W) Check for updates

ASME

SETTING THE STANDARD

ASME Journal of Computing and Information Science in Engineering

Online journal at:
https://asmedigitalcollection.asme.org/computingengineering

Xingang Li

Walker Department of Mechanical Engineering,
University of Texas at Austin,

Austin, TX 78712

e-mail: xingang.li@utexas.edu

Yuewan Sun

Walker Department of Mechanical Engineering,
University of Texas at Austin,

Austin, TX 78712

e-mail: yuewansun@utexas.edu

Zhenghui Sha’

Walker Department of Mechanical Engineering,
University of Texas at Austin,

Austin, TX 78712

e-mail: zsha@austin.utexas.edu

1 Introduction

The emergence of large language models (LLMs), including the

LLMACAD: Multimodal Large
Language Models for Three-
Dimensional Computer-Aided
Design Generation

The evolution of multimodal large language models (LLMs) capable of processing diverse
input modalities (e.g., text and images) holds new prospects for their application in engi-
neering design, such as the generation of 3D computer-aided design (CAD) models.
However, little is known about the ability of multimodal LLMs to generate 3D design
objects, and there is a lack of quantitative assessment. In this study, we develop an approach
to enable LLMs to generate 3D CAD models (i.e., LLM4CAD) and perform experiments to
evaluate their efficacy where GPT-4 and GPT-4V were employed as examples. To address
the challenge of data scarcity for multimodal LLM studies, we created a data synthesis pipe-
line to generate CAD models, sketches, and image data of typical mechanical components
(e.g., gears and springs) and collect their natural language descriptions with dimensional
information using Amazon Mechanical Turk. We positioned the CAD program (program-
ming script for CAD design) as a bridge, facilitating the conversion of LLMs’ textual
output into tangible CAD design objects. We focus on two critical capabilities: the gener-
ation of syntactically correct CAD programs (Capl) and the accuracy of the parsed 3D
shapes (Cap2) quantified by intersection over union. The results show that both GPT-4
and GPT-4V demonstrate great potential in 3D CAD generation by just leveraging their
zero-shot learning ability. Specifically, on average, GPT-4V outperforms when processing
only text-based input, exceeding the results obtained using multimodal inputs, such as text
with image, for Cap 1 and Cap 2. However, when examining category-specific results of
mechanical components, the prominence of multimodal inputs is increasingly evident for
more complex geometries (e.g., springs and gears) in both Cap 1 and Cap 2. The potential
of multimodal LLMs to improve 3D CAD generation is clear, but their application must be
carefully calibrated to the complexity of the target CAD models to be generated.

[DOI: 10.1115/1.4067085]

Keywords: multimodal large language models, GPT-4, GPT-4V, computer-aided design,
generative design

besides text, such as images, thereby broadening the way users
can interact with LLMs for more sophisticated tasks.

generative pre-trained transformer (GPT) series [1], represents a
significant advancement in the capabilities of artificial intelligence
(AI) to interact with the world. These models, trained on vast data-
sets, exhibit remarkable proficiency in “understanding” the nuances
of human language and generating text that mirrors human-like
communication [2]. However, the inherent vagueness of natural lan-
guage continues to pose a significant challenge, especially when it
comes to conveying complex instructions to LLMs. To this end,
cutting-edge multimodal LLMs, such as OpenAl’s GPT-4 Vision
(GPT-4V) [3] and Google’s PaLM-E [4], have been developed.
These models are designed to process more input modalities

!Corresponding author.
Manuscript received April 22, 2024; final manuscript received October 25, 2024;
published online December 12, 2024. Assoc. Editor: Yaoyao Fiona Zhao.

Journal of Computing and Information Science in Engineering

The utility of LLMs in processing natural language data has
extended their application in design research for conceptual
design [5-7]. One particular limitation of these studies is that
they use textual information only as the input. However, it might
be difficult to effectively describe the intended design artifacts
and associated parameters through text-only, which often encom-
pass the structural and layout specifications of a component and
the desired shapes of the component. Furthermore, conceptual
design is inherently multimodal, frequently incorporating visual
elements ranging from sketches for design ideation to engineering
drawings for fabrication and assembly [8—10]. These visual ele-
ments are crucial for describing the intricacies of design that
textual descriptions alone cannot capture. Therefore, recent design
research emphasizes the significance of multimodal machine learn-
ing (MMML) in improving the conceptual design by integrating
diverse modalities [8§—11]. Multimodal input, such as images and

FEBRUARY 2025, Vol. 25 / 021005-1

Copyright © 2024 by ASME

as19l/981¥ 1L ¥2/5001 20/2/Sz/spd-a1o1e/Bunssuibusbunndwoo/B10 swse uoios||ooleybipawse//:dpy woly papeojumoq

0 ¢ ST ¢

920z Asenuer gz uo jsenb Aq ypd 50012

mailto:xingang.li@utexas.edu
mailto:yuewansun@utexas.edu
mailto:zsha@austin.utexas.edu
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4067085&domain=pdf&date_stamp=2024-12-12

sketches beyond texts, could potentially improve LLMs’ perfor-
mance in understanding designers’ intent, thus generating more
precise and quality design output. Therefore, multimodal LLMs
that can take multiple input modalities have great potential for
their application in Al-assisted conceptual design, promising to rev-
olutionize design tools and human-Al collaborative design.

Specifically, computer-aided design (CAD) has become an indis-
pensable tool in conceptual design, enabling the transformation of
design ideas or design requirements into 3D models. Translating
design requirements, whether textual or visual, into accurate 3D
geometries is challenging, even for experienced human designers,
and poses considerable challenges for LLMs. There are two
primary challenges: (1) CAD involves the creation of complex geo-
metric and design elements, where components are highly interde-
pendent. Designers must carefully consider the placement,
dimensions, and relationships between various parts of a design,
ensuring that each element aligns correctly with others. (2) CAD
tasks require robust visual-spatial reasoning, demanding a deep
understanding of the relationships between different geometric
components within a 3D space, as well as the ability to manipulate
these relationships effectively. The “chain-of-thought” method
[12], commonly used in LLMs to solve mathematical or reasoning
problems, may not perform well in this context as it is more suited
to tasks involving linear logical reasoning. Given these challenges,
the question arises: to what extent can LLMs be applied to CAD
generation? To our knowledge, no quantitative evaluation has
been performed to assess the efficacy of multimodal LLMs in the
CAD generation of 3D shapes for conceptual design.

To fill this research gap, we develop an approach to enable mul-
timodal LLMs for 3D CAD generation (hereafter referred to as
LLM4CAD) and conduct a quantitative analysis to evaluate
LLMA4CAD’s effectiveness in conceptual design. Specifically, we
seek to understand the capabilities of multimodal LLMs to generate
high-quality 3D design concepts with precise dimensions and to
identify strategies to improve their capabilities. This study is
driven by two research questions (RQs): (1) To what extent can mul-
timodal LLMs generate 3D design objects when employing different
design modalities or a combination of various modalities? and (2)
What strategies can be developed to enhance the ability of multi-
modal LLMs to create 3D design objects?

To enable LLM4CAD, one technical challenge is that LLMs
cannot directly create 3D shapes, such as meshes, voxels, and
boundary representations. The capability of LLMs to generate
text and code presents an opportunity to apply these models to
CAD programming [13]. However, the effectiveness of LLMs in
acquiring and applying the specialized domain knowledge required
for CAD packages is still uncertain. Additionally, there is limited
research on enhancing the executability of the CAD programs gen-
erated by these models. Therefore, we developed an approach to
enable an indirect synthesis of 3D design objects by generating
CAD programs [14]. To quantitatively evaluate the performance,
we propose a data synthesis pipeline along with an evaluation
framework. This evaluation specifically focuses on two capabilities.
Capl: the success rate of the generated programming codes in
program-to-CAD translation and Cap2: the extent to which these
resultant 3D design objects align with the ground-truth (GT)
shapes. We summarize our contributions as follows:

(1) This study created a new CAD dataset of five categories of
mechanical components (i.e., shafts, nuts, flanges, springs,
and gears with diverse geometry complexity) for multimodal
LLMs, including textual descriptions, sketches, images, and
3D CAD models. In particular, textual descriptions of the
target design objects are in natural languages with detailed
dimensional information collected with Amazon Mechanical
Turk (AMT),” an online crowdsourcing platform.

2hups://Www.mturkcom/

021005-2 / Vol. 25, FEBRUARY 2025

(2) The effectiveness of the GPT-4 and GPT-4V models in 3D
design generation was evaluated, and new knowledge of
their strengths and limitations was obtained.

(3) A new method was developed and implemented to enhance
the GPT models’ proficiency in generating 3D CAD
models. Specifically, we developed a debugger to correct
syntax errors in the synthesized CAD programs to improve
their success rate of being translated to 3D CAD models.

We found that GPT-4 and GPT-4V models have significant
potential for LLM4CAD by just leveraging their zero-shot learning
ability. Especially, the performance can be further enhanced by the
proposed debugger. However, they still struggle with generating
complex geometries. Additionally, GPT-4V’s performance was
examined with four input modes including text-only, text with
sketch, text with image, and a combination of text, sketch, and
image. The results show that on average GPT-4V particularly
excels when processing purely text-only input, outperforming mul-
timodal inputs in both Cap 1 and Cap 2. This observation is coun-
terintuitive because a prevailing belief in the field of MMML is that
incorporating varied input modalities should improve a machine
learning (ML) model’s predictive accuracy due to an increased
amount of information for learning and inference. However, when
examining category-specific results of mechanical components,
multimodal inputs start to gain prominence with more complex
geometries (e.g., springs and gears) in both Cap 1 and Cap 2.

Based on these observations, it is clear that the current multi-
modal LLMs (e.g., GPT-4V) still face limitations in handling mul-
timodal inputs for generating 3D CAD objects. However, the
detailed insights from the category-specific results show that multi-
modal inputs become more effective as the complexity of design
objects increases. Therefore, these limitations do not diminish
their potential benefits in real-world design scenarios characterized
by complex objects. The ability of multimodal LLMs to process
diverse input modalities remains a promising avenue for enhancing
3D CAD generation technologies.

