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gion in the United States caused delays in. winter wheat emergence and poor crop growth. Using an integrated
approach, we quantitatively unraveled a 37% reduction in. wheat production as being attributable to both per-
harvested acre yield loss and severe crop.abandonment, reminiscent of the Dust Bowl years in the 1930s. We used
random forest machine learning and game theory analytics to show that the main driver of yield loss was spring
drought, whereas fall drought dominated abandonment rates. Furthermore, results revealed, across the US winter
wheat belt, the La Nifia phase of the El Nifio. Southern Oscillation (ENSO), increased abandonment rates compared
to.the.El Nifio. phase. These. findings. underscore. the. necessity. of simultaneously addressing. crop. abandonment
and.yield decline. to. stabilize. wheat production. amid. extreme. climatic conditions and provide. a holistic under-

standing of global-scale ENSO dynamics.on wheat production.

INTRODUCTION
Global wheat production faces a challenge due to. the ongoing con-
flict between. Ukraine and Russia, which has resulted in a 60%. re-
duction in wheat trade and, consequentially, a 50%. surge in wheat
prices. (1, 2).. In response to. this. crisis, the United States, which is
recognized as the “wheat breadbasket of the world,”. expanded its
acreage of winter. wheat by. 11%. during 2022/2023. compared to. the
previous. year. During this period, the US. wheat heartland encoun-
tered. an. unforeseen. and unprecedented. challenge. from. extreme
weather events. In the fall of 2022 (August to. October), most states.
in the US winter wheat belt, including Texas, Oklahoma, Kansas,
Colorado, and Nebraska, experienced a substantial precipitation
deficit (Fig. 1A). This. drought was. particularly. detrimental in
Kansas, known as the “wheat state,” which produces.the. most winter.
wheat in the United States. (3). In the past 40. years. (1981 to. 2020),
Kansas. produced 359 million bushels of winter. wheat per. year. on
average, representing 23%.of the US.total. In 2022/2023, Kansas had
a record-setting precipitation deficit dating back to. 1896. (Fig. 1, A
and B), with the amount of precipitation falling to. 84 mm, 60%.be-
low. the average between 1981 and 2010. Similar. precipitation pat-
terns and dryness rankings were observed across the entire US. winter.
wheat belt (Fig. 1A).

Such an extreme drought affected winter. wheat emergence,
growth, and development, leading to. the latest emergence date. and
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the second-longest duration between planting and emergence dates
in the past 40 years, which covers all available historical data (Fig. 1C).
These adverse conditions dually compromised both establishment
and growth. Furthermore, crop. growth conditions in the first week of
November 2022 were the poorest on record over the period from
1987 to.2023 (Fig. 1D). The severe drought conditions persisted into.
the spring of 2023 (Fig. 1, A, B, and D), further hampering growth
and tillering. In Kansas, the extreme lack of precipitation in the fall
and spring resulted in large portions of winter wheat to emerge in late
spring rather. than in early fall, shortening the period of crop. devel-
opment and compromising the crop’ yield potential. Using combina-
torial analytics, the extreme climatic conditions encountered during
the 2022/2023 growing season presented a unique opportunity. to
understand how such events converge to influence winter wheat
production.

