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ABSTRACT

The creation of manufacturable and modifiable 3D shapes
using Computer-Aided Design (CAD) remains a predominantly
manual and time-consuming process, hindered by the complexity
of boundary representations in 3D solids and the lack of intu-
itive design tools. This paper introduces TransformCAD, a CAD
generation model that leverages both image and natural lan-
guage descriptions as input to generate CAD sequences, produc-
ing editable 3D representations relevant to engineering design.
TransformCAD incorporates a fine-tuned Contrastive Language-
Image Pre-Training (CLIP) model to process multimodal input
and employs two prediction branches—sketch and extrude—to
enhance the parsing rate of CAD generation. Extensive eval-
uations demonstrate that TransformCAD outperforms existing
models in terms of parsing rate, Chamfer distance, minimum
matching distance, and Jensen-Shannon divergence. Further-
more, by analyzing the impact of training data, we show that
TransformCAD exhibits strong potential for accurately generat-
ing long-sequence CAD models, which correspond to higher-
complexity designs. Moreover, real-world 3D object images
taken by a smartphone are used to validate TransformCAD’s
practicability, demonstrating its effectiveness in industrial ap-
plications. To the best of our knowledge, this is the first attempt
at generating 3D CAD models integrating both image and natu-
ral language input. TransformCAD expands the boundaries of
automated CAD modeling, enabling a more flexible and intu-
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itive design process that bridges visual perception and structured
command-based representations.

Keywords: Computer-Aided Design, Generative Design,
Generative Al, CAD Sequence, Transformer

1 Introduction

Computer-aided design (CAD) systems are extensively used
for 3D shape creation across various industrial sectors. How-
ever, constructing a parametric CAD model requires specialized
expertise and is often a manual, time-consuming process. In
mechanical design, particularly during the early stages, there
is increasing interest in training computational agents to assist
or collaborate with designers. These agents have the potential
to enhance creativity, accelerate CAD modeling, and ultimately
reduce design time and costs. Despite these advantages, de-
veloping a computational agent with the capabilities of a pro-
fessional designer remains an extremely challenging machine-
learning task.

Recent research has explored data-driven approaches for
CAD generation, such as converting 3D point clouds [1, 2] or
voxels [3,4] into CAD models. However, these studies primar-
ily focus on reconstructing 3D CAD models, so the methods
are not generative in nature. A generative model can create di-
verse and novel CAD designs beyond reconstruction, enabling
design exploration, customization, and optimization rather than
replicating existing geometries. Moreover, those methods can-
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not generate CAD sequences — an ordered series of modeling
operations, such as drawing 2D sketches and extruding them
into 3D shapes that are executed within CAD software to con-
struct a 3D model [5]. Unlike 3D models, a CAD sequence pro-
vides insight into the historical construction process and embed-
ded design knowledge, enabling efficient geometry modifications
through parametric modeling.

To address this limitation, methods such as DeepCad [6] and
SkexGen [7] have been developed for the unconditional genera-
tion of CAD sequences. However, these models generate CAD
sequences without specific user input, meaning they lack interac-
tive control and adaptation to user intent. This limits human-AI
design collaboration, which is particularly important in the early
design stage, where design intent and requirements are expected
to continuously feed into the loop of Al-generated design con-
tent, so the design can be iterated and adjusted based on human
feedback.

This paper advances the state of the art by introducing a mul-
timodal generative model that takes advantage of image and nat-
ural language inputs for CAD sequence generation. Compared
to point-cloud or voxel-based approaches, image and text data
are more intuitive and accessible, thus enhancing user-interactive
experience and control for better design interaction and space ex-
ploration. The generated CAD sequence can be easily converted
into B-rep, STEP, and STL formats and rendered into a CAD
model, as illustrated in Figure 1.

To comprehensively evaluate our model, we employed seven
metrics and compared its performance with other image-to-CAD
sequence models. The results show that TransformCAD outper-
forms existing models in terms of Parsing Rate, Chamfer Dis-
tance, Minimum Matching Distance, and Jensen-Shannon Diver-
gence. Furthermore, by analyzing the impact of training data,
we demonstrate that TransformCAD exhibits strong potential for
accurately generating long-sequence CAD models, which cor-
respond to higher-complexity designs. The contributions of the
proposed model are summarized as follows.

* To the best of our knowledge, this study is the first attempt to
predict a sequence of CAD operations given a combination
of images and natural language inputs.

* We develop a multimodal CAD generation pipeline that
leverages a fine-tuned CLIP model for processing image and
text embeddings, along with Llama 3.2 [8] for generating
structured text descriptions. This integration enhances the
model’s ability to interpret diverse input modalities, provid-
ing users with greater control over CAD generation.

* We integrate a two-branch model architecture with image
and text inputs, enabling more effective latent space learning
from multimodal data. This structured approach enhances
the model’s ability to capture distinct design operations, im-
proving the precision and interpretability of CAD sequence
generation.

This paper is organized as follows: Section 2 provides an
overview of the background on CAD generation using Large
Language Models (LLMs) and Deep Neural Networks (DNNs).
Section 3 outlines the methodology for the development of
TransformCAD, covering CAD sequence representation and
model architecture. Section 4 details the experimental setup and
presents analyses of quantitative and qualitative results. Section
5 discusses the research findings, limitations, and potential direc-
tions for future research. Finally, Section 6 summarizes the key
insights and conclusions.

