Proceedings of the ASME 2025 International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference

IDETC/CIE 2025
August 17-20, 2025, Anaheim, CA, USA

IDETC/CIE 2025-168988

IMAGE2CADSEQ: COMPUTER-AIDED DESIGN SEQUENCE AND KNOWLEDGE
INFERENCE FROM PRODUCT IMAGES

Xingang Li, Zhenghui Sha*

Walker Department of Mechanical Engineering
The University of Texas at Austin
Austin, Texas 78712
Email: zsha@austin.utexas.edu

ABSTRACT

Computer-aided design (CAD) tools empower designers to
design and modify 3D models through a series of CAD oper-
ations, commonly referred to as a CAD sequence. In scenar-
ios where digital CAD files are inaccessible, reverse engineering
(RE) has been used to reconstruct 3D CAD models. Recent ad-
vances have seen the rise of data-driven approaches for RE, with
a primary focus on converting 3D data, such as point clouds,
into 3D models in boundary representation (B-rep) format. How-
ever, obtaining 3D data poses significant challenges, and B-rep
models do not reveal knowledge about the 3D modeling pro-
cess of designs. To this end, our research introduces a novel
data-driven approach based on representation learning to infer
CAD sequences from product images, coined as Image2CADSeq.
These sequences can then be translated into B-rep models using
a solid modeling kernel. Unlike B-rep models, CAD sequences
offer enhanced flexibility to modify individual steps of model cre-
ation, providing a deeper understanding of the construction pro-
cess of CAD models. One unique contribution of this paper is
the development of a multi-level evaluation framework for model
assessment, so the predictive performance of the Image2CADSeq
model can be rigorously evaluated. The model was trained on a
specially synthesized dataset, and various neural network archi-
tectures were explored to optimize the performance. The exper-
imental and validation results show the great potential of our
model in data-driven reverse engineering of 3D CAD models
from 2D images.

*Corresponding author.

1 INTRODUCTION

Computer-aided design (CAD) systems can significantly re-
duce design time by avoiding the need for traditionally required
labor-intensive manual drawings [1]. Contemporary CAD sys-
tems such as Fusion 360, SOLIDWORKS, and OnShape enable
designers to create and modify CAD models. However, in cer-
tain scenarios, the CAD model of a product may not be readily
available due to various factors, including outdated documenta-
tion, lack of digital records, and commercial reasons. Reverse
engineering (RE) is employed to overcome these obstacles, uti-
lizing measurement and analysis tools to reconstruct CAD mod-
els [2,3].

Integrating RE with CAD systems can not only allow de-
signers to leverage the advantages of existing products while
incorporating their own innovative ideas and improvements but
can also be used for design knowledge restoration and manage-
ment [2,3]. However, the traditional RE process faces two ma-
jor limitations. First, it focuses on reconstructing 3D models
rather than CAD sequences. Compared to 3D models, a CAD se-
quence provides access to the historical construction process and
associated design knowledge and it facilitates geometry modi-
fication using parametric modeling. Second, the process has
been performed primarily manually, making it labor-intensive
and time-consuming. Recently, researchers have explored data-
driven methods, such as converting 3D point clouds [4,5] or vox-
els [6,7] into CAD models. Nevertheless, these 3D input data
are often challenging to acquire due to inaccessibility and un-
availability. 3D scanning could be a solution, yet quality is often
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unsatisfactory and cost is an unavoidable factor to consider when
acquiring specialized equipment and expertise.

Compared to point clouds or voxels, images are easier to ac-
quire, particularly given the popularity of mobile devices nowa-
days. Thus, our question arises: Can we reverse engineer CAD
sequences directly from 2D images, supporting designers to in-
terpret and edit CAD models in design? Our literature review
has indicated a scarcity of research exploring the know-how to
this question. Therefore, we are motivated to develop a data-
driven reverse engineering approach that can generate a sequence
of CAD operations based on a single image, referred to as “Im-
age2CADSeq” hereafter for brevity.

