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ABSTRACT

Accurate assessment of driver visibility is crucial in auto-
motive design and safety enhancement, particularly in situations
where A-pillars obstruct the driver’s field of view. To address
this challenge, this research develops a multi-fidelity Gaussian
Process (MF-GP) modeling framework to enhance visibility pre-
diction by integrating low-fidelity (LF) image segmentation data
with high-fidelity digital human modeling (DHM) simulations.
By leveraging a limited set of high-fidelity samples, the proposed
MF-GP framework systematically calibrates low-fidelity data to
improve predictive accuracy while reducing computational costs.
Two A-pillar cutout designs (3.75 cm and 5 cm) were analyzed
under varying HF sampling densities of 3%, 7%, and 10%. Re-
sults indicate that the 3.75 cm cutout is more sensitive to sparse
HF sampling, requiring a denser HF dataset to achieve stable
calibration. In contrast, the 5 cm cutout, benefiting from im-
proved LF-HF alignment, achieves comparable accuracy with
fewer HF samples. Model validation using root mean square
error (RMSE) and coefficient of determination (𝑅2) confirms that
increasing HF sampling enhances surrogate model accuracy,
with the effect being more pronounced in cases where model
performance is susceptible to high-fidelity data. The proposed
framework provides a computationally efficient methodology for
driver visibility prediction and human-in-the-loop design appli-
cations. Future research could explore adaptive HF sampling
strategies and ensemble surrogate modeling techniques to fur-
ther enhance multi-fidelity learning efficiency.
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NOMENCLATURE
𝑑 Euclidean distance between points
𝑘 Kernel function
𝑙 Kernel length scale
𝑛 Number of data points
𝜌 Scaling factor for low-fidelity model
𝑟 Distance between inputs for the kernel
𝑦HF High-fidelity model output
𝑦LF Low-fidelity model output
x Input vector
h Input height vector
K Covariance matrix
𝜽 Hyperparameters of the Gaussian process
𝜎2 Kernel variance
𝛿(x) Discrepancy term in the high-fidelity model
log 𝑝(y|x, 𝜽) Log marginal likelihood
𝑅2 Coefficient of determination
RMSE Root mean square error

1. INTRODUCTION
Computational modeling has become an indispensable ele-

ment of engineering and scientific research, providing researchers
with an effective means of exploring complex physical systems
without extensive physical experimentation. High-fidelity (HF)
computational simulations may provide accurate predictions but
are generally resource-intensive for large applications. Multifi-
delity modeling (MFM), however, offers an alternative by inte-
grating high-fidelity resource-intensive models with lower pre-
cision but more cost-efficient low-fidelity (LF) approximation
models to provide both cost efficiency and predictive accuracy
in one approach; MFM has quickly become an indispensable
method used across countless fields as a key methodology to
tackle challenges associated with large applications and large-
scale applications alike [1].

Kennedy and O’Hagan [2] pioneered a Bayesian Gaus-
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sian Process (GP)-based framework to systematically incorporate
multiple fidelity levels while simultaneously decreasing depen-
dence on expensive high-fidelity evaluations, while increasing
computational efficiency by using lower-fidelity simulations as
sources for informing and refining high-fidelity model predic-
tions. Although initially applied to computer experiments, this
methodology has since been extended for uncertainty quantifica-
tion and model calibration in flow measurement [3]. Furthermore,
extensions to refinements have been introduced, such as recur-
sive co-kriging by Le Gratiet [4] and Le Gratiet and Garnier [5],
which have further increased computational efficiency. Beyond
computational modeling, MFM has gained significant traction
in engineering design, particularly in automotive safety, where
computational efficiency plays a crucial role. Adaptive multi-
fidelity sampling frameworks have been developed in connected
and automated vehicle (CAV) systems to enhance safety analysis
while reducing the computational burden of HF evaluations [6].
This approach is particularly relevant in enhancing safety assess-
ments in vehicle design, where MFM can reduce computational
costs in evaluating accident risks. However, driver vision has
not been addressed in the safety area, and this remains a gap in
this research field and has become a motivation for this article. A
safety issue comes with an obstruction area due to the automobile
A-pillar, which is the vertical support structure located on either
side of the windshield, as shown in Figure 1.

