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ABSTRACT

The evolution of multimodal large language models (LLMs)
capable of processing diverse input modalities (e.g., text and
images) holds new prospects for their application in engineer-
ing design, such as the generation of 3D computer-aided design
(CAD) models. However, little is known about the ability of
multimodal LLMs to generate 3D design objects, and there is a
lack of quantitative assessment. In this study, we develop an ap-
proach to enable two LLMs, GPT-4 and GPT-4V, to generate 3D
CAD models (i.e., LLM4CAD) and perform experiments to eval-
uate their efficacy. To address the challenge of data scarcity for
multimodal LLM studies, we created a data synthesis pipeline to
generate CAD models, sketches, and image data of typical me-
chanical components (e.g., gears and springs) and collect their
natural-language descriptions with dimensional information us-
ing Amazon Mechanical Turk. We positioned the CAD program
(programming script for CAD design) as a bridge, facilitating the
conversion of LLMs’ textual output into tangible CAD design
objects. We focus on two critical capabilities: the generation
of syntactically correct CAD programs (Capl) and the accuracy
of the parsed 3D shapes (Cap2) quantified by intersection over
union. The results show that both GPT-4 and GPT-4V demon-
strate potential in 3D CAD generation. Specifically, on average,
GPT-4V outperforms when processing only text-based input, ex-
ceeding the results obtained using multimodal inputs, such as
text with image, for Cap 1 and Cap 2. However, when examining
category-specific results of mechanical components, while the
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same trend still holds for Cap 2, the prominence of multimodal
inputs is increasingly evident for more complex geometries (e.g.,
springs and gears) in Cap 1. The potential of multimodal LLMs
in enhancing 3D CAD generation is clear, but their application
must be carefully calibrated to the complexity of the target CAD
models to be generated.

Keywords: Multimodal Large Language Models, GPT-4,
GPT-4V, Computer-Aided Design, Generative Design

1 INTRODUCTION

The emergence of large language models (LLMs), includ-
ing the generative pre-trained transformer (GPT) series [1], rep-
resents a significant advancement in the capabilities of artifi-
cial intelligence (Al) to interact with the world. These mod-
els, trained on vast datasets, exhibit remarkable proficiency in
“understanding” the nuances of human language and generat-
ing text that mirrors human-like communication [2]. However,
the inherent vagueness of natural language continues to pose
a significant challenge, especially when it comes to conveying
complex instructions to LLMs. To this end, cutting-edge multi-
modal LLMs, such as OpenAI’s GPT-4 Vision (GPT-4V) [3] and
Google’s PaLM-E [4], have been proposed. These models are
designed to process more input modalities besides text, such as
images, thereby broadening how users can interact with LLMs
for more sophisticated tasks.

The utility of LLMs in processing natural language data has
extended their application in design research for conceptual de-
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sign [5-7]. One particular limitation of these studies is that they
use textual information only as the input. However, it might be
difficult to effectively describe intended design artifacts and as-
sociated parameters through text only, which often encompass
the structural and layout specifications of a component and the
desired shapes of the component. Furthermore, conceptual de-
sign is inherently multimodal, frequently incorporating visual el-
ements ranging from sketches for design ideation to engineering
drawings for fabrication and assembly [8—10].

Therefore, recent design research emphasizes the signif-
icance of multimodal machine learning (MMML) in improv-
ing the conceptual design by integrating diverse modalities
[8,10, 11]. Multimodal input, such as images and sketches be-
yond texts, could potentially improve LLMs’ performance in un-
derstanding designers’ intent, thus generating more precise and
quality design output. Therefore, multimodal LLMs that can take
multiple input modalities have the potential for their application
in Al-assisted conceptual design, promising to revolutionize de-
sign tools and human-AlI collaborative design. However, to our
knowledge, while a few works conducted qualitative evaluations
using the ChatGPT interface [12, 13], no quantitative evaluation
has been performed to assess the efficacy of multimodal LLMs
in the CAD generation of 3D shapes for conceptual design.

To fill this research gap, we develop an approach to enable
multimodal LLMs for 3D CAD Generation (hereafter referred
to as LLM4CAD) and conduct a quantitative analysis to evaluate
LLMA4CAD’s effectiveness in conceptual design. Specifically,
we seek to understand the capabilities of multimodal LLMs to
generate high-quality 3D design concepts with precise dimen-
sions and to identify strategies to improve their capabilities. Un-
like methods that directly generate 3D models [14, 15], the direct
output of our method is CAD programs, which can be compiled
into 3D CAD models. The programming codes effectively repre-
sent a sequence of CAD operations, which offers insight into the
historical construction process and the associated design knowl-
edge of 3D CAD modeling. Additionally, it supports geometry
modification through parametric modeling (e.g., modifying the
radius of a Circle to change the size of the inner hole of a nut).
This study is driven by two research questions (RQs): 1) To what
extent can multimodal LLMs generate 3D design objects when
employing different design modalities or a combination of vari-
ous modalities? 2) What strategies can be developed to enhance
the ability of multimodal LLMs to create 3D design objects?

To enable LLM4CAD, one technical challenge is that LLMs
cannot directly create 3D shapes, such as meshes, voxels, and
boundary representations. However, LLMs can generate pro-
grams in languages such as Python [12,13,16]. Therefore, we de-
veloped an approach to enable an indirect synthesis of 3D design
objects by generating CAD programs. To quantitatively evaluate
the performance, we propose a data synthesis pipeline along with
an evaluation framework. This evaluation specifically focuses on
two capabilities. Capl: the success rate of the generated pro-

gramming codes in program-to-CAD translation, and Cap2: the
extent to which these resultant 3D design objects align with the
ground-truth shapes. We summarize our contributions as follows.

1. This study created a new CAD dataset of five categories of
mechanical components (i.e., shafts, nuts, flanges, springs,
and gears with diverse geometry complexity) for multimodal
LLMs, including textual descriptions, sketches, images, and
3D CAD models. In particular, textual descriptions of the
target design objects are in natural languages with detailed
dimensional information collected with Amazon Mechani-
cal Turk (AMT) !, an online crowdsourcing platform.