The remainder of this paper is organized as follows. In Sec. 2, we
provide an overview of the background related to multimodal
machine learning and LLMs for engineering design. Section 3 out-
lines the methodology for data collection and generation, as well as
the evaluation of multimodal LLMs. Subsequently, Secs. 4 and 5
present, analyze, and discuss the experimental results, from which
we summarize the primary findings and acknowledge limitations.
Conclusions and closing remarks are made in Sec. 6, where we
present key insights and suggest potential directions for future
research.

2 Literature Review

In this section, we review the most relevant literature to our work
including multimodal machine learning and large language models
and their applications for engineering design.

2.1 Engineering Design Using Multimodal Machine
Learning. MMML approaches exhibit significant promise in
enhancing the field of engineering design, as evidenced by recent
review studies [8—10]. Specifically, when confronted with inputs
comprising multiple modalities, such as a combination of text and
sketches, MMML techniques can integrate this information
through a process known as multimodal fusion. This fusion
enables integrating data from diverse modalities to facilitate predic-
tion tasks such as regression or classification. The application of
multimodal fusion in different areas (e.g., audio-visual speech rec-
ognition and image captioning) is becoming popular [15]. The data
from different modalities can supplement each other, aiding in
increasing the accuracy of predictions. Even if one modality is
missing, predictions can still be viable. While there might be
overlap in information from multiple modalities, this redundancy
can strengthen the reliability of the predictions [15].

Transactions of the ASME

as19l/981¥ 1L ¥2/5001 20/2/Sz/spd-a1o1e/Bunssuibusbunndwoo/B10 swse uoios||ooleybipawse//:dpy woly papeojumoq

) ¢ ST ¢

920z Asenuer gz uo jsenb Aq ypd 500120

https://www.mturk.com/
https://www.mturk.com/

Despite these advantages, the extent to which multimodal fusion
can enhance engineering design remains largely unexplored, with
only a few pioneering works looking into this area [16,17]. For
example, Song et al. [16] pioneered a multimodal learning model
that integrates sketch and textual description modalities using a
cross-attention mechanism. This approach facilitated a comprehen-
sive assessment of design concepts, revealing that MMML signifi-
cantly enhances the model’s predictive and explanatory capabilities.
The findings underscore the advantages of employing multimodal
representations in conceptual design evaluation.

MMML for engineering design is still in its initial stage, present-
ing ample opportunities for extensive research exploration into the
theory and methodology for enhancing design evaluation and gen-
eration. Our study investigates multimodal LLMs’ capability to
generate 3D design concepts when taking multiple design modali-
ties (e.g., a combination of text, image, and sketch) as input com-
pared to unimodal input (e.g., text), contributing to the field of
MMML for engineering design.

2.2 Large Language Models. Natural language processing
(NLP) is a foundational technology in Al advancements, primarily
focusing on enabling computers to understand and interact with
humans using natural language [18]. Building upon the foundation
of various NLP technologies, the emergence of LLMs such as the
GPT series [1] marks a significant leap in Al proficiency.

A remarkable example of LLMs is ChatGPT [19], launched in
2022 by OpenAl. ChatGPT, an advanced Chatbot built upon the
GPT-3.5 model, provides detailed and structured responses based
on specific user prompts. Its capabilities span a broad spectrum of
language understanding and generation tasks, including multilin-
gual translation, creative writing, and programming code creation
and debugging. A distinctive feature of ChatGPT is its ability to
recall previous conversation segments, enabling more coherent
and sustained interactions [20,21]. ChatGPT is the state-of-the-art
LLM and stands apart from earlier NLP and LLM tools due to its
exceptional conversational skills and reasoning abilities across
various domains [20,22,23].

LLMs can process not only natural language but also program-
ming language [24]. Leveraging LLM’s capability to synthesize
programs, program-aided language (PaL) models [12] have
shown remarkable success in solving complex mathematical prob-
lems and reasoning tasks. Pal. models effectively utilize LLMs to
convert natural language problems into executable programs,
which are then processed by a runtime environment, such as a
PYTHON interpreter, to obtain solutions. They leverage the strengths
of both natural language processing and traditional programming,
providing a robust framework for tackling intricate problems that
require a combination of linguistic understanding and precise
calculations.

Our study draws inspiration from Pal. to address a design
problem using program code, but it is different from PaL in two sig-
nificant ways. First, while Pal has primarily focused on solving
general mathematical and reasoning tasks using basic PYTHON pro-
grams, our work tackles the more complex challenge of generating
CAD-related programming code (e.g., CADQuery). This requires
not only an understanding of geometric and spatial relationships
but also adherence to design constraints and the production of syn-
tactically correct and efficient code for 3D modeling software’a task
that extends beyond mathematical and general reasoning capabili-
ties. In this study, we evaluate how LLMs can interpret design
requirements expressed through various combinations of design
modalities, such as textual descriptions and images, and generate
corresponding CAD programming code for 3D designs. Second,
while PalL generally falls under the category of few-shot prompt
engineering research—providing a natural language problem and
generating programs as intermediate reasoning steps in their
prompts, followed by a new task—our study is rooted in zero-shot
prompt research. In this approach, no examples are provided in the
prompts. This decision is motivated by two primary considerations:

Journal of Computing and Information Science in Engineering

(1) it is impractical for users to provide a CAD program example, as
creating such examples is both challenging and time-consuming,
and (2) if a CAD program example from the same category of
mechanical components is provided, the benefits of utilizing
LLMs would be diminished, as simply substituting parameters
could yield the correct CAD program for the new task.

We contribute to the existing literature on Pal. models and
demonstrate their potential to be applied to a broader range of cross-
modal tasks beyond traditional mathematical and logical reasoning
problems with a zero-shot prompt strategy.

2.3 Large Language Models for Engineering Design.
Researchers have been examining how LLMs, such as ChatGPT,
can be applied to enhance the engineering design process, from con-
ceptual design to manufacturing [5,6,14,25-30]. For instance,
Kocaballi [5] undertook a hypothetical design project that leveraged
ChatGPT to create personas in the roles of designers or users. The
approach facilitated various design-related activities, including con-
ducting user interviews, generating design concepts, and evaluating
user experiences. However, these studies primarily focus on the text
generation capabilities of LLMs by taking textual input. Taking the
generation of design concepts as an example, it can be advantageous
to employ the generated text for brainstorming design ideas [7].
However, translating these conceptual ideas into concrete 3D
designs still presents a significant challenge.

While LLMs’ ability to directly generate 3D objects (e.g.,
meshes, voxels, and boundary representations) seems limited, an
alternative approach involves the generation of 3D designs using
CAD programming languages such as CADQuery and OpenSCAD.
This can be achieved by PaL. models that exploit LLMSs’ capacity
for program synthesis [24] and some research has been investigat-
ing the potential of LLMs in producing 3D designs through CAD
programs, which involves interpreting human language instructions
and converting them into CAD designs [14,26]. Nevertheless, these
studies are still limited to textual descriptions for the design intent
and it is often challenging to convey complex tasks solely
through text.

The evolution of OpenAI’s GPT architecture, transitioning from
the text-only GPT-3.5 and GPT-4 to its multimodal successors,
GPT-4 Vision (GPT-4V) [3,21,31] marks significant advancements.
It offers opportunities to incorporate multiple modalities besides
text. However, little is known about its practicality in and for engi-
neering design, such as 3D CAD generation. That motivates our
study to conduct a quantitative analysis on to what extent multi-
modal LLMs can generate 3D design objects when employing dif-
ferent design modalities or a combination of various modalities. We
employed GPT-4 and GPT-4V as examples of unimodal and multi-
modal LLMs for our experiments due to their acknowledged out-
standing performance.

3 Methodology

We develop an approach to enabling LLM4CAD by taking
various design modalities and assessing the extent of their capabil-
ities, as shown in Fig. 1. This approach consists of three major steps:
(1) data synthesis: multimodal design data collection and genera-
tion, (2) code generation: CAD program code generation, and
(3) evaluation: the evaluation of 3D CAD model generation in
terms of success rate and precision.

For clarity of illustration, we consider a gear as a representative
3D design object. The process begins with the generation of GT
3D CAD models, and dimensional data are recorded alongside
the generation process. Direct rendering techniques can be
employed to obtain images from the 3D shapes. Meanwhile,
textual descriptions incorporating dimensional information and
sketches can be acquired through automated algorithms or human
involvement. With the input data in three design modalities (i.e.,
text, image, and sketch), we evaluate the capability of the GPT-4
and GPT-4V models to generate CAD programs which are then

FEBRUARY 2025, Vol. 25 / 021005-3

as19l/981¥ 1L ¥2/5001 20/2/Sz/spd-a1o1e/Bunssuibusbunndwoo/B10 swse uoios||ooleybipawse//:dpy woly papeojumoq

Z ST

920z Asenuer gz uo jsenb Aq ypd 500120

Data Synthesis

Ground truth

Evaluation

3D shape

Dimensional information
Module=4, Teeth Number=27,
Face Width=8.9mm,

(=2
(=
e
()]
kel
% c
Bore Diameter=10.4mm &

"The gear is a 27-tooth
spur gear with a module
of 4, a face width of 8.9
mm, and a central bore
diameter of 10.4 mm."

|

Rendering

Compare

{]

) Generated

¥
Debugger - @

Code Generation

3D shape

CAD program

Fig. 1 The overview of our approach

parsed into 3D shapes. The quality of the resulting 3D shapes is then
benchmarked against the GT shapes to gauge the efficacy of gener-
ation. In addition, we proposed a debugger to enhance the models’
capabilities in CAD program generation.