FIGURE 1: ILLUSTRATION OF THE A-PILLAR STRUCTURE
LINKING THE WINDSHIELD, ROOF, AND FRAME

A-pillars provide vital structural support yet may obscure
near-field vision, leading drivers to miss pedestrians or other
hazards in their field of vision [7]. Increasing the thickness of
the A-pillar, its coverage angle must remain between 6 ° and 12
° [8] to ensure that the driver can adequately control the environ-
ment. While previous research explored A-pillar modifications,
such as cutouts or voids, to increase driver visibility with Digi-
tal Human Modeling (DHM) simulations [9], the computational
aspect of this simulation method remains the go-to approach.
Firouzi et al. [10, 11] employed Gaussian Process (GP) surrogate
modeling applied to DHM simulations and design optimization
techniques, which are well-suited for Bayesian optimization due
to their ability to achieve accurate results with a minimal number
of iterations. However,DHM uses ray casting and iterative CAD
modeling techniques, which are time-intensive and impractical
for rapid evaluations [12]. To overcome these computational lim-
itations, we developed an alternative image segmentation-based

approach that offers a significantly faster method for evaluating
driver visibility.

To bridge this gap, we employed Kennedy and O’Hagan’s [1]
multi-fidelity calibration framework, integrating a limited num-
ber of DHM samples as HF data with LF image segmentation
data. This multi-fidelity (MF) approach leverages the comple-
mentary strengths of both fidelity levels to enable rapid yet ac-
curate visibility predictions, addressing a critical gap in vehicle
safety assessment. This framework was applied to two differ-
ent A-pillar cutout designs with diameters of 5 cm and 3.75 cm.
As an example, a GP surrogate model was trained using data
from both DHM and image segmentation simulations for the 5
cm cutout design. This surrogate model effectively captures the
broader design space, as illustrated in Figures 2 and 3. It gen-
eralizes across key input variables, including driver height and
object position, based on a training distribution that spans the
operational domain. As shown in the Figures 2 and 3, the model
produces smooth, continuous visibility surfaces over this domain,
demonstrating effective interpolation and generalization beyond
the training points.

FIGURE 2: SURROGATE MODEL OF HIGH FIDELITY MODEL
- DHM SIMULATION.

2. MULTI-FIDELITY BACKGROUND
Multi-fidelity modeling (MFM) has quickly emerged as an

indispensable technique in computational science, combining
high-fidelity (HF) and low-fidelity (LF) models to balance com-
putational efficiency with predictive accuracy. Kennedy and
O’Hagan [1] pioneered MFM by devising a Bayesian Gaussian
Process (GP) framework that integrates various fidelity levels sys-
tematically while decreasing dependence on costly simulations by
taking advantage of cheaper approximation methods; their pio-
neering work inspired subsequent studies which led to advanced
multi-fidelity methodologies used for optimization, uncertainty
quantification, model calibration [13], [14]).
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FIGURE 3: SURROGATE MODEL OF LOW FIDELITY MODEL-
IMAGE SEGMENTATION.

2.1 Bayesian Inference and Multi-Fidelity Calibration
MFM relies heavily on Bayesian inference for probabilis-

tic modeling of system uncertainties and systematic calibration
of multi-fidelity models. This is demonstrated by Seshadri et
al. [15], who used Bayesian inference to reconstruct engine tem-
perature distributions from sparse sources. Their work accounted
for measurement errors and insufficient sampling as separate
sources. Bayesian assimilation techniques have also proven in-
valuable in computational fluid dynamics. Examples include
using Bayesian assimilation techniques to infer boundary condi-
tions [16] and to align turbulence models with direct numerical
simulation data [17].

Goh et al. [18] developed a hierarchical Bayesian model
based on Kennedy and O’Hagan’s autoregressive structure [1],
refining MF calibration by modeling discrepancy terms and im-
proving the predictive performance of Gaussian Processes. Re-
cursive co-kriging was then utilized by Le Gratiet [4] and Le
Gratiet and Garnier [5] to increase computational efficiency by
iteratively refining LF predictions prior to integrating HF data -
leading to improved model fidelity alignment while simultane-
ously decreasing costs through taking account of discrepancies
more effectively. These approaches significantly improved model
fidelity alignment while simultaneously lowering computational
costs by accounting for discrepancies more effectively.