2. The effectiveness of the GPT-4 and GPT-4V models in 3D
design generation was evaluated, and new knowledge of
their strengths and limitations was obtained.

3. A new method was developed and implemented to enhance
the GPT models’ proficiency in generating 3D CAD models.
Specifically, we develop a debugger to correct syntax errors
in the synthesized CAD programs to improve their success
rate of being translated to 3D CAD models.

We found that the GPT-4 and GPT-4V models demonstrated
the potential of LLM4CAD, especially when enhanced by the
proposed debugger. However, they still struggle with handling
complex geometries. Additionally, GPT-4V’s performance was
examined with four input modes including text-only, text with
sketch, text with image, and a combination of text, sketch, and
image. The results show that, on average, GPT-4V excels when
processing purely text-only input, outperforming multimodal in-
puts in Cap 1 and Cap 2. This observation is counterintuitive
because a prevailing belief in the field of MMML is that incorpo-
rating varied input modalities should improve a machine learning
(ML) model’s predictive accuracy due to an increased amount of
information for learning and inference. However, when exam-
ining category-specific results of mechanical components, while
the same trend is still observed for Cap 2, multimodal inputs start
to gain prominence with more complex geometries (e.g., springs
and gears) in Cap 1.

Based on these observations, it is clear that the current mul-
timodal LLMs (e.g., GPT-4V) still face limitations in handling
multimodal inputs for generating 3D CAD objects. However,
the detailed insights from the category-specific results show that
multimodal inputs become more effective as the complexity of
design objects increases. Therefore, these limitations do not
diminish their potential benefits in real-world design scenarios
characterized by complex objects. The ability of multimodal
LLMSs to process diverse input modalities remains a promising
avenue for enhancing 3D CAD generation technologies.

The remainder of this paper is organized as follows. In Sec-
tion 2, we provide an overview of the background related to
multimodal machine learning and LLMs for engineering design.

"'https://www.mturk.com/
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Section 3 outlines the methodology for data collection and gen-
eration, as well as the evaluation of multimodal LLMs. Subse-
quently, Sections 4 and 5 present, analyze, and discuss the exper-
imental results, from which we summarize the primary findings
and acknowledge limitations. Conclusions and closing remarks
are made in Section 6, where we present key insights and suggest
potential directions for future research.

2 LITERATURE REVIEW

In this section, we review the most relevant literature to our
work, including multimodal machine learning and large language
models for engineering design.

2.1 MULTIMODAL MACHINE LEARNING IN ENGI-
NEERING DESIGN

Multimodal machine learning (MMML) approaches exhibit
significant promise in enhancing the field of engineering design,
as evidenced by recent review studies [8, 10]. Specifically, when
confronted with inputs comprising multiple modalities, such as
a combination of text and sketches, MMML techniques can in-
tegrate this information through a process known as multi-modal
fusion. This fusion enables integrating data from diverse modal-
ities to facilitate prediction tasks such as regression or classifi-
cation. The application of multimodal fusion in different areas
(e.g., audio-visual speech recognition, image captioning) is be-
coming popular [17]. The data from different modalities can sup-
plement each other, aiding in increasing the accuracy of predic-
tions. Even if one modality is missing, predictions can still be
viable. While there might be overlap in information from multi-
ple modalities, this redundancy can strengthen the reliability of
the predictions [17].

Despite these advantages, the extent to which multimodal
fusion can enhance engineering design remains largely unex-
plored, with only a few pioneering works looking into this area
[18,19]. For example, Song, Miller, and Ahmed [18] pioneered
a multimodal learning model that integrates sketch and textual
description modalities using a cross-attention mechanism. This
approach facilitated a comprehensive assessment of design con-
cepts, revealing that MMML significantly enhances the model’s
predictive and explanatory capabilities. The findings underscore
the advantages of employing multimodal representations in con-
ceptual design evaluation.

MMML for engineering design is still in its initial stage, pre-
senting ample opportunities for extensive research exploration
into the theory and methodology for enhancing design evalu-
ation and generation. Our study investigates multimodal large
language models (LLMs)’ capability to generate 3D design con-
cepts when taking multiple design modalities (e.g., a combina-
tion of text, image, and sketch) as input compared to unimodal
input (e.g., text), contributing to the field of MMML for engi-

neering design.

2.2 LARGE LANGUAGE MODELS FOR ENGINEER-
ING DESIGN

Natural language processing (NLP) is a foundational tech-
nology in Al advancements, primarily focusing on enabling com-
puters to understand and interact with humans using natural lan-
guage [20]. Building upon the foundation of various NLP tech-
nologies, the emergence of LLMs, such as the generative pre-
trained transformer (GPT) series [1], marks a significant leap in
Al proficiency.

A remarkable example of LLMs is ChatGPT [21], launched
in 2022 by OpenAl. ChatGPT, an advanced Chatbot built upon
the GPT-3.5 model, provides detailed and structured responses
based on specific user prompts. Its capabilities span a broad spec-
trum of language understanding and generation tasks, including
multilingual translation, creative writing, and programming code
creation and debugging. A distinctive feature of ChatGPT is its
ability to recall previous conversation segments, enabling more
coherent and sustained interactions [22, 23]. ChatGPT is the
state-of-the-art LLM and stands apart from earlier NLP and LLM
tools due to its exceptional conversational skills and reasoning
abilities across various domains [24-26].

Researchers have been examining how ChatGPT can be ap-
plied to enhance the engineering design process, from conceptual
design to manufacturing [5, 6, 12, 16,27]. For instance, Koca-
balli [5] undertook a hypothetical design project that leveraged
ChatGPT to create personas in the roles of designers or users.
The approach facilitated various design-related activities, includ-
ing conducting user interviews, generating design concepts, and
evaluating user experiences. However, these studies primarily fo-
cus on the text generation capabilities of LLMs by taking textual
input. Taking the generation of design concepts as an example, it
can be advantageous to employ the generated text for brainstorm-
ing design ideas [7]. However, translating these conceptual ideas
into concrete 3D designs still presents a significant challenge.