3.1 Data Synthesis. We choose mechanical components as
target 3D objects given their pivotal role in engineering design.
Upon examining the literature and online resources, we could not
find any CAD model dataset of mechanical components that incor-
porates multiple design modalities and detailed dimensional infor-
mation. The existing datasets of mechanical components [32-34]
do not provide essential dimensional data. Therefore, they are not
appropriate for this study because a quantitative evaluation of the
generated CAD models is impossible since no dimensional
information can be provided to LLMs as input. This motivates us
to develop a new synthesis pipeline for CAD objects with detailed
dimensional information. Such a dataset would benefit various
machine learning tasks in engineering design, where the details of
the design specifications are critical.

As shown in Fig. 2, a semi-automated pipeline for data synthesis
is developed to generate the textual descriptions, images, sketches,
and GT 3D shapes of five common types of mechanical compo-
nents: shafts, nuts, flanges, springs, and gears. They were chosen
for their popularity in engineering design and their varying levels
of complexity, allowing us to test the robustness of our approach
and investigate how geometric complexity would influence the
results. A component with more complex geometry (i.e., requiring
more parameters and calculations to determine its shape) is theoret-
ically more challenging to create its CAD model due to the
increased number of CAD operations and computations needs. Gen-
erating CAD programs for components such as shafts, nuts, and
flanges, which primarily utilize a small number of CAD operations,
such as Sketch and Extrude, is relatively simple. However, the cre-
ation of CAD programs for springs and gears presents more chal-
lenges. For example, gears require complex calculations to

021005-4 / Vol. 25, FEBRUARY 2025

determine the profiles of gear teeth, while springs have spiral
shapes and need less-frequently used CAD operations such as
Evolve. To show this, we performed an analysis of the execution
time in generating each of the five mechanical components on com-
puters using the CADQuery application programming interface

,inner_diameter,workplanes'XY

self.nut_sizesnu
self.nut_height=nut_height
self.inner_diameter=inner_diameter
self.nut = None

Python function

def create(self):
hex_nut
inner_cylinde
self.nutshex_nut.

self.uorkplane) .pol!
ne(self.workplane
_cylinder)

Y
Ground truth : I il I

3D model ‘\\\ <
\ AN
N \}gu

Dimensional information
External Diameter=59 mm,
Height=19 mm,

Nominal Hole Diameter=23 mm

, self.nut_size).extrude(sel

ude ut_height)
le(self.inner_diameter / 2).

ude(self.nut_height)

J

Rendering

OpenCV
Y
Amazon
Mechanical ©
"It is a nut with Turk
external diameter of
59 mm, height of 19 ~
mm and has a ~
nominal hole

diameter of 23 mm."

Fig. 2 The pipeline for data synthesis

Transactions of the ASME

(/98¥¥ 1L ¥2/500120/2/SZ/4pd-8o1e/Butisauibusbunndwoo/Bio swse uoyos|joojepbipswse//:dny woly pspeojumoq

0 ¢ G¢ osil

920z Asenuer gz uo jsenb Aq ypd 50012

17.51

15.0 4

= =
o N
o w
n L

Average Execution Time (s)
~
n
L

5.0 1

2.5 1

0.0 -
Flange Nut Shaft Spring
Components

Fig. 3 Execution time analysis of mechanical components

(API), as illustrated in Fig. 3. On average, gears and springs require
more execution time than flanges, nuts, and shafts. Therefore, in this
paper, we refer to shafts, nuts, and flanges as simple geometries,
while springs and gears are complex geometries.

3.1.1 Three-Dimensional Shapes, Images, and Sketches.
Using CADQuery (Version 2.3.1),% a pyrHoN-based CAD program-
ming language, we created five distinct pyTHON classes, each corre-
sponding to one of the mechanical component categories.
CADQuery was selected due to its ease of use, flexibility, and
ability to generate parametric CAD models through a script-based
approach. CADQuery allows for the creation of complex geome-
tries with relatively simple code, making it well-suited for integra-
tion with LLMs such as GPT-4 and GPT-4V. Additionally,
CADQuery’s open-source nature and active community support
ensure that LLMs can more easily understand CADQuery, enabling
them to provide appropriate responses based on the design require-
ments. As introduced in Sec. 3.2, CADQuery is also utilized for
generating the LLMs’ responses. In each class, the design is param-
eterized, so a variety of designs can be generated from a defined
design space. An example of the classes is given in Fig. 2. To
achieve uniform sampling of the design space, we employed
Latin hypercube sampling [35] of design parameters (such as the
external diameter and height of a nut). For shafts, we synthesized
250 shapes for each of the four types of shafts (with each type
having 2, 3, 4, and 5 sections, respectively), totaling 1000. For
the other four components, 1000 shapes for each are created. The
dimensional information of these shapes was recorded alongside
the GT 3D models. A piece of the dimensional information of a
nut is given in the figure.

The 2D image representation of these 3D shapes is obtained from
computer rendering with the camera fixed at the position (20, 20,
20) and oriented toward the origin (0, 0, 0). Subsequently, sketches
of these images were produced by sketch-style rendering using
OpenCV. Only a single view of the image and sketch was gener-
ated, and no dimensional information was provided on the images
or sketches. Although hand sketches of mechanical components
from human participants would be a better data source for research
validity, the efficiency and effectiveness of rendered sketches from
computer algorithms have been demonstrated [34]. With the consid-
eration of such trade-offs, we decided to use computer renderings
for the sketch data.

We decided not to include or annotate dimensional information in
2D images or sketches, considering real-world applications. The
scenario in which an LLM4CAD model is most likely to be utilized
is during reverse engineering, where detailed engineering features

3hllps://cadquery.readlhedocs.io/en/lalest/installation.html

Journal of Computing and Information Science in Engineering

and dimensions are typically limited in images or drawings. For
instance, this might occur when an individual takes a photo of an
object they wish to convert into a 3D model. Consequently, in
our research design, we intentionally chose to annotate dimensional
information solely within text data.

3.1.2 Textual Descriptions With Dimensional Information. It
is feasible to synthesize textual data integrated with dimensional
information from images via GPT models [36]. However, as we
need to input this textual data into GPT models for analysis, it
might introduce a risk of biasing the results. To that end, we
tested the other popular automatic captioning methods, such as
the contrastive language-image pretraining model [37], but found
the results unsatisfactory for mechanical components.

To mitigate this and ensure the quality of the textual data, we
chose to crowdsource textual descriptions through AMT, a platform
renowned for its efficacy in gathering data across a broad demo-
graphic spectrum. This diversity, spanning geographical, cultural,
and age-related differences, is crucial for the richness of our
dataset and aligns with established precedents in engineering
design research for collecting data on human subjects [38,39]. We
designed human intelligence tasks (HITs) on AMT to recruit partic-
ipants for our study. These individuals were instructed to describe
mechanical components in natural language based on provided
images. A critical requirement of these descriptions was the incor-
poration of specific dimensional information, which was presented
alongside the images. This approach ensures that our data collection
method not only captures the varied interpretations of mechanical
components but also includes precise dimensional information,
enhancing the utility and accuracy of the dataset.

For the five distinct mechanical component categories—shafts,
nuts, flanges, springs, and gears—each category is represented by
aunique standardized image for visual depiction within a HIT. Spe-
cifically, the category of shafts is further distinguished by incorpo-
rating four separate HITs and each HIT with a standardized image.
These images correspond to the four distinct types of shafts, which
are categorized based on the number of sections they contain. Thus,
eight HITs were created and published, corresponding to the four
types of shafts and the other four mechanical components as afore-
mentioned. We published 1000 assignments for each category of
the mechanical components (250 for each of the four HITs of
shafts (250 x4) and 1000 for each of the other four HITSs).
Within a single HIT, every assignment featured the same image
with its dimensional information. According to the rules of AMT,
once a participant completes an assignment within a HIT, they
cannot work on the other assignments within the same HIT,
thereby avoiding repetitive responses. An example of an assignment
under the HIT for triple-section shafts is shown in Fig. 4. Accom-
panying each image, a piece of dimensional information describing
the component is provided. Annotations are included on each image
to highlight key features of the mechanical components to clarify
the relationship between the dimensional information and the com-
ponent’s features. Furthermore, an example of a bearing pillow
block with a human’s description incorporating dimension informa-
tion is provided as a reference to aid participants in understanding
the task’s requirements.

After completing the data collection via AMT, we conducted a
cleaning process for the textual data to ensure the accuracy, consis-
tency, and relevance of the information provided by the partici-
pants. Approximately 67% of the responses were deemed to be of
high quality. The final dataset included a collection of textual
descriptions: 628 for shafts, 671 entries for nuts, 692 for flanges,
679 for springs, and 661 for gears. After cleaning, we replaced
the generic dimension information within the textual descriptions
with specific, accurate specifications paired with the corresponding
mechanical components. The integration of dimension information
is expected to significantly enhance the richness and applicability of
our dataset. The statistics of textual data and representative samples
are presented in Table 1. Additional details on the dataset can be
found in Table 5 in the Appendix.

FEBRUARY 2025, Vol. 25 / 021005-5

(/98¥¥ 1L ¥2/500120/2/SZ/4pd-8o1e/Butisauibusbunndwoo/Bio swse uoyos|joojepbipswse//:dny woly pspeojumoq

0 ¢ G¢ osil

920z Asenuer gz uo jsenb Aq ypd 50012

https://cadquery.readthedocs.io/en/latest/installation.html
https://cadquery.readthedocs.io/en/latest/installation.html

amazon
— !

Descrbe shat compo... (HIT Details) | Auto-accept naxt MIT

Your task:

$NADOX } 3 3020 1 0:16 of 60 Min

Examine the shaft shown in the provided image and provide a description in your own words that incorporates the dimensional information listed beneath the image

Your descnption should focus on the object itself rather than the image. For instance,

object’s features as they appear.