2.2 Gaussian Process Surrogate Models in
Multi-Fidelity Frameworks
GPs are frequently employed in MFM due to their flexi-

bility in function approximation and uncertainty quantification.
Kennedy and O’Hagan’s autoregressive model [1], popularly re-
ferred to as AR1, remains one of the primary approaches used for
structured fidelity management [19] in engineering applications
with structured fidelity requirements; using it allows LF approxi-

mations as baselines while corrections via discrepancy functions
can also be incorporated.

Co-kriging extends this paradigm by explicitly modeling
cross-correlations among fidelity levels, thus improving the pre-
dictive accuracy of engineering simulations [20]. Multi-output
GP by Qian et al. [21] integrating qualitative and quantitative fac-
tors in computer experiments requires building correlation func-
tions, which can model complex interactions among different
factor types. This approach has potential applications in MFM.
Ghosh et al. [22] introduce Max IF-UCR, a cost-aware adaptive
sampling strategy for multi-fidelity GP modeling. Unlike con-
ventional two-step methods, it selects design points and fidelity
levels simultaneously, maximizing uncertainty reduction per unit
cost. Enhanced by the GP Believer Strategy, it pre-assesses the
impact of new points, minimizing unnecessary high-fidelity eval-
uations. Their approach outperforms Max MF-UCR, achieving
significant cost savings while maintaining accuracy, as demon-
strated on analytical benchmarks and a thermodynamic fluidized
bed process.

2.3 Discrepancy Correction and Model Refinement in
Multi-Fidelity Modeling
One of the most significant challenges in MFM is address-

ing discrepancies between LF and HF models. Kennedy and
O’Hagan [1] formulated a Bayesian discrepancy model that ap-
plies a GP-based bias function to systematically correct LF predic-
tions, forming the foundation for modern calibration techniques.

To refine this process, alternative approaches have emerged,
including hierarchical Bayesian calibration [23], which introduce
probabilistic structures to account for systematic inconsistencies
across fidelity levels. Co-kriging techniques [20] further en-
hance this alignment by capturing cross-correlations between LF
and HF datasets, reducing reliance on extensive HF evaluations
while preserving model accuracy. Beyond static corrections,
adaptive sampling strategies have been proposed to selectively
refine LF models, ensuring that HF evaluations are applied only
in regions of high LF error [22]. This uncertainty-aware ap-
proach prioritizes computational resources where they are most
needed, avoiding unnecessary HF simulations while maintaining
predictive accuracy.

Recursive inference techniques, such as those developed by
Le Gratiet [4], further optimize computational efficiency by it-
eratively refining LF predictions before incorporating HF data.
Unlike direct fidelity correction, this approach gradually adjusts
LF outputs through incremental updates, leading to faster conver-
gence and improved computational efficiency.

In complex multiphysics systems, fidelity mismatches often
exhibit nonlinear behavior, requiring nonlinear discrepancy mod-
eling rather than the traditional linear formulations assumed in
the Kennedy-O’Hagan framework. Recent studies [19] explore
hierarchical Bayesian approaches that treat the discrepancy as a
latent variable, capturing nonlinear fidelity gaps more effectively.
This is particularly relevant in computational fluid dynamics and
structural mechanics, where high-fidelity variations can be irreg-
ular. Together, these advancements reinforce the growing so-
phistication of MF calibration, demonstrating how adaptive sam-
pling, recursive inference, and nonlinear discrepancy correction
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can significantly improve predictive reliability while minimizing
computational cost.

3. SIMULATION SETUP
This section outlines our approach to high- and low-fidelity

simulations, implementing the Digital Human Modeling (DHM)
approach to evaluate driver visibility obstructed by the A-pillar.
We will investigate both commercial DHM software and our
implementation of the image segmentation method.

3.1 Overview
Prior research by Joffe et al. [24] has shown, that visibil-

ity percentages obtained through simulations using the DHM
approach and those derived via image segmentation generally ex-
hibit similar percent visibility outcomes. However, significant
discrepancies occur when objects are very close or far from the
vehicle. Image segmentation offers faster results but lacks the ac-
curacy of DHM simulation data. In this study, we designate the
image segmentation data as low-fidelity and the DHM simulation
data as high-fidelity.

This research does not involve optimization in the conven-
tional sense of selecting between LF and HF data across the design
space. Instead, LF data is assumed to be freely available through-
out the design space, while HF data is employed selectively in
regions where significant discrepancies between the two models
occur. This targeted usage of HF data allows for computational
efficiency without sacrificing accuracy in critical areas.

