
Yuewan Sun
Walker Department of Mechanical Engineering,

University of Texas at Austin,
Austin, TX 78712

e-mail: yuewansun@utexas.edu

Xingang Li
Walker Department of Mechanical Engineering,

University of Texas at Austin,
Austin, TX 78712

e-mail: xingang.li@utexas.edu

Zhenghui Sha1

Walker Department of Mechanical Engineering,
University of Texas at Austin,

Austin, TX 78712
e-mail: zsha@austin.utexas.edu

Large Language Models for
Computer-Aided Design Fine
Tuned: Dataset and Experiments
Despite the power of large language models (LLMs) in various cross-modal generation
tasks, their ability to generate 3D computer-aided design (CAD) models from text
remains underexplored due to the scarcity of suitable datasets. Additionally, there is a
lack of multimodal CAD datasets that include both reconstruction parameters and text
descriptions, which are essential for the quantitative evaluation of the CAD generation
capabilities of multimodal LLMs. To address these challenges, we developed a dataset of
CAD models, sketches, and image data for representative mechanical components such
as gears, shafts, and springs, along with natural language descriptions collected via
Amazon Mechanical Turk. By using CAD programs as a bridge, we facilitate the conversion
of textual output from LLMs into precise 3D CAD designs. To enhance the text-to-CAD gen-
eration capabilities of GPT models and demonstrate the utility of our dataset, we developed
a pipeline to generate fine-tuning training data for GPT-3.5. We fine-tuned four GPT-3.5
models with various data sampling strategies based on the length of a CAD program.
We evaluated these models using parsing rate and intersection over union (IoU) metrics,
comparing their performance to that of GPT-4 without fine-tuning. The new knowledge
gained from the comparative study on the four different fine-tuned models provided us
with guidance on the selection of sampling strategies to build training datasets in fine-
tuning practices of LLMs for text-to-CAD generation, considering the trade-off between
part complexity, model performance, and cost. [DOI: 10.1115/1.4067713]

Keywords: computer-aided design, multimodal data, large language model (LLM), fine-
tuning LLMs, artificial intelligence, data-driven design, generative design

1 Introduction
Recent advancements achieved by the generative pretrained

transformer (GPT) series of large language models (LLMs) have
shown great potential for artificial intelligence (AI) to interact
with the world [1]. These models exhibit remarkable proficiency
in “understanding” the nuances of human language and thus can
better interact with humans [2].
More recently, the capability of LLMs in processing natural lan-

guage has extended their applications in design research, especially
conceptual design [3–5]. These studies typically use textual infor-
mation to represent design requirements for the generation of
design concepts with LLM. Moreover, incorporating multimodal
datasets, such as combinations of textual and visual data, can
enhance LLMs’ ability to understand and interpret design intent
more effectively.
In conceptual design, many design decisions are made based on

the 3D shape of a product [6]. So, one of the key motivations of
applying multimodal LLMs to conceptual design is to enable
them to generate computer-aided design (CAD) of 3D shapes

(referred to as MLLM4CAD (multimodal large language models
for computer-aided design) hereafter). However, to our knowledge,
while one study conducted qualitative evaluations of MLLM4CAD
using the ChatGPT interface [7], no quantitative evaluation has
been performed to assess the efficacy of MLLM in 3D CAD
generation.
In our previous work [8], we developed a multimodal CAD

dataset and explored the zero-shot capabilities of GPT-4 in generat-
ing CAD programs with different combinations of design modali-
ties. We also introduced a debugging process to improve
performance in the generation of CAD programs for the GPT-4
and GPT-4V models. However, there remains room for further
improvement. To address this, LLM fine-tuning has been identified
as the most promising approach [9]. However, to the best of our
knowledge, there is a lack of existing datasets for LLM fine-tuning
in 3D CAD generation tasks. To overcome this, we expanded our
multimodal CAD dataset (including text descriptions and 2D
images and sketches of mechanical components) by incorporating
fine-tuning data and subsequently used this enriched dataset to
develop a fine-tuned GPT model in support of LLM4CAD tasks.2

With the fine-tuned GPT model, we aim to accelerate the design

1Corresponding author.
Contributed by the Design Automation Committee of ASME for publication in the

JOURNAL OF MECHANICAL DESIGN. Manuscript received August 10, 2024; final
manuscript received January 2, 2025; published online February 27, 2025. Assoc.
Editor: Faez Ahmed.

2At the time of this study, only the GPT-3.5 model was available for fine-tuning. So,
we adopted the “gpt-3.5-turbo-0125” model, but it could only support text as input.
Therefore, this article focuses on fine-tuned LLMs in text-to-CAD model generation.

Journal of Mechanical Design APRIL 2025, Vol. 147 / 041710-1Copyright © 2025 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/147/4/041710/7428715/m
d-24-1560.pdf?casa_token=C

eTU
Kglw

EAgAAAAA:27B2xZdfnvjG
Bv7bbP0SPBxTl1ovt-pm

exlQ
nLtho-O

O
zibQ

b7v55m
---O

LIdrAH
LvxN

qw
Je by U

niversity O
f Arkansas Libraries user on 28 January 2026

mailto:yuewansun@utexas.edu
mailto:xingang.li@utexas.edu
mailto:zsha@austin.utexas.edu
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4067713&domain=pdf&date_stamp=2025-02-27

process of relatively simpler geometries yet with certain customized
features, helping to save time and reduce costs during the initial
stages of design.

2 Background Knowledge
In this section, we introduce the background knowledge of design

modalities, LLMs, and transfer learning.

2.1 Design Modalities and Large Language Models. Design
modalities refer to the use of various data modalities during the
process of product design and development [10,11]. Common
design modalities in early design stages, e.g., conceptual design,
can be categorized into three primary categories: (1) textual data
(e.g., natural language description). This modality encompasses
customer needs and design requirements that are typically repre-
sented and encoded in written or spoken language. (2) 2D visual
data (e.g., sketches, drawings, and images). This modality enables
designers to quickly capture and visualize preferences and ideas
during the conceptual design stage. (3) 3D visual data (e.g., CAD
models): Low-fidelity design concepts and prototypes in the con-
ceptual design stage are commonly represented through 3D
digital shapes, providing a better approximation and representation
of the final design artifact [10]. The integration of these modalities
ensures a richer and more precise representation of design ideas,
highlighting the interconnected nature of data in the design process.
The importance of multimodal data lies in its ability to bridge

diverse forms of representation, fostering a deeper understanding
of complex design challenges. By combining textual, 2D visual,
and 3D visual data, designers can explore a broader design space
and communicate ideas more effectively. Recent advancements in
AI have introduced opportunities to leverage such data through
models capable of processing and learning from multiple modalities
simultaneously. These advancements not only enhance the fidelity
of design representations but also open new avenues for automation
and optimization in conceptual design workflows. Multimodal data-
sets thus play a critical role in improving the accuracy and effi-
ciency of design exploration and decision-making.
The evolution in this area involves multimodal large language

models (MLMMs) that seek to improve the abilities of LLMs by
combining multisensory skills (e.g., sound, vision, video), leading
to greater intelligence [12]. Textual and visual information are
two prominent modalities in our everyday life, and most problems
require modeling both to generate satisfactory outcomes [13]. As a
result, many MLMMs start by extending the vision capability in
addition to the textual capability of LLMs [12,13]. Prior research
generally adopts one of two strategies: leveraging a vision-language
model to transform visual data into text-based descriptions that
LLMs can process [14–16] or fine-tuning a vision encoder to inte-
grate with a frozen pretrained LLM [17–19]. For example, the evo-
lution of OpenAI’s GPT architecture from text-only versions to
multimodal successors such as GPT-4 Vision shows significant pro-
gress with opportunities to incorporate multiple modalities beyond
text [20].

2.2 Zero-Shot Learning and Fine-Tuning. Zero-shot learn-
ing is a technique in deep learning aiming to apply the trained
models to tasks or classes it has not encountered (i.e., unseen
data) during training [21,22]. In the context of LLMs, the zero-shot
learning capability refers to the model’s ability to generalize from
its pre-trained knowledge base. For instance, GPT-3 can perform
tasks such as translation without explicit task-specific training,
relying solely on the contextual understanding developed during
pretraining [1]. This capability is particularly valuable in scenarios
where labeled data for new tasks are unavailable or scarce.
Fine-tuning is a specific form of transfer learning that involves

further training of a pre-trained model on a smaller, task-specific
dataset. This process adjusts the model’s parameters to better fit

the new task. Fine-tuning can be applied to the entire model or
selectively to certain layers, depending on the amount of available
data and the complexity of the task. In the context of LLMs, fine-
tuning can significantly enhance performance on specific tasks
such as sentiment analysis or question answering, by tailoring the
model’s general linguistic knowledge to particular requirements
of a task [23–25].
Zero-shot learning enables LLMs to perform tasks without task-

specific training, while fine-tuning tailors pretrained models to spe-
cific tasks using smaller datasets. Together, these methods demon-
strate the flexibility of LLMs in adapting to a wide range of
applications, from generalizing to unseen tasks to excelling in spe-
cialized domains.

3 Literature Review
In this section, we review the relevant literature on LLMs,

MLLMs, CADmodel representation, and 3D shape datasets in engi-
neering design research.

