Power spectra of the original data and DMD-separated wave and turbulence. A gray —5/3
slope line is plotted for reference. (c) A portion of the original time series; (d) the true and separated wave compo-
nents using 104 DMD modes; and (e) the true and separated turbulence components.

5. Results and discussion

In this section, we present the results obtained from analyz-
ing the synthetic, laboratory, and field data with our proposed
DMD method. We demonstrate our DMD decomposition by
applying it to all three datasets after first conducting a sensi-
tivity analysis on the synthetic data. Next, we compare our
results to the other two time-resolved mode-based decom-
position methods: EEMD (Qiao et al. 2016; Huang et al.
2009) and SWT (Bian et al. 2018). After assessing the de-
composition in both spectral and time space, we analyze the
temporal autocorrelation of the decomposed turbulence sig-
nal, further demonstrating how our DMD method outper-
forms the other methods.

a. Synthetic data decomposition

The first step of our decomposition method is constructing
the time-delayed matrix H and identifying the wave frequency
range, as described in section 4 and reported in Table 1. Next,
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we determine the rank truncation r by plotting the POD spec-
trum of H of the synthetic u data (Fig. 2a) and selecting the
modes that contain wave energy. We observe two strong fea-
tures in this plot: 1) the higher modes contain energy in mono-
tonically increasing frequencies across the entire domain due
to turbulence, showing the energy decreasing from low to
high frequencies consistent with the inertial range, and 2) a
coherent high-energy signal in lower modes between the
frequency range of 0.13 and 0.6 Hz indicated by the vertical
dotted lines. This “dip” in the POD spectrum indicates an en-
ergetic range associated with the wave energy and accounts
for a significant part of the variance in the time series. We use
the location of the dip to inform the rank truncation. As indi-
cated with the horizontal dashed line, we truncate at the
r = 173 mode; that is, we take only the first 173 modes for the
next step in the DMD. We see that while most of the wave en-
ergy is contained in these first  modes, there is also energy as-
sociated with low-frequency turbulence in these lowest modes.
This clearly shows how POD alone fails at separating waves
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and turbulence since it can only isolate the high-frequency tur-
bulence from the waves, not the lower-frequency turbulence.

After determining the rank truncation, we are able to de-
compose the signal using DMD. Figure 2b shows the spectra
of the DMD-filtered wave and turbulence time series which
we compare with the true wave and true turbulence spectra.
Within the wave frequency range, the DMD-filtered wave
spectrum i, closely follows the wave peak. Outside the
wave frequency range, the i, spectrum falls sharply, cap-
turing a similar shape to the true wave spectrum for multiple
orders of magnitude before levelling off. The mismatch in the
signals is clearer to see in the up), spectrum, which slightly
underpredicts the turbulence in the wave frequency range.

Figures 2c—e show a portion of the u time series and the de-
composed @ and u’ time series alongside their true counter-
parts. We see overall agreement between the decomposed
and true time series; however, some mismatch exists. While
the turbulence time series plot shows that the separated signal
accurately captures the low-frequency turbulence fluctuations,
there is stronger disagreement in the fluctuations with fre-
quencies in the wave range. Given that the wave signal was
generated with 500 discrete wave signals and that the DMD
only resolved 104 modes, we do not expect a perfect recon-
struction. In this method, the DMD is discretizing a wave
frequency range that in reality is continuous, so we always ex-
pect some mismatch. The column r/n in Table 1 shows the ra-
tio of the number of modes used to truncate the input matrix
normalized by the number of columns used to construct
the input matrix. For the synthetic data, the low rank-to-
column ratio indicates that the dominant wave patterns in the
signal were reconstructed using fewer modes compared to the
other datasets.