This study includes a primary simulation scenario: a pedes-
trian crossing in front of a sedan. The pedestrian is used as a traffic
object and has fixed heights, while the driver’s height varies from
150 to 190 cm in increments of 5 cm per simulation. Each simula-
tion tests two A-pillar cutout sizes: 3.75 cm and 5 cm. As shown
in Figure 4, the pedestrian moves from left to right across the
driver’s field of view. This scenario was selected because pedes-
trian interactions represent a common and critical safety concern
in urban driving, particularly in areas of near-field vision that the
A-pillar frequently blocks. Designing with the DHM approach
is widely utilized to evaluate early-stage prototypes regarding
ergonomics, including visibility and obstruction. For example,
Marshall et al. assessed the field of view of truck drivers to mea-
sure the blind zone [25]. Karmakar et al. evaluated the field of
view of pilots in jet aircraft with various postures, positions, and
populations to demonstrate the effectiveness of DHM in terms of
ergonomic assessment [26]. However, DHM visualization meth-
ods, which primarily focus on percent visibility measurements,
rely heavily on static scene analysis, limiting their effectiveness
for ergonomic assessments in dynamic environments.

To address this limitation, we use computer vision tech-
niques—specifically object detection and image segmenta-
tion—to analyze dynamic simulations and automate visual ob-
scuration assessments. We set up simulations in Siemens Jack,
using its visual obscuration toolkit for HF analysis and simula-
tion videos for LF assessments [27]. In the LF simulation, we
integrated YOLOv8 for object detection and Meta SAM for im-
age segmentation [28] [29]. Both HF and LF simulations are
implemented in Jack to generate scenarios for visual obscuration
assessments.

3.2 High Fidelity Simulation
Because Jack’s visual obscuration toolkit requires a rectan-

gular target plane to represent traffic objects, we created separate
planes for pedestrians and cyclists, each sized to match their
height and width. In the pedestrian crossing scenario, the rect-
angle starts at the left edge of the A-pillar and moves 2 cm to the
right at each step. At each position, we recorded visibility from
the driver’s field of view through the A-pillar cut-out until the
pedestrian reaches the right edge.

FIGURE 4: THE PEDESTRIAN CROSSING THE SEDAN SCE-
NARIO. BLUE DASHED LINES ARE THE A-PILLAR BLIND
ZONE AND THE PEDESTRIAN’S WALKING AREA FOR BOTH
HIGH-FIDELITY SIMULATION AND LOW-FIDELITY SIMULA-
TION. THE YELLOW DASHED ARROW INDICATES THE DI-
RECTION OF THE PEDESTRIAN’S WALKING MOTION.

3.3 Low Fidelity Simulation
For the computer vision-based visual obscuration assess-

ment, we first assigned a walking motion to the pedestrian in
Jack’s Task Simulation Builder to generate walking videos. This
walking motion followed the same path used in the HF simulation.
For each scenario, we generated two videos: (1) an unobscured
video that shows only the traffic object (with the sedan and driver
hidden) and (2) an obscured video that includes the full simu-
lation scene with all objects. YOLOv8 was used to detect the
traffic object (pedestrian) in the unobscured video and pass its
location to Meta SAM for image segmentation. The location
information constrains the segmentation to a specific region, al-
lowing the segmentation masks to obtain all pixels of the traffic
object. The area visual obscuration percent(AVO%) computed
as Equation (1)[30]. The number of pixels in this segmentation
mask is the denominator in Equation (1). Next, the location data
from the unobscured video was passed to the obscured video to
obtain obscured traffic objects. We assigned a green color to dif-
ferentiate the A-pillar from traffic objects. All green pixels were
excluded from the obscured traffic object’s segmentation mask
during the segmentation. The number of pixels collected in this
segmentation mask served as the numerator in Equation(1). An
image segmentation result is shown in Figure 5.

AVO % =
Obscured Pixels

Total Pixels
× 100, (1)

where “obscured pixels” are those blocked by the A-pillar and
“total pixels” represent the full visible area of the object.

In Jack, the visual obscuration toolkit used ray-casting to
a target plane representing the traffic object from the driver’s
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FIGURE 5: THIS IS IMAGE SEGMENTATION FROM THE
DRIVER’S EYE VIEW WINDOW. BLUE PARTS ARE VISI-
BLE TO THE DRIVER, AND THE A-PILLAR OBSCURES RED
PARTS.

eye through the A-pillar cutout. This process involved analyz-
ing the sedan model to determine which areas blocked rays, so
the processing time may increase with the complexity of the 3D
model. In contrast, the image segmentation method assessed vi-
sual obscuration using 2D videos instead of 3D scenes, improving
computational efficiency.