3.1 Engineering Design Using Large Language Models and
MLLMs. We review the relevant literature on engineering design
using LLMs and MLLMs based on the input design modalities. The
input modality refers to how information is fed into a model.
Regarding the input modality, most existing research has

focused on feeding information into LLMs using text-based
prompts [4,26–32]. Text-based prompts allow designers to directly
communicate their design requirements and objectives to a model.
However, design intent can be challenging to express through text
alone, as design elements typically include structural and layout
relationships among components with specific shapes. Visual
inputs, such as sketches or images often used in conceptual
design, can complement textual information to represent these rela-
tionships. Therefore, multimodal approaches that integrate both
textual and visual inputs hold promise to generate more coherent
design responses from LLMs.
These studies [26,28,33,34] provide valuable insights into the

potential applications of LLMs and MLLMs for generating 3D
shapes through CAD program synthesis. However, the limited
number of examples used for the qualitative assessment restricts a
comprehensive understanding of how effectively LLMs and
MLLMs can be utilized for 3D shape synthesis. Our previous
work [8] quantitatively evaluated GPT-4 and GPT-4V’s capability
in generating 3D shapes through CAD program synthesis using a
multimodal CAD dataset that includes textual descriptions,
sketches, images, and 3D shapes of mechanical components.
While the results demonstrate the potential of these models for gen-
erating 3D shapes, there remains room for improvement, even with
a proposed debugger to iteratively revise the synthesized CAD
program codes.

3.2 Computer-Aided Design Model Representation. In the
context of CAD model representation, since LLMs currently
cannot directly generate 3D objects (e.g., meshes, voxels, or bound-
ary representations), an appropriate intermediate representation
must be used. Two commonly adopted CAD representations that
LLMs can generate include domain-specific languages (DSLs)
and CAD programming languages.
The first representation, DSLs for CAD sequences, such as Sha-

peAssembly [35], introduces a “shape assembly language” for con-
structing 3D shape structures. These structures are created by
declaring cuboid part proxies and attaching them hierarchically
and symmetrically. While procedural programs using ShapeAssem-
bly can easily generate related families of shapes, the learning curve
for LLMs is steep due to the self-defined nature of the language
[36]. Even with fine-tuning, LLMs struggle to debug such programs
independently without extensive domain-specific pretraining.

041710-2 / Vol. 147, APRIL 2025 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/147/4/041710/7428715/m
d-24-1560.pdf?casa_token=C

eTU
Kglw

EAgAAAAA:27B2xZdfnvjG
Bv7bbP0SPBxTl1ovt-pm

exlQ
nLtho-O

O
zibQ

b7v55m
---O

LIdrAH
LvxN

qw
Je by U

niversity O
f Arkansas Libraries user on 28 January 2026

Another advantage of DSLs is their ability to be seamlessly
embedded into CAD sequence embeddings, as demonstrated in
methods like DeepCAD [37] and SkexGen [38]. These methods
encode CAD sequences into compact numerical vectors, enhancing
their efficiency for machine learning applications. However, numer-
ical embeddings face significant interpretability challenges. The
transformation into vectors obscures the direct meaning of the
design, making it difficult to trace back to the original CAD
intent. Moreover, this process can result in the loss of intricate
details and nuances in CAD designs, potentially compromising
accuracy in high-precision tasks.
The second representation involves CAD programming lan-

guages, such as CADQuery [26] and OpenSCAD [33], which
serve as a medium for CAD models. Since LLMs are pretrained
on publicly available Internet data, they possess basic domain
knowledge of widely used CAD programming kernels, making it
easier for them to debug code independently. Moreover, the proce-
dural nature of CAD programming languages ensures designs can
be precisely recreated, supporting verification and collaboration.
This study adopts CAD programming code as the output represen-
tation for LLMs. Among available options, CADQuery was
selected due to its more extensive online resources and its applica-
tion programming interface’s (API’s) user-friendly nature, making
it an ideal choice for CAD model representation and LLM pretrain-
ing and fine-tuning.
Moreover, when working with complex CAD models, CADQu-

ery scripts can be structured and compressed meaningfully by
adopting modular and hierarchical approaches. Modularization
involves breaking the script into reusable functions that encapsulate
repetitive or parameterized operations, such as creating patterns,
arrays, or specific geometric features, allowing for code reuse and
improving clarity. Hierarchical organization can further enhance
readability by defining high-level assemblies composed of
smaller, self-contained subcomponents, ensuring that each section
of the script focuses on a specific part of the design. Additionally,
leveraging loops and conditional statements can streamline the cre-
ation of repetitive or variant geometries, reducing code redundancy.
To enhance efficiency, parameterization can be employed to repre-
sent variable dimensions, constraints, or configurations, enabling
flexible customization without requiring extensive modifications
to the script. By combining these strategies, CADQuery scripts
can remain concise, maintainable, and scalable, even when repre-
senting highly intricate CAD models.

3.3 3D Shape Datasets. The field of 3D shape recognition has
seen significant advances in recent years, driven in part by the
increasing availability of 3D CAD data and the development of
deep learning techniques. One of the key challenges in this
domain is the effective representation and processing of 3D data,
which can come in various forms, including point clouds,
meshes, voxel grids, and boundary representations (B-rep).
Several popular 3D shape datasets, such as ShapeNet [39],

PartNet [40], and ModelNet [41], include a diverse collection of
object categories (e.g., chairs, cars, and tables). These datasets
have been extensively used in the computer vision and computer
graphics communities for geometric learning tasks. However,
these datasets have limitations when applied to engineering
design, where precise geometric features that carry significant engi-
neering semantics (e.g., sharp edges, exact dihedral angles) are
crucial. For example, a chair in ShapeNet might have smooth,
rounded edges suitable for visual and aesthetic purposes, but the
3D model lacks the precision required for manufacturing and
mechanical analysis. Similarly, some datasets [42–44] that
include mechanical components are also limited in the use of real
design applications because 3D models are available only as
point clouds and voxels.
To facilitate research on deep learning of CAD models, such as

B-rep, Willis et al. introduced the first dataset of human-designed
CAD geometries paired with their ground truth (GT) CAD

programs represented as construction sequences [45]. Another well-
known CAD dataset, the ABC dataset [46], incorporates a compre-
hensive collection of 1 million CADmodels. This dataset comprises
models with explicitly parametrized curves and surfaces, offering
ground truth data for patch segmentation, geometric feature detec-
tion, and shape reconstruction. Ramnath et al. [47] presents a holis-
tic framework for automatically generating geometry and
performing data validation with finite element analysis. These data-
sets are beneficial for the geometric learning of CAD models with
sharp features and are thus applicable to real design scenarios.
Despite the richness of current 3D shape datasets, none of them

is suitable for fine-tuning LLMs in order to generate 3D designs
based on CAD programs. There are two main challenges for this:
(1) Textual descriptions of the 3D designs must be available and
include detailed dimensional information to explicitly represent
the design requirements of 3D shape features. (2) There must be
corresponding ground truth CAD programs linked to these textual
descriptions. In the following sections, we present a new dataset
that supports LLM fine-tuning and addresses these two challenges.

4 Dataset
In this section, we first introduce the pipeline developed from the

previous study [8] and the initial dataset generated. Then, we con-
ducted an initial experiment to test the zero-shot capability of
GPT-4 in generating CAD programs, also known as CAD
program codes or scripts. From the initial experiment, we collect
the scripts and subsequently develop a pipeline to validate them
based on which we create training data for the fine-tuning processes
as detailed in Sec. 5. The training data generated for the fine-tuning
processes are also incorporated into the initial multimodal dataset
from the previous study [8].

4.1 Introduction to the Initial Multimodal Computer-Aided
Design Dataset. Given the absence of a multimodal dataset that
encompasses 1D textual description of part geometries and dimen-
sions, 2D images and sketches, and 3D CAD programs, we have
developed a pipeline to generate such data for mechanical compo-
nents in our previous work [8]. The pipeline automatically synthe-
sizes textual descriptions, images, sketches, and 3D shapes of
mechanical components using CAD programming languages
(e.g., CADQuery) and computer rendering techniques (e.g., render-
ing images to sketch-style images using OpenCV). Currently, the
dataset contains five common mechanical components: shafts,
nuts, flanges, springs, and gears. They are chosen for their popular-
ity in engineering design and their varying levels of complexity,
allowing us to test the robustness of LLMs.
The dataset generated from this pipeline comprises 1000 data

points for each of the five categories. Table 1 presents an
example from the Spring category. Each of the 1000 data points
includes a 2D image, a 2D sketch, and a 3D mesh. The 2D image
modality is included in the dataset because it is one of the most
popular representations often adopted by designers to embody
their design ideas and preferences in early design. Moreover, we
include the modality of 2D sketches in addition to the 2D images
to facilitate the fine-tuning of LMMs.
In addition to images, sketches, and 3D meshes, textual descrip-

tions of the five mechanical components were collected through the
crowdsourcing platform, Amazon Mechanical Turk. This approach
ensures that our dataset is enriched with various natural language
descriptions of the mechanical components, including their dimen-
sional information, which is particularly useful for automatic vali-
dation of LLM performance (see Sec. 4.3) and for fine-tuning
LLMs (see Sec. 5).
In total, we collected 621 data points for shafts, 671 for nuts, 692

for flanges, 680 for springs, and 661 for gears. These data points
with valid textual descriptions are classified as “valid data
points.” Table 1 displays the 680 valid data points for the springs.
It is worth noting that the pipeline described in Ref. [8] can be

Journal of Mechanical Design APRIL 2025, Vol. 147 / 041710-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/147/4/041710/7428715/m
d-24-1560.pdf?casa_token=C

eTU
Kglw

EAgAAAAA:27B2xZdfnvjG
Bv7bbP0SPBxTl1ovt-pm

exlQ
nLtho-O

O
zibQ

b7v55m
---O

LIdrAH
LvxN

qw
Je by U

niversity O
f Arkansas Libraries user on 28 January 2026

generally applied to obtain data on any other mechanical designs
according to user requirements.