Despite increasing research efforts, the quantitative linkages
between extreme climatic change and wheat production remain
ambiguous. Annual wheat production equals the product of per-
harvested acre yields and harvested acreage (4). Both production
components can theoretically be affected by climate variability and
climate change. Most studies have focused on how in-season climat-
ic factors, such as overall growing-season warming (3, 5), extreme
in-season temperatures (6, 7), and crop-seasonal droughts (8, 9), af-
fect wheat yields. However, these studies may bear uncertain impli-
cations for estimating production variability because the far-reaching
impact of climate extends beyond in-season effects and also beyond
mere reductions in crop. yields (8, 10-12). Specifically, crop. aban-
donment, defined as the difference between planted and harvested
area normalized to the planted area (13), contributes to market vola-
tility. (14), global food insecurity. (15), and greater crop insurance
claims, which have been overlooked in many studies (9, 16). Recent
studies have explored the relationship. between climate variability.
and crop abandonment; the results of which are typified by crop fail-
ure (10), a decrease in harvested ratio. (the ratio. of harvested area to.
planted area) (17, 18), and changes in crop. frequencies (number of
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Fig. 1. Driestrankings.in.the United States over. 128 years and the 2022-2023 winter wheat growth conditions in the wheat state of Kansas. (A) Rankings. (driest).
of accumulated. precipitation. (Prcp). during. August to. October 2022 and. March to May. 2023 over the past 128 years (1896 to 2023; harvested years). KS, Kansas. (B) Pre-
cipitation.anomalies.during. August.to.October.and March.to.May. with.the. base.period of 1981 to 2010 in Kansas. (C) Wheat phenological statistics of emergence date [day.
of year. (DOY)] and duration. between. planting. and emergence. dates. (days). from 1982 to 2023. (D) Wheat growth conditions (%) in early November (first week) and late
May. (fourth.week). from. 1987_to. 2023_The boxes.delimit the 25th.and.75th. percentiles; whiskers.indicate 5th and 95th percentiles; and vertical black lines represent the
50th. percentile. Red.solid circles.in.(B).and. vertical lines.in. (C). and.(D) are for the 2023 harvest year.

crops harvested per growing season). (19).. For example, normal
temperatures. or. precipitation tend to. increase the harvested ratio,
while extreme climate conditions. cause it to.decrease, particularly.in
maize and soybean (18). Consequently, relying solely.on per—harvested
acre wheat yield as a gauge of production variability can cause un-
certainty. when estimating the impact of climatic variability on
wheat production. To bolster. global food security. (20), it is.impera-
tive to. integrate crop. abandonment data into. that of wheat yields
when assessing production declines that are attributable to extreme
weather events and climatic changes.

The occurrence of an unprecedented drought in Kansas during
the 2022/2023. preseason and growing season, along with the. avail-
ability of long-term data on wheat production in the state dating back
to. 1926, allowed us to.explore the underlying mechanistic impacts of
extreme climatic events. on variability of wheat production. Using a
random forest (RF). regression model (21), we provide quantitative
evidence of 2023. production loss. resulting from both crop. abandon-
ment and yield variation and compared that to the winter wheat pro-
duction loss.in both the decade of the Dust Bowl (i.e., 1930s), which
was marked by.the most prolonged and severe drought in modern US,
history. (22, 23), and the latest decade between 2013. and 2022. We
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then quantitatively disentangled the climatic drivers underlying the
extreme events that caused the extreme crop. abandonment and yield
losses by integrating the RF. model with a game theory. tool (24). Our.
objectives were. to. understand the impact of preseasonal and in-
season droughts on winter wheat production including crop. aban-
donment and yield losses per se. Considering the widespread influence
of the El Nifio Southern Oscillation (ENSO). on fall precipitation in
the US winter wheat belt (25, 26) and high predictability. of larger
amplitude ENSO events (27, 28), we simultaneously explored the po-
tential connections between ENSO. phases and crop abandonment
that might benefit predictive crop monitoring and early warning sys-
tems. (29) in the US winter wheat belt.

RESULTS AND.DISCUSSION

Attributions of losses in winter wheat production

The observational data revealed that abandonment of winter wheat
was the most severe during the 2022/2023 growing season in Kansas
since the Dust Bowl era in 1930s, the exception being the year of
1951 (Fig. 2A), with an abandonment of 29%, amounting to.951,011 ha.
This severity. of abandonment mirrors that of the broader US winter.

20f8

9707 ‘LT Arenuef uo S10°20ua10s' mamm//:sdny wouy papeoumoq



SCIENCE. ADVANCES | RESEARCH ARTICLE

A (o4
= Abandonment-driven
%’60 r=089 . -101°  -99" 97" g5
@ 40 | |
£ 30 60 [
S 39 ||
S o0
e F30 ag°
s ] Lo 37
= . .
§ 0 . Yield-driven
3 40°[
i=]
:-—1 - 39°
i=)
© r=0.96 |
o ' ' ' - 38’ —
19261940 1960 1980 2000 2023
E 0 Years 37°
) [1Dust Bowl decade o i Total
g 30| mELatest decade  © o 40 [
€ 201 —2023 ° .
S 101 39
c
B0 ke
Qo
T
o ° s
a-20 S 37
(] -
S0 o M e ———
k) 1935 e
2401 i 60 -45 -30 -15 0 15 30