4. MULTI-FIDELITY FRAMEWORK
This research used simulation results for various heights of

the drivers and positions of objects to simulate pedestrian cross-
ing street scenarios. Two distinct datasets were utilized: image
segmentation results as LF data while digital human modeling
serves as the ground truth, representing HF model. Notably,
discrepancies between low—and high-fidelity data became most
apparent near extreme points within the design space, highlight-
ing that model calibration can be an approach to utilizing the
benefits of both models to enhance prediction.

Before adopting the MFM approach in full force, an initial
calibration test was carried out on one dataset to establish whether
calibration could be an appropriate technique and assess the level
of agreement between datasets. The driver height category tested
(155 cm) showed that the calibrated model was closely aligned
with the driver HF data. As depicted in Figure 6, this proved
the validity of the calibration approach as both datasets displayed
similar patterns, with the calibrated model providing reasonable
approximations of ground truth when the calibrated model was
close in alignment.

Figure 7 reveals the MF framework employed in this study,
designed to systematically combine LF and HF data sources in or-
der to enhance predictive accuracy while reducing computational
costs. The framework consists of two fidelity classes to facilitate
image segmentation data calibration against DHM samples us-
ing a structured multi-fidelity model. A Multi-fidelity Gaussian
Process (MF-GP) model is employed to refine LF predictions
to match HF data more closely. Calibration is accomplished
with gradient-based optimizers such as multi-start BFGS [31] to
increase training efficiency. The implementation leverages the
Emukit libraries [32, 33], which utilizes GPy [34] for Gaussian

FIGURE 6: 1D MODEL PREDICTION WITH CO-KRIGING SUR-
ROGATE MODEL.

Process modeling for robust and scalable multi-fidelity learning.

4.1 High-Fidelity Data Selection and Sampling Points
Since HF simulations are computationally expensive, a two-

step sampling approach was implemented to ensure efficient and
diverse coverage of the design space while minimizing redun-
dancy.

1. Latin Hypercube Sampling (LHS): Latin Hypercube
Sampling was selected over other methods because it pro-
vides uniform input space coverage with fewer samples,
reducing clustering and improving sampling efficiency
in high-dimensional settings [35]. Each sampled design
point, x, was defined by driver height and object position
parameters.

2. Nearest Neighbor Selection: After generating LHS
points, the closest matching points were selected from the
available HF dataset using the Euclidean distance. This
ensured that the sampled HF data aligned closely with the
intended design while respecting the existing data con-
straints.

𝑑 (x, x′) =

⌜⎷
𝑛∑︂
𝑖=1

(𝑥𝑖 − 𝑥′
𝑖
)2 (2)

where x is design sampled point, and x′ is the nearest data
point in the existing dataset.

This process was repeated in 50 independent experiment de-
signs to assess the consistency and performance of the calibration
model systematically. Since LF models tend to be computation-
ally inexpensive, we utilized the entire LF dataset. MFM was
tested using 3%, 7%, and 10% of the high-fidelity dataset to
ensure efficient calibration with minimal reliance on HF data.
These sampling rates were selected to reflect scenarios where HF
evaluations are limited, and are consistent with previous find-
ings that demonstrate that multi-fidelity frameworks can outper-
form single-fidelity models when using only a small number of
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FIGURE 7: MULTI-FIDELITY FRAMEWORK.

HF samples [36]. This approach enabled an assessment of the
model’s sensitivity to data availability and its predictive accuracy
under varying fidelity constraints.

4.2 Multi-Fidelity Model Formulation
To integrate LF and HF data within a framework, an MF-

GP model was implemented based on the Kennedy and O’Hagan
(KOH) formulation [1]. This model assumes that HF data can be
expressed as a transformation of LF predictions with an additive
discrepancy term, capturing systematic deviations across fidelity
levels. The relationship between fidelity levels is given by:

𝑦HF (x) = 𝜌𝑦LF (x) + 𝛿(x) + 𝜖, (3)
where:

• 𝑦HF (x): High-fidelity output,

• 𝑦LF (x): Low-fidelity prediction,

• 𝜌: Scaling factor aligning LF predictions with HF data,

• 𝛿(x): Discrepancy function, accounting for systematic
differences between fidelity levels,

• 𝜖 ∼ N(0, 𝜎2): Independent Gaussian noise term.