4.2 Initial Experiment Setup. After obtaining the initial
dataset earlier, we developed a script generation and evaluation
pipeline, illustrated in Fig. 1(a). The experiment was carried out
using the GPT-4 models’ API and CADQuery to generate CAD
program scripts. To interact with the GPT-4 API model, we
assign a persona to it, defining it as an AI assistant specialized in
designing 3D objects. This persona also ensures that GPT-4 exclu-
sively uses CadQuery and restricts the output format to facilitate
further validation. The given prompt is “Generate CadQuery code
to construct the specified mechanical component. The code must
exclusively utilize CadQuery and cannot incorporate any other
CAD design packages or software, ultimately exporting the compo-
nent as an STL file.” The resulting CAD program is subsequently
converted into 3D shapes for analysis. Similar to the generation
of 3D shapes for data points in Table 1, we also use version 2.3.1
for CADQuery in this study.
To improve the performance of GPT models, we proposed a

debugger [8], as shown in Fig. 1(b). The “debugging process” is
an iterative procedure dedicated to the identification and correction
of errors found in the generated CAD programs. The “forward pass”
ends after executing the generated CAD program scripts to obtain
3D CAD models, regardless of whether the execution is successful
or not. This is used to test the zero-shot capability of GPT models.
In the event of a successful execution, the process will terminate.
An unsuccessful execution indicates the presence of syntax errors

within the program, which require the activation of the debugger.
Syntax errors encompass a spectrum of programming language
misuse, from typographical errors to misapplication of language
constructs. For the “debugging process,” the previous conversation
content (including the user requirements and GPT’s responses) and
the current error messages are all fed to the same API. This recur-
sive process is imperative to refine the CAD program, ensuring
its accuracy and reliability when generating 3D CAD models.

4.3 Script Evaluation Metrics. We use two metrics to quan-
tify the capabilities of GPT-4 models in generating the CAD
program scripts and the corresponding 3D CAD models: parsing
rate and intersection over union (IoU). The parsing rate evaluates
the extent to which the generated CAD program scripts can be
parsed successfully without errors. Upon successful parsing, the
quality of the resulting 3D shapes is measured against the GT
shapes by calculating the resulting IoU score. IoU is a critical
measure of geometric accuracy and quantifies the overlap
between the generated shape and the GT shape as a ratio of their
intersection to their union. This metric is widely used and is partic-
ularly insightful in evaluating the geometric fidelity of the generated
designs relative to GT [48].
Since our focus is on shape geometry rather than the positions

within a given space, we first align the principal axes of the gener-
ated shapes with those of the GT shapes by rotation. We then trans-
late the generated shapes to align their centroids with those of the
GT shapes. This transformation process, shown in Fig. 2, ensures
that the calculation of the IoU is based only on the geometric

Table 1 Examples and definitions of data point

Index
Component

name 2D image 2D sketch 3D mesh Text description

1 Spring_00001 The spring is a helical coil spring with specific dimensional properties.
Its coil diameter is 72mm, and the pitch, which is the distance between
adjacent coils, is 6mm. The free length of the spring, which is the length
of the spring when it is not compressed, is 50mm. The wire radius, which
indicates the thickness of the wire used to make the spring, is 2.35mm.

2 Spring_00002 It is a coiled spring wire. The wire has a radius of 2.58mm, with a coil
diameter of 82mm, and has a free length of 39mm. There is an 6mm
pitch between the coils of the wires.

3 Spring_00003 The spring is a coiled metal with a 40mm coil diameter and an 6mm
pitch. Its free length is 53mm, with a 1.61mm wire radius.

· · · · · · · · · · · · · · · · · ·
679 Spring_00679 The spring is a helical coil with a diameter of 32mm and a pitch of 5mm.

Its free length, when not under compression, is 55mm. The wire used in
the spring has a radius of 1.62mm.

680 Spring_00680 None

· · · · · · · · · · · · · · · · · ·
1000 Spring_01000 None

041710-4 / Vol. 147, APRIL 2025 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/147/4/041710/7428715/m
d-24-1560.pdf?casa_token=C

eTU
Kglw

EAgAAAAA:27B2xZdfnvjG
Bv7bbP0SPBxTl1ovt-pm

exlQ
nLtho-O

O
zibQ

b7v55m
---O

LIdrAH
LvxN

qw
Je by U

niversity O
f Arkansas Libraries user on 28 January 2026

accuracy of the shapes, excluding any discrepancies that might arise
from their positioning or orientation.

4.4 Generation of Training Dataset for Large Language
Model Fine-Tuning. After the initial experiment, we collected a
series of CAD program scripts generated by GPT-4, as shown in
Fig. 3, step 1. In support of the development of fine-tuned LLMs
for this specific 3D CAD generation task, we prepare a training
dataset that includes natural language descriptions of those mechan-
ical components along with their corresponding valid CAD pro-
grams. A valid CAD program means that the program can be
successfully parsed to generate a 3D CADmodel (in mesh represen-
tation). The objective of the fine-tuning process is to enhance the
GPT model’s ability in generating more successful CAD program
scripts, which initially GPT-4 struggled to achieve. It is important
to note that each valid data point of a mechanical component has
a unique text description sourced from Amazon Mechanical Turk.
The fine-tuning process uses those valid data points yet unable to
correctly generate 3D CAD programs in the initial experiment.
These data points are referred to as “failed data points,” which are
then used to obtain the training dataset based on the pipeline
shown in Fig. 3. The objective of Fig. 3 is to pair a valid GPT

response with failed data points to compose the training dataset
for the fine-tuning purpose. Fine-tuning the GPT model with
these failed data points could enhance its ability to generate valid
CAD programs that it initially struggled with.
In this study, a CAD program is valid only if the generated 3D

CAD model has more than 98% overlaps with its GT. With such
a threshold, we collect all the valid CAD programs generated by
the initial experiment. In order to correct those failed data points
and make them valid, we developed a code template-based
approach. A code template includes string variables, which can be
substituted with the actual parameters of each data point (see
Fig. 3). We used valid CAD programs generated by the GPT
models in the initial experiment to derive code templates. First,
we detect the number of parameters in the script of a valid CAD
program and then replace these parameters with string variables.
This process is illustrated in Step 3 in Fig. 3. As a result, a collection
of code templates was assembled, also referred to as a template
pool, for each category of the five mechanical components. The
quantity of these templates in each pool is presented in Table 2.
In particular, the shaft category encompasses four different types
of shafts, each with two to five sections, as shown in Fig. 4.
After creating the code template pool, 60 templates are sampled

from the corresponding template pool for each category as depicted
in step 4 of Fig. 3. Additionally, 60 training data points are ran-
domly selected from the failed data points for each category to
ensure that all training data points are indeed failed data points.
We sample a small subset of training data points rather than using
all the valid data points for two key reasons: first, to ensure the
availability of unseen testing data, which is essential for evaluating
the performance of the fine-tuned models; and second, to assess the
efficiency of the fine-tuning process when working with a limited
training dataset. Once this selection process is completed, each
training data point is paired with a template to further generate
the data pairs for LLM fine-tuning. The string variables are then
substituted back with the actual parameters, resulting in a valid
CAD program for each training data point, as shown in step 6 of
Fig. 3.
The response of the GPT model, i.e., the generated CAD

program, includes introductory and concluding parts at the begin-
ning and end of a script. To synthesize a response for each training
data point, these introductory and concluding parts are added to the
valid CAD program to formulate a valid response, as shown in step

Fig. 2 IoU calibration method: (a) before calibration and (b) after
calibration

Fig. 1 The pipeline for script generation and evaluation by leveraging the zero-shot capability of the GPT-4 model: (a) the
pipeline of generating CAD program with GPT-4 model and (b) the pipeline of generating CAD program with debugging
process

Journal of Mechanical Design APRIL 2025, Vol. 147 / 041710-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/147/4/041710/7428715/m
d-24-1560.pdf?casa_token=C

eTU
Kglw

EAgAAAAA:27B2xZdfnvjG
Bv7bbP0SPBxTl1ovt-pm

exlQ
nLtho-O

O
zibQ

b7v55m
---O

LIdrAH
LvxN

qw
Je by U

niversity O
f Arkansas Libraries user on 28 January 2026

7 of Fig. 3. Following the complete pipeline depicted in Fig. 3, a
fine-tuned training set is established consisting of 60 data points
for each category. Each training data point includes a pair consisting
of a text description and a valid response, as shown in Table 3.
These data points are formatted according to OpenAI’s Chat Com-
pletion API and uploaded via the Files API for fine-tuning the GPT
model.

This dataset adheres to the FAIR principles (findable, accessible,
interoperable, reusable). It is stored in the Texas Data Repository,
ensuring long-term accessibility. The repository assigns a globally
unique and persistent DOI3 to the dataset, enhancing its findability.

Fig. 3 The pipeline of generating training data for LLM fine-tuning

3https://doi.org/10.18738/T8/KV7HON

041710-6 / Vol. 147, APRIL 2025 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/147/4/041710/7428715/m
d-24-1560.pdf?casa_token=C

eTU
Kglw

EAgAAAAA:27B2xZdfnvjG
Bv7bbP0SPBxTl1ovt-pm

exlQ
nLtho-O

O
zibQ

b7v55m
---O

LIdrAH
LvxN

qw
Je by U

niversity O
f Arkansas Libraries user on 28 January 2026

https://doi.org/10.18738/T8/KV7HON
https://doi.org/10.18738/T8/KV7HON

All data points are indexed, making them easily searchable. Images
and sketches are stored in PNG format, while 3D meshes are in the
standard tessellation language (STL) format, both of which are
widely recognized standards, facilitating data processing and inte-
gration. In addition, the dataset includes a README file that pro-
vides detailed instructions on how to use and reuse the dataset in
the future [49].

5 Fine-Tuned Large Language Models
In this section, we introduce the experimental settings and the

results of the fine-tuning experiments using the training set pre-
sented in Sec. 4.

5.1 Experimental Settings. Since different sampling strate-
gies in step 4 of Fig. 3 can impact the training dataset with a bias
toward certain features, patterns, or distributions, it is important
to quantitatively assess such an impact. Given that code length is
a critical factor in industry, affecting maintainability, readability,
performance, and cost-effectiveness, this study is motivated to
examine the effect of the length distribution of the CAD programs
in the training dataset on the LLM fine-tuning performance. In par-
ticular, four unique distributions of the training set are created.
These different distributions are obtained by implementing four dif-
ferent sampling strategies during the template sampling process
(i.e., step 4 in Fig. 3).