1) SENSITIVITY ANALYSIS ON
DECOMPOSITION PARAMETERS

We conducted a sensitivity analysis on the decomposition
based on the two main tuning parameters: the rank truncation
r and the number of columns of the time-delayed input matrix
n to identify the optimal ryp and ngp, for the decomposition.
In addition, we also varied the length of the time series N and
repeated the sensitivity analysis to assess how r and n vary
with N. We quantified the accuracy of the decomposition by
calculating the normalized error €, which is defined as follows:

lu; — uipmpll,

€= —————= 13
el (13)

where ] and u/ )\ are the true and decomposed turbulence
time series (here the notation refers to DMD, but we also cal-
culate this error for the EEMD and SWT methods), respec-
tively, at time #;, and |||, is the L, norm. For comparison, we
also measured the mean absolute error « defined as

1 N
a = N 2 |(u; — u;,DMD)L (14)
i=0

We conduct the sensitivity analysis across four different time
series lengths to assess the importance of the length of the
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dataset. Figures 3a-d show the results of the sensitivity analy-
sis for N = 10000, 7500, 5000, and 2500, respectively. We plot
the norm-based error e for different combinations from the
space of normalized r/nqp and normalized number of columns
n/N. The optimal combination (r4p/N, Fopi/fopt) is indicated
by a red cross.

Overall, the optimal n/N ratio is not too sensitive and
ranges between 0.5 and 0.6, while the optimal » minimizes the
error only in a narrow range of values. This indicates that, at
least for this simple case, the preferential dimension of the in-
put time-delayed matrix is an approximately square matrix.
This might be due to the fact that for a large dataset, we have
enough physical information to resolve coherent features in
the time domain n and the “spatial” domain m that we con-
structed via time delaying. However, when there is limited in-
formation by the shortened time series, as in the case of
Fig. 3d, the preferential input matrix shape is a tall, skinny
matrix. This suggests a preference for spatial information
over temporal information and that meeting a critical column
length is more important than increased row length. We can
observe that the optimal r shows a small decrease with N (ex-
cept for N = 2500) but overall is fairly stable. Selecting an ap-
propriate rank truncation is essential for accurately capturing
the waves in the time series. If r is too low, some waves may
be missed by the DMD algorithm, leading to an incomplete
reconstructed time series. Conversely, if 7 is too high, it may
lead to overestimation of the wave energy.

Table 2 summarizes the different tuning parameters for all
time series length N and their associated errors. We see a de-
crease of the norm-based error € with N which makes sense
since the DMD is a data-based algorithm, and more data gen-
erally improve performance. However, as the data increase so
does the computational cost of performing the decomposition.
We compare the DMD method to EEMD and SWT in Table 2,
where we see that given the same time series length, our DMD
method outperforms the other modal decomposition methods.
While the EEMD outperforms the SWT, they both have higher
errors than the DMD method, even when DMD was applied to
only half the data (N = 5000). Overall, our method seems to
perform the best when applied to this dataset. At the end of
this section, we compare the methods in more detail by apply-
ing them to all of the datasets.

In our analysis, we use the ratio r/n to understand how ef-
fectively the first step of our algorithm, the rank truncation,
separates waves from turbulence. A low r/n indicates a more
effective rank truncation. This ratio measures how well we
can isolate the wave energy from the higher-frequency turbu-
lence that does not overlap in the frequency space. Essen-
tially, this step resembles a low-pass filter, in the sense that
most of the truncated modes correspond to high-frequency
motion. We do not expect r/n to be universal because the
shape of the spectra can vary; e.g., narrow-banded waves at
lower frequencies would likely result in a lower #/n relative to
wide-banded waves with the same intensity that occupy
higher frequencies, given the same turbulence spectrum. In
addition, the number of columns # in the input matrix con-
trols the lowest resolvable frequencies and, therefore, will de-
pend on the location of the wave frequency peak in frequency
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FIG. 3. Sensitivity analysis to assess the separation performance of the DMD-based algorithm for different time se-
ries lengths N. A measurement of error € was calculated for every combination of normalized rank truncation r/nqp
and normalized number of columns #/N in the time-delayed matrix H, where gy is the optimal number of columns
and the optimal combination is indicated by a red cross. The (a) € = 0.1586, at rop/nop; = 0.029, nypd/N = 0.5911 (N =
10000); (b) € = 0.1894, at rop/nope = 0.043, nop/ N = 0.509 (N = 7500); (c) € = 0.2109, at rop/ngy = 0.061, nop/N =
0.540 (N = 5000); and (d) € = 0.2737, at rop/nop = 0.179, nop/N = 0.470 (N = 2500).

domain; higher-frequency waves might require a smaller n
compared to low-frequency waves to capture the peak wave
frequency. Our observations show that r/n generally increases
as wave intensity decreases, indicating that the rank trunca-
tion is less effective at isolating wave energy when the waves
are weaker.