Shaft:

L2

D1 [o2

L1 3

Dimensional information (length L, diameter D).
Section 1. L=16.9 mm, D=59 mm
Section 2: L=155 mm, D=3.5 mm
Section 3: L=21.2 mm, D=6.9 mm

Example of an excellent answer:

instead of saying ‘The image shows an object on a white background,” detail the

D3

Excellent answer: It is a rectangular block 80mm x 60mm x 10mm, with counter-bored holes for M2 socket head cap screws at the corners, and a circular pocket 22mm in

diameter in the middle for a bearing

Your answer for the shaft here
Fig. 4 An example of the HITs on Amazon Mechanical Turk
Table 1 Statistics of the textual data collection and cleaning process accompanied with representative examples
Published Filtered
tasks responses Examples of textual descriptions collected from AMT

Shafts 1000 628 It is a shaft which has four sections. In the first, it has 14.9 mm length and 15.5 mm diameter. In the second, it
has 12.8 mm length and 21.3 mm diameter. In the third, it has 20.3 mm length and 21.1 mm diameter. In the
fourth, it has 25.6 mm length and 2.6 mm diameter.

Nuts 1000 671 It is a hexagon nut with an external diameter of 47 mm, a nominal hole diameter of 7 mm, and a height of
14 mm

Flanges 1000 692 Itis a flange with a 124 mm diameter and 14 mm thickness, with a raised face of 86 mm diameter, a 16 mm bore
diameter, and a 144 mm face height

Springs 1000 679 The spring is a coil with a diameter of 8 mm and a pitch of 14 mm. It is 46 mm long when uncompressed, made
of wire with a 1.5 mm radius. It seems strong and flexible, suitable for many uses.

Gears 1000 661 It is a gear with a module of 6 and 44 teeth, a face width of 8.7 mm, and a bore diameter of 19.3 mm

3.2 Code Generation and Debugger. We show the pipeline
of the code generation, and evaluation processes in Fig. 5. The
experiment was conducted by utilizing the models’ API and
instructing them to generate CAD program code via CADQuery.
Similar to the generation of GT 3D shapes, we employed Version
2.3.1 for CADQuery here as well. To interact with the OpenAl
API model, we assign a persona to it, defining it as an Al assistant
specialized in designing 3D objects with CadQuery. We initiate the
request with a combination of a description and a specific prompt.
The given prompt instructs: “Generate CadQuery code to construct
the specified mechanical component. The code must exclusively
utilize CadQuery and can not incorporate any other CAD design
packages or software, ultimately exporting the component as an
STL file.” The resulting CAD program was subsequently converted
into 3D shapes for analysis.

021005-6 / Vol. 25, FEBRUARY 2025

To enhance the quality of the GPT models’ output, we proposed a
debugger as shown in Fig. 6 integrated with the “forward pass” as
described previously. The initial prompts (e.g., textual, image, and
sketch data) conceivably represent user inputs, commands, or param-
eters that directly influence the code synthesis mechanism. The
“forward pass” ends after executing the generated CAD program
code no matter if the execution is successful or not, which is used
to test the zero-shot learning ability of GPT models. For the “debug-
ging process,” the code is subjected to an execution trial to ascertain
its functional integrity. In the event of a successful execution, the
process will be terminated. Conversely, an unsuccessful execution
indicates the presence of syntax errors within the code, requiring
the activation of the debugger. Syntax errors encompass a spectrum
of programming language misuse, such as typographical errors to the
misapplication of language constructs. The “debugging process” is

Transactions of the ASME

(/98¥¥ 1L ¥2/500120/2/SZ/4pd-8o1e/Butisauibusbunndwoo/Bio swse uoyos|joojepbipswse//:dny woly pspeojumoq

0 ¢ G¢ osil

920z Asenuer gz uo jsenb Aq ypd 50012

This is a spring with a coil
radius of 23 mm and is
constructed from a wire
with a radius of 0.8 mm.
The spring features a
uniform pitch of 5 mm

Generated
CADQuery 3D rr{odel

231 K

-
between each coil and has GPT-4 \y_‘;,/
an overall length of 38 mm API >
when uncompressed. VS
CAD =~
code j
T Ground truth
@ 3D model
Image JT’
g GPT-4V
S API

Fig. 5 The pipeline for code generation and evaluation

Successful

— e R CAD
Initial 1(<
G‘a" prompts “RN%)) program > execution?

code

¥

Syntax
errors
Debugging process

Fig.6 The process of generating CAD program code using GPT
models with a debugger that can iteratively correct the syntax
errors (if any) of the CAD program code. The bolded lines indi-
cate three different sources of the input information in the debug-
ging process.

‘ I No

an iterative procedure dedicated to the identification and correction
of errors in the code. The previous conversation content (including
the user requirements and GPT’s responses) and the current error
messages as indicated by the three bolded lines in Fig. 6 are fed to
the same API for the “debugging process.” This recursive process
is imperative to refine the CAD program code, ensuring its accuracy
and reliability before finalization.

3.3 Evaluation. We employed two key metrics to quantify the
capabilities of LLM4CAD: the parsing rate for Cap1 and the intersec-
tion over union (IoU) for Cap2. The parsing rate metric evaluates the
extent to which the generated CAD program code could be parsed
successfully without errors, acknowledging that generating error-
free code by GPT models is not guaranteed. Upon successful
parsing, the quality of the resulting 3D shapes is measured against
the GT shapes by calculating the IoU, thus providing a quantifiable
measure of the generation accuracy relative to the input modality.
The IoU metric, a critical measure of accuracy, quantifies the
overlap between the generated shape and the GT shape as a ratio of
their intersection to their union. This metric is widely used and par-
ticularly insightful for evaluating the geometric fidelity of the gener-
ated designs relative to the GT. Given our focus on the geometry of
the generated shapes rather than their positions within a given space,
we implemented a pre-step to align the principal axes of the generated
shapes with those of the GT shapes by rotation and translated the gen-
erated shapes to align their centroids with those of the GT shapes.
This transformation process ensures that the calculation of IoU is
based only on the geometric accuracy of the shapes, excluding any
discrepancies that might arise from their positioning or orientation.

4 Experiments and Results

In this section, we introduce the experiment details and the
results.

Journal of Computing and Information Science in Engineering

4.1 Experimental Details. The details of our experiment set-
tings are outlined in Table 2. We conducted a comparative analysis
between GPT-4 and GPT-4V. The API models “gpt-4-1106-
preview” and “‘gpt-4-1106-vision-preview” were employed for
GPT-4 and GPT-4V, respectively.4 These represented the most
up-to-date versions of the API available at the time of our study.
While GPT-4 accepts only textual input, GPT-4V can process
both textual and rasterized data inputs. We explored various modal-
ities and combinations thereof as inputs for the GPT-4V model. In
theory, there are other possible input modes (such as sketch-only
and sketch +image). However, they do not provide dimensional
information from the textual descriptions for the GPT models and
cannot fulfill our objective of conducting a quantitative comparison
between the generated 3D design objects and their GT counterparts.
As a result, our selection was strategically narrowed down to input
modes that include textual descriptions, ensuring the necessary
dimensional data are available for accurate analysis and compari-
son. In both scenarios, we first assessed the GPT models’ inherent
capabilities, followed by the implementation of the debugger to
evaluate its effectiveness in improving model performance.

Specifically, we limited the debugging process to three times in
the current study balancing computational efficiency and model per-
formance based on our observations from the debugging experi-
ments: (1) The debugger, while effective, significantly increases
response time and consumes more resources with each iteration.
Each iteration involves feeding all historical data into the API,
making the process more time-consuming and resource-intensive
beyond three iterations. (2) After three iterations, there is no signif-
icant improvement in the IoU scores. The debugging process pri-
marily addresses syntax errors rather than iteratively refining the
CAD program, and additional iterations do not enhance the IoU
meaningfully. (3) The parsing rate sees minimal improvement
after the third iteration. For simple components, three iterations
are sufficient to achieve near-optimal (i.e., about 98%) parsing
rates, while additional iterations do not significantly improve
parsing rates for more complex components.

4.2 Results. In this section, we present the results of the
parsing rate and IoU. Additionally, we show examples to qualita-
tively compare the generated 3D design objects with their corre-
sponding GT shapes.

4.2.1 Results of the Parsing Rate. Figure 7 shows the results
comparing the parsing rates of the GPT-4 and GPT-4V models in
various categories of mechanical components with or without the
debugger. The average parsing rate values of both models are
also annotated in the figure. Overall, there is a variance in model
performance relative to the complexity of the mechanical compo-
nents being parsed. Both models demonstrate higher efficacy in
generating code for simple geometries, such as shafts, nuts, and
flanges, than complex geometries (e.g., springs and gears).

Figure 7(a) details the performance of the GPT-4 model when
processing text inputs. It is observed that the inclusion of a debug-
ger significantly enhances the model’s parsing rate. In Fig. 7(b), the
analysis extends to the GPT-4V model dealing with multiple input
modalities, including text-only, text with sketch, text with image,
and a combination of text, image, and sketch. In terms of the
average parsing rate, the GPT-4V model achieves its highest perfor-
mance with the text-only input mode, while the results are relatively
consistent across the other three input types. For each category of
the mechanical components, the text-only input achieves the best
in shafts, nuts, and flanges. However, when dealing with more
complex geometries (e.g., springs and gears), multimodal input
modes are better than or as good as the text-only input. For
example, the input of text with image is the best in gears, and the
input using the combination of text, sketch, and image achieves
the best in springs.

4htlps://plalform.openai.com/docs/models/overview

FEBRUARY 2025, Vol. 25 / 021005-7

as19l/981¥ 1L ¥2/5001 20/2/Sz/spd-a1o1e/Bunssuibusbunndwoo/B10 swse uoios||ooleybipawse//:dpy woly papeojumoq

0 ¢ ST ¢

920z Asenuer gz uo jsenb Aq ypd 50012

https://platform.openai.com/docs/models/overview
https://platform.openai.com/docs/models/overview

Table 2 Details of the experiment settings

Mechanical components API Input modality Model Metrics
3D shapes gpt-4-1106-preview Text GPT-4 model
o Shafts (four types) GPT-4 model + debugger®
e Nuts Parsing rate and IoU
o Flanges gpt-4-1106-vision-preview Text GPT-4V model
e Springs Text + sketch
o Gears Text + image
GPT-4V model + debugger”
Text + sketch + image

“Debugging times = 3.