(a) Strategy 1: 60 code templates are randomly chosen from the
pool of templates corresponding to each category of the
mechanical components.

(b) Strategy 2: For robustness of a fine-tuned model, it is essen-
tial to include a diverse range of code lengths in the training
set. Thus, in each mechanical component category, we divide
the templates in each pool into five groups based on their
length distribution and the resulting quantiles. Then, in
each group, 12 templates are randomly selected.

(c) Strategy 3: The 60 templates with the shortest length are
chosen from each pool.

(d) Strategy 4: The top longest 60 templates are chosen from
each pool. This approach explores the impact of using
more extensive code structures in the training set on the
model performance.

We fine-tuned a GPT-3.5 model using the data sampled with each
strategy using the fine-tuning API provided by OpenAI. The fine-
tuning process involves three epochs. With a batch size of 1, this
requires 900 steps. After 900 training steps, the model was fine-
tuned. We designated the models fine-tuned through the data
selected using four sampling strategies such as Fine-tuned
Model1, Fine-tuned Model2, Fine-tuned Model3, and Fine-tuned
Model4.
To evaluate the four fine-tuned models, we randomly selected

500 unseen data points (excluding the training data) for each cate-
gory from the valid data points set as the testing data. Since the
shaft has four different categories, we chose 125 data points for
each.

5.2 Results. In this section, we present the results from two
different perspectives. First, we compare the GPT-4 model with
all fine-tuned models to evaluate the impact of fine-tuning on the
parsing rate and IoU scores. In this comparison, we also analyze
the effect of fine-tuning in each category of the five mechanical
components. Second, we compare the performance of each fine-
tuned model to assess the effectiveness of each sampling strategy.
Furthermore, we investigate the impact of these strategies in each
category of the five mechanical components based on the parsing
rate and IoU scores.

5.2.1 Perspective I: Comparison Between GPT-4 and
Fine-Tuned Models. We first compare the performance of the
GPT-4 model with the fine-tuned models at the aggregated level
by computing the average parsing rate of each model regardless
of the component category. Figure 5 presents the results as
follows: GPT-4 (0.509), Fine-tuned Model1 (0.766), Fine-tuned
Model2 (0.779), Fine-tuned Model3 (0.763), and Fine-tuned
Model4 (0.671). Overall, every fine-tuned model outperforms the
GPT-4 model in terms of parsing rate (indicated by the horizontal
dashed line in Fig. 5). The parsing rate reflects the probability of
generating syntactically correct scripts. An increase of fine-tuned
models’ parsing rate compared to GPT-4 suggests that fine-tuning
can improve the GPT model’s domain knowledge in understanding
the CADQuery package and thus increase the likelihood of gener-
ating scripts without syntax errors.
Figure 6 shows the parsing rate of each model in each category of

the five mechanical components. The results indicate that, on
average, the fine-tuned models have a worse performance in gener-
ating more complex components (e.g., gears and springs). More-
over, the performance difference between the GPT-4 model and
the fine-tuned models is more significant in more complex compo-
nents than in components with simple geometries, such as the
flange, nut, and shaft. This indicates that generating complex com-
ponents remains more challenging for fine-tuned models than for
simple ones. However, it is evident that the fine-tuning processes
are more likely to yield more improvement when generating
complex geometries than simple ones. It is worth noting that Fine-
tuned Model4 performs worse than GPT-4 in the nut category in
terms of parsing rate, as shown in Fig. 6 (GPT-4: 0.667 versus Fine-

Table 2 The number of code templates for each category of the
mechanical components

Mechanical components Code template pool size

Shafts (2 sections) 391
Shafts (3 sections) 157
Shafts (4 sections) 278
Shafts (5 sections) 308
Nuts 843
Flanges 1801
Springs 28
Gears 50

Fig. 4 Example of shaft sections: (a) 2 sections shaft, (b) 3 sec-
tions shaft, (c) 4 sections shaft, and (d) 5 sections shaft

Journal of Mechanical Design APRIL 2025, Vol. 147 / 041710-7

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/147/4/041710/7428715/m
d-24-1560.pdf?casa_token=C

eTU
Kglw

EAgAAAAA:27B2xZdfnvjG
Bv7bbP0SPBxTl1ovt-pm

exlQ
nLtho-O

O
zibQ

b7v55m
---O

LIdrAH
LvxN

qw
Je by U

niversity O
f Arkansas Libraries user on 28 January 2026

tuned Model4: 0.588). This suggests that for simple components
like nuts, generating longer CAD programs from a fine-tuned
GPT model is more likely to result in worse parsing performance.
The reason is that longer CAD programs for simple components
often include unnecessary or redundant code, which can introduce
errors or complexities that make it harder to parse correctly.
For all CAD program scripts successfully parsed, we calculate

the average IoU score of each model, as shown in Fig. 7. The
results are as follows: GPT-4 (0.552), Fine-tuned Model1 (0.812),
Fine-tuned Model2 (0.824), Fine-tuned Model3 (0.861), and Fine-
tuned Model4 (0.799). Overall, all fine-tuned models outperform
the GPT-4 model (indicated by the horizontal dashed line in

Fig. 7), and this result is statistically significant with all P-values
<0.01 based on the t-test. The higher IoU values again indicate
that the fine-tuned models are more capable of understanding
natural language descriptions of the mechanical components and
potentially better visual and spatial reasoning when processing
2D image and sketch input.
Figure 8 presents the IoU of each model for each category of

components. In terms of IoU, each fine-tuned model significantly
outperforms the GPT-4 model across all categories, suggesting
that fine-tuning can enhance the understanding of human descrip-
tions in CAD generation tasks. For component with simple geome-
tries (e.g., nuts), although Fine-tuned Model4 performs worse than

Table 3 Examples of training data pairs

Index
Component

name Text description Valid response

1 Flange_00095 It is a flange. Flange diameter= 241mm, flange
thickness= 4mm, raised face diameter= 97
mm, bore diameter= 34mm, raised face
height= 150mm.

· · · · · · · · · · · ·
60 Flange_00329 This flange is a 89mm tall, 66mm wide

cylinder with a bore diameter of 43mm on an
192mm wide disc that is 19mm thick.

041710-8 / Vol. 147, APRIL 2025 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/147/4/041710/7428715/m
d-24-1560.pdf?casa_token=C

eTU
Kglw

EAgAAAAA:27B2xZdfnvjG
Bv7bbP0SPBxTl1ovt-pm

exlQ
nLtho-O

O
zibQ

b7v55m
---O

LIdrAH
LvxN

qw
Je by U

niversity O
f Arkansas Libraries user on 28 January 2026

GPT-4 in parsing rate, it still outperforms GPT-4 in terms of IoU
score (GPT-4: 0.636 versus Fine-tuned Model4: 0.719). This indi-
cates that within the parsed CAD program, Fine-tuned Model4
demonstrates a better understanding of human descriptions com-
pared to GPT-4 and has a stronger capability to translate natural lan-
guage into a CAD program for the nut component.
For components with complex geometries (e.g., gears), the high

IoU values (Fine-tuned Model1: 0.952, Fine-tuned Model2: 0.973,
Fine-tuned Model3: 0.981, and Fine-tuned Model4: 0.970) indicate
that fine-tuned models have a better understanding of the structure
and geometry of gears in general. For springs, although all fine-
tuned models show at least a 75-fold improvement in IoU compared
to GPT-4, their average IoU scores still remain below 0.5 (IoU score
for Spring: GPT-4: 0.0067, Fine-tuned Model1: 0.453, Fine-tuned
Model2: 0.467, Fine-tuned Model3: 0.460, and Fine-tuned
Model4: 0.492). This suggests that for complex components, fine-
tuned models still lack a good understanding of the domain knowl-
edge required to generate accurate CAD programs. To address this,
adding more training data pairs would be a potential solution.

5.2.2 Perspective II: Comparison Between Four Fine-Tuned
Models. In this section, we compare the four fine-tuned models
to investigate the effects of different template sampling strategies
on the parsing rate and IoU scores.
As shown in Fig. 5, the Fine-tuned Model2 achieved the highest

average parsing rate among all models. The superior performance of
Fine-tuned Model2 suggests that fine-tuning a GPT model with an
evenly distributed training set can lead to more robust and consis-
tent results across the five mechanical components. This implies

that using a diverse yet balanced training set, Fine-tuned Model2
can be better generalized to handle different types of geometries,
resulting in higher average parsing rate. This approach also helps
mitigate the risk of overfitting, which can occur when a model is
trained on a biased dataset. It is also worth noting that Fine-tuned
Model4 exhibited the worst performance among all the fine-tuned
models. This model was trained on a training dataset sampled
using Strategy 4, and longer code templates often contain more
complex structures and logic. The poor parsing rate of Fine-tuned
Model4 suggests that this added complexity makes it more difficult
to accurately learn and generalize patterns, thus increasing the like-
lihood of syntax errors during the generation of CAD program.
Figure 6 presents the parsing rates for each model in the five cat-

egories of mechanical components. A comparative analysis
between Fine-tuned Model1 and Fine-tuned Model2 shows
similar parsing rates for shafts (Model1: 0.808 versus Model2:
0.800), gears (Model1: 0.778 versus Model2: 0.778), and springs
(Model1: 0.550 versus Model2: 0.546). However, Fine-tuned
Model2 exhibited enhanced performance in parsing flanges and
nuts compared to Fine-tuned Model1. Additionally, Fine-tuned
Model3 consistently outperformed Fine-tuned Model4 in four cate-
gories: flanges, nuts, shafts, and gears. This suggests that fine-
tuning LLMs with those code templates that have the shortest
length (i.e., sampling strategy 3) is more likely to generate syntax
error-free codes.
Figure 7 shows that Fine-tuned Model3 (IoU: 0.861) achieves the

highest performance compared to the other three fine-tuned models
(Model1: 0.812, Model2: 0.824, Model4: 0.799) with the level of
statistical significance at 0.05. This indicates that Strategy 3
(using the 60 shortest code templates to fine-tune the LLM) is
more effective in generating accurate 3D geometries of the five
mechanical components based on the natural language descriptions
than the other three strategies. It is also worth noting that Model4
has the lowest IoU scores among the four fine-tuned models, consis-
tent with its performance in the parsing rate. This suggests that
with a longer program script, small errors in understanding or gen-
erating specific code segments can have a cascading effect, leading
to spatial inaccuracies in the overall geometry output. These com-
pound errors contribute to lower IoU scores when comparing the
generated geometry with the ground truth. In addition, CAD pro-
grams often involve intricate spatial relationships and dependencies
between different design elements. Longer code templates increase
the number of dependencies that the model needs to understand
and replicate, which can be challenging and result in further
inaccuracies.
Figure 8 displays the IoU results of each model across the five

categories of mechanical components. Among the fine-tuned
models, Fine-tuned Model1 and Model2 exhibit comparable