To model the correlation between fidelity levels, a multi-
fidelity covariance function is constructed, enabling information
transfer between LF and HF data. The covariance structure is
defined as:

Kmulti-fidelity =

[︃
KLF,LF KLF,HF
KHF,LF KHF,HF

]︃
, (4)

where:

• KLF,LF and KHF,HF: Covariance matrices of the LF and
HF Gaussian Processes, respectively,

• KLF,HF = 𝜌KLF,LF: Cross-covariance between fidelity lev-
els, ensuring alignment of LF and HF data,

• 𝛿(x): Modeled as an independent Gaussian Process
(GP) with its own covariance function.

The Matérn 5/2 covariance function was chosen for its
balance between smoothness and flexibility, producing twice-
differentiable sample paths that are better suited for modeling
moderately rough functions than the overly smooth squared ex-
ponential kernel [37]

𝑘 (x, x′) = 𝜎2
(︃
1 +

√
5𝑟 + 5𝑟2

3

)︃
exp(−

√
5𝑟), (5)

where:

• 𝑟 =
| |x−x′ | |

𝑙
: Scaled Euclidean distance between input

points,

• 𝑙: Length scale, controlling smoothness,

• 𝜎2: Signal variance, defining function variability.

This covariance function ensures that both the LF and HF
Gaussian processes maintain continuity and adaptability, captur-
ing complex variations across fidelity levels. By incorporating the
discrepancy function within this MF-GP formulation, the model
is capable of correcting LF predictions to better approximate HF
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outputs, while quantifying uncertainty in fidelity discrepancies.
This approach allows for computationally efficient surrogate mod-
eling, particularly beneficial in scenarios where HF data is scarce
or expensive to obtain. The model’s hyperparameters—including
length scales, noise variances, the scaling factor 𝜌, and the cross-
covariance terms—are jointly optimized by maximizing the log
marginal likelihood of the observed data across fidelity levels.
Specifically, the log marginal likelihood function accounts for
the full MF covariance matrix, ensuring that all relevant param-
eters, including those governing the interaction between LF and
HF data, are tuned simultaneously. This joint optimization pro-
cess enables the model to effectively learn the relationships and
uncertainties across fidelity levels, thereby improving predictive
accuracy and robustness. This optimization was performed us-
ing gradient-based methods, which efficiently tuned the model
parameters to support robust and scalable predictive inference
across fidelity levels.

4.3 Implementation with Emukit
The MF-GP model was implemented using the Emukit [32]

toolbox, a modular framework for constructing and optimizing
different models across multiple fidelity levels. Emukit provides
efficient tools for handling multi-fidelity learning based on GPy,
ensuring seamless integration of low-fidelity and high-fidelity
data while optimizing model performance.

Key components of the implementation included:

• LinearMultiFidelityKernel: Defines the correlation be-
tween LF and HF data by constructing a joint covariance
function. This kernel follows the autoregressive structure
of the Kennedy and O’Hagan framework, ensuring that HF
predictions leverage LF information while accounting for
discrepancies.

• GPyMultiOutputWrapper: Manages the multi-output
Gaussian Process model, allowing for the simultaneous
training of LF and HF data within a unified Gaussian
Process framework. This wrapper enables efficient opti-
mization and predictive inference by leveraging the shared
structure between fidelity levels.

• Hyperparameter Optimization: The model hyperparam-
eters, including the length scale, variance, and noise terms,
were optimized by maximizing the log marginal likelihood
function:

log 𝑝(y|x, 𝜽) = −1
2

y⊤K−1y − 1
2

log |K| − 𝑛

2
log(2𝜋), (6)

where:

– K is the covariance matrix, encapsulating the depen-
dencies between fidelity levels,

– y represents the observed data across all fidelity lev-
els,

– 𝜽 denotes the set of hyperparameters to be optimized,

– 𝑛 is the number of observations.

4.4 Model Validation and Performance Metrics
The accuracy and generalization capability of the calibrated

MF model were assessed using HF data points that were excluded
from the calibration process. To quantify the model’s predictive
performance, the following statistical metrics were employed:

• Root Mean Square Error (RMSE): This metric evaluates
the average magnitude of prediction errors by computing
the standard deviation of residuals. A lower RMSE value
indicates higher predictive accuracy.