Abandonment Yield Total

-driven -driven

Relative production changes in 2023 (%)

Fig. 2. Climate-driven changes.in production attributed to.crop.abandonment and yields. (A) Observed time series for both crop abandonment and yield anomalies.
for.Kansas.(KS).and.the United States.winter.wheat belt (US).including.Nebraska, Colorado, Kansas, Oklahoma, and Texas. (B) State-level relative climate-driven production
changes. due to.changes.in. abandonment and yields. during. the. Dust Bowl decade (1931 to. 1940), latest decade (2013 to 2022}, and year 2023. The relative production
changes. are expressed.as production. changes. relative to average production. during 1981 to 2010. The boxes delimit the 25th and 75th percentiles, and the horizontal
black lines.represent the 50th. percentile. (C). County-level relative production. changes due to changes in abandonment and yield in the year 2023.

wheat belt, in which 2022/2023. recorded the highest level of aban-
donment since the middle of the Dust Bowl period (Fig. 2A). Such
pronounced abandonment can be attributed to. delayed emergence,
adverse crop. developmental conditions. (Fig. 1, C and D), and di-
minished yield prospects. These unfavorable outcomes. ultimately.
compelled farmers. to. leave. their. crops unharvested. Similarly, we
also found a large yield loss in Kansas. (Fig. 2A), with a decrease of
0.52 tonnes ha™" compared to. the expected yield, equivalent to. 22%.
of expected yield (see Materials and Methods).

To. quantify. the impact of extreme climate during the 2022/2023
growing season on changes in abandonment and yields, we used an RE
regression model. This model captured preseasonal and in-season tem-
perature and precipitation variations as well as wheat price fluctuations
(see Materials and Methods and fig. S1). We then assessed the severity.
of wheat production losses. in the 2022/2023. growing season. by. com-
paring them with those during both the decade of the US Dust Bowl
(1931 to. 1940). and the most recent decade (2013 to. 2022). All results
were expressed as a percentage relative to. the estimated average produc-
tion driven by historical climate records (1981 to 2010). We found that
climatic extremes during 2022/2023. resulted in a 37%. loss in wheat
production compared to. average production during the period of 1981.
t0.2010. This loss was the greatest for any year throughout the most recent
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decade as well as that of the Dust Bowl era, with the sole exception of
1935 (Fig. 2B). The 2023 production losses were not merely due to yield
decline per se, contributing to a 21% wheat production loss, but also to.
crop. abandonment (Fig. 2B). The 16% production losses from crop.
abandonment in 2022/2023 are noteworthy because they. are compara-
ble to the losses caused by extreme drought during the Dust Bowl era.
During that historical period, three-quarters of the average production
loss of 14% was attributed to crop abandonment, while the remainder.
(one-quarter) was due to yield reductions per se (Fig. 2B). The role of
crop. abandonment in influencing crop production was also under-
scored in maize and soybean (I8). Generally, crop. abandonment
showed a nonlinear response to temperature and precipitation. How-
ever, crop.abandonment in maize and soybean is more sensitive to tem-
perature (18), whereas wheat abandonment displays greater sensitivity.
to. precipitation (fig. 52). To. provide perspective, during the decade of
the Dust Bowl, production losses due to changes in abandonment were.
much larger than losses resulting from changes in yield. In contrast,
during the most recent decade, production losses caused by changes
in yield were larger than those caused by changes in abandonment
(Fig. 2B). In addition, we showed the comparison of observed and esti-
mated abandonment, which augmented the credibility. of our find-
ings (fig. S3). To test the robustness of the findings, we also used two.
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alternative models with different sets of predictors (figs. S4A and S5A).
Last, we showed the spatial distribution of climate-driven production
changes in 2023, attributable to. changes in crop.abandonment and per-
harvested acre yields (Fig. 2C). The southwest regions. of Kansas exhib-
ited the substantial production loss attributed to crop. abandonment,
whereas the. central regions experienced severe. decline. in. production
due to. yield loss (Fig. 2C), aligning with regions affected by. severe.
spring drought (Fig. 1A). Overall, both crop. abandonment and yield
loss contributed to. an average production. decline of 50%. across. the.
central and western regions (Fig. 2C). A recent study. (17). found that,
on average, the projected future climate change by midcentury. (2034 to.
2065). does not significantly. increase production loss through crop.
abandonment relative. to. historical averaged climate. Consequently; it
was. suggested that neglecting crop. abandonment as. a factor. in fu-
ture production levels would not substantially influence estimation of
climate-driven production losses. However, the calibration period used
in this study was relatively short and did not include most of the notable
droughts of the past. Given the crucial role of crop. production variabil-
ity in. maintaining food stability. (8). and the impact. of crop. abandon-
ment on production loss. (Fig. 2, B.and. C), we encourage consideration