Fig. 5 The results of average parsing rate

Fig. 6 The results of parsing rate

Journal of Mechanical Design APRIL 2025, Vol. 147 / 041710-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/147/4/041710/7428715/m
d-24-1560.pdf?casa_token=C

eTU
Kglw

EAgAAAAA:27B2xZdfnvjG
Bv7bbP0SPBxTl1ovt-pm

exlQ
nLtho-O

O
zibQ

b7v55m
---O

LIdrAH
LvxN

qw
Je by U

niversity O
f Arkansas Libraries user on 28 January 2026

performance across all five categories, as indicated by t-tests
(P > 0.05). This suggests that there are no significant differences
in IoU performance between sampling strategy 1 and strategy
2. However, Fine-tuned Model3 significantly outperformed
Model4 in the nuts and shafts (P < 0.05), verifying the findings
of the average IoU performance analysis.

6 Discussion
In this section, based on the results presented, we discuss (1) the

effect of fine-tuning and (2) the impact of different sampling strat-
egies when selecting the code templates to train the fine-tune
models. At the end of this section, we also share the limitations
of the work based on which we propose potential avenues for
future research.

6.1 Effect of Fine-Tuning. Our testing of GPT-4’s zero-shot
capability revealed limitations in its domain knowledge to generate
CAD programs and the associated 3D models of mechanical com-
ponents, especially for those with higher design complexity, such
as gears and springs. The parsing rates observed are only 5.15 %
for gears and 25.07 % for springs, as shown in Fig. 6. In contrast,
the fine-tuned models achieved at least a 1252 % increase in the
parsing rate for the gears and at least a 71.2 % increase in the
parsing rate for springs, as shown in Figs. 6 and 8. In terms of
IoU, each model demonstrated at least a 75-fold increase in
springs and a 58% increase in gears. These results indicate that fine-
tuning is an effective method to “teach” LLMs to “learn” the knowl-
edge of CAD programming so as to enhance their performance in

generating syntax error-free CAD program scrips and accurate 3D
CAD models.
To leverage LLMs for specific tasks, fine-tuning and prompt

engineering are two common approaches. In prompt engineering,
there are primarily two methods: zero-shot learning and few-shot
learning. Zero-shot learning is well suited for simple tasks or
those that require only general knowledge. However, it is less effec-
tive for complex tasks that require domain-specific knowledge or a
very specific output format. Few-shot learning, on the other hand, is
useful when the model needs to “learn” a new concept or produce a
precise data format in output, achieved by providing a few examples
in the prompt. However, when generating CAD programs for 3D
mechanical components, it is impractical and inefficient for users
to provide multiple examples of CAD programs that generate the
same component for LLMs to learn. Therefore, fine-tuning is
evident to be the most feasible way to improve the performance
of GPT in 3D CAD model generation, especially those with
complex geometries.
Despite the improvement achieved in the parsing rate and IoU,

cost is a factor that must not be neglected in determining the
choice of AI services. Based on our experiments and the pricing pro-
vided by OpenAI, the cost of generating 1000 components with
GPT-4 is approximately $5.55 for input and $22.80 for output
(the unit price is $30 per million input tokens and $60 per million
output tokens). In contrast, the cost of fine-tuning a single
GPT-3.5 model is approximately $4 (using 60 examples for each
category of components), and the cost of using the fine-tuned
GPT-3.5 for 1000 components is approximately $0.55 for input
and $2.28 for output (with the price being $3 per million input
tokens and $6 per million output tokens). Therefore, using a fine-
tuned model results in a cost saving of approximately ten times.
However, it is important to note that this cost-saving analysis does
not account for the expenses associated with collecting and prepar-
ing the training data required for fine-tuning. Additionally, the con-
clusion is based solely on GPT-3.5 pricing, which may differ from
other models or providers. These limitations highlight the need for
a more comprehensive cost analysis to better evaluate the economic
feasibility of adopting fine-tuned models in practice.

6.2 Effect of Sampling Strategies

6.2.1 The Effect on Parsing Rate and Intersection Over
Union. From the results shown in Secs. 5.2.1 and 5.2.2, Fine-tuned
Model2 has the best performance in terms of the average parsing
rate. This suggests that by dividing the templates into groups
based on their length distribution and selecting an equal number
of templates from each group, the fine-tuning dataset effectively
covers a broad spectrum of program lengths. This helps the

Fig. 7 The results of average IoU

Fig. 8 The results of IoU

041710-10 / Vol. 147, APRIL 2025 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/147/4/041710/7428715/m
d-24-1560.pdf?casa_token=C

eTU
Kglw

EAgAAAAA:27B2xZdfnvjG
Bv7bbP0SPBxTl1ovt-pm

exlQ
nLtho-O

O
zibQ

b7v55m
---O

LIdrAH
LvxN

qw
Je by U

niversity O
f Arkansas Libraries user on 28 January 2026

model learn to handle a variety of cases, from short to long CAD
programs. Moreover, by covering the entire range of the template
pool, strategy 2 ensures that the model is exposed to a comprehen-
sive set of training dataset. This broad coverage allows the model to
learn the nuances in CAD programs for various mechanical compo-
nents, leading to better overall performance.
In terms of parsing rate for each category, it is found that when

comparing Fine-tuned Model3 and Model4, Model3 outperforms
Model4 in all categories except for spring. This suggests that
shorter CAD programs with fewer instructions tend to be simpler
and thus less likely to exhibit errors or ambiguities. This simplicity
makes it easier for the model to generate output that can be correctly
parsed, leading to a higher parsing rate. However, for specific
complex components, such as springs, the design may inherently
require a longer CAD program to accurately capture detailed

features. So, training a model using longer programs allows the
model to learn these intricate structures essential to accurately rep-
resent such complex geometries.
In terms of average IoU scores, Fine-tuned Model3 outperformed

the other fine-tuned models. This suggests that shorter code tem-
plates, which focus on the core instructions necessary to generate
a geometry, help the model learn the essential steps needed to
create accurate 3D geometries. It is also important to note that
although Fine-tuned Model3 performs better than Model4 in four
categories, it has worse performance in the spring category. One
solution to this is to add more spring training pairs to the dataset.
Another approach is to recognize that different strategies might
be more effective for different components, for example, using
strategy 4 to sample the code template for specific complex compo-
nents such as spring.

Fig. 9 The probability distribution of number of lines comparison in generated CAD program between GPT-4 and Fine-tuned
Model1 and Model2: (a) probability distribution of number of lines in CAD program for flange, (b) probability distribution of
number of lines in CAD program for nut, (c) probability distribution of number of lines in CAD program for shaft, (d) probability
distribution of number of lines in CAD program for gear, and (e) probability distribution of number of lines in CAD program for
spring

Journal of Mechanical Design APRIL 2025, Vol. 147 / 041710-11

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/147/4/041710/7428715/m
d-24-1560.pdf?casa_token=C

eTU
Kglw

EAgAAAAA:27B2xZdfnvjG
Bv7bbP0SPBxTl1ovt-pm

exlQ
nLtho-O

O
zibQ

b7v55m
---O

LIdrAH
LvxN

qw
Je by U

niversity O
f Arkansas Libraries user on 28 January 2026

6.2.2 The Effect on Output Distributions. Figures 9 and 10
illustrate the probability distribution of the length (i.e., the number
of lines) of the CAD program codes generated by GPT-4 and the
four fine-tuned models. It is important to note that these distribution
plots capture all the programs generated by the models regardless of
their correctness, i.e., whether they are able to be successfully
parsed. In Fig. 9, it is observed that the program length distributions
for Fine-tuned Model1 and Model2 are similar and have a high
degree of overlap. The overlap area between Fine-tuned Model1
and Fine-tuned Model2 for each category is as follows: flange:
0.977, nut: 0.9613, shaft: 0.959, gear: 0.972, and spring: 0.966. This
suggests that despite the differences between sample strategies 1 and
2, the output maintains a consistent distribution pattern. The reason
for this is that the original GPT model was pretrained on a vast and
diverse code set, which establishes a strong prior distribution over gen-
erated CAD programs. This pretrained distribution is quite dominant,
and since neither strategy 1 nor strategy 2 introduces a significant
deviation from the original GPT-4 distribution, the model continues
to reflect the distributional patterns learned during pretraining.
Furthermore, the average length of the programs generated by