2 Literature Review

For CAD generation models, we can classify existing ap-
proaches into two categories: large language models (LLMs)-
based models and deep neural network-based models. In this sec-
tion, we first review CAD generation methods based on LLMs,
which is currently a highly active research topic. Following this,
we introduce CAD generation methods based on deep neural net-
works, which is the approach adopted in this study.

2.1 CAD Generation using Large Language Models

With the rapid development of Large Language Mod-
els (LLMs), researchers have begun exploring their potential
for CAD generation. For multimodal input, LLM4CAD [9]
first developed a dataset of mechanical components, collecting
human-written descriptions for each component. Additionally,
LLM4CAD introduced a framework utilizing GPT-4V to pro-
cess both image and text inputs, while also employing GPT-4 as
a CAD program debugger. For text-only input, LLM4CAD [10]
fine-tuned GPT-3.5 based on that dataset to generate Python pro-
grams capable of constructing the corresponding CAD models.
However, collecting human-written text descriptions is costly,
and due to the inherent limitations of text descriptions in captur-
ing geometric details, accurately describing complex geometries
remains a significant challenge.

Another example is Query2CAD [11], which proposed a
framework combining GPT-turbo and BLIP2 to generate exe-
cutable CAD macros from user queries. However, the test set
only included 57 curated user queries, and without fine-tuning,
the success rate of generating correct CAD models on the first at-
tempt was only 53.6%. To improve generation quality, the frame-
work relies heavily on human refinement prompts — a process
that is both labor-intensive and time-consuming.

With the emergence of Multimodal Large Language Mod-
els (MLLMs), researchers have further explored using images
and sketches as inputs for CAD generation. For example, CAD-
Assistant [12] employed GPT-40 as the Vision Large Language
Model (VLLM) to recognize hand-drawn sketches and automat-
ically extrude them into 3D CAD models. However, the reported
generation accuracy was below 75%, and the generation process

Copyright © 2025 by ASME



Image Data

| want to design a flat, square

steel plate with a centrally
located circular cutout and four
symmetrically placed threaded =
holes, one near each corner, to
ensure structural balance and
precise alignment.

Text Description

TransformCAD

CAD Model
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was highly sensitive to the wording of the prompts.

Beyond images and sketches, other modalities have also
been considered. For instance, CAD-MLLM [13] introduced a
unified CAD generation system capable of processing inputs in
the form of textual descriptions, images, point clouds, or combi-
nations of them all. Interestingly, their results showed that train-
ing the model using only point cloud data led to better perfor-
mance than training on multiple modalities combined. This find-
ing highlights a core challenge of MLLM-based CAD generation
— effectively balancing contributions from multiple modalities
is difficult, especially when the quality and information density
of each modality vary significantly. This imbalance often intro-
duces noise and reduces overall generation accuracy, particularly
for complex geometries.

In summary, there are several limitations associated with us-
ing LLMs and MLLMs for CAD generation:

* Limited descriptive power of text input: Text descriptions
alone are insufficient to capture complex geometric details,
making text-only generation prone to inaccuracies.

* Prompt sensitivity: Both LLMs and MLLMs are highly
sensitive to prompt variations, meaning they may generate
different outputs even when given the same input — an un-
desirable property for industrial CAD applications that re-
quire consistency and repeatability.

* Heavy reliance on human intervention: Existing frame-
works have challenges of generative CAD models with suf-
ficient accuracy, depending on iterative human refinement,
which increases both time and cost.

* Lack of geometric understanding: LLMs, by their na-
ture, struggle with understanding geometric and topolog-
ical relationships. To improve accuracy, fine-tuning is
necessary — but collecting fine-tuning data is costly and

resource-intensive, especially since these models often gen-
erate Python programs rather than direct CAD commands,
adding complexity due to dependencies on external libraries,
error handling requirements, and strict syntax rules.

2.2 CAD Generation using Deep Neural Networks
(DNNs)

The other major category of CAD generation relies on Deep
Neural Networks (DNNGs) to train task-specific CAD generation
models based on the input modality. An important considera-
tion when designing these models is the design representation of
CAD models for machine learning. To this end, several CAD
representations have been explored.

One of the most common representations is the Boundary
Representation (B-rep) format, a standard format for represent-
ing 3D shapes in CAD. B-rep defines objects based on their
boundary surfaces, edges, and vertices, with specific topology re-
lationships among these elements. Numerous machine learning-
based approaches [18, 19] have emerged that aim to directly gen-
erate parametric curves and surfaces in the B-rep format. In par-
allel, several studies, including those by Kim et al. [20], Budroni
et al. [21], and Liu et al. [22], have explored generating CAD
models using 3D point clouds, enabling direct learning from
scanned data.