We next consider {iy,./r to evaluate the effectiveness of
the second step of our decomposition (see Table 1). This ratio
represents the proportion of DMD modes used to reconstruct
the waves relative to all modes remaining after the initial
truncation. Higher wave intensity usually corresponds to a
higher yiyave/r because most of the modes retained are wave
modes. Essentially, to summarize the two main steps of the al-
gorithm: first, the rank truncation initially identifies the modes
containing the relevant frequency content, and second, the
DMD step extracts the wave components from this subset. By
quantifying r/n and {.ve/r, Wwe can compare the effectiveness
of each step in the separation process.

2) SENSITIVITY ANALYSIS ON WAVE INTENSITY

Additionally, we performed a sensitivity analysis on the ef-
fect of relative wave intensity i, /u; . We scaled the syn-
thetic wave time series amplitudes linearly to adjust the wave
intensity, keeping the frequency and phase components of the
synthetic wave signal constant. This results in the wave spec-

trum moving up or down relative to the turbulence spectrum,
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as shown in Fig. 4. This also changes the apparent width of
the wave spectral peak which overlaps the inertial range, a
change that is due to the weaker wave energy away from the
peak frequency being overshadowed by the turbulence. We
chose the wave intensities i, /u;,.c = [0.2,0.5, 1, 5, 10], in ad-
dition to the wave intensity i /u; = 1.81 that we used in
the previous single-case analysis (Fig. 2), to cover a wide
range of scenarios. This range also covers the high and low in-
tensities present in the field and laboratory data, respectively.

Figure 5 presents the norm-based reconstruction errors for
waves and turbulence across varying wave intensities. We ex-
pect a decrease in the reconstruction error as wave intensity
increases because the DMD algorithm will be able to more ef-
fectively identify the coherent features of wave motion as dis-
tinct from the turbulence. Conversely, as wave intensity
decreases, the performance of our decomposition method is
expected to decline. We note that the error in turbulence re-
construction decreases more slowly with increasing wave in-
tensity, relative to the wave reconstruction error. This is
because the turbulence reconstruction is less sensitive to the
decomposition because most of the turbulence in the signal is
unaffected by the waves due to it occurring at frequencies out-
side the wave range.

In Fig. 6, we plot the decomposed wave spectra relative to
the input spectra and the true wave spectra to further evaluate
the effectiveness of the decomposition. We see that in all
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FIG. 4. Synthetic spectra used for sensitivity analysis on wave in-

tensity @ /u; . Wave intensity of zero represents the raw turbu-

lence signal u’.

cases, the wave peak above the turbulence spectra is well
represented by the decomposition. However, as the wave in-
tensity decreases and more of the wave spectrum falls below
the turbulence spectrum, we see that the decomposition
struggles to recover the shape of the original wave spectrum
accurately. This is especially clear in the lowest wave inten-
sity case, which has a large wave reconstruction error due to
the poor reconstruction of the wave and the small norm of
the true wave signal. Additionally, we see that the DMD
method tends to overestimate the wave energy at the lower
end of the wave frequency range, while underestimating the
wave energy at the higher end. However, these errors are
small compared to the overall spectral energy in the com-
bined wave and turbulence signal. In summary, the DMD
method works best when the wave intensity is high and fails
when the wave intensity is low; therefore, we recommend
our method for cases when the wave energy is similar or
larger in magnitude than that of the turbulence and for
when there exists a clear wave peak in the power spectrum
of the raw signal.