GPT-4, Fine-tuned Model1, and Fine-tuned Model2 is similar

across all categories of components, as shown in Fig. 11.
However, the variance in the length of the CAD programs is
lower for Fine-tuned Model1 and Model2 compared to that of
GPT-4, as indicated in Fig. 12. This indicates that while strategy
1 and strategy 2 can maintain the average length of the output
from the GPT-4 model, they fail to preserve the variance. The var-
iance in output reflects the extent of overfitting, and the lower var-
iance observed in Fine-tuned Model1 and Fine-tuned Model2
suggests that these models may be overfitting. The reason is that,
although strategy 1 and strategy 2 aim to retain the variance from
the original GPT-4 output, the training data pairs still narrow the
model’s focus to valid CAD programs rather than the broader
range of the original outputs. To address this decrease in variance,
increasing the number of training data would be a potential solution.
To evaluate the effectiveness of strategy 3 and strategy 4 in fine-

tuning, we analyze the probability distribution of the length of the
CAD programs generated by each strategy. Figure 10 shows the distri-
bution of the length of the CAD programs generated by GPT-4, Fine-
tuned Model3, and Fine-tuned Model4. A significant shift between the
distributions can be observed in the categories of flange, nut, and shaft.
However, the length distributions in the gears and springs do not

Fig. 10 The probability distribution of number of lines comparison in generated CAD program between GPT-4 and
Fine-tuned Model3 and Model4: (a) probability distribution of number of lines in CAD program for flange, (b) prob-
ability distribution of number of lines in CAD program for nut, (c) probability distribution of number of lines in CAD
program for shaft, (d) probability distribution of number of lines in CAD program for gear, and (e) probability dis-
tribution of number of lines in CAD program for spring

041710-12 / Vol. 147, APRIL 2025 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/147/4/041710/7428715/m
d-24-1560.pdf?casa_token=C

eTU
Kglw

EAgAAAAA:27B2xZdfnvjG
Bv7bbP0SPBxTl1ovt-pm

exlQ
nLtho-O

O
zibQ

b7v55m
---O

LIdrAH
LvxN

qw
Je by U

niversity O
f Arkansas Libraries user on 28 January 2026

exhibit such a shift. The reason for this is twofold. First, the variance of
the GPT-4 output in the gear and spring categories is relatively small.
Second, the size of the template pools for these two categories (i.e., 50
for gear and 28 for spring), as shown in Table 2, is less than the size of
the training set (i.e., 60 programs). Consequently, there are a limited
number of code templates for fine-tuning. Thus, the templates selected
for gear and spring by strategies 3 and 4 encompass all the templates in
the template pool, which is why they do not show significant differ-
ences compared to the GPT-4 output.
The shift in the flange, nut, and shaft output distribution indicates

that the GPTmodel is highly sensitive to the fine-tuning data. By train-
ing on the shortest or longest CAD programs, the model has learned to
prioritize generating shorter or longer outputs, reflecting the character-
istics of the fine-tuning dataset. The fine-tuning process of Fine-tuned
Model3 and Fine-tuned Model4 successfully adapted the GPT model
to produce outputs that align with the specific characteristics of the
training data. This also explains why no significant shift is observed
in the length distributions of the CAD programs generated by Fine-
tuned Model1 and Model2, as sampling strategies 1 and 2 do not sig-
nificantly change the distribution of the training dataset.
Figure 11 also shows that Fine-tuned Model3 produces the shortest

CAD programs in the flange, but, and shaft categories, while Fine-
tuned Model4 produces the longest CAD programs in these catego-
ries. The average number of lines of codes for gears and springs
does not show significant differences between the four fine-tuned
models. As mentioned earlier, this is because the template pool size
for gears and springs is smaller than the size of the training set.
Figure 12 indicates that Fine-tuned Model3 has the smallest variance
in the five categories, while Fine-tuned Model4 has the largest vari-
ance in these categories. Low variance means that the outputs
become similar or consistent because it is overly reliant on the specific
examples seen during training. This phenomenon, known as overfit-
ting, means that the model lacks flexibility and adaptability, often pro-
ducing similar outputs despite slight input variations. Therefore,

when selecting a model, our objective is to balance the parsing rate
and IoU scores with the output variance to ensure robust results.
From the aforementioned observations, we can conclude that the

use of shorter CAD programs to train fine-tuned LLMs can achieve
better performance in terms of parsing rate and IoU. Moreover, fine-
tuning with shorter program lengths can effectively influence the
output length of the fine-tuned model, and since the cost of fine-
tuning is based on both the size of the training data and the
length of the output, as mentioned in Sec. 6.1, strategy 3 offers a
cost-effective solution. However, a trade-off exists because a
small variance leads to a higher possibility of overfitting. On the
other hand, using longer code to train fine-tuned LLMs (e.g., strat-
egy 4) does not necessarily guarantee better performance compared
to other strategies, but the higher variance associated with longer
code reduces the likelihood of overfitting.

6.3 Generalizability and Scalability. To demonstrate that the
generalizability of our methodology and show it can scale to more
complex components, we present two additional real-world compo-
nents selected from the ABC dataset [46]—pillow block and hexag-
onal wrench—as shown in the “Ground Truth” row of Fig. 13. The
pillow block requires seven design parameters, while the wrench
requires 6. We generated 1000 components with varying parameters
for each category. We used Llama 3.2 to generate text descriptions
from component images and manually filtered these descriptions. In
total, we collected 480 descriptions for the pillow block and 572 for
the wrench.
With these data, we conducted two experiments: (1) To test the

generalizability of our fine-tuned model, we applied Fine-tuned
Model2 (trained from the five mechanical components presented
in the original manuscript) on the new unseen data (i.e., the pillow
block and hexagonal wrench). We then tested the parsing rate and
IoU of Fine-tuned Model2, with the results shown as blue bars in
Figs. 14 and 15. (2) To test the generalizability of our methodology,
we created 60 fine-tuning pairs for both pillow block and hexagonal
wrench categories and further fine-tuned Fine-tuned Model2. The
improved results are represented in Figs. 14 and 15. Figure 13
shows the qualitative results of flawed geometry generated by fine-
tuned Fine-tuned Model2. The significant increase in parsing rate
and IoU demonstrates that our methodology has the potential to
scale effectively for more complex components, validating its
ability to handle diverse CAD models.

Fig. 11 The average number of lines of codes

Fig. 12 The standard deviation of the number of lines of codes

Fig. 13 Pillow block and hexagonal wrench components

Journal of Mechanical Design APRIL 2025, Vol. 147 / 041710-13

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/147/4/041710/7428715/m
d-24-1560.pdf?casa_token=C

eTU
Kglw

EAgAAAAA:27B2xZdfnvjG
Bv7bbP0SPBxTl1ovt-pm

exlQ
nLtho-O

O
zibQ

b7v55m
---O

LIdrAH
LvxN

qw
Je by U

niversity O
f Arkansas Libraries user on 28 January 2026

6.4 Limitations and Future Work. In this study, we evalu-
ated the performance of fine-tuned LLMs in generating 3D CAD
models of five representative categories of mechanical components
with varying geometric complexities. Although the insights gained
from the current synthesized dataset are valuable, we acknowledge
that the sample size is relatively small compared to the wide array of
mechanical components. To obtain an in-depth understanding of the
role LLMs play in the generation of 3D CAD models, expanding
the CAD dataset is essential. Additionally, further analysis on addi-
tional CAD programming languages, such as OpenSCAD and the
Fusion 360 PYTHON API, as well as other LLMs like Google’s
Gemini, will help provide a more comprehensive view of the capa-
bilities of LLMs in the generation of 3D CAD models.
We acknowledge that natural language descriptions have limita-

tions in representing complex geometries, particularly those involv-
ing intricate mathematical formulas. So, we do not think the
proposed approach is capable of replacing existing standards for
full data interoperability between CAD systems. Instead, our
approach provides a new angle for solving the problem in fast
CAD generation and shows how language-based generative
models can assist in this regard for certain geometries, such as stan-
dard mechanical components and simple parts with customized fea-
tures, where procedural scripts can effectively describe a subset of
shapes. Rapid generation of such CAD models is expected to save
time and reduce costs during the early stages of design.
Furthermore, the potential of fine-tuned MLLMs to generate

CAD programs from images or sketches combined with natural lan-
guage descriptions can also be explored. Our dataset is particularly
suitable for generating training data pairs to fine-tune MLLMs,
where images combined with natural language descriptions serve
as the input request, and CAD programs are generated as the
output response.
Given these limitations, our future work will focus on expanding

our dataset to include more categories of mechanical components
and even assemblies. With a wider range of mechanical

components, our dataset will become more practical for industry
use and can be applied to fine-tune MLLMs in the future.

7 Conclusion
In this study, we have introduced a dataset containing multiple

design modality of five categories of mechanical components,
including shafts, nuts, flanges, springs, and gears, in support of
the study of MLLM4CAD. The dataset contains three types of
design modality: textual description of part geometries and dimen-
sions, 2D images and sketches, and 3D CAD programs. On the
basis of this dataset, we further develop a framework that can
synthesize valid GPT responses with failed data points using a
novel code template method to generate training data for fine-tuned
LLMs. To understand the impact of different strategies in sampling
code templates on the fine-tuned model performance, this article
investigated four different strategies based on the length distribution
of the 3D CAD programs generated by GPT. In particular, we com-
pared the performance of the four fine-tuned models with different
sampling strategies with the zero-shot performance of GPT-4 using
metrics such as parsing rates and IoU scores.
The results showed that the fine-tuned LLMs significantly outper-

formed GPT-4 in both the parsing rate and IoU, especially for
mechanical components with complex geometries, such as gears
and springs. Among the four fine-tuned models, it was found that
Fine-tuned Model2 that was trained based on CAD program data
created from evenly sampled code templates yielded the best
parsing rate. Fine-tuned Model3 that was trained based on CAD
program data created from code templates with smallest number of
lines exhibited the best performance in IoU. On the basis of these
results, we conclude that the fine-tuning process with our dataset
can significantly improve the performance of LLMs in text-to-3D
CAD generation. Notably, the new knowledge gained from the com-
parative study on the four different fine-tuned models provided us
with valuable guidance on the selection of sampling strategies to
build training datasets in fine-tuning practice considering the trade-
off between part complexity, model performance, and cost.
The dataset, “Multimodal Dataset for Computer-Aided Design

(CAD) Model Generation,” is owned by the University of Texas
at Austin and was created with contributions from Dr. Zhenghui
Sha’s research team. The collection of natural language description
data was carried out with the approval (STUDY00005512) of the
Institutional Review Board of the University of Texas at Austin,
ensuring that ethical standards were met, including obtaining
informed consent from all participants. Permission for data
sharing was secured, and the dataset is available for unrestricted
use under a CC0 1.0 Universal (Public Domain Dedication)
license through the Texas Data Repository.4

Funding Data

• The National Science Foundation (Award 2207408).