While LLMs’ ability to directly generate 3D objects (e.g.,
meshes, voxels, and boundary representations) seems limited, an
alternative approach involves the generation of 3D designs us-
ing CAD programming languages such as CADQuery and Open-
SCAD. This can be achieved by exploiting LLMs’ capacity for
program synthesis [28], and some research has been investigat-
ing the potential of LLMs in producing 3D designs through CAD
programs, which involves interpreting human language instruc-
tions and converting them into CAD designs [12, 16]. Neverthe-
less, these studies are still limited to textual descriptions for the
design intent, and it is often challenging to convey complex tasks
solely through text.

The evolution of OpenAI’s GPT architecture, transitioning
from the text-only GPT-3.5 and GPT-4 to its multimodal suc-
cessors, GPT-4 Vision (GPT-4V) [3, 23, 29] marks significant
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advancements. It offers opportunities to incorporate multiple
modalities besides text. However, little is known about its practi-
cality in and for engineering design, such as 3D CAD generation.
That motivates our study to conduct a quantitative analysis on to
what extent multimodal LLMs can generate 3D design objects
when employing different design modalities or a combination of
various modalities. We employed GPT-4 and GPT-4V as exam-
ples of unimodal and multimodal LLMs for our experiments due
to their acknowledged outstanding performance.

3 METHODOLOGY

We develop an approach to enabling LLM4CAD by taking
various design modalities and assessing the extent of their capa-
bilities, as shown in Figure 1. This approach consists of three
major steps: 1) Data Synthesis: multimodal design data collec-
tion and generation, 2) Code Generation: CAD program code
generation, and 3) Evaluation: the evaluation of 3D CAD model
generation in terms of success rate and precision.

For clarity of illustration, we consider a gear as a represen-
tative 3D design object. The process begins with the genera-
tion of ground-truth (GT) 3D CAD models; dimensional data
is recorded alongside the generation process. Direct rendering
techniques can be employed to obtain images from 3D shapes.
Meanwhile, textual descriptions incorporating dimensional in-
formation and sketches can be acquired through automated algo-
rithms or human involvement. With the input data in three design
modalities (i.e., text, image, and sketch), we evaluate the capabil-
ity of the GPT-4 and GPT-4V models to generate CAD programs,
which are then parsed into 3D shapes. The quality of the result-
ing 3D shapes is then benchmarked against the GT shapes to
gauge the efficacy of generation automatically (see more details
in Section 3.3). In addition, we proposed a debugger to enhance
the models’ capabilities in CAD program generation.

3.1 DATA SYNTHESIS

We chose mechanical components as the target 3D objects,
given their pivotal role in engineering design. Upon examin-
ing the literature and online resources, we could not find any
CAD model dataset of mechanical components that incorporates
multiple design modalities and detailed dimensional information.
The existing datasets of mechanical components [30-32] do not
provide essential dimensional data. Therefore, they are not ap-
propriate for this study because a quantitative evaluation of the
generated CAD models is impossible since no dimensional infor-
mation can be provided to LLMs as input. This motivates us to
develop a new synthesis pipeline for CAD objects with detailed
dimensional information. Such a dataset would benefit various
machine learning tasks in engineering design, where the details
of the design specifications are critical.

As shown in Figure 2, a semi-automated pipeline for Data

"The gear is a 27-tooth
spur gear with a module
of 4, a face width of 8.9
mm, and a central bore
diameter of 10.4 mm."
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FIGURE 1.

The overview of our approach

Synthesis is developed to generate the textual descriptions, im-
ages, sketches, and GT 3D shapes of five common types of me-
chanical components: shafts, nuts, flanges, springs, and gears.
They were chosen for their popularity in engineering design and
their varying levels of complexity, allowing us to test the robust-
ness of our approach and investigate how geometric complex-
ity would influence the results. The complexity of mechanical
components in this study is determined by the solvability of a
design problem as introduced by Summers and Shah [33] (i.e.,
less solvable is more complex). Specifically, solvability here
refers to the capability of LLMs to formulate a CAD program
to meet the input design requirements. It is relatively simple to
generate CAD programs for components such as shafts, nuts, and
flanges, which primarily utilizes Sketch and Extrude CAD oper-
ations. However, creating CAD programs for springs and gears
presents more challenges due to longer CAD sequences (i.e.,
more lines of code) or special auxiliary Python packages. For
example, the Sweep CAD operation is needed to create springs.
Auxiliary Python packages (e.g., cq_gears %) or complex calcula-
tions (e.g., understanding the fundamental geometry of the gear
teeth to perform detailed geometric and trigonometric computa-
tions) are needed to determine the gear tooth profiles. Moreover,
complex components need more curvatures to describe geome-
tries and more triangles to represent a shape digitally using the
STL format. In our dataset, the average number of triangles for
springs and gears is around 200k and 10k, respectively. In con-
trast, flanges, nuts, and shafts have an average of 1,500, 500,
and 1,500 triangles, respectively. This difference in the num-

2https://github.com/meadiode/cq_gears
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import cadq
class
def __init_ (self, nut_size, nut_height,inner_diameter,workplane="XY"'):

self.uorkplane = workplane
self.nut_size=nut_size
self.nut_height=nut_height
self.inner_diameter=inner_diameter
self.nut = None

Python function

create(self)
hex_nut = cq.k
inner_cylinde
self.nut=hex_nut.

self.uorkplane).
e (self.wor kplane
ner_cylinder)

sam

self.nut_size).extrude(self.nut_height)
e(self.inner_diameter / 2).extrude(self.nut_height)

Ground truth
3D model

Dimensional information
External Diameter=59 mm,
Height=19 mm,

Nominal Hole Diameter=23 mm

Text v OpenCV

description

Amazon
Mechanical
"It is a nut with Turk
external diameter of
59 mm, height of 19 ~N
mm and has a \/
nominal hole

diameter of 23 mm."