of crop abandonment when estimating impact of climate variability on
crop. production, especially during extreme drought years. This addi-
tional measure could aid policy makers in devising effective risk man-
agement strategies and adaptation interventions.

Drivers for extreme abandonment and yield loss

We subsequently disentangled the underlying deleterious climatic
conditions that led to. both extreme wheat abandonment and the ex-
treme yield loss, defined as events above the 90th percentile and be-
low. the 10th percentile, respectively, across all years (1926 to. 2023).
for each of the 105 counties in Kansas. The 10th and 90th percentiles
were also selected for determining climatic extremes, including low.
and high precipitation as well as cold and warm temperature events.
When we embedded a game theory. tool [Shapley additive explana-
tions (SHAP)]. (24) into the RF regression model (Materials and
Methods and Supplementary. Text), our results illustrated that pre-
seasonal fall precipitation (August to October) was the most impor-
tant climate variable in relation to. the extreme wheat abandonment
globally, whereas spring precipitation (March to. April) played a piv-
otal role in the extreme yield loss (Fig. 3, A. and B). Specifically,
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Fig. 3. Climate drivers.of extreme abandonment and extreme yield losses. (A) Importance (SHAP values) of climate variables during county-years of extreme aban-
donment ordered from. greatest to least important. (B). Same as. (A) but during county-years of extreme yield losses. (C) Influence of the precipitation (Prcp). during August
to October.(the mostimportant variable.on.extreme abandonment). Circles. are sample points for county-years of extreme abandonment. Black solid line is the fitted line,
and.shaded area around the solid line indicates 95%. confidence interval. (D). Same as (C) but for influence of the precipitation during March to April (the most important
variable on extreme yield losses). (E). The width. (or numbers). of the.chords.indicates the fractions. (%) of area that suffered extreme abandonment (total 75%). driven by
primary.climatic extremes. (low.and high. precipitation. and cold.and warm.temperatures) across Kansas from. 1926 to 2023. Black dashed lines highlight the most primary.
climatic drivers. (F).Same.as.(E) but for. fraction.of the area that suffered extreme yield losses (total 74%).
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abandonment rates exhibited a nonlinear response to. fall precipita-
tion, especially with deficits. in fall precipitation correlating to higher.
abandonment rates. (Fig. 3C). Conversely, spring precipitation deficits
were associated with the occurrence. of extreme yield loss (Fig. 3D).
Last, we estimated the primary climate extreme driving severe aban-
donment and yield loss. (fig. S6 and Supplementary. Text).. We. found
that climatic extremes were. the. primary. factors.in. 75.and 74%. of the
areas. that suffered severe abandonment and yield loss. across. Kansas.
from. 1926. to. 2023, respectively. (Fig. 3, E. and F). In addition, ex-
tremely. low. wheat prices. (  10th. percentile). accounted. for. 6.6%. of
the areas that experienced severe abandonment (fig. $6). We also.
found that drought in March to. April was. the primary. factor. in 19%.
of the areas of extreme yield losses (Fig. 3F). In contrast, abandon-
ment was predominantly. triggered by fall drought events, which con-
tributed 24%.to. the severe abandonment area (Fig. 3E). Moreover, the
excessive. precipitation in May. was. associated with both extreme
abandonment and yield loss, which is consistent with another study.
estimating climate-driven crop.failure in the United States. (10). These.
results. were. consistent. with. those. based on. two. alternative. models
(figs. $4, B.and C, and S5, B.and C). The role of spring and early. sum-
mer. drought, which is. critical for. grain filling and yield formulation,
has been extensively studied (3, 30). We also.found that droughts in
the fall and winter largely contributed to.extreme yield losses. (Fig. 3F),
consistent with another study. (31). To. our. knowledge, however, the
significance of fall drought as a catalyst for. crop. abandonment and
subsequent production losses has not previously. been highlighted.
The impact of fall drought on wheat abandonment can be attributed
to. the fact that winter wheat is usually sown in autumn, relying on
sufficient soil moisture during this period to. establish seedlings with
robust root systems. that promote healthy. growth. Our study.substan-
tiates. the relationship. between fall precipitation. and both. observed
abandonment rates. (fig. S7). and crop. growing conditions. at the end
of the fall season (fig. S8).