The contributions of this study lie in four aspects. First,
this study pioneers the prediction of CAD sequences from a
single image input, utilizing a target-embedding variational au-
toencoder (TEVAE) architecture [8]. Second, we developed a
data synthesis pipeline based on Fusion 360 Gallery domain-
specific language (DSL), generating synthetic data that mimic
real-world images and CAD models. Third, we developed a ma-
trix representation for the Fusion 360 Gallery DSL which is of
great value for geometry learning research using the Fusion 360
Gallery dataset [9] Lastly, a new multi-level evaluation frame-
work, consisting of 10 performance metrics (see Section 3.5 for
details), provides a comprehensive assessment scheme that can
be generally applied to similar CAD sequence or program infer-
ence tasks. We anticipate that the Image2CADSeq model can
potentially revolutionize CAD systems by simplifying model re-
construction, enabling both experienced and novice designers to
contribute actively, fostering collaboration, education, and de-
sign democratization.

2 LITERATURE REVIEW

In this section, we present a review of deep learning meth-
ods specifically tailored for CAD sequence generation and pre-
diction, which are most relevant to our work.

Significant progress has been made in the generation of
CAD sequences for the reconstruction of 3D models partic-
ularly through Sketch-and-Extrude modeling operations. Re-
cently, there have been methods [10, 11] for generative models
specifically designed for the unconditional generation of CAD
sequences. These models aim to autonomously create CAD se-
quences without relying on specific conditions or inputs. Specif-
ically, Wu et al. [10] presented the first generative model, Deep-
CAD, that learns from sequences of CAD modeling operations to
produce editable CAD designs. By drawing an analogy between
CAD operations and natural language, the authors propose to uti-
lize a transformer architecture [12] aiming to leverage the capa-
bilities of transformer models in understanding and generating
sequences, adapting them to the context of CAD design opera-
tions. Unconditional generative models, such as works [10, 11],
that do not rely on input conditions (e.g., text, sketches, or im-

ages) indeed serve as valuable tools for randomly generating a
multitude of designs, offering inspiration and exploration of di-
verse possibilities. However, these models cannot directly in-
corporate designers’ intent into the generation process due to the
lack of user input. Consequently, the designs generated can devi-
ate from the expectations or specific requirements of the design-
ers. This discrepancy highlights the need for mechanisms that
allow designers to guide or influence the output, ensuring that
the generated designs align more closely with their intent and
preferences.

To that end, several methods have been introduced to allow
the generation of CAD sequences given the target of B-rep mod-
els [9,13], voxels [6,7], point clouds [4,5], and sketches [14, 15].
Particularly, Fusion 360 Gym [9] was developed to reconstruct
a CAD model given a B-Rep model, utilizing a face-extrusion
technique that relies on existing planar faces within the B-Rep
model. However, despite the potential for CAD sequence gen-
eration, the face-extrusion method differs significantly from the
more natural sketch-extrusion method commonly used by human
designers. Moreover, this technique is ineffective when con-
fronted with a lack of available planar or profile data in the input
data, such as images. Our work aims to fill a research gap in the
existing literature by focusing on the task of generating CAD se-
quences from images and we proposed a multi-level evaluation
system to comprehensively evaluate the prediction of the CAD
sequences.

3 METHODOLOGY

The flowchart depicted in Figure 1 illustrates the proposed
approach of Image2CADSeq. Our objective is to harness the
power of deep learning to predict a CAD sequence—a series of
CAD operations characterized by specific operation types and
their corresponding parameters—from an image. The image
could be a rendering from a CAD model or a real-world pho-
tograph of a 3D object.

We employ a CAD program as a representational tool for
CAD sequences. A CAD program enables designers to program-
matically script their designs in a specialized scripting environ-
ment. The CAD program is then streamlined into a vectorized
representation for neural network modeling. This representation
can facilitate not only the development of our neural network’s
architecture but also the creation of a data-synthesis pipeline
tasked with generating the training data for the neural network
model. In addition, given the complexity of the Image2CADSeq
task, we develop a multi-level evaluation system that rigorously
assesses our neural network models’ performance on the predic-
tion of CAD program (i.e., the operation sequence, type, and pa-
rameters), thereby ensuring the reliability and accuracy of our
approach.
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3.1 DESIGN REPRESENTATION OF CAD PROGRAMS

In this study, we employ a domain-specific language (DSL),
namely Fusion 360 Gallery (Gallery for conciseness) [9], as a
particular use case of the CAD program to demonstrate our ap-
proach. While Gallery DSL currently only supports the Sketch
and Extrude operations [9], our approach can be easily extended
should more operation types be available in the future.