FIGURE 2. The pipeline for Data Synthesis

ber of triangles indicates varying levels of geometric complexity.
Therefore, shafts, nuts, and flanges are referred to as relatively
simple geometries, while springs and gears are more complex.

3.1.1 3D SHAPES, IMAGES, AND SKETCHES
Using CADQuery (Version 2.3.1) 3, a Python-based CAD pro-
gramming language, we created five distinct Python classes, each
corresponding to one of the mechanical component categories.
In each class, the design is parameterized, so a variety of designs
can be generated from a defined design space. An example of
the classes is given in Figure 2. To achieve uniform sampling
of the design space, we employed Latin Hypercube Sampling
(LHS) [34] of design parameters (such as the external diame-
ter and height of a nut). LHS is often used in computer experi-
ments and simulations to efficiently sample points from a high-
dimensional space. For shafts, we synthesized 250 shapes for
each of the four types of shafts (with each type having 2, 3, 4,
and 5 sections, respectively), totaling 1,000. For the other four
components, 1,000 shapes for each are created. The dimensional
information of these shapes was recorded alongside the GT 3D

3https://cadquery.readthedocs.io/en/latest/
installation.html
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FIGURE 3. An example of the HITs on Amazon Mechanical Turk

models. A piece of the dimensional information of a nut is given
in the figure.

The 2D image representation of these 3D shapes is obtained
from computer rendering. Subsequently, sketches of these im-
ages were produced using sketch-style rendering using OpenCV.
Although hand sketches of mechanical components from human
participants would be a better data source for research validity,
the efficiency and effectiveness of rendered sketches from com-
puter algorithms have been demonstrated [32]. With the consid-
eration of such trade-offs, we decided to use computer renderings
for the sketch data.

3.1.2 TEXTUAL DESCRIPTIONS WITH DIMEN-
SIONAL INFORMATION 1t is feasible to synthesize textual
data integrated with dimensional information from images via
GPT models [35]. However, as we need to input this textual
data into GPT models for analysis, it might introduce a risk of
biasing the results. To that end, we tested the other popular au-
tomatic captioning methods, such as the Contrastive Language-
Image Pretraining (CLIP) model [36], but found the results un-
satisfactory for mechanical components.

To avoid the potential biases introduced by LLMs and ensure
the quality of the textual data, we chose to crowdsource textual
descriptions through Amazon Mechanical Turk (AMT), a plat-
form renowned for its efficacy in gathering data across a broad
demographic spectrum. This diversity, spanning geographical,
cultural, and age-related differences, is crucial for the richness of
our dataset and aligns with established precedents in engineering
design research for collecting data on human subjects [37, 38].
We designed human intelligence tasks (HITs) on AMT to recruit
participants (known as Workers) for our study. These individu-
als were instructed to describe mechanical components in natu-
ral language based on provided images. A critical requirement

Copyright © 2024 by ASME

d"0¥LE¥L-¥202219P-G1.0EI0IG00NEZEE0YL/S LOVIOLI00N/L0Y88/#202310-013al/pd-sbulpassoid/310-013al/610 swse uonos||00jeyb!

USY0) BSEI; P!

qI sesuedy JO Ansienlun Aq bréenzamampiguuyeMuabasezyIBo9dHININEOAISHHIZMPUANOIYZYNY L 19bONUTIZAY- VY VYV 70BdbINWNGY



of these descriptions was incorporating specific dimensional in-
formation, which was presented alongside the images. This ap-
proach ensures that our data collection method not only captures
the varied interpretations of mechanical components but also
includes precise dimensional information, enhancing the utility
and accuracy of the dataset.

For the five distinct mechanical component categories —
shafts, nuts, flanges, springs, and gears — each category is rep-
resented by a unique standardized image for visual depiction
within a HIT. Specifically, the category of shafts is further distin-
guished by incorporating four separate HITs and each HIT with
a standardized image. These images correspond to the four dis-
tinct types of shafts, which are categorized based on the number
of sections they contain. Thus, eight HITs were created and pub-
lished on the AMT marketplace to be visible to Workers, corre-
sponding to the four types of shafts and the other four mechanical
components as aforementioned. In the current implementation,
400 assignments were successfully published for each category
of the mechanical components (100 for each of the 4 HITs of
shafts (100x4) and 400 for each of the other 4 HITs). Within a
single HIT, every assignment featured the same image with its
dimensional information. According to the rules of AMT, once
a participant completes an assignment within a HIT, they can-
not work on the other assignments within the same HIT, thereby
avoiding repetitive responses. An example of an assignment un-
der the HIT for triple-section shafts is shown in Figure 3. Ac-
companying each image, a piece of dimensional information de-
scribing the component is provided. Annotations are included on
each image to highlight key features of the mechanical compo-
nents and clarify the relationship between the dimensional infor-
mation and the component’s features. Furthermore, an example
of a bearing pillow block with a human’s description incorpo-
rating dimension information is provided as a reference to aid
participants in understanding the task’s requirements.

After completing the data collection via AMT, we conducted
a cleaning process for the textual data to ensure the accuracy,
consistency, and relevance of the information provided by the
participants. Approximately 50% of the responses were deemed
to be of high quality. The final dataset included a collection of
textual descriptions: 251 for shafts, 217 entries for nuts, 206
for flanges, 218 for springs, and 231 for gears. After clean-
ing, we replaced the generic dimension information within the
textual descriptions with specific, accurate specifications paired
with the corresponding mechanical components. The integration
of dimension information is expected to significantly enhance the
richness and applicability of our dataset. The statistics of textual
data and representative samples are presented in Table 1.