ENSO.teleconnections. on winter wheat abandonment

Droughts in the US winter wheat belt have been confirmed to. be influ-
enced by the ENSO.(25, 32, 33). During La Nifia, which is characterized
by. cooler-than-normal sea surface temperatures (SSTs). in the eastern
tropical Pacific, the US winter. wheat belt tends to. experience fall
droughts (fig. S9), as was observed in the 1930s.(26), potentially leading
to.crop.abandonment. To. explore the direct role of ENSO in explaining
variations. in crop. abandonment, we calculated average anomalies of
crop.abandonment during both El Nifio.and La Nifia phases (see. Mate-
rials and Methods). (34, 35). The statistical significance of the changes
was determined by bootstrapping (n = 10,000). at a 95%. confidence.
level. We found that crop.abandonment was reduced during the El Nifio.
phase across. five winter wheat production states, with a significant
decrease of 3%.on average, ranging from 0.6.to. 5.2%. (Fig. 4A). This is
expected because El Nifio. causes the jet stream to. shift southward and
extend eastward over. southern United States. Conversely, during the
La Niiia phase, crop. abandonment showed a notable increase of 5%,
with ranges between 2.7. and 8.6% across states (Fig. 4A). Except for.
Nebraska, all states exhibited a notable increase in crop. abandonment
during the transition from El Nifio to. La Nifia phase, with variations
observed among states (Fig. 4B). In Kansas, the transition from El Nifio
to. La Nifia phase intensified crop. abandonment by. 9%, equivalent to.
the US.level (Fig. 4B). We further explored the impacts. of ENSO. on
crop. abandonment at a county. level across the US winter. wheat belt
and found that the La Nifia phase significantly increased abandonment
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rates compared to the El Nino phase. The main regions affected by
abandonment were. in western Kansas, the panhandle areas. of
Oklahoma, and western Texas (Fig. 4C), which mirrored the footprint
of Dust Bowl-affected regions in the 1930s (7, 23).

Several studies have suggested the urgent need for a twofold in-
crease in global crop. production by. 2050 in response. to. the growing
population (36). Whether or not we are on track to. double produc-
tion by. 2050 depends on sustainable and improved harvestable crop.
yields (37, 38). Future production. variability in projected climatic
scenarios will be. influenced by the often-overlooked changes in
crop abandonment (Fig. 2), an especially. noteworthy. risk given the
threats of climatic extremes (39, 40).

In sum, our analyses revealed climatic drivers underlying crop.
abandonment and the influence of ENSO dynamics on winter wheat
production. La Nifna events increased the probability of drought
events before planting (preseason) of winter wheat in the US Great
Plains. The extremely dry climate in 2022-2023. that followed nearly.
three consecutive years of La Nifia events provided an opportunity. to.
determine the underlying drivers of climatic extremes that negatively.
affect wheat production. Our study. emphasized both the overlooked
role of crop. abandonment on wheat production in the US winter.
wheat belt and the underlying climate extremes. that drive the two.
components of production loss—abandonment and yield loss. Recog-
nizing that preseason droughts primarily drive crop. abandonment,
farmers could adapt their strategies, such as adjusting planting sched-
ules, selecting drought-resistant cultivars, or investing in water man-
agement strategies tailored for the preseason. These measures can
mitigate the effects of these droughts and stabilize crop. production. It
is also important for policy. makers to design and promote initiatives
encouraging drought mitigation practices for stable food production.