One essential step when using neural networks to effectively
interpret CAD programs involves the development of an effective
and efficient representation for each CAD operation and the en-
tire CAD program. However, there are three major challenges:
1) Different CAD programs comprise varying numbers of oper-
ations. 2) Different CAD operations involve different numbers
of parameters. 3) Parameters can be either continuous or dis-
crete values. To tackle these challenges, we developed a design
representation with a unified data structure following the method
introduced in a few studies [10, 16]. We identified 10 variables
(t,1,x,y,0,1,[I],d,0,s) from the Gallery DSL, detailed in Table
1. In what follows, we elaborate on our approach to handling
these variables in vector representations.

(1) r€{0,1,2,3,4,5,6} represents the operation types with 0 —
4 representing add _sketch, add_line, add_arc, add circle,
and add_extrude. The values 5 and 6 are used to repre-
sent the start (SOP) and the end (EOP) of a CAD program,

Data-synthesis
pipeline
. Training
Network-friendly Facilitate data
5 design representation
8 of CAD program
g Neural network
<
Represent
Predicted
CAD program
Multi-level Evaluate
evaluation system
Image

Predict
IS CAD sequence
E (Sequence of CAD Parse Render
E’ operations)
£ Compose - 3D design
3 Operation
S type
a CAD Compose

operation L‘ Parameter

FIGURE 1. Approach overview

TABLE 1. Variables for the vectorized design representation of
Gallery DSL

Variable Characteristic Value range

Operation type t Discrete {0,1,2,3,4,5,6}
Identifier of
sketch I Discrete {0, 1,2}
plane
End point x x Continuous [-1, 1]
End point y y Continuous [-1, 1]
Sweep . [-1,0) or (0, 1]
Operation angle @ Continuous (*180)
parameters Radius r Continuous (0,1
Identifier of .
orofile [ Discrete {0,1,2,..}
Extrusion .
distance d Continuous [-1,0) or (0, 1]
Bool
00 e_an ] Discrete {0,1,2,3}
operations
Auxili
UXIIarY ol factor s Discrete 0~255 (e.g., 10)
factor

which are not typical CAD operations but are included for
the learning process to indicate a complete CAD program as
required by a transformer model [10, 12, 16].

(2) I €{0,1,2} indicates the Sketch Plane using one of the
canonical planes: "XY”, ”XZ”, or "YZ".

(3,4) x and y are the coordinates of the endpoint for Line and
Arc, while they represent the center point when the opera-
tion type is Circle. We excluded the start point required by
Line and Arc from the design representation by obtaining it
from the precedent curve to make sure all curves are con-
nected one after another, making the vectorized representa-
tion more compact. There are two extra considerations for
this setting: (i) If one curve has no precedent, we default its
start point to the origin (0,0) when parsing the design rep-
resentation. (ii) For Arc that requires a center point instead
of an endpoint, we calculate the coordinates for the center
point based on its start point, endpoint, and sweep angle.

(5) o represents the sweep angle of an Arc.

(6) ris the radius of a Circle.

(7) [I] represents the profile index in the Sketch.

(8) d represents the signed distance of the depth for Extrude.

(9) 0 €{0,1,2,3} is used to indicate the Boolean operations:
join, cut, intersect, or add, respectively.

(10) s is an auxiliary factor that can be used to scale a CAD
model.

In addition, to standardize the treatment of both continu-
ous and discrete parameters, we discretize continuous parame-
ters through quantization. This involves: (a) Confining continu-
ous values to a subset of [—1, 1] (e.g., (0, 1] for radius and [—1, 1]
for endpoint x and y; (b) Dividing each range into 256 equal seg-
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ments, enabling representation as 8-bit integers (i.e., 0 — 255);
(c) For the sweep angle () in radians, we multiply it by 180 for
encoding; (d) Handling scale factor (s): Although the scale factor
can be a non-negative continuous value, we limit it to 256 levels
for consistency with other continuous values’ quantization. Con-
sequently, the 10 variables can encode both the operation type
and its associated parameters. From the 10 variables, a fixed-
dimensional vector can be formalized as a unified design rep-
resentation for each CAD operation, and the unused parameters
will be filled with values of —1.