3.2 CODE GENERATION AND DEBUGGER

We show the pipeline of the Code Generation and Evaluation
processes in Figure 4. The experiment was conducted by utiliz-

TABLE 1.
accompanied with representative examples

Statistics of the textual data collection and cleaning process

Published | Filtered

tasks responses Examples

It is a shaft which have four section. In first it have 14.9mm
length and 15.5mm diameter. In second, it havel2.8mm
length and 21.3mm diameter. In third, it have 20.3mm length
and21.lmm diameter. In fourth it have 25.6 mm length and
2.6 mm diameter.

Shafts 400 251

It is a hexagon nut with an external diameter of 47mm, a

Nuts 400 27 nominal hole diameter of 7mm and a height of 14mm.

It is a Flange which has 124mm diameter and 14mm
thickness with raised face which has 86mm diameter and
16mm bore diameter with 144mm face height.

Flanges 400 206

The spring is a coil with a diameter of 8mm and a pitch of
14mm. It's 46mm long when uncompressed, made of wire
with a 1.5mm radius. It seems strong and flexible, suitable for
many uses.

Springs 400 218

It is a gear which has 6 module and 44 teeth number with face
width is 8.7mm and a bore diameter which is equal to
19.3mm.

Gears 400 231

This is a spring with a coil
radius of 23 mm and is

Generated

constructed from a wire 3D model
with a radius of 0.8 mm. Te_Xt . CADQuery o
The spring features a description 231 P §
uniform pitch of 5 mm PT-4 >
between each coil and has GPT- y/
an overall length of 38 mm API S
when uncompressed. l VS.
CAD e
Sketch || programming (i
code \Jy
SR Nig
Ground truth
3D model

!
——

GPT-4V
API

FIGURE 4. The pipeline for Code Generation and Evaluation

ing the models’ application programming interface (API) and in-
structing them to generate CAD program code via CADQuery.
Other options for CAD programming exist, such as OpenSCAD.
It allows the creation of 3D CAD models using Python within the
software itself and thus cannot be integrated into our automatic
pipeline. On the other hand, CADQuery offers a native Python
package that enables the execution of CAD programming code
with the Python environment, making it a more suitable choice
for our needs. Similar to the generation of GT 3D shapes, we
employed Version 2.3.1 for CADQuery here as well. To interact
with the OpenAl API model, we assign a persona to it, defining it
as an Al assistant specialized in designing 3D objects with Cad-
Query. We initiate the request with a combination of a descrip-
tion and a specific prompt. The given prompt instructs: “Gen-
erate CadQuery code to construct the specified mechanical
component. The code must exclusively utilize CadQuery and
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FIGURE 5. The process of generating CAD program code using GPT
models with a debugger that can iteratively correct the syntax errors (if
any) of the CAD program code. The generated CAD program code will
be fed back to the GPT model in the debugging process.

can not incorporate any other CAD design packages or soft-
ware, ultimately exporting the component as an STL file.”
The resulting CAD program was subsequently converted into 3D
shapes for analysis.

To enhance the quality of the GPT models’ output, we pro-
posed a debugger as shown in Figure 5 integrated with the “for-
ward pass” as described previously. The initial prompts (e.g.,
textual, image, and sketch data) conceivably represent user in-
puts, commands, or parameters that directly influence the code
synthesis mechanism. The “forward pass” ends after executing
the generated CAD program code, no matter if the execution is
successful or not, which is used to test the inherent capability of
GPT models. For the “debugging process,” the code is subjected
to an execution trial to ascertain its functional integrity. In the
event of a successful execution, the process will be terminated.
Conversely, an unsuccessful execution indicates the presence of
syntax errors within the code, requiring the activation of the de-
bugger. Syntax errors encompass a spectrum of programming
language misuse, such as typographical errors to the misappli-
cation of language constructs. The “debugging process” is an
iterative procedure dedicated to the identification and correction
of errors in the code. Both the previous conversation content
(including the user requirements and GPT’s responses) and the
associated error messages are fed to the same API for the “de-
bugging process”. This recursive process is imperative to refine
the CAD program code, ensuring its accuracy and reliability be-
fore finalization.

3.3 EVALUATION

We employed two key metrics to quantify the capabilities
of LLM4CAD: the parsing rate for Capl and the intersection
over union (IoU) for Cap2. The parsing rate metric evaluates
the extent to which the generated CAD program code could be
parsed successfully without errors, acknowledging that generat-
ing error-free code by GPT models is not guaranteed. Upon suc-
cessful parsing, the quality of the resulting 3D shapes is mea-

TABLE 2. Details of the experiment settings

Mechanical
components

Input modality Model Metrics

gpt-4-1106-preview (GPT-4)

Text gpt-4-1106-preview (GPT-4)
3D shapes + debugger*
*  Shaft (4 types)
Nut Text Parsing rate
Flange Text + sketch gpt-4-1106-vision-preview (GPT-4V) and TIoU
Spring

i
Gear Text + image

gpt-4-1106-vision-preview (GPT-4V)
+ debugger*

Text + sketch +
image

*: Debugging times =3

sured against the GT shapes by calculating the IoU, thus pro-
viding a quantifiable measure of the generation accuracy relative
to the input modality. The IoU metric, a critical measure of ac-
curacy, quantifies the overlap between the generated shape and
the GT shape as a ratio of their intersection to their union. This
metric is widely used and particularly insightful for evaluating
the geometric fidelity of the generated designs relative to the GT.
Given our focus on the geometry of the generated shapes rather
than their positions within a given space, we implemented a pre-
step to align the principal axes of the generated shapes with those
of the GT shapes by rotation and translated the generated shapes
to align their centroids with those of the GT shapes. This trans-
formation process ensures that the calculation of IoU is based
only on the geometric accuracy of the shapes, excluding any dis-
crepancies that might arise from their positioning or orientation.