The result of the comparison between Figs. 7(b) and 7(c) mirrors
the trend observed in the GPT-4 model, demonstrating an improved
parsing rate with the introduction of a debugger. Moreover, the
parsing rate values of the four input modes for each category of
the five mechanical components achieve similar levels. As a

(@)

Input: Text

- GPT-4
m GPT-44Debugger

Average parsing rate
GPT-4: 0.517
GPT-4 + Debugger: 0.711

parsing Rate

Flanges

(b)

_— Text

- Text + Sketeh
et 4 Image
et + Sketch + Image

Average parsing rate
Text: 0.525
Text + Sketch: 0.451

@

Text + Image: 0.482
Text + Sketch + Image: 0.486

Parsing Rate

2
a

02

00
Ranges Spnings Gears

GPT-4V + Debugger

- Text

m= Text + Sketch

. Text + Image

mm Text + Sketch + Image

08

Average parsing rate
Text: 0.710

Text + Sketch: 0.687

Text + Image: 0.702

o6 Text + Sketch + Image: 0.712

Parsing Rate

04

02

0.0

Shafts Nuts Flanges Springs Gears

Fig. 7 Results of the parsing rate for the five categories of
shafts, nuts, flanges, springs, or gears: (a) GPT-4 versus GPT-4
+debugger with text-only input, (b) GPT-4V model, and (c)
GPT-4V + debugger

021005-8 / Vol. 25, FEBRUARY 2025

result, the difference in the average parsing rate among the four
input modes is reduced and these values are approaching a
similar level of around 0.7, as shown in the annotation text of
Fig. 7(c). The pattern in which text-only input is dominant over
the other three input modes for simple geometries, as observed in
Fig. 7(b), no longer holds. Multimodal input modes become more
effective for both simple and complex geometries by introducing
the debugger.

A comparative analysis focusing on text-only inputs between the
GPT-4 and GPT-4V models indicates a significant difference in per-
formance. Specifically, the GPT-4V model exhibits a higher
average parsing rate (0.525) compared to its GPT-4 counterpart
(0.517). However, this advantage diminishes upon the integration
of a debugging process (0.711 for GPT-4 versus 0.710 for
GPT-4V).

4.2.2 Results of the Intersection Over Union. Figure 8 shows
the performance evaluation of the GPT-4 model, presenting
(a) an overview of the average performance and (b) a detailed
breakdown of the performance by component category. In terms
of overall performance shown in Fig. 8(a), there is a significant
decrease in the average IoU upon inclusion of the debugger with
statistical analysis (P-value =0.013 obtained from an independent
T-test). On the other hand, when examining the performance
across specific component categories in Fig. 8(b), the P-values

1.0
0.8 -
L 0.6+
o
o
wn
2
2 0.4
0.2+
0.0 -
(b) GPT-4 + Debugger
10 EEE Shafts
BN Nuts
08 I Flanges
B Springs
[Gears
206

0.2

0.0
GPT-4 GPT-4 + Debugger

Fig. 8 Results of loU for (a) overall performance and (b)
category-specific performance of the GPT-4 model

Transactions of the ASME

(/98¥¥ 1L ¥2/500120/2/SZ/4pd-8o1e/Butisauibusbunndwoo/Bio swse uoyos|joojepbipswse//:dny woly pspeojumoq

0 ¢ G¢ osil

920z Asenuer gz uo 3senb Aq jpd-50012

Table 3 Summary of the P-values of statistical analysis for the loU values: (a) T-test for the effects of including the debugger for
either GPT-4 or GPT-4V, (b) one-way ANOVA for the effects of different input modes when using GPT-4V with or without the debugger

Category
Overall
Input mode Shaft Nut Flange Spring Gear
(a) With or without debugger
GPT-4 Text-only 0.511 0.321 0.378 0.951 <0.01 0.013
GPT-4V Text-only 0.714 0.464 0.181 0.597 0.285 <0.01
Text + sketch 0.193 0.343 0.148 0.362 0.285 <0.01
Text 4+ image 0.414 0.330 <0.01 0.956 0.202 <0.01
Text + sketch + image 0.369 0.251 0.295 0.662 0.066 <0.01
Category Overall
Shaft Nut Flange Spring Gear
(b) Comparison of different input modes
GPT-4V 0.019 <0.01 0.157 0.767 0.662 <0.01
GPT-4V + debugger 0.464 <0.01 <0.01 0.382 0.099 <0.01

Note: P-values that meet the significance threshold of 0.05 are highlighted in bold.

are 0.511, 0.321, 0.378, 0.951, and <0.01 for shafts, nuts, flanges,
springs, and gears, respectively, as summarized in Table 3. So, a
significant difference is only detected for gears but there is no sig-
nificant difference for the other four categories.

Figure 9(a) provides a comprehensive summary of the GPT-4V
model’s overall performance across distinct input modalities. As
summarized in Table 3(a), when evaluating the impact of the
debugger for each input mode, significant differences are observed
between GPT-4V and GPT-4V +debugger (all P-values <0.05
using an independent 7-test). This result suggests that the introduc-
tion of the debugger may inadvertently affect the precision of gen-
erated 3D design objects. However, in general, there is no
significant difference when examining the category-specific
results, except for the following two cases: (1) gears for GPT-4
and (2) flanges for GPT-4V when using the text+image input
mode.

Additionally, as shown in Table 3(b), a one-way analysis of var-
iance (ANOVA) is applied to the GPT-4V results, revealing a sta-
tistically significant difference (P-value <0.01) between the
different input modes. Subsequent pairwise comparisons were con-
ducted using Tukey’s honestly significant difference test to pinpoint
the specific modalities that exhibit significant differences. The anal-
yses indicate that the text-only input mode achieved higher IoU
values compared to the other three input modes. This trend persists
after integrating a debugger into the GPT-4V model, further solid-
ifying the text-only mode’s superior performance. Nonetheless,
when we look at each category of the mechanical components as
shown in Fig. 9(b), the text-only input achieves significantly
higher IoU values only for certain simple geometries (e.g., nuts
for both GPT-4V and GPT-4V + debugger, shafts for GPT-4V,
and flanges for GPT-4V + debugger). For more complex geometries
(i.e., springs and gears), the power of multimodal input becomes
more prominent compared to text-only input.

Furthermore, a comparative analysis between the GPT-4 and
GPT-4V models focusing on the text-only input mode indicates
that the GPT-4V model exhibits a significantly higher IoU score
compared to GPT-4 (P-value<0.01). This trend persists even
when a debugger is incorporated (i.e., GPT-4 4 debugger versus
GPT-4V + debugger).

4.2.3 Qualitative Results. Figure 10 illustrates an example of a
response generated by LLMs given the design requirement for a
flange, comprising three main sections: introduction, CAD
program code, and summary. In particular, the CAD program
code involves importing CadQuery as the CAD package, defining
parameters, calling functions to create a 3D model, and exporting
the final model as an STL file. Generating such a response that
meets the design requirements needs not only an understanding of

Journal of Computing and Information Science in Engineering

geometric and spatial relationships but also adherence to design
constraints and the ability to produce syntactically correct codes
for 3D modeling software—skills that go beyond mathematical
and general reasoning capabilities as investigated in program-aided
LLMs [12].

Figure 11 presents the flawed geometries generated by the
GPT-4V model within five distinct component categories compared
to the GT shapes. For shaft components, the issue is the exclusion of
multiple shaft sections. In the context of nuts, the prevalent error
consists of producing a circular nut instead of the specified hexag-
onal configuration. This issue could stem from the GPT models’
limitations in generating CAD programs that require a sequence
of precise operations. For instance, forming a hexagon needs six
distinct steps involving the Line operation, with a specific angle
between each segment. This process demands a high degree of
accuracy and an understanding of geometric principles that may
be difficult for GPT models to replicate. In contrast, GPT models
may find it much easier to utilize a Circle operation to create the
base shape so they “slept on the job.” For flanges, the geometric
fault is the omission of the flange’s borehole. In the case of
springs, the error commonly observed is the improper formation
of the helix. Similarly, gears exhibit an issue similar to that of the
flange components, characterized by the loss of the borehole.

The results highlight the models’ current limitations in handling
tasks that require detailed procedural generation and a deep under-
standing of spatial relationships. They might intentionally return
incorrect CAD programs due to the difficulty in returning the
correct ones. Improving their capability to accurately execute
complex sequences of operations such as those needed for detailed
CAD modeling remains an area for further development.

5 Discussion

Based on the observations of the results, we extend our discus-
sion to three aspects: (1) the effects of multimodal input for
GPT-4V, (2) GPT-4 versus GPT-4V, and (3) the effects of the
debugger in 3D CAD generation. Furthermore, we acknowledge
the limitations of our study and propose potential avenues for
future research.

5.1 Effects of Multimodal Input for GPT-4V

5.1.1 Effects on Intersection Over Union. For the IoU out-
comes of GPT-4V shown in Fig. 9, the statistical analyses on the
overall performance in Table 3 reveal that the text-only input
mode outperforms the other three modes with input modalities of
text + sketch, text+image, and text+ image + sketch. This trend
was also observed for the integration of the debugging process,

FEBRUARY 2025, Vol. 25 / 021005-9

as19l/981¥ 1L ¥2/5001 20/2/Sz/spd-a1o1e/Bunssuibusbunndwoo/B10 swse uoios||ooleybipawse//:dpy woly papeojumoq

Z ST

920z Asenuer gz uo jsenb Aq ypd 500120

(@) i Text

Text + Sketch

1.0

0.8 0.8

2 2
o o
GPT-4V GPT-4V GPT-4V GPT-4V
+ Debugger + Debugger
35 Text + Image i Text + Sketch + Image
0.8 0.8
) 5
o o

GPT-4V

06
b |
°
04
02
00 N~

GPT-4v GPT-4V
+ Debugger

GPT-4v
+ Debugger

Text

Text+image

loU
o o
= >

o
N

0.0

GPT-4V GPT-4v
+ Debugger

GPT-4V GPT-4Vv
+ Debugger
Text+Sketch B Shafts
mm Nuts
mm Flanges
W Springs
- Gears

GPT-4V GPT-4v
+ Debugger

GPT-4V

+ Debugger

Text+Sketch+Iimage

GPT-4v

Fig. 9 Results of loU of (a) the overall performance and (b) the category-specific performance of the GPT-4V model for four

input modes

further underscoring the superior efficacy of the text-only input
mode. This observation challenges our assumption on MMML
that integrating various input modalities enhances the predictive
capabilities of the ML models. The possible explanations for this
result may be based on the following three aspects.