RMSE =

⌜⎷
1
𝑛

𝑛∑︂
𝑖=1

( 𝑦̂𝑖 − 𝑦𝑖)2, (7)

where:

– 𝑦𝑖 represents the actual HF observations,
– 𝑦̂𝑖 denotes the predicted HF values from the multi-

fidelity model,
– 𝑛 is the number of HF validation points.

• Coefficient of Determination 𝑅2: The 𝑅2 metric measures
the proportion of variance in the HF data that is captured
by the model. A 𝑅2 value close to 1 signifies a strong cor-
relation between predictions and actual HF values, while a
value close to 0 indicates weak predictive capability.

𝑅2 = 1 −
∑︁𝑛

𝑖=1 (𝑦𝑖 − 𝑦̂𝑖)2∑︁𝑛
𝑖=1 (𝑦𝑖 − 𝑦̄)2 , (8)

where:

– 𝑦𝑖 and 𝑦̂𝑖 denote the actual and predicted HF values,
respectively,

– 𝑦̄ = 1
𝑛

∑︁𝑛
𝑖=1 𝑦𝑖 is the mean of the HF observations.

• Actual vs. Predicted Plot: These plots provide a visual
representation of the degree of agreement between the true
model and the calibrated model where:

– The True Model is the model estimated on 180 HF
only samples,

– The Calibrated Model is the MFM estimated using
the HF samples to calibrate the LF samples.

These metrics provide a comprehensive assessment of the
model’s predictive accuracy and reliability. RMSE captures the
absolute magnitude of errors, while 𝑅2 quantifies how well the
model explains variance in the HF data. Together, these indica-
tors validate the effectiveness of the multi-fidelity framework in
leveraging LF data to enhance HF predictions.

5. RESULT
The MF-GP model was evaluated for two different cutout

sizes, 3.75 cm and 5 cm, across 6, 12, and 18 high-fidelity samples
that represent the 3%, 7%, and 10% of HF data. Figures 8 and 9
present the model’s predictive performance under each condition.
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This section provides a detailed analysis of both cases, emphasiz-
ing multi-fidelity modeling principles, sampling strategies, and
model quality, specifically in terms of root mean square error and
the coefficient of determination. Additionally, the impact of HF
sample density on the surrogate model’s accuracy is discussed to
evaluate the effectiveness of fidelity-aware calibration.

Figure 8 clearly demonstrates that the MF surrogate model is
highly susceptible to high-fidelity sample density. When only six
HF samples are available, predictive versus actual plots exhibit
substantial deviations from the ideal fit line, and RMSE values
increase significantly, signaling major prediction errors. Further-
more, the 𝑅2 score drops drastically, indicating an inadequate rep-
resentation of variance within the dataset. The three-dimensional
surface reconstructions appear coarse due to insufficient calibra-
tion data, and 𝑅2 continues to decrease as the model does not
sufficiently capture the variance in the dataset.

From an MFM perspective, the reduced accuracy observed
in the six HF sample cases is expected, as the model heavily relies
on LF predictions, which inherently contain bias. Furthermore,
due to the limited availability of HF data, the model is unable to
effectively refine its discrepancy function, leading to poor fidelity
alignment. Differences in data density exacerbate misalignments
between the LF and HF models. While LF data are obtained from
simulation videos at a higher temporal resolution, HF data are
sampled at discrete 2 cm intervals. This disparity contributes to
the misalignment of fidelity, mainly when the HF sample density
is low.

As the number of HF samples increases to 12 and 18, RMSE
values decrease systematically, and 𝑅2 improves. This indicates
that the MF surrogate model captures an increasing proportion of
variance associated with HF behavior. MF fidelity vs HF plots
exhibit tighter clustering around the ideal fit line, and the 3D
surface reconstructions become progressively more refined, sug-
gesting that the model’s approximation of HF behavior improves
with additional calibration data.

A key challenge associated with the 3.75 cm cutout is the
discrepancy in visibility perception between the driver’s eye view
and the DHM-based obscuration test. The driver’s eye view often
obscures the lower portions of nearby traffic objects, while the
DHM test registers these objects as fully visible. This inconsis-
tency introduces systematic bias in near-field object integration
within the MF framework, which requires a higher HF sample
density to be effectively corrected.