Another popular representation is Sketch-and-Extrude op-
eration sequences, which aligns closely with how CAD models
are constructed in modern parametric modeling software. Deep-
CAD, proposed by Wu et al. [6], was the first approach to for-
malize CAD modeling as the generation of command sequences.
DeepCAD used a transformer-based auto-encoder trained on a
large dataset of 3D object models collected via the publicly avail-
able Onshape API. Each command was represented as a fixed-
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TABLE 1. Summary of Modality-Specific CAD Generation Models

Study Name Input Modality Dataset CAD Sequence Representation Key Model Architecture
DeepCAD [6] Unconditional DeepCAD Stacked Vector Transformer Encoder & Decoder
SkexGen [7] Unconditional DeepCAD Hierarchy Sequence Transformer & VQ-VAE
GenCAD [14] Multiple Images DeepCAD Stacked Vector Transformer & Diffusion Model
ARE-Net [15] Multiple Images DeepCAD Stacked Vector Transformer Decoder & CNN

Image2CADSeq [16] Single Image

CADGen [17] Unconditional DeepCAD

TransformCAD Single Image & Text Description DeepCAD

Fusion 360 Gallery Stacked Vector

Transformer-Based VAE
Hierarchy Sequence Transformer & VQ-VAE

Hierarchy Sequence Transformer & VQ-VAE

length 16-dimensional vector, with different elements storing dif-
ferent types of parameters. These vectors were then stacked to
form a matrix representing the full CAD sequence.

To enhance the expressiveness and learnability of this repre-
sentation, Skexgen introduced a more structured approach, defin-
ing the sketch-and-extrude sequence as a hierarchy of primi-
tives. This hierarchical representation separates the generation of
topology (which entities exist and how they are created and re-
lated) from the generation of geometry (numerical values such as
dimensions and positions). This hierarchical design significantly
improves the successful parsing ratio, enhancing the ability to
accurately reconstruct the 3D CAD model from the generated
sequence [7].

Building on these two Sketch-and-Extrude sequence rep-
resentations (fixed vector stacking and hierarchical primitives),
several CAD generation models have been developed to ac-
commodate different input modalities. ARE-Net [15] adopts
the stacked vector method and combines a CNN encoder with
a transformer decoder to generate CAD models directly from
multi-view image inputs. GenCAD [14] leverages a diffusion
model combined with a transformer encoder-decoder architec-
ture to achieve CAD generation from multiple image views. Im-
age2CADSeq [16] also relies on the stacked vector represen-
tation, embedding it within a transformer-based variational au-
toencoder (VAE) and training the model using the Fusion 360
Gallery dataset with single-image input. In contrast, CAD-
Gen [17] adopts the hierarchical operation sequence representa-
tion and focuses on unconditional CAD generation, employing a
transformer model combined with a Vector Quantised Variational
AutoEncoder (VQ-VAE) to learn a discrete latent space suitable
for operation sequences. Each of these models demonstrates the
flexibility of Sketch-and-Extrude representations across different
modalities, from single- and multi-view images to purely latent

space exploration.

Table 1 summarizes the input modality, dataset, sequence
representation, and model type for the studies using Sketch-and-
Extrude operation sequences mentioned above. Based on this re-
view, it is evident that most Sketch-and-Extrude-based CAD gen-
eration models rely heavily on transformer architectures. How-
ever, no existing study has explored CAD generation from com-
bined image and text inputs. To address this gap, our proposed
model, TransformCAD, introduces a new approach that takes ad-
vantage of both image and natural language descriptions of a de-
sign as input to generate CAD sequence. TransformCAD adopts
the hierarchical operation sequence representation and employs
a Transformer architecture combined with the VQ-VAE code-
book [23], allowing multi-modal CAD generation.

3 Methodology
3.1 Design Representation

In this study, we adopt the Sketch-and-Extrude Construction
Sequence from Skexgen [7], a structured format that effectively
encodes CAD modeling operations. This representation employs
five special tokens to capture the topology of a CAD model: 1)
A topology token to indicate the curve type (line/arc/circle); 2) a
geometry token containing point coordinates; 3) an end-primitive
token marking the completion of a primitive (curve, face, sketch,
extruded); 4) an extrusion token containing extrusion parameters
and Boolean operations; and 5) an end-sequence token indicating
the termination of the sequence. An example is shown in Figure
2 to illustrate the usage of tokens and the hierarchical structure.

This structured sequence-based representation offers several
advantages. First, it provides a hierarchical abstraction of the de-
sign process, aligning well with how designers construct CAD
models step-by-step. Second, it ensures that both geometric and
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FIGURE 2. An example CAD model is represented as a hierarchy structure and a CAD operation sequence, with five types of tokens introduced. The

end-primitive token includes four types (curve end token, face end token, sketch end token and extrude end token). Each curve begins with a topology
token (T), followed by a geometry token (G), and ends with a curve end token. A face end token indicates the completion of a face, while a sketch end
token marks the end of a sketch, which consists of two faces in this example. An extrude token (E) follows to extrude the sketch, concluding with an
extrude end token. The sequence terminates with an end sequence token (End). Notably, faces and sketches are not explicitly represented as tokens but

are inferred from the end-primitive tokens.

topological information are explicitly captured, enabling the ma-
chine learning model to understand both shape formation and
spatial relationships. Third, the sequence format is well-suited
for neural sequence models, allowing us to leverage powerful ar-
chitectures such as transformers and sequence-to-sequence mod-
els.

3.2 Dataset

We use the DeepCAD dataset [6], which comprises 212,323
CAD construction sequences. To ensure data quality, we perform
duplicate removal, eliminating redundant sketch and extrude sub-
sequences. After preprocessing, the dataset contains 202,123
unique CAD models, maintaining the original 90% training, 5%
validation, and 5% test split.