The subsequent consideration involves standardizing CAD
programs of varying sizes (the number of CAD operations in-
volved). To achieve a consistent data structure across all CAD
programs, we used a treatment, called maximum program length.
Then, CAD programs shorter than this maximum length are ex-
tended by appending end marks (EOP) until they reach the pre-
determined length.

In this study, we use 7 variables to construct a 7-dimensional
vector [t,1,x,y, ¢, r,d] for each CAD operation (i.e., one step/line
in a CAD sequence). Additionally, we assign default values
to the other three variables [I],0, and s, setting them as 0, 3,
and 10 representing the Oth profile in Sketch (i.e., closed 2D
shapes formed by CAD operations such as Line, Circle, and
Arc), Boolean operation Add, and a scale factor of 10, corre-
spondingly. These variables are chosen because we focus on sin-
gle object creation from a single Sketch profile. Among these
variables, different ones can be selected, which can influence
the complexity of the data structure and thus the complexity
of designs. For example, all 10 variables can be added to en-
able the creation of CAD models that are formed by multiple
Sketch profiles and Boolean operations (e.g., join, cut, inter-
sect, and add). In addition, the maximum length for a CAD
program is set to 10. As a result, the design representation of
a CAD program will be a matrix, namely, the feature matrix.
Mathematically, the feature matrix denoted as P, is expressed as
P = [01, o2, ... ,ONC]T € R1%%7 where o' € R is a CAD op-
eration vector, and N, = 10 is the sequence length of the CAD
program. Refer to Figure 3 for an example of how a cylinder is
converted to a feature matrix, including the quantization of its
parameters as explained earlier.

3.2 NEURAL NETWORK ARCHITECTURE

We developed the Image2CADSeq model, utilizing a target-
embedding representation learning method [17,18], as illustrated
in Figure 2. It features an encoder-decoder network for Stage
1 (S1), which is for unsupervised learning and enables the ef-
ficient encoding of target objects (i.e., matrix representation of
CAD programs) within a latent space. An additional encoder is
integrated into Stage 2 (S2), focusing on supervised learning to
regress the previously learned latent space using feature objects
(i.e., images) as input.

Training module

Stage 1 min loss(y, y)

\ NnZ
y ——| Encoder —{ |—{ Decoder y'
L— %
|
Stage2 min loss(z, z) | Feature x: image
\ Y Target y: feature matrix
s2 of CAD programs
X —| encoder (%, y): one data pair
U_, z latent vector
L— Z  z': embedding vector

Application module

X —

Vv
L
:

FIGURE 2. Image2CADSeq model using a target-embedding repre-

sentation learning method

The Image2CADSeq model employs a two-stage training
strategy [8, 19]. In Stage 1, the focus is on independent train-
ing of the encoder-decoder network. The objective is to mini-
mize the reconstruction loss between the actual matrix feature of
CAD programs (y) and its reconstructed equivalent (y). Com-
pleting this stage involves fixing the learnable parameters of the
neural network model and saving the learned model, thereby cap-
turing a latent space of y. Stage 2 shifts the focus to independent
training of the S2 encoder by minimizing the difference between
the latent vector, derived from the learned latent space, and the
embedding vector produced by the S2 encoder using an image
as input. Importantly, each image used in this stage is directly
associated with its feature matrix from Stage 1. This image and
its corresponding feature matrix are associated with the same 3D
object, and they form one data pair. The alignment of the la-
tent vector with the embedding vector is performed specifically
for these data pairs, ensuring that the S2 encoder training is pre-
cisely tuned to the corresponding images. This approach ensures
a cohesive and targeted learning process. We present a novel data
synthesis pipeline to generate training data pairs in Section 3.3.

After training the Image2CADSeq model, the S2 encoder
is integrated with the decoder from S1, creating the application
module. This module is capable of predicting a feature matrix
given an image input. Subsequently, this feature matrix can be
translated into a CAD program using the Gallery DSL. Finally,
the CAD program can be parsed into a 3D object by utilizing
Fusion 360 software.