To further evaluate how the decomposition performs across
wave intensity, we consider the relative energy of the DMD
wave modes. Figure 7 shows a direct correlation between the
amount of wave energy in the signal and the corresponding
DMD mode energy required to accurately reconstruct the
wave signal. The expression z|bwave,i|2/z|bi|2 in the y axis in
Fig. 7 quantifies the ratio of the energy contributed by the
subset of wave-containing DMD modes to the total energy
from all DMD modes. Values close to unity mean that the
wave modes dominate the dynamics of the system, while val-
ues close to zero mean that the contribution of the wave
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TABLE 2. Summary of sensitivity analysis from Fig. 3 (top), and
comparison of errors from DMD and other modal decomposition
methods applied to the longest time series length of N = 10000
(bottom).

Length of raw time series, N

Parameters 2500 5000 7500 10000
Topt 210 165 155 173
Topt/Mopt 0.179 0.061 0.043 0.029
Hopt 1175 2700 3900 5911
Hopt 0.47 0.54 0.52 0.59
€ 0.2737 0.2109 0.1894 0.1586
Method € a (m 571) alul,
DMD 0.159 0.039 0.24
EEMD 0.268 0.065 0.40
SWT 0.325 0.079 0.49

modes is small compared to the overall dynamics. Figure 7
also shows a general trend across datasets and wave intensi-
ties. When waves and turbulence are similar in intensity
(s Urms = 1), the waves account for approximately half of
the energy in the DMD modes. However, as the wave inten-
sity nearly doubles (i, /u;,, =1.81), the proportion of
DMD mode energy associated with waves increases significantly,
indicating a strong dominance of wave energy in the reconstruc-
tion. Conversely, when the wave intensity is halved, waves con-
tribute only about 30% of the DMD mode energy, highlighting
the reduced influence of weaker wave signals.

b. Field data decomposition

We plot the POD spectrum of the field data (Fig. 8a) and
find that, similar to the synthetic data in Fig. 2a, there are two
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FIG. 5. Reconstruction error from wave and turbulence at the dif-
ferent wave intensities in the sensitivity analysis.
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features: one associated with the turbulence energy that is
seen across the frequency range and one that marks a dip in
the energetic modes associated with the wave energy concen-
trated between 0.03 and 0.2 Hz, demarcated with the vertical
dotted lines. It is worth noting that in this case, there is not a
well-defined turbulence signal in the wave frequency range.
Wave and turbulence interactions present in real data, as
compared with the synthetic data, may reduce the effective-
ness of the POD modal separation in the overlapping fre-
quency range. This further supports why POD alone cannot
always isolate waves and turbulence. Based off the location of
the dip, we rank truncate to r = 48 modes to preserve the en-
ergy in the wave frequencies and remove the high-frequency
turbulence. The final filtered velocity spectra are shown in
Fig. 2b alongside the raw signal spectrum. We see that the
DMD method is able to isolate the wave energy and flatten
the turbulence spectrum under the wave peak. While the
wave spectrum contains nonzero energy in the frequencies
outside the wave range, the energy is small enough to not af-
fect the turbulence spectrum.

In Fig. 2c, we present a portion of the separated time series
over the raw signal. This portion of data was chosen to
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=181, (d) i, Jup,=1, (e) i, upo=0.5 and

highlight a potentially difficult section to decompose where
the wave amplitude sharply decreases over time. We expect the
decomposition to perform best when the wave energy is large
relative to that of the turbulence. While we see strong agree-
ment with the wave signal during the first half of the plot, we see
the mismatch increases once the wave amplitude decreases in
the second half of the plot; however, the decomposed wave ve-
locity is still able to capture the transition moderately well and
maintain the shape of the waves. When we later compare this
decomposition to other methods, we find it has similar perfor-
mance to the EEMD and SWT methods because this is the data-
set with the largest relative wave energy, i.e., it is theoretically
the easiest signal to decompose. Additionally, Table 1 indicates
that this is the dataset with the highest relative wave intensity

it Ju, and also the lowest r/n values. This indicates that the
wave motion present in the signal can be captured using a

smaller number of modes relative to the total rank.