To incorporate multimodal learning, we first render an image
for each CAD model in the preprocessed dataset and generate a
corresponding text description using the Llama 3.2 multimodal
large language model [8]. Each CAD model is then paired with
its rendered image and text description. To obtain structured em-
beddings, we apply the CLIP model to extract both image and
text embeddings.

To enhance CLIP’s ability to understand CAD images, we
fine-tune the model using a contrastive learning approach on

the previously mentioned image-text pair dataset. After fine-
tuning, we evaluated the model performance in a text-to-image
retrieval task. Specifically, we randomly select 500 image-text
pairs from the test set, and for each text query, rank the retrieved
images based on cosine similarity. We then compute Recall@1,
Recall@5, and Recall@10, where Recall@K measures the per-
centage of queries for which the correct result appears within
the top-K predictions. Specifically, Recall@1 evaluates whether
the correct result is ranked first, Recall@5 checks if it appears
within the top-5 results, and Recall@10 assesses its presence
among the top 10. Additionally, we calculate the average co-
sine similarity to assess retrieval accuracy. The results, presented
in Table 2, demonstrate that the fine-tuned CLIP model signifi-
cantly improves its understanding of CAD images and their tex-
tual descriptions. Following this, we use the fine-tuned CLIP
model to generate image and text embeddings for each CAD
model. In summary, each CAD model is represented by an im-
age embedding and a text embedding, which serve as input to our
framework, while the corresponding CAD sequence representa-
tion acts as the ground-truth output.
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Model Recall@1 1 Recall@5 1 Recall@10 1 Cos. Sim. 1

CLIP 0.1441 0.3932 0.5636 0.37
Fine-tuned CLIP  0.6799 0.9480 0.9480 0.46

TABLE 2. Comparison of Recall and Cosine Similarity for CLIP and
Fine-tuned CLIP.

3.3 Training Datasets

Since sequence length can influence model performance,
generalization, and computational efficiency, understanding this
relationship helps optimize training data and improve the
model’s ability to generate accurate and diverse CAD sequences.
Therefore, in this study, we investigate the effect of CAD se-
quence length distribution in the training dataset. Here, sequence
length refers to the number of tokens required to represent a CAD
model using the construction sequence described in Section 3.1.
To facilitate this investigation, we utilize two training datasets in
our experiments. Training Dataset 1 is the original dataset ob-
tained through the preprocessing method outlined earlier in Sec-
tion 3.2. The sequence length distribution of this dataset is shown
in Figure 3, where we also present a representative CAD model
for each sequence length range along the X-axis to illustrate how
sequence length correlates with a model’s geometric complexity.

However, as shown in Figure 3, Training Dataset 1 exhibits
a strong imbalance, with a disproportionately large number of
short sequences compared to long sequences. To address this
data skew issue, we apply a truncation process: for each se-
quence length bin below 42, we randomly sample 3000 CAD
models. The resulting sequence length distribution after trunca-
tion is shown in Figure 4. The total amount of Training Dataset
2 15 95,997, which is 45.2% of Training Dataset 1.
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3.4 Model Architecture

The model architecture of TransformCAD consists of two
branches, as shown in Figure 5: the sketch branch and the extru-
sion branch. The unique two-branch design of model architecture
separates the operational information of sketching and extrusion,
making the machine learning process easier to capture the latent
space of each operation sequence.

For the sketch branch, the model includes a linear image en-
coder and a linear text encoder, which map the 512-dimensional
image and text embeddings to 256-dimensional latent represen-
tations. These two latent representations are then concatenated
and passed through a Transformer-based topology encoder and
a geometry encoder, producing two latent vectors representing
the sketch. After concatenation, the resulting representation is
fed into a Transformer-based sketch decoder, which generates a
sketch sequence from the latent representation. Here, the topol-
ogy encoder is included to extract explicit topological informa-
tion, aiming to enhance the understanding of a sketch for the
sketch decoder. Since the Extrusion branch predicts the extrude
length and transformation matrix, totaling 10 parameters, it uses
a single extrude encoder and decoder instead of separate topol-
ogy and geometry encoders in the Extrusion branch.

The topology encoder processes the image and text latent
representations and follows the standard Transformer architec-
ture [24]. It is a Transformer module with four layers, where
each layer consists of eight attention heads, pre-layer normaliza-
tion, an input dimension of 256, and a feed-forward dimension
of 512. The encoder outputs a Vector Quantised Variational Au-
toEncoder (VQ-VAE) codebook [23], containing 500 quantized
code tokens, from which it selects the four closest code tokens.

The geometry encoder and extrude encoder share the same
architecture as the topology encoder but differ in codebook size
and the number of selected tokens. The geometry encoder has a
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codebook size of 1000 and selects the two closest tokens, while
the extrude encoder has the same codebook size but selects ten
closest code tokens. This difference arises from the nature of
the information each encoder processes. The geometry encoder
requires only two tokens because geometric features are highly
localized, and a small number of tokens is sufficient to capture
relevant details. In contrast, the extrude encoder selects ten to-
kens because extrusion operations involve more complex trans-
formations that depend on a broader spatial and structural con-
text. The sketch decoder takes the topology and geometry code-
books as input and generates geometry and end-primitive tokens
(for curves, loops, faces, and sketches) to reconstruct the sketch
subsequence. Notably, topology tokens are not generated explic-
itly, as they can be inferred from the number of geometry tokens
in each curve (i.e., lines/arcs/circles correspond to 1, 2, and 4 to-
kens, respectively). The extrude decoder follows the same design

as the sketch decoder.