Two strategies were used for Stage 1 of the Image2CADSeq
model: 1) a baseline AE and 2) a VAE to compare their perfor-
mance and explore a better architecture for the Image2CADSeq
model. The corresponding architecture of the model formed

Copyright © 2025 by ASME



by these two strategies is called target embedding autoencoder
(TEA) and target-embedding variational autoencoder (TEVAE),
respectively. For Strategy 1, we obtained the AE model by mod-
ifying the transformer-based AE from DeepCAD [10]. It uses
a typical reconstruction loss coupled with a regularization loss.
Reconstruction loss ensures accurate reconstruction of input fea-
tures in the output, while regularization loss prevents overfitting
to the training data. For Strategy 2, we further modified the AE
architecture to form a VAE model and added a KL-divergence
loss to the loss function.

We utilized ResNet18 [20] for the Stage 2 Encoder in both
strategies. In addition, a dropout layer is positioned between the
encoder and the embedding vector layer to prevent overfitting to
the training data, thus maintaining its efficacy on unseen data.
We utilized a regression loss between the embedding vector of
the image and its corresponding latent vector obtained from the
latent space in Stage 1 and a regularization loss to promote the
generalizability of the Stage 2 encoder.

3.3 DATA SYNTHESIS

With the proposed design representation of the CAD pro-
grams and Fusion 360 software, we introduce an automatic data
synthesis pipeline, as illustrated in Figure 3. This method is tai-
lored to generate training data pairs comprising feature matrices
of CAD programs and the corresponding images, essential for
training the Image2CADSeq model. The process begins with
preparing a list of shape templates, such as cylinders, employ-
ing the Sketch-and-Extrude paradigm of the Gallery DSL. For
example, a cylinder can only be formed by drawing a circle and
subsequently extruding that shape; it cannot be made by sketch-
ing a rectangle and revolving it. For these basic template shapes,
we establish a series of template sequences of CAD operations
(e.g., add line,add circle). One template shape may correspond

“add_sketch(“XY")",
“add_circle(pt1={"x": 0, “y": 0}, radius=0.2)",

“add_extrude(height=0.3)"
. . . . &
Parse
» CAD models

Vectorize and

uantize
A\ N ~ v Q\ . Y

Template CAD

Cylinder shapes * programs |

Render

Sequences of
['s", “C", “E"] operation -
types

Vectorized

representations/| Images

[(5,-1,-1,-1,-1,-1,-1],

[0,0,-1,-1,-1,-1], v
f ) [2,-1,128,128, -1, 51, -1],
[XY7]=>"8", 4,-1,-1,-1, - 1, -1, 166], Training
[0,0,0.2)=>“C”, Parameters : {6 __________ 1, -1].] dataset of
[0.3]=>“E" 6, -1, -1, -1, -1, - 1,41], data pairs

s

FIGURE 3. Synthesis pipeline for the training dataset of image and
vectorized CAD sequence, exemplified using a cylinder model

TABLE 2. Template shapes for the data synthesis

Template Template
Shape sequence of Example
(Sketch)+ Extrue operation types

TS1 uen upn apn
(Circle) [SERCERE] /
TS 2 wn
(Triple Line) [, 1, L 1L
TS13 uen apn apn upn wpw
(Triple Arc) T8 85 %, 55
1S4 1S, “1, “ A", “E”] ‘
(Double Arc [S”, “A”, “1”, “N”, “E”]
+ PR B
single Line) [“S”, “A”, “A”, “L”, “E”]
TS5 1S, A, “17, “17, “E”]
(Single Arc
n 1S, 17, “A”. “1, “E”]
Double Line) ;

[uSu’ uLu, uLu, uAu, uEu]

to several template CAD sequences (see Table 2 for more de-
tails). The corresponding parameter values of these operations
are then generated based on the range specified in Table 1. By in-
tegrating these template operations with their respective parame-
ters, a complete CAD program is formulated, which is then trans-
lated into 3D CAD models through Fusion 360 software. These
models are then rendered to obtain their images. Additionally,
the CAD programs are vectorized and quantized to derive their
feature matrices, as discussed in Section 3.1. An image paired
with its feature matrix, both derived from the same CAD pro-
gram, constitutes a data pair. The method is exemplified using a
cylinder model in Figure 3.

In this study, we use simple shapes instead of complex shape
datasets to ensure a controlled and interpretable evaluation of the
model performance with the proposed multi-level comprehen-
sive evaluation system. This ensures that our approach is robust
and transparent, laying a solid foundation for future extensions
to more complex datasets. We developed a collection of 5 tem-
plate shapes (TS), as depicted in Table 2. We used add_line (L),
add_arc (A), add _circle (C) to create the Skerch, and applied the
Extrude operation to generate the 3D shapes. TS 1-3 each corre-
spond to unique sequences of operation types, while TS 4 and 5
are associated with three varied sequences. An example for each
template shape is also presented.