MATERIALS AND METHODS

Data

County- and state-level winter wheat yield, harvested area, and planted
area data were retrieved from the US Department of Agriculture,
National Agricultural Statistics Service (USDA-NASS) for all coun-
ties in Kansas and spanning the years 1926 to 2023. State-level plant-
ing and emergence dates (1982 to 2023) and weekly crop. condition
reports. (1987 to. 2023) were also. collected from the USDA-NASS,
which are the longest length available for the data. Climatic data (pre-
cipitation, maximum temperature, and minimum temperature) from
1895 to 2023 were obtained from the monthly US Historical Clima-
tology. Network maintained by the National Oceanic and Atmo-
spheric Administration (NOAA). The monthly SSTs were taken from
the Met Office Harley Centre Observations datasets (HadISST v1.1).
(41) for calculating ENSO signals based on the Nifio3.4 region (5°N-
5°S, 120°W-170°W). Crop conditions were evaluated using an index
ranging from 0.to 100% (42). The growing season of winter wheat is
generally considered to be September to May in Kansas (7), but we
used climatic data starting in August to capture the effects of climate
in the month preceding planting. We divided the growing season into.
fall (August to October), winter (November to February), spring
(March to April), and early summer (May; wheat grain filling).

Modeling

On the basis of the conceptual framework (Supplementary Text), we
ran two separate RE models to estimate two components of production
losses due to climate variation: the abandonment fraction and
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where PA and HA are the planted and harvested areas, respectively,
in hectares. This expression enables meaningful comparisons.across
different county-years with varying planted areas. Yield anomalies
were calculated as the difference between actual yields.and expected
yields, with expected yields representing the. historical yield trends.
driven. by. agricultural advancements. in. breeding technology. and
crop. management. Thus, a negative anomaly suggests. that yields.are
less. than expected, possibly. due. to. an adverse climate, disease, or.
other challenges. Yield trends were evaluated using a locally. weight-
ed smoothing regression (43). with the standard setting of the func-
tion (fig. $10).

The RE specifications. for abandonment fraction (fab). and yield
anomaly. (AY). are

fabcb}, = Fﬁdmc’},,price},) +e, (1)

Y., =Fklm_,) +e., (2)

where F is an RF. function; clm,,, represents. the climate variables
including monthly. or seasonal maximum temperature (Tx, °C).and
minimum temperature. (Tn, °C), and accumulated precipitation (Prcp,
mm). during four growth periods. for. county. “c”. and year. “y”;. the
detrended price, (inflation-adjusted based on the. consumer. price
index of 2023). by the locally weighted smoothing regression was. in-
corporated into. the “fab”. model to isolate. the effects of price chang-
es on farmers’ decisions to.abandon their. crop; and &, refers. to. the
error. The number. of trees. and the number. of variables. tested at
each node in the RF. model are two. key. parameters (21). To determine
the optimum parameters for each model above, we partitioned 90%.
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of data to the train model and the remaining 10%. of data to. the test
model. Model predicted performance. was estimated by. the. coeffi-
cient of determination (R?) and root mean square. error. (table S1.
and fig. S1).

The REF results were used to estimate climate-driven production
changes from yield and abandonment relative to the historical
climate-driven average production over 1981 to 2010. (ﬁ;;e). for the
Dust Bowl decade (1931. to. 1940), the latest decade (2013 to. 2022),
and the year 2023. The wheat price in the fab model was fixed to. the
average of 1981 to 2010. to. isolate price effects. State-level produc-
tion change (%P') in specific years of interest (e.g., 2023) was. de-
fined as a relative change with respect to. 13;;8

%P = Pfab,}"" PY,}'
J

P base

x 100 (3)

where APf;, and APy, are defined as climate-caused production
changes from the changes in abandonment and in yields, respec-
tively. Details of calculations for these two components are given in
the Supplementary Text.