3.5 Loss Function
The topology encoder, geometry encoder, and sketch de-
coder are jointly trained with three loss functions:

loss =Y CrossEntropy (hg" , i )
K

+ |[se(25,) — byl + B 15, — se(bip) |3
+[lse(Zg) —bee|l3 + B2 —sgbe) |3 (1)

The first line of Equation (1) computes the sequence recon-
struction loss, where h% denotes the predicted probability dis-
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tribution from the sketch decoder, and h’;(' represents the ground-
truth one-hot vector. The second and third lines correspond to
the standard codebook loss and commitment loss used in VQ-
VAE [23]. The function sg(-) is the stop-gradient operation,
which behaves as the identity function during the forward pass
but blocks gradient flow during the backward pass. The weight
B scales the commitment loss, and is set to 0.25, ensuring that
the encoder output commits to a single code vector.

4 Experiments and Results
4.1 Experiment Setting

During training, we first pre-train the encoder and de-
coder—excluding the image and text encoders—of each branch,
following the architecture of the SkexGen model [7]. This stage
uses CAD sequences from oringal DeepCAD dataset, allow-
ing the encoder and decoder to learn the underlying patterns of
CAD sequence generation. The model is initially trained for 300
epochs with a batch size of 128. After pre-training, we introduce
the image and text encoders, using image and text embeddings
for each dataset, as introduced in Section 3.3 and fine-tune the
entire model for an additional 300 epochs while maintaining the
same batch size. This process, when using two different training
datasets, results in two model variants: TransformCAD1 and
TransformCAD?2.

The model is implemented in PyTorch and trained on an
RTX 5000 Ada GPU. We use a dropout rate of 0.1 and opti-
mize the model with the Adam optimizer using a learning rate of
0.001.

4.2 Metrics

To evaluate the accuracy of 3D model generation and com-
pare it with other conditional CAD generation models, we use
the following seven metrics to assess model performance.These
metrics collectively provide a comprehensive evaluation of the
syntactic, geometric, and distributional accuracy of the gener-
ated 3D CAD models, categorized into CAD sequence-related
metrics, which assess the correctness and structure of the gen-
erated sequences, and 3D model-related metrics, which evaluate
the geometric fidelity and overall reconstruction quality.

4.2.1 CAD Sequence-Related Metrics

1. Parsing Rate (PR): This metric measures the percentage
of output CAD sequences that can be successfully rendered
into a valid 3D model. A higher parsing rate indicates better
syntactic correctness of the generated CAD sequences.

2. Command Accuracy (ACC¢pg): The command accuracy
ACC.ng measures the agreement of the predicted CAD com-
mand type #; with the ground truth command type ¢; for a
CAD ground-truth sequence of N; steps:

N

1 A
N Y (ti==1) 2

1i=1

ACCepng =

3. Parameter Accuracy (ACCparam): The parameter accuracy
ACCparam quantifies the agreement of a predicted CAD pa-
rameter p; ; in one command to its ground-truth counterpart
pi,j- Only correctly predicted commands CAD sequences
were evaluated and a threshold of 11 = 0.05 was used.

1 N |p1

Z Z \pij—pijl <m) 3)

11/

ACC, pamm

4.2.2 3D Model-Related Metrics

1. Chamfer Distance (CD): For the geometric evaluation of
3D models, Chamfer Distance (CD) measures the shortest
distance from a point x on the surface S, of the generated
(predicted) model to the nearest point y on the surface S;
of the ground-truth model. This process is performed bidi-
rectionally, ensuring symmetry in the evaluation. In this
study, we compute the Chamfer Distance using 2,000 sur-
face points per model.

cD= Yominls—yl3+ ¢ ¥ minly—+l} @

xES P xES

2. Coverage (COV): Coverage represents the proportion of

the ground truth model accurately matched by the generated
model. This is computed based on the closest Chamfer dis-
tance of 2,000 uniformly sampled points on the surface. For
each point cloud in ground truth model, we first find its near-
est neighbor in the generated models. Coverage is measured
as the fraction of the point clouds in a generated model that
was matched to the point clouds in the ground truth model.
Closeness can be computed using Chamfer Distance.

cov=-—Y 1<;nln||x ylla < ) 5)

‘Stl XES;

, where 1(-) is an indicator function, which returns 1 if the
condition inside is true, otherwise 0. 7 is a threshold distance
to determine if a point is “covered” by the generated model.
3. Minimum Matching Distance (MMD): This metric calcu-
lates the average minimum distance between each generated
model and its nearest neighbor in the ground truth model
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set. A lower MMD value indicates that the generated mod-
els closely resemble the ground truth models, demonstrating
higher fidelity.

MMD =

|S | Z mlon yll2 (6)

XES) ye

4. Jensen-Shannon Divergence (JSD): JSD quantifies the
similarity between the marginal point distributions of the
ground truth and generated models. In a 3D dataset, the
marginal point distribution represents the likelihood of each
randomly sampled 3D point occurring on the surface of the
model, independent of other points. A smaller JSD value
implies better alignment of the overall distributions, indicat-
ing that the generated models capture the variability of the
ground truth dataset.