c. Laboratory data decomposition

The laboratory data represent a case with weak wave en-
ergy relative to the turbulence and, therefore, we expect it
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and used in the reconstruction of the wave signal.

to be the most challenging to decompose. The data are
also more noisy than the field and synthetic data, but it is
also the longest dataset of the three. We start by consider-
ing the POD spectra of both u and w (Figs. 9a and 10a)
which show that the wave energy is contained within the
frequency range of 1-3 Hz. What is interesting in these
POD spectra, unlike in those of the synthetic and field
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data, is that the low number modes only contain low-
frequency turbulence, and that the wave energy is con-
tained in intermediate modes. Based off the POD spectra,
we truncate at r = 1000 and r = 1300 modes for u and w,
respectively.

The fully decomposed spectra are plotted in Figs. 9b and
10b. We see that the DMD method separated and removed
most of the wave energy from the turbulence in both cases.
First, considering the u spectrum (Fig. 9b), we see that the
majority of the wave peak is removed from the turbulence
spectrum, and that the wave spectrum has less energy than
the turbulence spectrum at almost all frequencies, confirming
that this is a turbulence-dominated flow. The time series re-
construction in Fig. 9c¢ again shows the small wave velocity
amplitude compared to the turbulence fluctuations. We also
see some noise spikes in the data which have been isolated to
the turbulence time series.

Next, we consider the w decomposition in Fig. 10b where
we observe a cleanly separated turbulence and wave spectra.
Note the difference between this and the u spectra, specifi-
cally how they have similar wave energy, but the w spectrum
has much weaker turbulence. The time series reconstruction
in Fig. 10c shows that the separated waves closely follow the
trend of the raw data, and that both the high- and low-
frequency turbulence fluctuations are isolated to the turbu-
lence time series. In Table 1, we see that this is the dataset
with the lowest wave intensity relative to the turbulence.
This low wave intensity is a challenge for our decomposi-
tion; however, by using a long enough time series and a high
r/n truncation, the DMD method is able to give a better sep-
aration when compared with other methods.
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FIG. 8. DMD wave-turbulence decomposition of u-component velocity of field data. (a) POD spectrum of time-
delayed matrix H. (b) Power spectra of the original data and DMD-separated wave and turbulence. A gray —5/3 slope
line is plotted for reference. (c) A portion of the time series of the original and decomposed signals. The wave motion
was reconstructed using 34 DMD modes.
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To further assess the decomposition results, we compare  Consistent with this expectation, our analysis shows that the
the mean Reynolds stress (u’w’) from the raw signal with wave Reynolds stress is over an order of magnitude smaller
those from the decomposed turbulence and wave compo- than the residual turbulence Reynolds stress. We find the
nents. We expect the Reynolds stress associated with waves to  Reynolds stress values to be—5.1 X 1074 —4.5 X 107, and

be significantly lower than that generated by turbulence. —0.19 X 107* (m s™')? for the raw, decomposed turbulence,
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time-delayed matrix H. (b) Power spectra of the original data and DMD-separated wave and turbulence. A gray —5/3
slope line is plotted for reference. (c) A portion of the time series of the original and decomposed signals. The wave
motion was reconstructed using 732 DMD modes.
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wave time series of the laboratory data.

and decomposed wave signals, respectively. This confirms
that the wave momentum flux is inefficient compared to that
of the turbulence, and that the DMD decomposition can suc-
cessfully isolate wavelike motions from turbulence.
Additionally, we visualize the time series of i, and
Wpmp together in Fig. 11. We expect the horizontal and verti-
cal wave velocities to have a 90° phase shift in time and for
them to have similar amplitudes given that they were deep-
water waves (short waves relative to the depth of the tank).
The initial section of Fig. 11 shows a disagreement between
both the expected wave magnitudes and the phase shift, which
might be caused by the presence of strong turbulence;
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FIG. 12. Comparison of modal decomposition methods,
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however, the rest of the time series shows good agreement
with the expected wave characteristics from theory. Through-
out the time series, the iy, velocity amplitude is slightly
underpredicted when compared with the W, 5 signal; this is
likely due to the u decomposition underperforming due to the
stronger turbulence. Overall, we find that the DMD method
is able to decompose the signals fairly well, even given a noisy
dataset with relatively weak, irregular waves under intermit-
tent wave breaking.