The climate driver of extreme abandonment or yield loss

Next, we integrated a game theory (SHAP). (24) into the RF. models
(Egs. 1 and 2) to assess the critical climate drivers in extreme wheat
abandonment and yield loss. Specifically, for all instances of extreme
wheat abandonment and yield loss events, we used SHAP. values to.
infer variable importance in the model outcome. (44). SHAP. values
are a machine learning analog of partial regression, quantifying the
relative importance of each variable on the outcome while considering
all other variables in the model. The overall variable importance was.
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determined by. the mean of the absolute value of the SHAP. values,
and the marginal effect of variable with the highest relative impor-
tance was visualized by plotting the covariate versus.the correspond-
ing SHAP. value for each observation. Last, we assessed the. critical
extreme climate drivers. in severe wheat abandonment and yield
losses. (Supplementary. Text).

Robustness.checks

To. ensure. the. robustness. of our. analysis, we. conducted two. checks.
on the RE models. with two. additional. sets. of predictors. First, we.
substituted the precipitation in our preferred RF. models. with the
mean monthly Palmer’s Z-index sourced from the NOAA. The. Z-
index is a measure of the monthly moisture anomaly and reflects.the
departure of moisture conditions from normal moisture conditions
in a particular month (45). Second, because. of the high collinearity.
between mean temperature and extreme hot/cold days, we tested
the fraction of warm days and cold days to.replace the. mean Tx and
Tn in our models to.evaluate our.results.(figs. S4 and S5.and table S1).
Specifically, the. daily. maximum. and minimum. temperatures. were
taken from the daily. Global Historical Climatology Network (GHCN).
and interpolated with a Delaunay. triangulation. method. (46). to. the.
centroid of each county. in Kansas. Then, we defined the fraction of
warm/cold days by. calculating the number. of days with maximum/
minimum temperatures. above/below. the local historical 90th/10th
percentile divided by. the duration of growing season.

Crop.abandonment statistics during ENSO phases

To spatially analyze the impacts. of ENSO. oscillation on crop. aban-
donment, we broadened our coverage to. encompass. the entire US,
winter wheat belt, including Nebraska, Colorado, Kansas, Oklahoma,
and Texas. Data for. planted and harvested areas. at. the county. and
state levels. were. collected from the. USDA-NASS,. and correspond-
ing available years are. provided in table S2. We selected counties
with both more than 50. available years of data and an average har-
vested area (1981. to. 2010). exceeding 5000. ha. We next calculated
averages of detrended crop. abandonment (fab). based on locally
weighted smoothing regression (i.e.,fig. S11).at specific ENSO.phases

2023
fab:’y
y=initial
faby xino, = ————— ENSO>0.5
El Nifio

2023 (4)

fab; 5

—initial
y=initi . ENSO

Jaby; inac = -05

N La Niha

where faby, . -and fab,, ;.  are the average crop abandonment
anomalies in El Nifio.and La Nifa years. (y). for.county.c, respectively;
N refers to year. numbers. of the specific ENSO. phase; and fab’ refers
to.detrended crop. abandonment anomalies. The ENSO. signal here
is defined as.a 3-month running mean after being linearly detrended
and standardized. We specifically. calculated the average ENSO. sig-
nals for Texas and Oklahoma from December to. February and those
for Kansas, Colorado, and Nebraska from August to. October. These
selected periods align with the planting dates. of winter wheat (7)..On
the basis of the same method, the state-level faby, 5, and fab, , ina
were also. calculated. We then calculated the difference of fab. anom-
alies between La Nifia and El Nifio. phases. as

Zhangetal, 5ci.Adv. 10, eado6864.(2024).....31 July. 2024

fub, = fiwby , Nifia,c —fuby, Nilio,c O

Positive (or. negative) values of Afab indicate that the La Nifia phase
exacerbates (or mitigates) crop. abandonment relative to. the El Nifio.
phase. The statistical significance for changes in Afab; were deter-
mined through a bootstrapping sampling procedure (n = 10,000) at
a 95%. confidence level. The mean change for each bootstrap sample
was calculated, and the change was considered statistically signifi-
cant if, in a two-sided t test, over 95%. of the sample means were
consistently smaller or larger than zero.

Supplementary Materials
This.PDF file Includes:

Supplementary Text

Figs. 51t 512

Tables 51.and 52
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