1
ISD(St || Sp) = 5D(S: | M) +5D(Sp [ M) (D)

, where M = 1(S,+5,) and D(- | -) the KL-divergence be-
tween the two distributions.

4.3 Command and Parameter Accuracy

Figure 6 illustrates the distribution of CAD sequence lengths
in the testing dataset, which consists of a total of 8,044 samples.
Since the testing set is randomly sampled from the original train-
ing dataset, its distribution closely resembles that of the training
set, as shown in Figure 3. Among the testing data, 5,396 samples
have a sequence length of 10 or less, accounting for 67.1% of the
dataset.
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FIGURE 6. The CAD Sequence Length Distribution For Testing Data

Figure 7 presents the average Command Accuracy
(ACCpng) of TransformCAD1 and TransformCAD2 across dif-
ferent CAD sequence lengths, including error bars. The dotted
lines represent the exponential fits for each model, with R? values
of 0.906 and 0.771 for TransformCAD1 and TransformCAD2,
respectively. As observed in the figure, Command Accuracy de-
creases as the CAD sequence length increases for both models.
For short sequences (length < 10), both models achieve rela-
tively high Command Accuracy (over 80%). However, as the se-
quence length increases—particularly for sequences longer than
30—the Command Accuracy drops to approximately 40% for
TransformCAD]1 and 50% for TransformCAD?2.

Comparing the two models, TransformCAD?2 outperforms
TransformCAD1 for CAD sequences longer than 10. However,
for short sequences, TransformCAD!1 exhibits higher Command
Accuracy than TransformCAD?2. This is due to the truncation
of short sequences during training, as shown in Figure 4, mak-
ing TransformCAD?2 have less training data of shorter sequences
compared to that of TransformCAD].
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FIGURE 7. Command Accuracy (ACCpnq) of TransformCAD]1 and
TransformCAD?2 across different CAD sequence lengths.

Figure 8 illustrates the average Parameter Accuracy
(ACCparam) of TransformCAD1 and TransformCAD2 across dif-
ferent CAD sequence lengths. Note that the x-axis of Parameter
Accuracy is shorter than that of Command Accuracy because Pa-
rameter Accuracy is only computed for CAD data where Com-
mand Accuracy is perfectly predicted (i.e., ACCcpng = 100%).
This is because the comparison of parameters only makes sense
if the command types are the same. Similar to Figure 7, Figure
8 includes error bars for each sequence length, and the dotted
lines indicate the exponential fits for each model, with R? values
of 0.832 and 0.907 for TransformCADI1 and TransformCAD2,
respectively.
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As shown in the figure, Parameter Accuracy also decreases
as the CAD sequence length increases for both models. For long
sequences (length > 10), TransformCAD2 outperforms Trans-
formCAD1, while for short sequences, both models perform sim-
ilarly. Since the Geometry Encoder generates parameter infor-
mation (see Figure 5) as a latent representation of parameters,
this suggests that for short sequences, which involve fewer pa-
rameters to predict, the Geometry Encoder may not require a
large amount of training data. However, with a greater propor-
tion of long sequences, the Geometry Encoder has more oppor-
tunities to learn from long-sequence data, leading to improved
performance.
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FIGURE 8. Parameter Accuracy (ACCparam) of TransformCAD1 and
TransformCAD?2 across different CAD sequence lengths.

4.4 Metrics Comparison

Since no prior CAD generation study has utilized a combi-
nation of a single image and text input, we compare Command
Accuracy (ACCcmd), Parameter Accuracy (ACCparam), Pars-
ing Rate (PR), and Chamfer Distance (CD) with ARE-Net [15],
a CAD generation model based on multiple image inputs. ARE-
Net also reports metric results for single-image input, allowing
for direct comparison. Table 3 presents the metric comparison
between ARE-Net and TransformCAD.

For Command Accuracy and Parameter Accuracy, ARE-Net
with 20-image input outperforms all other models. This is ex-
pected, as multiple image inputs provide richer geometric in-
formation to the model. However, for single-image input, both
TransformCAD models perform slightly worse than ARE-Net.
It is important to note that even when ARE-Net is tested with a
single image input, it was trained on 10 images per CAD model,
whereas TransformCAD was trained exclusively on single-image
inputs, which has less geometric information during training.

35
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For Parsing Rate, TransformCAD models outperform ARE-
Net models, with both TransformCAD models achieving a Pars-
ing Rate above 90%. This improvement is attributed to the hi-
erarchical representation of CAD models in TransformCAD. Its
dual-branch architecture allows the model to process sketch and
extrude information separately and then merge together during
inference, thereby ensuring a higher success rate in CAD se-
quence generation.

For Chamfer Distance, TransformCAD also outperforms
ARE-Net, indicating that even though TransformCAD achieves
lower Command Accuracy and Parameter Accuracy, its gener-
ated CAD models closely match the ground truth in terms of
geometric shape. Command Accuracy and Parameter Accuracy
are stricter evaluation metrics than Chamfer Distance, as they as-
sess correctness at the command and parameter levels rather than
overall shape similarity.