First, the simplicity of text-only data might help reduce compu-
tational burden and noise, leading to more efficient processing
and accurate results. On the one hand, this implies that, under

021005-10 / Vol. 25, FEBRUARY 2025

certain conditions, the advantage of multimodal might be negated
by the associated data complexity. On the other hand, it implies
that textual descriptions, especially those that include dimensional
information, can provide substantial and adequate information for
the GPT-4V model to “comprehend” the design requirements of
mechanical components. Second, the hypothesis that integrating
various input modalities could improve the predictive performance
of ML models may be contingent upon how relevant the

Transactions of the ASME

(/98¥¥ 1L ¥2/500120/2/SZ/4pd-8o1e/Butisauibusbunndwoo/Bio swse uoyos|joojepbipswse//:dny woly pspeojumoq

0 ¢ G¢ osil

920z Asenuer gz uo 3senb Aq jpd-50012

1 To create the described flange component using the CadQuery library in Python, you can follow the script below. E
i This script creates the base flange with the specified dimensions, adds the raised face, includes the central bore, and . Introduction
: 1

saves the design as an STL file

__

import cadquery as cq

Define the dimensions
outer_diameter = 288
flange thickness =9
raised_face_ diameter = 88
raised face height =70
bore_diameter = 22

Create the main flange disc with specified outer diameter and thickness
flange = cq.Workplane("XY").circle(outer diameter / 2).extrude(flange thickness)

raised_face = (cq.Workplane("XY", origin=(0, 0, flange thickness))

.circle(raised_face_diameter / 2)
.extrude(raised face height))

Combine the main flange disc with the raised face
flange = flange.union(raised_face)

Cut the bore through the flange and raised face

flange with bore = flange.faces(">Z").workplane(centerOption='CenterOfMass').hole(bore_diameter)

Export the flange as an STL file

cq.exporters.export(flange with_bore, ‘’flange_00231", exportType="STL")

1
1
E # Add the raised face with specified diameter and height
1
i

method. Ensure that you have the CadQuery environment correctly configured to run this script successfully.

program

! CAD
i code

i This script uses the "XY" workplane as a starting point to create the base disc, then adds the raised face, cuts the
' central bore using the "hole” method, and finally exports the finished flange as an STL file using the “exportStl®

. Summary

Fig. 10 An example of LLM’s response given the design requirements for a flange which consists of three sections: introduc-

tion, CAD program code, and summary

Shaft Nut Flange Spring Gear
Ground
—)
Truth T — \ / o
Flawed — () =
Geometry S L ~ @
Fig. 11 Examples of flawed geometry generated by the GPT-4V

model

information from these modalities is to the design target, how
precise it is, and how well the model can interpret the data. In our
study, it is possible that the GPT-4V model mistakenly processed
information from images or sketches. We undertook qualitative
analyses, examining 10 images of each mechanical component
through the GPT-4V API. These experiments revealed occasional
misinterpretations, such as recognizing a three-section shaft as a
two-section shaft. Third, it appears that the GPT-4V model is natu-
rally more proficient at processing textual data than image data. This
is particularly true in tasks that require precise spatial localization
and perspective relationships. For example, GPT-4V often gener-
ates a tapered spring due to the effect of perspective in the rendered
image. This suggests a possible limitation in the model’s ability to
accurately interpret renderings of mechanical components com-
pared to its success with more commonly represented objects
such as humans or vehicles [36].

Nonetheless, the category-specific results indicate that as the
geometries of the CAD models become more complex, multimodal

Journal of Computing and Information Science in Engineering

input becomes more effective. Considering real-world design sce-
narios where products are more complicated in terms of both geom-
etries and structures, multimodal input modes are expected to
exhibit better performance than text-only input modes. Exploring
this further would present an intriguing avenue for future research.

5.1.2 Effects on Parsing Rate. Similar to the loU outcomes, the
text-only input mode surpasses the three multimodal input modes in
terms of the overall average parsing rate. However, this trend
diverges when examining results specific to different categories of
mechanical components. For more complex mechanical geometries
(e.g., springs and gears), multimodal inputs demonstrate an advan-
tage, either matching or exceeding the performance of text-only
input. For instance, as shown in Fig. 7(b), the text+ sketch+
image input is the best for springs, but text+ image turns out to
be the most effective input for gears. This emphasizes the value
of incorporating visual information alongside textual data in
improving the model’s efficiency in parsing complex geometries.

With the addition of the debugger to the GPT-4V model, the effi-
cacy of multimodal inputs aligns more closely with that of text-only
input for each category and in terms of the overall result compared to
the result obtained without using the debugger. This observation
indicates the debugger’s potential to amplify the model’s proficiency
in utilizing visual data, particularly in handling complex geometries.

5.2 GPT-4 Versus GPT-4V. The results of our experiments
revealed the advantage of the GPT-4V model over the GPT-4
model in processing text input, both for the inherent and enhanced
(i.e., with the debugger) versions, in the generation of 3D CAD
models. This superiority is evidenced in terms of a comparable

FEBRUARY 2025, Vol. 25 / 021005-11

(/98¥¥ 1L ¥2/500120/2/SZ/4pd-8o1e/Butisauibusbunndwoo/Bio swse uoyos|joojepbipswse//:dny woly pspeojumoq

0 ¢ G¢ osil

920z Asenuer gz uo jsenb Aq ypd 50012

Table 4 Summary of the (a) parsing rate and (b) loU for GPT-4
and GPT-4V models using the text-only input

GPT-4 GPT-4V
(a) Parsing rate
Zero-shot learning ability 0.52 0.53
Debugger-enhanced performance 0.71 0.71
(b) IoU
Zero-shot learning ability 0.57+0.36 0.67 +0.32
Debugger-enhanced performance 0.54+0.38 0.59 +0.37

Note: P-values that meet the significance threshold of 0.05 are highlighted in
bold.

parsing rate but much higher IoU scores, as summarized in Table 4.
According to the GPT-4V system card, OpenAl’s official evalua-
tion report of GPT-4V [3], GPT-4V is built upon the GPT-4 archi-
tecture as quoted here: “As GPT-4 is the technology behind the
visual capabilities of GPT-4V, its training process was the same.”
Furthermore, the API models for both GPT-4 and GPT-4V utilized
in our study share an identical knowledge cutoff date of Apr. 2023.
Given that GPT-4V is designed to accommodate visual inputs
alongside textual data, its performance in processing text is antici-
pated to be comparable to that of GPT-4. Nonetheless, the reason
for the observed differences in their performance is not clear at
this stage. In addition, the absence of comparative studies in the lit-
erature specifically addressing the text-processing capabilities of
GPT-4 and GPT-4V underscores further research’s need to clarify
these differences.

5.3 Effects of the Debugger. Figure 7 demonstrates that the
integration of the debugger enhances the parsing rates for each cat-
egory of the mechanical components and in terms of the overall
average performance for both GPT-4 and GPT-4V models, under-
scoring the debugger’s efficacy in iteratively correcting syntax
errors within the generated CAD program codes. However, this
improvement in the parsing rate comes at the cost of the reduction
in the IoU values for both models, as detailed in Figs. 8 and 9 in
terms of the overall average result.

This decrease suggests that the GPT models used with a debugger
may prioritize the correction of syntax errors and compromise on
accurately fulfilling the design requirements (i.e., text, images, or
sketches). This hypothesis is supported by our qualitative experi-
ments with the ChatGPT Pro version which is built on the GPT-4
model. We observed instances where, in the process of debugging
syntax errors, ChatGPT prioritized correcting the CAD program
code over sticking to the design requirements, despite having
access to the entire conversation history. This resulted in an oversim-
plification of the code, which can ultimately lead to incorrect geom-
etry (e.g., generating a round nut for the required hexagonal nut).
Addressing this limitation requires future research to improve the
debugger’s functionality to balance between syntax correction and
simplification. However, this does not mean that the GPT models
ignore the design requirements. We conducted experiments using
anew debugger where we only fed the synthesized CAD programs
back to the GPT models during the debugging process without
giving the input modalities. Compared to the debugger we used,
we obtained lower parsing rate values for the new debugger (i.e.,
GPT-4: 0.690. GPT-4V: (1) text, 0.678; (2) text+ sketch, 0.667;
(3) text+image, 0.670; and (4) text + sketch +image, 0.681. See
the results of the debugger we used in Fig. 7(c) for a comparison)
and similar IoU values (i.e., all P-values>0.05 for the independent
T-test conducted for average values and category-specific values,
except for text-only input for average value (P-value =0.02) and
text + sketch + image input for gears (P-value=0.04)). This also
provides practical evidence that the input modalities should be fed
to the GPT models when designing a debugger.

While the debugger presents a viable strategy for GPT model
enhancement, alternative approaches, including model fine-tuning

021005-12 / Vol. 25, FEBRUARY 2025

and the incorporation of function calls, could be potential ways to
advance the application of GPT models in 3D CAD generation.
Model fine-tuning is to adjust a GPT model by further training it
on a specialized dataset, such as the multimodal CAD dataset pro-
posed in this study, to enhance its ability to perform 3D CAD gen-
eration. In addition, function calls involve generating output by
calling existing functions (e.g., the pyTHON class for creating a
shaft) to create 3D shapes.

5.4 Limitations and Future Work. This work focused on
assessing the zero-shot learning ability of multimodal LLMs and
proposed a debugging method for LLMs to improve their output
quality in an iterative manner. Future work can explore strategies,
such as in-context learning, few-shot learning, and fine-tuning, to
further enhance LLM4CAD.