d. Comparison with other decomposition methods

We compare our decomposition method to the EEMD and
SWT, two other modal decomposition techniques that work
with a single time series. To compare the methods, we plot
the separated turbulence spectra using each method for each
dataset in Fig. 12. Across all four plots, we see that the SWT
tends to excessively remove energy from the turbulence in the
wave range, causing significant dips in the turbulence spectra.
In contrast, the EEMD generally performs as well as the
DMD method for the synthetic and field data in Figs. 12a and
12b, respectively. We note that the EEMD has caused some
turbulence energy redistribution, e.g., adding energy into the

PSD (m?s~2/Hz)

100
Frequency (Hz)

1074}

100
Frequency (Hz)

showing the spectra of the original data and the decom-

posed turbulence data. (a) Synthetic data u velocity, (b) field data u velocity, and (c),(d) laboratory data u and w

velocity, respectively.
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FIG. 13. Normalized autocorrelation of raw u, DMD-filtered turbulence upynp, EEMD- and SWT-filtered turbu-
lence (ugemp and uswr, respectively) signals. (a) Synthetic data u velocity, the black line is the true turbulence u’. (b)
Field data u velocity. (c),(d) Laboratory data u and w velocity, respectively.

turbulence in the field data as seen in Fig. 12b between 0.2
and 0.4 Hz. Finally, the laboratory data (Figs. 12c,d) are the
hardest to decompose due to its weak, irregular waves, and
that is where we clearly see that the DMD outperforms the
other two methods. The DMD-filtered spectra are able to
closely follow the expected slope of the turbulence spectra for
both the u and w velocity spectra.

The methods show the most similar decomposition for the
field data, which is the dataset with the highest wave intensity.
This is unsurprising and suggests that the stronger the wave
intensity, the easier the signal should be to decompose using
any method. Even though the synthetic data have exactly no
wave-turbulence interactions which should in theory mean it
is relatively easy to decompose, its lower wave intensity
causes issues for the SWT method. Finally, the laboratory
data have the lowest wave intensity, and this is where the ben-
efits of the DMD method are the clearest. One reason the
SWT may underperform is because it determines its basis a
priori; the method tries to fit the data to a wavelet basis, which
might not always be a good descriptor of the dynamics of the
system. Alternatively, the EEMD uses IMFs as an a posteriori
basis, that is, they adapt to the data being analyzed. However,
it seems that the IMFs might not be separating the waves
from the turbulence completely, resulting in mixed modes
which contain both turbulence and wave energy. The utility of
this method is further hindered by the fact that the number of
IMFs is determined by the EEMD algorithm which removes a
tuning parameter.

We further compare the methods by computing the nor-
malized autocorrelations p(1) of the filtered turbulence

Brought to you by Uni

velocity across the different datasets, as shown in Fig. 13.
The raw autocorrelations, plotted in gray for reference,
show a clear periodic wave signal across all datasets. Suc-
cessfully isolating the turbulence from the waves would re-
move all time periodicity and preserve the exponential
decay expected as the turbulence fluctuations decorrelate
over time. We see that in most cases, the methods are all
able to remove the majority of the wave signal. With respect
to the synthetic data (Fig. 13a), we know what the true tur-
bulence signal is, and we see that while all the methods fol-
low the true turbulence autocorrelation (shown with a blue
line) closely, the SWT performs the worst, as shown by the
small peak in the signal after the initial decrease. In Fig.
13b, the field data autocorrelations all remove the wave, and
it is unclear which performs best here from visual inspection.
Recall that the EEMD method had added energy into the tur-
bulence spectra, so it is likely that its higher autocorrelation val-
ues are inaccurate. Finally, in the laboratory data (Figs. 13c,d),
we clearly see the DMD method performs the best. It is able to
remove all wave peaks while still capturing the long-time tem-
poral decorrelation of the turbulence. This analysis clearly
shows the strength of the DMD method across a variety of
datasets and demonstrates how it can be used for more than
just spectral analysis, particularly under conditions that pose
challenges to other decomposition methods.