Figure 9 presents 5 cm cutout design results showing similar
trends but notable variations in model robustness and sampling
efficiency. Comparing 6 HF samples with 3.75 cm samples leads
to significantly lower RMSE values and higher 𝑅2 scores than
their 3.75 cm counterparts, showing that MF surrogate models
perform better under sparse HF conditions; MF model versus HF
plots show variations that seem less extreme, while 3D recon-
structions reveal smoother transitions indicating stronger corre-
lation between LF-HF relations.

From a multi-fidelity modeling perspective, the 5 cm cutoff
offers superior LF-HF alignment due to its wider field of view,
which reduces near-field visibility discrepancies. This improved
LF-HF alignment arises because the broader field of view in the
5cm cutout reduces partial occlusions in LF views, making them

more consistent with DHM results. In contrast, the narrower
3.75cm cutout more frequently obscures near-field objects in LF
data while they remain visible in HF simulations, increasing the
discrepancy. The wider cutoff reduces this mismatch, leading to
more stable calibration with fewer HF samples.

As more HF samples increase to 12 and then 18 samples, the
RMSE gradually decreases while the 𝑅2 scores improve, simi-
lar to those with cases of 3.75 cm. This could indicate that a 5
cm cutout offers an inherently stronger relationship between low-
and high-frequency samples and thus allows smoother calibration
with fewer samples; MF predictive model versus HF plots show
improved alignment with ideal-fit lines while 3D surrogate recon-
struction is refined similarly but less sensitively due to sparsity
issues.

From an efficiency perspective, the 5 cm cutout requires sig-
nificantly less HF sampling density to achieve accurate calibration
than its 3.75 cm counterpart; its model achieved relatively stable
𝑅𝑀𝑆𝐸 and 𝑅2 performance with only six samples collected -
showing how larger cutouts reduce the need for extensive data
collection to achieve comparable accuracy levels compared with
3.75 cm cases which require much denser datasets to reach com-
parable accuracy levels.

6. CONCLUSION AND FUTURE WORK
This study evaluated the predictive performance of a multi-

fidelity Gaussian Process (MF-GP) model for driver visibility
assessment across two cutout sizes, 3.75 cm and 5 cm, using
the MF simulation framework. The HF data were obtained from
DHM simulations, while the LF data were derived from image
segmentation-based simulations. This MF approach leverages
the complementary strengths of both fidelity levels to improve
predictive accuracy while minimizing computational costs. Re-
sults demonstrated that the quality of an MF surrogate model can
be strongly affected by HF sample availability and alignment sen-
sitivity, particularly for a 3.75 cm cutout, which required denser
HF sample distribution. In contrast, the 5 cm cutout achieved
comparable accuracy with fewer HF samples, due to improved
LF-HF alignment and reduced visibility discrepancies.

Preliminary timing comparisons were conducted to provide
a perspective on computational efficiency. Although a complete
breakdown of the simulation overhead is beyond the scope of this
paper, the average processing time for a single DHM simulation,
excluding the initial model setup, was approximately 45 seconds.
In contrast, the average processing time for a single image seg-
mentation operation was about 8 seconds. Although these figures
vary depending on hardware and implementation details, they il-
lustrate the significant computational advantage of incorporating
LF data within the MFM framework.

These results demonstrate how image segmentation meth-
ods can serve as reliable LF approximations when combined
with DHM simulations in an MF-GP framework. This approach
effectively captures visibility trends and has great promise for
human-in-the-loop design studies; however, issues related to near-
field object detection remain and may adversely affect calibration
quality under sparse HF sampling.

Although this study did not employ adaptive sampling, its
findings indicate that future work could focus on developing MF-
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FIGURE 8: MF SURROGATE MODELS AND THEIR PERFORMANCES UNDER VARYING HF SAMPLE DENSITIES FOR THE 3.75
CM CUTOUT.

aware sampling strategies in which points are dynamically al-
located depending on uncertainty estimation to optimize data
efficiency, reduce redundant evaluations while maintaining pre-
dictive accuracy of the models, and enhance sample selection by
decreasing redundant evaluations while still achieving predictive
accuracy of models. Such strategies would ensure optimal sam-
ple selection while maintaining accurate predictions from MF
models. Continued refinement of these methodologies within the
MF-GP framework may further reduce the dependence on large
HF datasets while maintaining robust predictive performance,
ultimately improving computational efficiency in visibility eval-
uation and broader engineering design contexts.
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