For Coverage (COV), Minimum Matching Distance
(MMD), and Jensen-Shannon Divergence (JSD), we compare
TransformCAD with DeepCAD [6], Skexgen [7], and Gen-
CAD [14]. We select these models for comparison because
they reported these metrics and were trained on the same Deep-
CAD dataset, ensuring a fair and consistent evaluation. Table 4
presents the results for these metrics.

In terms of Coverage (COV), GenCAD slightly outperforms
TransformCAD models. However, TransformCAD still achieves
competitive coverage, indicating that it effectively generates a
variety of CAD models. For MMD and JSD, TransformCAD
significantly outperforms the other three models. A lower MMD
suggests that TransformCAD produces CAD models that are
structurally closer to real CAD models in the dataset, reducing
deviations in feature space. Similarly, a lower JSD indicates that
the distribution of generated CAD models closely aligns with the
distribution of ground-truth models, reflecting higher fidelity and
diversity in TransformCAD’s output.

These results align with the Chamfer Distance (CD) results,
further reinforcing that TransformCAD generates CAD models
with a shape that closely matches the ground truth. The superior
performance in MMD and JSD highlights TransformCAD’s abil-
ity to learn and reconstruct geometric details, making it a more
effective model for high-fidelity CAD generation.

4.5 Qualitative Results

To qualitatively evaluate our model’s CAD generation capa-
bilities, Figure 9 presents a gallery of correctly generated models
categorized by sequence length. Here, “correct generation” is de-
fined as cases where commands are perfectly predicted and the
absolute parameter error remains within 5% of the ground truth
values, given the corresponding image and text inputs.

The figure demonstrates that our model can successfully
generate CAD models involving multiple sequential operations
with high precision. Notably, it includes practical mechanical
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ACCcma T ACCparam T PR T (8)) \l/
ARE-Net (20 Images) [15] 92.83% 78.8 % 81.6% 1.75x 103
ARE-Net (Single Image) [15] 88.0% 65.0% 81.6% 1.75x10°
TransformCAD1 78.3% 60.5% 95.7% 0.71 x 103
TransformCAD2 76.2% 60.8% 94.6% 0.76 x 10°

TABLE 3. Comparison of models based on Command Accuracy (ACCcq), Parameter Accuracy (ACCparam), Parsing Rate (PR) and Chamfer Dis-

tance (CD).

COvVt MMD/,| JSD |
DeepCAD [6] 76.8 1.68 2.01
Skexgen [7] 74.3 1.48 0.81
GenCAD [14] 81.37 1.38 3.49
TransformCAD1  79.2 1.08 0.49
TransformCAD2  78.3 1.16 0.52

TABLE 4. Comparison of models based on Coverage (COV), Min-
imum Matching Distance (MMD), and Jensen-Shannon Divergence
(JSD).

components, such as nuts and pillow blocks, suggesting that our
model possesses significant potential for industrial applications.

5 Discussion
5.1 Influence of Training Dataset

This study utilized two different training datasets to train the
TransformCAD models and examine the influence of the training
dataset on their performance. As shown in Figure 7 and Figure 8,
TransformCAD?2, which was trained on Training Dataset2, out-
performs TransformCAD1 in generating long sequences. This
suggests that increasing the proportion (without even increasing
the quantity) of long sequences in the training dataset can en-
hance the model’s ability to generate long-sequence CAD mod-
els, which are typically more complex.

However, as shown in Table 3 and Table 4, TransformCAD?2
exhibits slightly lower average performance across all metrics
compared to TransformCAD1, though the difference is minimal.
This may be attributed to the reduced proportion of short se-
quences in Training Dataset2, leading to lower performance on
short-sequence data. Meanwhile, the test dataset contains a rela-
tively high proportion of short sequences, as illustrated in Figure
6, further contributing to the observed performance gap.

It is important to note that Training Dataset 2 contains only
45.2% of the data volume of Training Dataset 1, as reported in
Section 3.3. Despite this, TransformCAD?2 was trained with the
same number of epochs, indicating that it is more efficient in
learning from the available training data. Furthermore, if pro-
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vided with a higher proportion of long-sequence data, the Trans-
formCAD model demonstrates the potential to generate complex
long-sequence CAD models more accurately.

5.2 Validation using Real-World Product Image

To evaluate the performance of the TransformCAD model
in real-world applications, we designed an experiment where
users take photos of actual mechanical components and instantly
convert them into CAD sequences. Six CAD models were se-
lected for this study, as listed in Figure 10. These physical ob-
jects were 3D printed and captured using a smartphone, with the
background removed before being fed into the TransformCAD
model, as shown in the first column of Figure 10. The second col-
umn presents the corresponding text descriptions for each CAD
model. These real-world images and text descriptions were then
fed into the TransformCAD model to generate CAD sequences.
The third row of Figure 10 displays the rendered images of the
resulting 3D CAD models.

The Parsing Rate for these six real-world images was 100%.
In terms of accuracy, the first two generated models successfully
captured the topology of the input, with all commands correctly
identified; however, the proportions of the parameters were inac-
curate. This discrepancy may be attributed to variations in object
color and lighting conditions, which differ from the ideal ren-
dered training data and make extracting precise parameter infor-
mation from images more challenging.