6. Conclusions

While many wave-turbulence decomposition methods have
been developed over the years, they are typically limited in
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their use case. For example, they may be restricted to the
spectral domain precluding a time series construction, they
may require multiple synchronized measurements, or they
may have restrictive assumptions such as no wave—turbulence
interactions. In many scenarios, this assumption can easily
break, especially because waves and turbulence do interact
across different time scales (Guo and Shen 2013). Given these
challenges, newer modal decomposition methods have been
developed, such as the EEMD and the SWT. These methods
still have their drawbacks. For example, the SWT uses a pre-
determined basis to project the data that is not flexible for
highly nonlinear data, whereas the EEMD introduces noise as
a filter to differentiate scales in the time series which can re-
sult in artificial shifts in how the energy is distributed among
the modes.

These approaches are not optimal for highly nonlinear
data, resulting in either poor or excessive wave energy separa-
tion. To address these limitations, we developed a new wave—
turbulence decomposition method using DMD, leveraging its
data-driven adaptive basis and minimal assumptions. Our
method applies DMD to a single time series, assisted by a
time-delay embedding. It is able to isolate the wave compo-
nents without significantly affecting the turbulent signal at
similar frequencies. In the case of velocity data, we show how
the method is able to recover the inertial range scaling below
the wave peak. The main assumptions that underlie this
method are that the waves and turbulence can be separated
and that waves are the most coherent feature of the time se-
ries, which are reasonable assumptions considering the dy-
namics of the system. We applied our method to synthetic,
field, and laboratory data which covered a range of wave in-
tensities. Our method clearly outperformed the SWT and
EEMD when applied to the synthetic and laboratory data,
whereas all methods performed similarly when applied to the
field data. This may be due to the fact that the field data had
the largest wave intensity and, therefore, the wave motion
was relatively easy to isolate from the turbulence across all of
the methods. A sensitivity analysis on the effect of wave in-
tensity shows that the DMD method performs best when the
wave energy is equal to or greater than that of the turbulence.
And given that the decomposition relies on isolating the co-
herent wave motion, the decomposition performs the worst
for low wave intensity because the method is unable to iden-
tify the wave motion once it is overshadowed by stronger tur-
bulence fluctuations.

The proposed method does require some manual tuning:
specifically, the user needs to input the shape of the time-
delay matrix, the rank truncation, and the wave frequency
range of interest. However, we argue that the parameters are
physically related to the signal, especially compared to other
methods such as the SWT and EEMD which have somewhat
arbitrary tuning parameters. The rank truncation is discernible
in the POD spectrum of the time-delayed input matrix, and
the wave frequency range is clearly visible in the power spec-
trum of the signal. While the number of time delays is less
clear, our sensitivity analysis shows that it is not as important
to the accuracy of the decomposition, especially when the time
series length is long enough. We recommend future work to
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examine this parameter more closely and relate it directly to
the wave spectrum. The reported parameters in Table 1 can
be a starting point for users of the method. Overall, the pro-
posed DMD-based decomposition method is successful at de-
composing wave and turbulence motion with minimal tuning
and only one component of data, which is valuable for time se-
ries measurements of flow parameters.

We have demonstrated that DMD is powerful for this ap-
plication, and some fine tuning may need to occur as it is
adopted for this and other problems. Future work can focus
on more robust DMD schemes and alternative ways of deter-
mining the number of modes necessary to reconstruct the wave
motion. A few examples include the extended DMD (Williams
et al. 2015) which attempts to circumvent certain constraints of
the (linear) DMD technique when decomposing data from non-
linear systems, and sparsity-promoting DMD (Jovanovi¢ et al.
2014) that can reduce the complexity of the calculations by iden-
tifying a smaller set of more relevant DMD modes.
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