In terms of the dataset, we only evaluated five representative cat-
egories of mechanical components with different geometric com-
plexities. Although the insights gained from the current
synthesized dataset are valuable, we are cautious to generalize our
conclusions due to the small number of mechanical component cat-
egories compared to the wide array of mechanical components.
Future research efforts are needed to achieve a more comprehensive
and generalizable understanding of the role multimodal LLMs play
in the generation of 3D CAD models. In terms of the diversity of the
CAD dataset, incorporating human-generated sketches could
further enhance the multimodal value of the dataset, particularly
in real-world design applications where users might want to
sketch something quickly to express their design preferences and
requirements for LLMs. On the other hand, it is also critical to
note that designs often consist of interconnected components in
the form of assemblies rather than individual components [40,41].
This requires improvements in the current data synthesis pipeline,
specifically the inclusion of additional categories of CAD models
and the capability to synthesize system design objects.

For the implementation of the experiments, the need for dimen-
sional information to conduct quantitative comparisons between
generated 3D designs and their ground-truth counterparts required
the inclusion of textual descriptions as one of the input modalities.
This requirement constrained our ability to conduct a broader range
of ablation studies, such as those involving sketch-only or sketch +
image inputs, as these modes do not inherently provide the dimen-
sional data needed for accurate quantitative evaluation. Future work
could focus on expanding the dataset to include richer sources of
dimensional information or developing methodologies to extract
dimensional data from non-textual inputs to alleviate this limitation
and provide a more holistic assessment of LLM4CAD.

Lastly, we only tested OpenAI’s GPT-4 and GPT-4V models for
the LLMs and generated CAD programs through CADQuery.
Future research could explore additional CAD programming lan-
guages, such as OpenSCAD and Fusion 360 pyTHON API, as well
as other LLMs, such as Google’s Gemini, to provide a more com-
prehensive understanding of the capability of multimodal LLMs
in the CAD generation of 3D shapes.

6 Conclusion

This study is motivated by answering two research questions: (/)
To what extent can multimodal LLMs generate 3D design objects
when employing different design modalities or a combination of
various modalities? and (2) What strategies can be developed to
enhance the ability of multimodal LLMs to create 3D design
objects? Therefore, we first developed an approach to enable mul-
timodal LLMs in 3D CAD generation. Then, we studied the perfor-
mance of the GPT-4 and GPT-4V models with different input
modalities, including the text-only, text+ sketch, text+ image,
and text + sketch 4+ image data.

Both GPT-4 and GPT-4V showed significant potential in the gen-
eration of 3D CAD models by just leveraging their zero-shot learn-
ing ability. Especially, the performance can be further enhanced by

Transactions of the ASME

as19l/981¥ 1L ¥2/5001 20/2/Sz/spd-a1o1e/Bunssuibusbunndwoo/B10 swse uoios||ooleybipawse//:dpy woly papeojumoq

Z ST

920z Asenuer gz uo jsenb Aq ypd 500120

a debugging process to iteratively refine the output CAD program
code. Additionally, in our experiment of GPT-4V, we tested four
input modes: text-only, text with sketch, text with image, and a
combination of text, sketch, and image. Surprisingly, GPT-4V’s
performance with text-only input surpassed that of the other three
multimodal inputs on average. This observation challenges the
common belief in MMML that incorporating varied input modali-
ties always improves a machine learning model’s predictive accu-
racy due to increased information for learning and inference.
However, when examining category-specific results of mechanical
components, multimodal inputs start to gain prominence with
more complex geometries (e.g., shafts and gears) in terms of the
successful parsing rate of the generated CAD programs and the geo-
metric accuracy.

From these observations, we see that the current multimodal
LLMs are still limited in handling multimodal inputs when
applied to LLM4CAD. However, the insights from the category-
specific results indicate that multimodal LLMs have great potential
benefits in real-world design scenarios characterized by complex
objects although it remains challenging for them to generate
complex design objects. Improving the capability of these models
to process diverse input modalities and proposing strategies to
improve their capability to handle complex design objects are prom-
ising research avenues.

To further address the two RQs posed and achieve a comprehen-
sive understanding, future studies should broaden the research

scope to include a more diverse dataset featuring more complex
3D design objects. Strategies, including model fine-tuning and the
integration of function calls, to enhance the utility of multimodal
LLMs for CAD are worthy to explore. Moreover, while this study
focused on the CAD generation of 3D shapes during the conceptual
design phase, future research can explore other stages of the engi-
neering design process, such as customer needs analysis, design
evaluation, and manufacturing. This will contribute to a deeper
understanding of how LLMs, particularly multimodal LLMs, can
be employed to facilitate the overall engineering design process,
thus making contributions to advanced design methodologies.

Acknowledgment

The authors gratefully acknowledge the financial support from
the National Science Foundation through Award 2207408.

Conflict of Interest

There are no conflicts of interest.

Data Availability Statement

The data and information that support the findings of this article
are freely available.’

Table 5 Details of the dataset using flanges as examples

Component

Index Nama

2D Image

2D Sketch

3D Mesh Text Description

1 Flange_00001

The object is a flange with a
diameter of 124mm and a
thickness of 19mm, featuring a
raised face with a diameter of
90mm and a height of 141Tmm. It
has a bore diameter of 36mm.

2 Flange_00002

It is flange which has diameter in
125mm with the thickness 3mm,
and it has raised face diameter
which is equal to 50mm with bore
diameter is 30mm and their
raised face height is 162mm.

Flange_00003

I

A flange with a wide base and
long face. It has a total diameter
of 136mm for the flange, with a
thickness of 8mm. The raised
face is 93mm in diameter, and
the height of it is 84mm. Finally,
the bore diameter in the center is
38mm.

692 Flange_00692

A

The flange is a circular metal
component measuring 139mm in
diameter and 17mm in thickness.
It has a raised face with a
diameter of 63mm and a height of
63mm. The bore diameter is
45mm.

693 Flange_00693

None

4

1000 Flange_01000

<
I

None

l
S
»
-
L
.

Journal of Computing and Information Science in Engineering

>https:/doi.org/10.18738/T8/KV7THON

FEBRUARY 2025, Vol. 25 / 021005-13

(/98¥¥ 1L ¥2/500120/2/SZ/4pd-8o1e/Butisauibusbunndwoo/Bio swse uoyos|joojepbipswse//:dny woly pspeojumoq

0 ¢ G¢ osil

920z Asenuer gz uo jsenb Aq ypd 50012

https://doi.org/10.18738/T8/KV7HON
https://doi.org/10.18738/T8/KV7HON

Appendix

Table 5 presents more details of our dataset used in our experi-
ments demonstrated using examples of flanges. Along with the
GT 3D shapes, the table includes visual data (images and sketches
rendered from the GT 3D shapes) and textual data (text descriptions
obtained via crowdsourcing). It is important to note that “None”
indicates the absence of valid textual descriptions obtained
through the crowdsourcing process.

References

[1] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P.,
Neelakantan, A., et al., 2020, “Language Models Are Few-Shot Learners,”
Adv. Neural Inform. Process. Syst., 33, pp. 1877-1901.

[2] Kasneci, E., SeBler, K., Kiichemann, S., Bannert, M., Dementieva, D., Fischer, F.,
Gasser, U., et al., 2023, “Chatgpt for Good? On Opportunities and Challenges of
Large Language Models for Education,” Learn. Individual Differ., 103,
p. 102274

[3] OpenAl, 2023, “Gpt-4v(ision) System Card.”

[4] Driess, D., Xia, F., Sajjadi, M. S., Lynch, C., Chowdhery, A., Ichter, B., and
Wahid, A., 2023, “Palm-e: An Embodied Multimodal Language Model,”
Proceedings of the 40th International Conference on Machine Learning,
Honolulu, HI, July 23-29, PMLR, pp. 8469-8488.

[5] Kocaballi, A. B., 2023, “Conversational AlI-Powered Design: Chatgpt as
Designer, User, and Product,” preprint arXiv:2302.07406.

[6] Filippi, S., 2023, “Measuring the Impact of Chatgpt on Fostering Concept
Generation in Innovative Product Design,” Electronics, 12(16), p. 3535.

[7]1 Ma, K., Grandi, D., McComb, C., and Goucher-Lambert, K., 2023, “Conceptual
Design Generation Using Large Language Models,” International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference, Boston, MA, Aug. 20-23, p. VOO6T06A021.

[8] Li, X., Wang, Y., and Sha, Z., 2023, “Deep Learning Methods of Cross-Modal
Tasks for Conceptual Design of Product Shapes: A Review,” ASME J. Mech.
Des., 145(4), p. 041401.

[9] Li, X., Wang, Y., and Sha, Z., 2022, “Deep Learning of Cross-Modal Tasks for
Conceptual Design of Engineered Products: A Review,” International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference, St. Louis, MO, Aug. 14-17, p. VOO6T06A016.

[10] Song, B., Zhou, R., and Ahmed, F., 2024, “Multi-modal Machine Learning in
Engineering Design: A Review and Future Directions,” ASME J. Comput. Inf.
Sci. Eng., 24(1), p. 010801.

[11] Li, X., Xie, C., and Sha, Z., 2022, “A Predictive and Generative Design Approach
for Three-Dimensional Mesh Shapes Using Target-Embedding Variational
Autoencoder,” ASME J. Mech. Des., 144(11), p. 114501.

[12] Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang, Y., Callan, J., and Neubig,
G., 2023, “Pal: Program-Aided Language Models,” Proceedings of the 40th
International Conference on Machine Learning, Honolulu, HI, July 23-29,
PMLR, pp. 10764-10799.

[13] Li, X., Sun, Y., and Sha, Z., 2024, “Llm4cad: Multi-modal Large Language
Models for 3d Computer-Aided Design Generation,” International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference, Washington, DC, Aug. 25-28, p. VOO6T06A015.

[14] Nelson, M. D., Goenner, B. L., and Gale, B. K., 2023, “Utilizing Chatgpt to Assist
CAD Design for Microfluidic Devices,” Lab Chip, 23(17), pp. 3778-3784.