4 EXPERIMENTS AND RESULTS
In this section, we introduce the details of the experiment
and the results.

4.1 EXPERIMENT DETAILS

The details of our experiment settings are outlined in Ta-
ble 2. We conducted a comparative analysis between GPT-4
and GPT-4V. The API models “gpt-4-1106-preview” and “gpt-
4-1106-vision-preview” were employed for GPT-4 and GPT-4V,
respectively 4. These represented the most up-to-date versions
of the API available at the time of our study. While GPT-4 ac-
cepts only textual input, GPT-4V can process both textual and
rasterized data inputs. We explored various modalities and com-
binations thereof as inputs for the GPT-4V model. In theory,
there are other possible input modes (such as sketch only and
sketch + image). However, they do not provide dimensional in-
formation from the textual descriptions for the GPT models and
cannot fulfill our objective of conducting a quantitative compari-
son between the generated 3D design objects and their GT coun-
terparts. As a result, our selection was strategically narrowed

“https://platform.openai.com/docs/models/overview
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FIGURE 6. Results of the parsing rate for the five categories of shafts,
nuts, flanges, springs, or gears. (a) GPT-4 VS. GPT-4 + Debugger with
text-only input; (b) GPT-4V model; (c¢) GPT-4V + Debugger.

down to input modes that include textual descriptions, ensuring
the necessary dimensional data is available for accurate analysis
and comparison. In both scenarios, we first assessed GPT mod-
els’ inherent capabilities, followed by the implementation of the
debugger to evaluate its effectiveness in improving model perfor-
mance. Specifically, we limited the debugging process to three
times in the current study.

4.2 RESULTS

In this section, we present the results of the parsing rate
and IoU. Additionally, we show examples to qualitatively com-
pare the generated 3D design objects with their corresponding
ground-truth (GT) shapes.

4.2.1 RESULTS OF THE PARSING RATE Figure 6
shows the results comparing the parsing rates of the GPT-4 and
GPT-4V models in various categories of mechanical components
with or without the debugger. The average parsing rate values of
both models are also annotated in the figure. Overall, there is a
variance in model performance relative to the complexity of the
mechanical components being parsed. Both models demonstrate
higher efficacy in generating code for simple geometries, such as
shafts, nuts, and flanges, than complex geometries (e.g., springs
and gears).

Figure 6 (a) details the performance of the GPT-4 model
when processing text inputs. It is observed that the inclusion of a
debugger significantly enhances the model’s parsing rate. In Fig-
ure 6 (b), the analysis extends to the GPT-4V model dealing with
multiple input modalities, including text-only, text with sketch,
text with image, and a combination of text, image, and sketch.
In terms of the average parsing rate, the GPT-4V model achieves
its highest performance with the text-only input mode, while the
results are relatively consistent across the other three input types.
For each category of the mechanical components, the text-only
input achieves the best in shafts, nuts, and flanges. However,
when dealing with more complex geometries (e.g., springs and
gears), multimodal input modes are better than or as good as the
text-only input. For example, the input of text with image is the
best in springs, and the input using a combination of text, sketch,
and image achieves the best in gears. Figure 6 (c) mirrors the
trend observed in the GPT-4 model, demonstrating an improved
parsing rate with the introduction of a debugger, but the differ-
ence in the parsing rate across the four input modes is reduced.
The input of text with image is the best for gears. For the other
four components, the multimodal input modes are as good as the
text-only input.

A comparative analysis focusing on text-only inputs be-
tween the GPT-4 and GPT-4V models indicates a significant dif-
ference in performance. Specifically, the GPT-4V model exhibits
a superior average parsing rate (0.543) compared to its GPT-4
counterpart (0.498). However, this advantage diminishes upon
the integration of a debugging process (0.707 for GPT-4 VS.
0.706 for GPT-4V).

4.2.2 RESULTS OF THE INTERSECTION OVER
UNION Figure 7 shows the performance evaluation of the
GPT-4 model, presenting (a) an overview of the average per-
formance and (b) a detailed breakdown of the performance by
component category. In terms of overall performance shown in
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FIGURE 7. Results of IoU of (a) the overall performance and (b) the
category-specific performance of the GPT-4 model

Figure 7 (a), there is a significant decrease in the average IoU
upon inclusion of the debugger with a statistical analysis (P-
value<0.01 obtained from an independent T-test). On the other
hand, when examining the performance across specific compo-
nent categories in Figure 7 (b), the P-values are 0.85, 0.17, 0.16,
0.06, and 0.09 for shafts, nuts, flanges, springs, and gears, re-
spectively. While no significant difference is detected, the re-
sult indicates marginal significant differences (P-values<0.1) for
springs and gears.

Figure 8 (a) provides a comprehensive summary of the GPT-
4V model’s overall performance across distinct input modalities.
A one-way ANOVA is applied to the GPT-4V results, revealing
a statistically significant difference (P-value < 0.01) between the
different input modes. Subsequent pairwise comparisons were
conducted using Tukey’s Honestly Significant Difference test
to pinpoint the specific modalities that exhibit significant dis-
crepancies. The analyses indicate that the text-only input mode
achieved higher IoU values compared to the other three input
modes. This trend persists after integrating a debugger into the
GPT-4V model, further solidifying the text-only mode’s superior
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Text + Image

0.8 X
0.6 .
2 2
K] 8
0.4 .
0.2+ .
0.0 X

GPT-4V GPT-4V
a)
Text+Sketch - Shafts

+ Debugger (
Text
- Nuts
054 = Flanges
= Springs
oo - Gears
3
3
0o
02
e
GTav o v GeLav
+ Debugger
Text+image Text+ Sketeh+image

rrav
+ Degger
s
06
2
04
024
00k
orTav ety ey ey
+ Dabugger ( ) + Dabugger

FIGURE 8. Results of IoU of (a) the overall performance and (b) the
category-specific performance of the GPT-4V for four input modes

Text + Sketch + Image

mu

GPT4V GPT-AV
+ Debugger

b

Shaft Nut Flange

Ground ﬂ
Truth T e

@ <

FIGURE 9. Examples of flawed geometry generated by the GPT-4V
model
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performance. Furthermore, when evaluating the impact of the de-
bugger for each input mode, significant differences are observed
between GPT-4V and GPT-4V + Debugger (all P-values < 0.05
using an independent T-test), suggesting that the introduction of
the debugger may inadvertently affect the precision of generated
3D design objects. Figure 8 (b) shows that the most significant
adverse effect caused by the debugger seems to be in the cate-
gory of gears. Despite the clear impact observed, the statistical
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analysis did not identify significant differences, primarily due to
the limited number of resultant shapes. This issue arises from
the low parsing rate associated with gears, limiting the power of
statistical analysis.