Conflict of Interest
There are no conflicts of interest.

Data Availability Statement
The data and information that support the findings of this article

are freely available.5

Fig. 15 IoU result

Fig. 14 Parsing rate result

4See Note 3.
5See Note 3.

041710-14 / Vol. 147, APRIL 2025 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/147/4/041710/7428715/m
d-24-1560.pdf?casa_token=C

eTU
Kglw

EAgAAAAA:27B2xZdfnvjG
Bv7bbP0SPBxTl1ovt-pm

exlQ
nLtho-O

O
zibQ

b7v55m
---O

LIdrAH
LvxN

qw
Je by U

niversity O
f Arkansas Libraries user on 28 January 2026

References
[1] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,

Neelakantan, A., et al., 2020, “Language Models are Few-Shot Learners,”
NIPS’20: Proceedings of the 34th International Conference on Neural
Information Processing Systems, Article No. 159, pp. 1877–1901.

[2] Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer,
F., Gasser, U., et al., 2023, “ChatGPT for Good? On Opportunities and
Challenges of Large Language Models for Education,” Learning and Individual
Differences, 103, p. 102274.

[3] Kocaballi, A. B., 2023, “Conversational Ai-Powered Design: Chatgpt as
Designer, User, and Product,” arXiv preprint 2302.07406.

[4] Filippi, S., 2023, “Measuring the Impact of Chatgpt on Fostering Concept
Generation in Innovative Product Design,” Electronics, 12(16), p. 3535.

[5] Ma, K., Grandi, D., McComb, C., and Goucher-Lambert, K., 2023, “Conceptual
Design Generation Using Large Language Models,” Proceedings of the ASME
2023 International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference. Volume 6: 35th International
Conference on Design Theory and Methodology (DTM), Boston, MA, Aug.
20–23, ASME, p. V006T06A021.

[6] Herzog, V. D., and Suwelack, S., 2022, “Data-Efficient Machine Learning on 3D
Engineering Data,” ASME J. Mech. Des., 144(2), p. 021709.

[7] Picard, C., Edwards, K. M., Doris, A. C., Man, B., Giannone, G., Alam, M. F.,
and Ahmed, F., 2023, “From Concept to Manufacturing: Evaluating
Vision-Language Models for Engineering Design,” arXiv preprint.

[8] Li, X., Sun, Y., and Sha, Z., 2024, “Llm4cad: Multi-modal Large Language
Models for 3d Computer-aided Design Generation,” ASME J. Comput. Inf..
Sci. Eng., 25(2), p. 021005.

[9] Lin, X., Wang, W., Li, Y., Yang, S., Feng, F., Wei, Y., and Chua, T.-S., 2024,
“Data-Efficient Fine-Tuning for LLM-Based Recommendation,” ArXiv
2401.17197.

[10] Li, X., Wang, Y., and Sha, Z., 2023, “Deep Learning Methods of Cross-Modal
Tasks for Conceptual Design of Product Shapes: A Review,” ASME J. Mech.
Des., 145(4), p. 041401.

[11] Song, B., Miller, S., and Ahmed, F., 2023, “Attention-Enhanced Multimodal
Learning for Conceptual Design Evaluations,” ASME J. Mech. Des., 145(4),
p. 041410.

[12] Yang, Z., Li, L., Lin, K., Wang, J., Lin, C.-C., Liu, Z., and Wang, L., 2023, “The
Dawn of LMMs: Preliminary Explorations With GPT-4V(ision),” arXiv preprint
2309.17421.

[13] Wu, C., Yin, S., Qi, W., Wang, X., Tang, Z., and Duan, N., 2023, “Visual
Chatgpt: Talking, Drawing and Editing With Visual Foundation Models,”
arXiv preprint 2303.04671.

[14] Yang, Z., Gan, Z., Wang, J., Hu, X., Lu, Y., Liu, Z., and Wang, L., 2022, “An
Empirical Study of GOT-3 for Few-Shot Knowledge-Based VQA,”
Proceedings of the AAAI Conference on Artificial Intelligence, Chicago, IL
and Online, June 27– July 1, 36(3), pp. 3081–3089.

[15] Wang, Z., Li, M., Xu, R., Zhou, L., Lei, J., Lin, X., Wang, S., Yang, Z., Zhu, C.,
Hoiem, D., Chang, S., Bansal, M., and Ji, H., 2022, “Language Models With
Image Descriptors Are Strong Few-Shot Video-Language Learners,” NIPS’22:
Proceedings of the 36th International Conference on Neural Information
Processing Systems, Article No. 617, pp. 8483–8497.

[16] Shao, Z., Yu, Z., Wang, M., and Yu, J., 2023, “Prompting Large Language
Models With Answer Heuristics for Knowledge-Based Visual Question
Answering,” Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Vancouver, BC, Canada, June 20–22, pp. 14974–14983.

[17] Tsimpoukelli, M., Menick, J. L., Cabi, S., Eslami, S., Vinyals, O., and Hill, F.,
2021, “Multimodal Few-Shot Learning With Frozen Language Models,”
NIPS’21: Proceedings of the 35th International Conference on Neural
Information Processing Systems, Article No. 16, pp. 200–212.

[18] Li, J., Li, D., Savarese, S., and Hoi, S., 2023, “Blip-2: Bootstrapping
Language-Image Pre-training With Frozen Image Encoders and Large
Language Models,” 40th International Conference on Machine Learning,
Honolulu, HI, July 23–29, PMLR, pp. 19730–19742.

[19] Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K., et
al., 2022, “Flamingo: a Visual Language Model for Few-Shot Learning,”
NIPS’22: Proceedings of the 36th International Conference on Neural
Information Processing Systems, Article No. 1723, pp. 23716–23736.

[20] Hurst, A., Lerer, A., Goucher, A., Perelman, A., Ramesh, A., Clark, A., Ostorw,
A., Welihinda, A., Hayes, A., Radford, A., et al., 2023, “GPT-4V(ision) System
Card,” arXiv preprint 2410.21276.

[21] Xian, Y., Schiele, B., and Akata, Z., 2017, “Zero-Shot Learning—The Good, the
Bad and the Ugly,” Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, July 21–26, pp. 4582–4591.

[22] Pourpanah, F., Abdar, M., Luo, Y., Zhou, X., Wang, R., Lim, C. P., Wang, X.-Z.,
and Wu, Q. J., 2022, “A Review of Generalized Zero-Shot Learning Methods,”
IEEE. Trans. Pattern. Anal. Mach. Intell., 45(4), pp. 4051–4070.

[23] Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I., 2018, “Improving
Language Understanding by Generative Pre-Training,” Preprint. https://cdn.
openai.com/research-covers/language-unsupervised/language_understanding_
paper.pdf

[24] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K., 2019, “Bert: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL-HLT), 1
(Long and Short Papers), pp. 4171–4186.

[25] Howard, J., and Ruder, S., 2018, “Universal Language Model Fine-Tuning for
Text Classification,” arXiv preprint.

[26] Makatura, L., Foshey, M., Wang, B., Hähnlein, F., Ma, P., Deng, B., and
Tjandrasuwita, M., 2024, “How Can Large Language Models Help Humans in
Design And Manufacturing? Part 2: Synthesizing an End-to-End LLM-Enabled
Design and Manufacturing Workflow,” Harvard Data Sci. Rev., 5.

[27] Jiang, S., and Luo, J., 2024, “AutoTRIZ: Artificial Ideation With TRIZ and Large
Language Models,” Proceedings of the ASME 2024 International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference. Volume 3B: 50th Design Automation Conference
(DAC) , Washington, DC, Aug. 25–28, ASME, p. V03BT03A055.

[28] Yuan, Z., Lan, H., Zou, Q., and Zhao, J., 2024, “3D-PreMise: Can Large
Language Models Generate 3D Shapes With Sharp Features and Parametric
Control?” arXiv preprint.

[29] Wu, F., Hsiao, S.-W., and Lu, P., 2024, “An AIGC-Empowered Methodology to
Product Color Matching Design,” Displays, 81, p. 102623.

[30] Ma, K., Grandi, D., McComb, C., and Goucher-Lambert, K., 2023, “Conceptual
Design Generation Using Large Language Models,” Proceedings of the ASME
2023 International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference. Volume 6: 35th International
Conference on Design Theory and Methodology (DTM), Boston, MA, Aug.
20–23, ASME, p. V006T06A021.

[31] D. Nelson, M., 2023, “Utilizing ChatGPT to Assist CAD Design for Microfluidic
Devices,” Lab Chip, 23(17), pp. 3778–3784.

[32] Brisco, R., Hay, L., and Dhami, S., 2023, “Exploring the Role of Text-to-Image
AI in Concept Generation,” Proc. Design Soc., 3(1), pp. 1835–1844.

[33] Nelson, M. D., Goenner, B. L., and Gale, B. K., 2023, “Utilizing Chatgpt to Assist
CAD Design for Microfluidic Devices,” Lab Chip, 23(17), pp. 3778–3784.

[34] Picard, C., Edwards, K. M., Doris, A. C., Man, B., Giannone, G., Alam, M. F.,
and Ahmed, F., 2023, “From Concept to Manufacturing: Evaluating
Vision-Language Models for Engineering Design,” arXiv preprint 2311.12668.