We synthesized 2,000 different shapes corresponding to ev-
ery sequence type outlined in Table 2, except for the sequence
of TS 1, for which we synthesized 6,000 shapes. This was taken
to ensure a balanced dataset in terms of both the length of se-
quences and the number of shapes for each template shape cate-
gory. Consequently, this led to the creation of 22,000 CAD mod-
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els. For imaging purposes, all these 3D models were rendered us-
ing a uniform perspective camera positioned at (20.0,20.0,20.0)
looking towards the origin (0.0,0.0,0.0) and all the images are
in the resolution of 512 x 512 pixels. This process resulted in
the image set X = {xk}]%zzoloo_ The corresponding feature matri-
ces Y = {yk}zioloo were also saved during synthesis. The final

training dataset was {xg, yi }720°.

3.4 TRAINING DETAILS

The dataset was divided into three subsets: train, validation,
and test set with a proportion of 8:1:1. The validation set was
used to monitor the training process. We employed a grid search
strategy in Stage 1 to find optimal hyperparameters of the neural
network models. Using such a search, a latent dimension size
of 256 proved optimal for both models, resulting in the lowest
reconstruction loss for the test set data among trials with dimen-
sions of 64, 128, 256, and 512. Other hyperparameters include
500 epochs of training with a batch size of 512, the Adam op-
timizer, and a learning rate of 0.001. Moving to Stage 2, we
initiated training with a pre-trained ResNet18 model [20] that
possesses a broad comprehension of various images. The S2 en-
coder was trained for 50 epochs using the Adam optimizer with
a learning rate of 0.0001 and a batch size of 128. A dropout ratio
of 0.4 was applied in the dropout layer.

3.5 EVALUATION METRICS

In the Image2CADSeq task, there are three key elements:
the image, the CAD program, and the 3D CAD model. The
CAD program consists of a sequence of CAD operations, each
involving an operation type and its associated parameters. To as-
sess the effectiveness of our approach, we have developed a set
of evaluation metrics, as illustrated in Table 3.

For the evaluation of 3D CAD models and images, we uti-
lize established metrics such as the intersection over union (IoU)
and mean squared error (MSE), respectively, as shown in Ta-
ble 3(a). Some other metrics, such as dice similarity [21] and
Hausdorff distance [22], can also be utilized to understand the
performance of the model from different perspectives. However,
assessing the quality of CAD programs poses a challenge due to
the scarcity of suitable metrics in the literature. To address this
gap, we introduce a novel evaluation system for CAD programs
based on the proposed matrix representation, detailed in Table
3(b). To comprehensively evaluate the information loss between
the predicted CAD programs with the ground truth, this system
incorporates both hierarchical (H1-3) and double-layered (L.1,2)
aspects as shown below, facilitating a multi-dimensional assess-
ment of CAD program prediction.

1. Hierarchies:

* H1: Sequence evaluation — Evaluates the accuracy of the

entire CAD program and the specific order in which cer-
tain CAD operation types follow.

e H2: Sequence-based operation type evaluation — Exam-
ines the accuracy of each individual operation type within
the sequence.

* H3: Set-based operation type evaluation — Assesses the
operation types as a collective set, without considering
the sequential order. Even if the operation type sequence
varies, a prediction is considered superior if it accurately
predicts a higher number of operation types due to the
preservation of information.

2. Layers:

e L1: Operation type layer — Evaluates the accuracy of the
CAD operation types.

e L2: Parameter layer — Assesses the accuracy of the param-
eters associated with each CAD operation type.

Recall that a feature matrix P can be expressed as P =
T i . .
[017 0%, ... ,ONC] . The vector o' € R” is a CAD operation vec-

. : t . . ..
tor which can be noted as o' = [p} , where 7 is an integer indicat-

ing the operation type, and p is a vector of integers representing
the corresponding parameters (see Section 3 for more details). In
what follows, we explain the evaluation metrics using the same
notation.