A comparative analysis between the GPT-4 and GPT-4V
models focusing on text-only inputs indicates the GPT-4V model
exhibits a significantly higher IoU score compared to GPT-4 (P-
value<0.01). This trend persists even when a debugger is incor-
porated (i.e., GPT-4 + Debugger VS. GPT-4V + Debugger).

4.2.3 QUALITATIVE RESULTS Figure 9 presents a
sample of the flawed geometries generated by the GPT-4V model
within five distinct component categories compared to the GT
shapes. For shaft components, the issue is the exclusion of multi-
ple shaft sections. In the context of nuts, the prevalent error con-
sists of producing a circular nut instead of the specified hexago-
nal configuration. This issue could stem from the GPT models’
limitations in generating CAD programs that require a sequence
of precise operations. For instance, forming a hexagon needs six
distinct steps involving the “Line” operation, with a specific an-
gle between each segment. This process demands a high degree
of accuracy and an understanding of geometric principles that
may be difficult for GPT models to replicate. In contrast, GPT
models may find it much easier to utilize a “Circle” operation
to create the base shape so they “slept on the job.” For flanges,
the geometric fault is the omission of the flange’s borehole. In
the case of springs, the error commonly observed is the improper
formation of the helix. Similarly, gears exhibit an issue similar
to that of the flange components, characterized by the loss of the
borehole.

The results highlight the models’ current limitations in han-
dling tasks that require detailed procedural generation and a deep
understanding of spatial relationships. They might intentionally
return incorrect CAD programs due to difficulty returning the
correct ones. Improving their capability to accurately execute
complex sequences of operations such as those needed for de-
tailed CAD modeling remains an area for further development.

5 DISCUSSION

Based on the observations of the results, we extend our dis-
cussion to three aspects: 1) the effects of multimodal input for
GPT-4V; 2) GPT-4 VS. GPT-4V; and 3) the effects of the debug-
ger in 3D CAD generation. Furthermore, we acknowledge the
limitations of our study and propose potential avenues for future
research.

5.1 EFFECTS OF MULTIMODAL INPUT FOR GPT-4V
5.1.1 EFFECTS ON IOU For the IoU outcomes of
GPT-4V shown in Figure 8, the statistical analyses reveal

that the text-only input mode outperforms the other three
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TABLE 3. Summary of the parsing rate and IoU for GPT-4 and GPT-
4V models using the text-only input

GPT-4 VS. GPT-4V

(Average across five categories)

Parsing rate IoU

Inherent capability 0.50 VS. 0.54 (0.59£0.35) VS. (0.681+0.32)

Enhanced capability

with the debugger 0.71VS. 0.71

(0.5340.37) VS. (0.60+-0.36)

modes with input modalities of text+sketch, text+image, and
text+image+sketch. This trend was also observed for the integra-
tion of the debugging process, further underscoring the superior
efficacy of the text-only input mode. This observation challenges
our assumption on multimodal machine learning (MMML) that
integrating various input modalities enhances the predictive ca-
pabilities of the ML models. The possible explanations for this
result may be based on the following three aspects.

First, the simplicity of text-only data might help reduce com-
putational burden and noise, leading to more efficient processing
and accurate results. On the one hand, this implies that, un-
der certain conditions, the advantage of multimodal might be
negated by the associated data complexity. On the other hand,
it implies that textual descriptions, especially those that include
dimensional information, can provide substantial and adequate
information for the GPT-4V model to “comprehend” the design
requirements of mechanical components. Second, the hypothesis
that integrating various input modalities could improve the pre-
dictive performance of machine learning (ML) models may be
contingent upon how relevant the information from these modal-
ities is to the design target, how precise it is, and how well the
model can interpret the data. In our study, it is possible that the
GPT-4V model mistakenly processed information from images
or sketches. In fact, we undertook qualitative analyses, examin-
ing 10 images of each mechanical component through the GPT-
4V APIL These experiments revealed occasional misinterpreta-
tions, such as recognizing a three-section shaft as a two-section
shaft. Third, it appears that the GPT-4V model is naturally more
proficient at processing textual data than image data. This is par-
ticularly true in tasks that require precise spatial localization and
perspective relationships. For example, GPT-4V often generates
a tapered spring due to the effect of perspective in the rendered
image. This suggests a possible limitation in the model’s abil-
ity to accurately interpret renderings of mechanical components
compared to its success with more commonly represented objects
such as humans or vehicles [35].
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5.1.2 EFFECTS ON PARSING RATE Similar to the
IoU outcomes, the text-only input mode surpasses the three mul-
timodal input modes in terms of average parsing rate. However,
this trend diverges when examining results specific to different
categories of mechanical components. For more complex me-
chanical geometries (e.g., springs and gears), multimodal inputs
demonstrate an advantage, either matching or exceeding the per-
formance of text-only input. For instance, the text+image in-
put is the best for springs, but text+sketch+image turns out to
be the most effective input for gears. This emphasizes the value
of incorporating visual information alongside textual data in im-
proving the model’s efficiency in parsing complex geometries.
With the addition of the debugger to the GPT-4V model, the in-
put of text with image achieves the best result in parsing gears.
In contrast, for the remaining four components, the efficacy of
multimodal inputs aligns closely with that of text-only input.
This observation indicates the debugger’s potential to amplify
the model’s proficiency in utilizing visual data, particularly in
handling complex geometries.