[35] Jones, R. K., Barton, T., Xu, X., Wang, K., Jiang, E., Guerrero, P., Mitra, N., and
Ritchie, D., 2020, “Shapeassembly: Learning to Generate Programs for 3d Shape
Structure Synthesis,” Association for Computing Machinery, 39(6), p. 234.

[36] Chang, T. A., Tu, Z., and Bergen, B. K., 2024, “Characterizing Learning Curves
During Language Model Pre-training: Learning, Forgetting, and Stability,” Trans.
Assoc. Comput. Linguist., 12, pp. 1346–1362.

[37] Wu, R., Xiao, C., and Zheng, C., 2021, “DeepCAD: A Deep Generative Network
for Computer-Aided Design Models,” 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), Montreal, QC, Canada, pp. 6752–6762.

[38] Xu, X., Willis, K. D., Lambourne, J. G., Cheng, C.-Y., Jayaraman, P. K., and
Furukawa, Y., 2022, “Skexgen: Autoregressive Generation of CAD
Construction Sequences With Disentangled Codebooks,” arXiv preprint, pp.
24698–24724.

[39] Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., and
Savarese, S., 2015, “ShapeNet: An Information-Rich 3D Model Repository,”
arXiv preprint 1512.03012.

[40] Mo, K., Zhu, S., Chang, A. X., Yi, L., Tripathi, S., Guibas, L. J., and Su, H., 2019,
“Partnet: A Large-Scale Benchmark for Fine-Grained and Hierarchical
Part-Level 3d Object Understanding,” Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long
Beach, CA, June 15–20, pp. 909–918.

[41] Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., and Xiao, J., 2015, “3d
Shapenets: A Deep Representation for Volumetric Shapes,” Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA,
June 8–10, pp. 1912–1920.

[42] Kim, S., Chi, H.-G., Hu, X., Huang, Q., and Ramani, K., 2020, “A Large-Scale
Annotated Mechanical Components Benchmark for Classification and Retrieval
Tasks With Deep Neural Networks,” Computer Vision – ECCV 2020: 16th
European Conference, Part XVIII, pp. 175 –191. . Glasgow, UK, August 23–28.

[43] Manda, B., Dhayarkar, S., Mitheran, S., Viekash, V. K., and Muthuganapathy, R.,
2021, “‘CADSketchNet’—An Annotated Sketch Dataset for 3D CAD Model
Retrieval With Deep Neural Networks,” Comput. Graphics, 99(9), pp. 100–113.

[44] Lee, H., Lee, J., Kim, H., and Mun, D., 2022, “Dataset and Method for Deep
Learning-Based Reconstruction of 3D CAD Models Containing Machining
Features for Mechanical Parts,” J. Comput. Design Eng., 9(1), pp. 114–127.

[45] Willis, K. D. D., Pu, Y., Luo, J., Chu, H., Du, T., Lambourne, J. G.,
Solar-Lezama, A., and Matusik, W., 2021, “Fusion 360 Gallery: a Dataset and
Environment for Programmatic CAD Construction From Human Design
Sequences,” ACM Trans. Graphics, 40(4), pp. 1–24.

[46] Koch, S., Matveev, A., Jiang, Z., Williams, F., Artemov, A., Burnaev, E., Alexa,
M., Zorin, D., and Panozzo, D., 2019, “ABC: A Big CAD Model Dataset for
Geometric Deep Learning,” Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, June 15–
20, IEEE, pp. 9593–9603.

[47] Ramnath, S., Haghighi, P., Ma, J., Shah, J., and Detwiler, D., 2020, “Design
Science Meets Data Science: Curating Large Design Datasets for Engineered
Artifacts,” Proceedings of the ASME 2020 International Design Engineering
Technical Conferences and Computers and Information in Engineering
Conference. Volume 9: 40th Computers and Information in Engineering
Conference, Virtual, Online, Aug. 17–19, ASME, p. V009T09A043.

[48] Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., and Ren, D., 2020,
“Distance-IoU Loss: Faster and Better Learning for Bounding Box
Regression,” Proceedings of the AAAI conference on artificial intelligence,
New York, Feb. 7–12.

[49] Sun, Y., Li, X., and Sha, Z., 2024, “Multimodal Dataset for Computer-Aided
Design (CAD) Model Generation,” Texas Data Repository.

Journal of Mechanical Design APRIL 2025, Vol. 147 / 041710-15

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/147/4/041710/7428715/m
d-24-1560.pdf?casa_token=C

eTU
Kglw

EAgAAAAA:27B2xZdfnvjG
Bv7bbP0SPBxTl1ovt-pm

exlQ
nLtho-O

O
zibQ

b7v55m
---O

LIdrAH
LvxN

qw
Je by U

niversity O
f Arkansas Libraries user on 28 January 2026

https://dl.acm.org/doi/abs/10.5555/3495724.3495883
https://dl.acm.org/doi/abs/10.5555/3495724.3495883
https://doi.org/10.1016/j.lindif.2023.102274
https://doi.org/10.1016/j.lindif.2023.102274
https://doi.org/10.48550/arXiv.2302.07406
http://dx.doi.org/10.3390/electronics12163535
https://doi.org/10.1115/DETC2023-116838
https://doi.org/10.1115/DETC2023-116838
https://doi.org/10.1115/DETC2023-116838
https://doi.org/10.1115/DETC2023-116838
https://dx.doi.org/10.1115/1.4052753
https://arxiv.org/abs/2311.12668
https://dx.doi.org/10.1115/1.4067085
https://dx.doi.org/10.1115/1.4067085
https://arxiv.org/abs/2401.17197
https://arxiv.org/abs/2401.17197
http://dx.doi.org/10.1115/1.4056436
http://dx.doi.org/10.1115/1.4056436
http://dx.doi.org/10.1115/1.4056669
https://doi.org/10.48550/arXiv.2309.17421
https://doi.org/10.48550/arXiv.2309.17421
https://arxiv.org/abs/2303.04671
https://doi.org/10.1609/aaai.v36i3.20215
https://dl.acm.org/doi/10.5555/3600270.3600887
https://dl.acm.org/doi/10.5555/3600270.3600887
https://dl.acm.org/doi/10.5555/3600270.3600887
https://dl.acm.org/doi/10.5555/3540261.3540277
https://dl.acm.org/doi/10.5555/3540261.3540277
https://dl.acm.org/doi/10.5555/3600270.3601993
https://dl.acm.org/doi/10.5555/3600270.3601993
https://api.semanticscholar.org/CorpusID:263218031
https://dx.doi.org/10.1109/TPAMI.2022.3191696
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://dx.doi.org/10.1865
https://dx.doi.org/10.1865
https://dx.doi.org/10.1865
https://doi.org/10.48550/arXiv.1801.06146
 https://doi.org/10.48550/arXiv.2307.14377
https://doi.org/10.1115/DETC2024-143166
https://doi.org/10.1115/DETC2024-143166
https://doi.org/10.1115/DETC2024-143166
https://doi.org/10.1115/DETC2024-143166
https://doi.org/10.48550/arXiv.2401.06437
https://doi.org/10.1016/j.displa.2023.102623
https://doi.org/10.1115/DETC2023-116838
https://doi.org/10.1115/DETC2023-116838
https://doi.org/10.1115/DETC2023-116838
https://doi.org/10.1115/DETC2023-116838
https://dx.doi.org/10.1039/D3LC00518F
https://dx.doi.org/10.1017/pds.2023.184
http://dx.doi.org/10.1039/D3LC00518F
https://doi.org/10.48550/arXiv.2311.12668
https://doi.org/10.1145/3414685.3417812
https://doi.org/10.1162/tacl_a_00708
https://doi.org/10.1162/tacl_a_00708
https://dx.doi.org/10.1109/ICCV48922.2021.00670
https://dx.doi.org/10.1109/ICCV48922.2021.00670
https://doi.org/10.48550/arXiv.2207.04632
https://doi.org/10.48550/arXiv.1512.03012
https://dx.doi.org/10.1007/978-3-030-58523-5_11
https://dx.doi.org/10.1007/978-3-030-58523-5_11
http://dx.doi.org/10.1016/j.cag.2021.07.001
http://dx.doi.org/10.1093/jcde/qwab072
http://dx.doi.org/10.1145/3450626.3459818
https://doi.org/10.1115/DETC2020-22377
https://doi.org/10.1115/DETC2020-22377
https://doi.org/10.1115/DETC2020-22377
https://doi.org/10.1115/DETC2020-22377
https://dx.doi.org/10.1873

	1 Introduction
	2 Background Knowledge
	2.1 Design Modalities and Large Language Models
	2.2 Zero-Shot Learning and Fine-Tuning

	3 Literature Review
	3.1 Engineering Design Using Large Language Models and MLLMs
	3.2 Computer-Aided Design Model Representation
	3.3 3D Shape Datasets

	4 Dataset
	4.1 Introduction to the Initial Multimodal Computer-Aided Design Dataset
	4.2 Initial Experiment Setup
	4.3 Script Evaluation Metrics
	4.4 Generation of Training Dataset for Large Language Model Fine-Tuning

	5 Fine-Tuned Large Language Models
	5.1 Experimental Settings
	5.2 Results
	5.2.1 Perspective I: Comparison Between GPT-4 and Fine-Tuned Models
	5.2.2 Perspective II: Comparison Between Four Fine-Tuned Models

	6 Discussion
	6.1 Effect of Fine-Tuning
	6.2 Effect of Sampling Strategies
	6.2.1 The Effect on Parsing Rate and Intersection Over Union
	6.2.2 The Effect on Output Distributions

	6.3 Generalizability and Scalability
	6.4 Limitations and Future Work

	7 Conclusion
	 Funding Data
	 Conflict of Interest
	 Data Availability Statement
	 References