For the third and fourth images, TransformCAD accurately
generated both the commands and parameters, suggesting that
it effectively understands the “rectangular” shape described in
the text. The fifth and sixth images contain relatively complex
geometries. In the fifth case, the model correctly identified the
“curved, rounded shape” from the input text but failed to capture
the subsequent requirement of a “rectangular block,” indicating a
need for improvement in understanding longer text descriptions.
In the sixth case, the generated CAD model closely resembles
the intended shape, but the contour does not perfectly match the
input. Specifically, the original contour consists of three overlap-
ping circles, whereas the generated CAD model features tangen-
tially connected circles.

Despite occasional parameter prediction errors, Transform-
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Text Description  Generated Model

The image depicts a 3D

rendering of a cylindrical object L ]

with a flat top and bottom,

featuring a circular base and a t j

circular middle section.

This image depicts a three-
dimensional cube with a
circular hole in the center of its
top face, set against a white
background.

The CAD model is a rectangular
frame  with a centered
rectangular cutout, uniform
thickness, and straight edges.

The CAD model features a
rectangular box with a flat top
and two protruding rectangular
shapes on top, and a
rectangular cutout in the front
face.

This CAD model is a complex 3D
model with a curved, rounded
shape in the foreground,
featuring a series of connected
rectangular blocks that form a
unique geometric pattern.

&
" 2
v

The CAD model
features a gray, irregularly shaped
object with a central circular hole,
flanked by two smaller circular
holes on either side, set against a
white background.

rendering pa—

&

FIGURE 10. CAD generation real-world images.

CAD generates CAD sequences that are easy to edit, highlighting
its potential for industrial applications.

5.3 Flaw Generation

Figure 11 illustrates examples where our model generated
incorrect CAD models based on the input image and text. One
common issue is incorrect extrude direction, as observed in the
first and second columns of the figure. In these cases, the ex-
trusion is performed in the opposite direction, indicating that the
Extrude Decoder requires further improvement, such as increas-
ing the number of Transformer layers to enhance its ability to
capture long-range dependencies and expanding the latent rep-
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resentation dimension to improve feature expressiveness and di-
rectional accuracy. Another limitation is the model’s difficulty in
understanding geometry topology. As shown in the third column,
the model incorrectly places a hole on the wrong face, suggesting
challenges in learning spatial relationships.

For complex CAD models, the model sometimes captures
only the overall shape while failing to generate finer details, as
demonstrated in the fourth column. This is likely because in-
tricate features are difficult to infer from both image and text
descriptions. Additionally, our findings indicate that because the
model is primarily trained on practical CAD models, it strug-
gles with creative or unconventional designs. For instance, in the
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fifth column, the model fails to generate the cat-face design ac-
curately, highlighting the challenge of handling less conventional
geometries.

The last column showcases a hallucination issue, a common
problem in generative models. Even though the image and text
description clearly indicate a triangular hole, the model incor-
rectly generates a rectangular hole instead, suggesting a bias or
uncertainty in shape generation.

5.4 Limitation and Future Direction

During this study, we realized that TransformCAD’s per-
formance is limited by the single-image input, which provides
only a restricted amount of geometric information. Since text
descriptions do not include the CAD model’s parameters, the in-
put image has a significant influence on parameter prediction. To
address this limitation, our next step will be to incorporate mul-
tiple images along with text descriptions as input to enhance the
model’s understanding of geometry.

Additionally, to improve robustness for real-world images,
data augmentation could be applied to the image data. This
includes modifying the CAD model’s color, altering the back-
ground, and adjusting the image proportions. Such augmen-
tations could lead to a more robust performance in real-world
scenarios, where lighting and background conditions differ from
ideal rendered images.

To further enhance parameter prediction accuracy, we plan
to increase the number of training epochs and expand the size of
the codebook in the Geometry Encoder, which may improve the
model’s ability to capture geometric details more effectively.

Finally, we aim to develop a user interface that allows users
to modify the parameters of generated CAD models. Incorporat-
ing human-computer interaction will enable users to refine and
adjust generated designs, ensuring greater precision and align-
ment with their specific design intent. This interactive system
could also provide real-time feedback, helping users explore dif-
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The examples of flaw generation.

ferent design variations efficiently.

6 Conclusion

This study presents TransformCAD, a generative model of
3D CAD that takes both image and text descriptions as input. Us-
ing the fine-tuned CLIP model, TransformCAD converts images
and text into embeddings, which are then processed through a
structured prediction framework based on the SkexGen model.
Two prediction branches—sketch and extrude—are applied to
generate the final CAD operation sequence. By applying the
hierarchical sketch-extrude representation, the model ensures a
high parsing rate by effectively capturing geometric structures
and dependencies. Performance evaluations show that Trans-
formCAD outperforms other models in terms of Parsing Rate,
Chamfer Distance, Minimum Matching Distance, and Jensen-
Shannon Divergence.

In summary, the combined image and text input offers
greater control to users, making TransformCAD highly appli-
cable in real-world industrial applications. Additionally, the
CAD sequence output is easily editable and convertible into other
formats, such as B-rep and STL. Furthermore, by investigat-
ing the influence of training data, we demonstrate that Trans-
formCAD has strong potential for accurately generating long-
sequence CAD models, which correspond to higher-complexity
designs.
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