5.2 GPT-4VS. GPT-4V

The results of our experiments revealed the advantage of the
GPT-4V model over the GPT-4 model in processing text input,
both for the inherent and enhanced (i.e., with the debugger) ver-
sions, in the generation of 3D CAD models. This superiority is
evidenced in terms of a higher parsing rate and IoU scores, as
summarized in Table 3. According to the GPT-4V system card,
OpenAl’s official evaluation report of GPT-4V [3], GPT-4V is
built upon the GPT-4 architecture as quoted here: “As GPT-4
is the technology behind the visual capabilities of GPT-4V, its
training process was the same.” Furthermore, the API models for
both GPT-4 and GPT-4V utilized in our study share an identi-
cal knowledge cutoff date of April 2023. Given that GPT-4V is
designed to accommodate visual inputs alongside textual data,
its performance in processing text is anticipated to be compara-
ble to that of GPT-4. Nonetheless, the reason for the observed
performance differences is unclear at this stage. In addition, the
absence of comparative studies in the literature specifically ad-
dressing the text-processing capabilities of GPT-4 and GPT-4V
underscores further research’s need to clarify these differences.

5.3 EFFECTS OF THE DEBUGGER

Figure 6 demonstrates that the integration of the debugger
enhances the parsing rates for both GPT-4 and GPT-4V mod-
els, underscoring the debugger’s efficacy in iteratively correcting
syntax errors within the generated CAD program codes.

However, this enhancement in parsing rate comes at the cost
of the reduction in IoU values for both models, as detailed in Fig-
ures 7 and 8. This decrease suggests that the GPT models used
with a debugger may prioritize the correction of syntax errors
and compromise on accurately fulfilling the design requirements.
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This hypothesis is supported by our qualitative experiments with
the ChatGPT Pro version which is built on the GPT-4 model. We
observed instances where, in the process of debugging syntax
errors, ChatGPT prioritized correcting the CAD program code
over sticking to the design requirements despite having access
to the entire conversation history. This resulted in an oversim-
plification of the code, which may ultimately lead to incorrect
geometry (e.g., generating a round nut for the required hexago-
nal nut). Addressing this limitation requires future research to
improve the debugger’s functionality to balance between syntax
correction and simplification.

While the debugger presents a viable strategy for GPT
model enhancement, alternative approaches, including model
fine-tuning and the incorporation of function calls, could be po-
tential ways to advance the application of GPT models in 3D
CAD generation. Model fine-tuning is to adjust a GPT model
by further training it on a specialized dataset, such as the multi-
modal CAD dataset proposed in this study, to enhance its ability
to perform 3D CAD generation. In addition, function calls in-
volve generating output by calling existing functions (e.g., the
Python class for creating a shaft) to create 3D shapes.

5.4 LIMITATIONS AND FUTURE WORK

In this study, we evaluated five representative categories of
mechanical components with different geometric complexities.
Although the insights gained from the current synthesized dataset
are valuable, we acknowledge that the sample size is relatively
small compared to the wide array of mechanical components.
To obtain an in-depth understanding of the role that multimodal
LLMs play in the generation of 3D CAD models, an expansion of
the CAD dataset is essential. It is also critical to note that designs
often consist of interconnected components in the form of assem-
blies rather than individual components [39,40]. This requires
improvements in the current data synthesis pipeline, specifically
the inclusion of additional categories of CAD models and the
capability to synthesize system design objects. Lastly, the ex-
amination of additional CAD programming languages, such as
OpenSCAD and Fusion 360 Python API, as well as other LLMs,
such as Google’s Gemini, will help gain more comprehensive
views on the capability of multimodal LLMs in CAD generation
of 3D shapes.

6 CONCLUSION

This study is motivated by answering two research ques-
tions: 1) To what extent can multimodal LLMs generate 3D de-
sign objects when employing different design modalities or a
combination of various modalities? 2) What strategies can be
developed to enhance the ability of multimodal LLMs to create
3D design objects? Therefore, we first developed an approach
to enable multimodal LLMs in 3D CAD generation. Then, we
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studied the performance of the GPT-4 and GPT-4V models with
different input modalities, including the text-only, text+sketch,
text+image, and text+sketch+image data.

Both GPT-4 and GPT-4V showed significant potential in the
generation of 3D CAD models, especially with the enhancements
enabled by a debugging process. Additionally, in our GPT-4V
experiment, we tested four input modes: text-only, text with
sketch, text with image, and a combination of text, sketch, and
image. Surprisingly, GPT-4V’s performance with text-only in-
put surpassed that of the other three multimodal inputs on aver-
age. This observation challenges the common belief in MMML
that incorporating varied input modalities always improves a ma-
chine learning model’s predictive accuracy due to increased in-
formation for learning and inference. However, when examining
category-specific results of mechanical components, while the
same trend is still observed for geometric accuracy, multimodal
inputs start to gain prominence with more complex geometries
(e.g., spring and gears) in the successful parsing rate of the gen-
erated CAD programs.

From these observations, we see that the current multimodal
LLMs are still limited in handling multimodal inputs when ap-
plied to LLM4CAD. However, the insights from the category-
specific results indicate that multimodal LLMs have potential
benefits in real-world design scenarios characterized by com-
plex objects, although it remains challenging for them to gen-
erate complex design objects. Improving the capability of these
models to process diverse input modalities and proposing strate-
gies to improve their capability to handle complex design objects
are promising research avenues.

To further address the two RQs posed and achieve a com-
prehensive understanding, future studies should broaden the re-
search scope to include a more diverse dataset featuring more
complex 3D design objects. Strategies, including model fine-
tuning and the integration of function calls, to enhance the utility
of multimodal LLMs for CAD are worthy to explore. More-
over, while this study focused on the CAD generation of 3D
shapes during the conceptual design phase, future research can
explore other stages of the engineering design process, such as
customer needs analysis, design evaluation, and manufacturing.
This will contribute to a deeper understanding of how LLMs,
particularly multimodal LLMs, can be employed to facilitate the
overall engineering design process, thus making contributions to
advanced design methodologies for human-centered generative
design [41].
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