[15] Baltruaitis, T., Ahuja, C., and Morency, L.-P., 2018, “Multimodal Machine
Learning: A Survey and Taxonomy,” IEEE Trans. Pattern Anal. Mach. Intell.,
41(2), pp. 423-443.

[16] Song, B., Miller, S., and Ahmed, F., 2023, “Attention-Enhanced Multimodal
Learning for Conceptual Design Evaluations,” ASME J. Mech. Des., 145(4),
p. 041410.

[17] Su, H., Song, B., and Ahmed, F., 2023, “Multi-modal Machine Learning for
Vehicle Rating Predictions Using Image, Text, and Parametric Data,”
International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, Boston, MA, Aug. 20-23, p.
V002T02A089.

[18] Chowdhary, K. R., 2020, “Natural Language Processing,” Fundamentals of
Artificial Intelligence, Springer, New Delhi, pp. 603-649.

021005-14 / Vol. 25, FEBRUARY 2025

[19] OpenAl, 2022, “Introducing ChatGPT: Optimizing Language Models for
Dialogue,” November, https:/openai.com/blog/chatgpt/, Accessed January 16,
2024.

[20] Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q.-L., and Tang, Y., 2023, “A Brief
Overview of Chatgpt: The History, Status Quo and Potential Future
Development,” IEEE/CAA J. Autom. Sin., 10(5), pp. 1122-1136.

[21] Ray, P. P., 2023, “Chatgpt: A Comprehensive Review on Background,
Applications, Key Challenges, Bias, Ethics, Limitations and Future Scope,” Int.
Things Cyber-Phys. Syst., 3, pp. 121-154.

[22] Haleem, A., Javaid, M., and Singh, R. P., 2022, “An Era of Chatgpt as a
Significant Futuristic Support Tool: A Study on Features, Abilities, and
Challenges,” BenchCouncil Trans. Bench. Standards Eval., 2(4), p. 100089.

[23] Abdullah, M., Madain, A., and Jararweh, Y., 2022, “Chatgpt: Fundamentals,
Applications and Social Impacts,” Ninth International Conference on Social
Networks Analysis, Management and Security (SNAMS), Milan, Italy, Nov.
29-Dec. 1, pp. 1-8.

[24] Gulwani, S., Polozov, O., Singh, R., 2017, “Program Synthesis,” Found. Trends
Programm. Lang., 4(1-2), pp. 1-119.

[25] Wang, X., Anwer, N., Dai, Y., and Liu, A., 2023, “Chatgpt for Design,
Manufacturing, and Education,” Procedia CIRP, 119, pp. 7-14.

[26] Makatura, L., Foshey, M., Wang, B., HidhnLein, F., Ma, P., Deng, B.,
Tjandrasuwita, M., et al., 2023, “How Can Large Language Models Help
Humans in Design and Manufacturing?” preprint arXiv:2307.14377.

[27] Wu, F., Hsiao, S.-W., and Lu, P., 2024, “An Aigc-Empowered Methodology to
Product Color Matching Design,” Displays, 81, p. 102623.

[28] Grandi, D., Patawari Jain, Y., Groom, A., Cramer, B., and McComb, C., 2025,
“Evaluating Large Language Models for Material Selection,” ASME
J. Comput. Inf. Sci. Eng., 25(2), p. 021004.

[29] Meltzer, P., Lambourne, J. G., and Grandi, D., 2024, “What’s in a Name?
Evaluating Assembly-Part Semantic Knowledge in Language Models Through
User-Provided Names in Computer Aided Design Files,” ASME J. Comput.
Inf. Sci. Eng., 24(1), p. 011002.

[30] Naghavi Khanghah, K., Wang, Z., and Xu, H., 2025, “Reconstruction and
Generation of Porous Metamaterial Units Via Variational Graph Autoencoder
and Large Language Model,” ASME J. Comput. Inf. Sci. Eng., 25(2), p. 021003.

[31] OpenAl, 2023, “Gpt-4 Technical Report,” preprint arXiv:2303.08774.

[32] Kim, S., Chi, H.-g., Hu, X., Huang, Q., and Ramani, K., 2020, “A Large-Scale
Annotated Mechanical Components Benchmark for Classification and Retrieval
Tasks With Deep Neural Networks,” Proceedings of the 16th European
Conference on Computer Vision (ECCV), Glasgow, Aug. 23-28, Springer,
pp. 175-191.

[33] Lee, H., Lee, J., Kim, H., and Mun, D., 2022, “Dataset and Method for Deep
Learning-Based Reconstruction of 3d CAD Models Containing Machining
Features for Mechanical Parts,” J. Comput. Des. Eng., 9(1), pp. 114-127.

[34] Manda, B., Dhayarkar, S., Mitheran, S., Viekash, V., and Muthuganapathy, R.,
2021, “‘cadsketchnet’—An Annotated Sketch Dataset for 3d CAD Model
Retrieval With Deep Neural Networks,” Comput. Graph., 99, pp. 100-113.

[35] McKay, M. D., Beckman, R. J., and Conover, W. J., 2000, “A Comparison of
Three Methods for Selecting Values of Input Variables in the Analysis of
Output From a Computer Code,” Technometrics, 42(1), pp. 55-61.

[36] Luo, T., Rockwell, C., Lee, H., and Johnson, J., 2023, “Scalable 3D Captioning
with Pretrained Models,” Advances in Neural Information Processing Systems 36,
New Orleans, LA, Dec. 10-16, Vol. 36, pp. 75307-75337.

[37] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., and
Sastry, G., 2021, “Learning Transferable Visual Models From Natural
Language Supervision,” Proceedings of the 38th International Conference on
Machine Learning, Virtual Event, July 18-24, PMLR, pp. 8748-8763.

[38] Mason, W., and Suri, S., 2012, “Conducting Behavioral Research on Amazon’s
Mechanical Turk,” Behav. Res. Methods, 44(1), pp. 1-23.

[39] Lopez, C. E., Miller, S. R., and Tucker, C. S., 2019, “Exploring Biases Between
Human and Machine Generated Designs,” ASME J. Mech. Des., 141(2),
p. 021104

[40] Li, X., Xie, C., and Sha, Z., 2023, “Design Representation for Performance
Evaluation of 3d Shapes in Structure-Aware Generative Design,” Des. Sci., 9,
p. €27.

[41] Li, X., Xie, C., and Sha, Z., 2021, “Part-Aware Product Design Agent Using Deep
Generative Network and Local Linear Embedding,” Proceedings of the 54th
Hawaii International Conference on System Sciences, Virtual Event, Jan. 5-8,
pp. 5250-5259.

Transactions of the ASME

(/98¥¥ 1L ¥2/500120/2/SZ/4pd-8o1e/Butisauibusbunndwoo/Bio swse uoyos|joojepbipswse//:dny woly pspeojumoq

0 ¢ G¢ osil

920z Asenuer gz uo jsenb Aq ypd 50012

http://dx.doi.org/10.1016/j.lindif.2023.102274
arXiv:2302.07406
http://dx.doi.org/10.3390/electronics12163535
http://dx.doi.org/10.1115/1.4056436
http://dx.doi.org/10.1115/1.4056436
http://dx.doi.org/10.1115/1.4063954
http://dx.doi.org/10.1115/1.4063954
http://dx.doi.org/10.1115/1.4054906
http://dx.doi.org/10.1039/D3LC00518F
https://dx.doi.org/10.1109/TPAMI.2018.2798607
http://dx.doi.org/10.1115/1.4056669
https://dx.doi.org/10.1007/978-81-322-3972-7_19
https://dx.doi.org/10.1007/978-81-322-3972-7_19
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
http://dx.doi.org/10.1109/JAS.2023.123618
http://dx.doi.org/10.1016/j.iotcps.2023.04.003
http://dx.doi.org/10.1016/j.iotcps.2023.04.003
http://dx.doi.org/10.1016/j.iotcps.2023.04.003
https://dx.doi.org/10.1016/j.tbench.2023.100089
http://dx.doi.org/10.1109/SNAMS58071.2022.10062688
http://dx.doi.org/10.1109/SNAMS58071.2022.10062688
http://dx.doi.org/10.1561/2500000010
http://dx.doi.org/10.1561/2500000010
http://dx.doi.org/10.1016/j.procir.2023.04.001
arXiv:2307.14377
http://dx.doi.org/10.1016/j.displa.2023.102623
https://dx.doi.org/10.1115/1.4066730
https://dx.doi.org/10.1115/1.4066730
http://dx.doi.org/10.1115/1.4062454
http://dx.doi.org/10.1115/1.4062454
https://dx.doi.org/10.1115/1.4066095
arXiv:2303.08774
http://dx.doi.org/10.1093/jcde/qwab072
http://dx.doi.org/10.1016/j.cag.2021.07.001
http://dx.doi.org/10.1080/00401706.2000.10485979
http://dx.doi.org/10.3758/s13428-011-0124-6
http://dx.doi.org/10.1115/1.4041857
http://dx.doi.org/10.1017/dsj.2023.25

	1 Introduction
	2 Literature Review
	2.1 Engineering Design Using Multimodal Machine Learning
	2.2 Large Language Models
	2.3 Large Language Models for Engineering Design

	3 Methodology
	3.1 Data Synthesis
	3.1.1 Three-Dimensional Shapes, Images, and Sketches
	3.1.2 Textual Descriptions With Dimensional Information

	3.2 Code Generation and Debugger
	3.3 Evaluation

	4 Experiments and Results
	4.1 Experimental Details
	4.2 Results
	4.2.1 Results of the Parsing Rate
	4.2.2 Results of the Intersection Over Union
	4.2.3 Qualitative Results

	5 Discussion
	5.1 Effects of Multimodal Input for GPT-4V
	5.1.1 Effects on Intersection Over Union
	5.1.2 Effects on Parsing Rate

	5.2 GPT-4 Versus GPT-4V
	5.3 Effects of the Debugger
	5.4 Limitations and Future Work

	6 Conclusion
	 Acknowledgment
	 Conflict of Interest
	 Data Availability Statement
	 Appendix
	 References