ACP. Accuracy og\ CAD programs (ACP) is calculated by
ACP = %):%il I(P! = Pi), representing the ratio of the predicted
CAD programs that are precisely aligned with the ground truth
ones, where N is the total number of test data forA evaluation,
P! denotes the ground truth CAD program, while P’ represents
the corresponding predicted CAD program, I(-) is the indicator
function that returns 1 if the condition is true, and O otherwise.

ASOT & EDSOT. Two metrics are defined for evaluating
the sequence of operation types: 1) accuracy of the sequence
of operation types (ASOT) and 2) edit distance of the sequence
of operation types (EDSOT). ASOT assesses the proportion of
predicted CAD sequences with operation types (without consid-
ering the associated operation parameters) that match exagtly the
ground truth, as defined by ASOT = & YN, I(P[;,1] = Pi[:, 1]).
In addition, P'[:, 1] represents the first column of P’ which is the
sequence of operation types in a CAD program, and similarly for
P 1]

max (i, ) ifmin(i, j) =0,
Mli—1,j]+1
min{ M[i,j—1]+1

M[li 1)]7 1] + 1((15&1)!)

Mli, j] = .
1] otherwise.

ey

Copyright © 2025 by ASME



TABLE 3. Comprehensive evaluation metrics for the image, the CAD program, and the 3D CAD model

Table (a): Evaluation metrics for the 3D CAD models and images

Evaluation focus Metrics Interpretation
CAD programs Parsing rate Successful rate of parsing the CAD
to 3D models e programs to 3D models
Localization and Given the s.uc.ces.sful parsing, the
. . . degree of similarity between the
reconstruction Intersection over union (loU)
reconstructed 3D CAD models and
of 3D models
the ground truth models
The measurement of the average
squared difference between the
I M d MSE - .
mage ean squared error ( ) pixel values of the rendered image
and ground truth image
Table (b): Evaluation metrics for the CAD programs
Metrics
Evaluation focus L1: 12: Interpretation
Operation type Parameter
CAD ACP
program programs ( ) the ground truth ones
Accuracy of the The ratio of the predicted CAD
H1: sequence of .
. - operation type sequences that
Sequence operation types exactly match the ground truth ones
evaluation The sequenc.e of (ASOT) y g
CAD operation Edit dist fth
types t distance of the The level of similarity between the
sequence of R .
. - predicted operation type sequence
operation types and the ground truth
(EDSOT) g
Accuracy of the The pljoport|on of CAD operation
. types in the predicted sequences
H2: operation types = ; ; ; :
(AOT) that align with their corresponding
Squencet—.based The CAD operation types in the ground truth
eration -
ty’:ae—wise operation type The agreement of associated
e —— ) Accuracy of the | parameters when the CAD
parameter! (AP) |operation type is correctly predicted
considering the sequential order
The similarity of predicted CAD
Multiset similarity operation types in a CAD program to
of operation types - those in the ground truth CAD
H3: The multiset of (MsOT) program without considering the
Set-based .
; CAD operation order
operation type tvpes -
evaluation yp The agreement of associated
) Accuracy of the | parameters when the CAD
parameter? (AP2) | operation type is correctly predicted
without considering the order

In the case of EDSOT, it measures the level of similarity
between the predicted CAD operation type sequence and the
ground truth. While there exist various metrics to calculate the
edit distance, we utilize the Levenshtein distance as shown in
Equation (1), which is commonly employed to compare sequen-
tial data in applications, such as computational biology [23].
Given two strings a and b of lengths m and n, respectively, the
Levenshtein distance L(a,b) can be calculated using dynamic
programming. We define a matrix M of size (m+ 1) x (n+ 1),

where M[i, j] represents the minimum number of operations (i.e.,
insertions, deletions or substitutions) required to transform the
substring a[l : {] into the substring b[1 : j]. After calculating the
values for all entries of the matrix M, the Levenshtein distance is

given by L(a,b) = M[m,n].

AOT. The accuracy of the operation types, denoted as AOT,
is computed as the proportion of CAD operation types in the
predicted sequences that align with their corresponding opera-
tion types in the ground truth, taking into account the order us-
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N X P =Pi1)
Ly (P 1)) _
employed to determine the length of a sequence, and /' is defined

ing AOT = . In addition, the function |- | is

as min(|P'[:,1]], |13’[7 1]|), representing the number of operation
types that need to be compared in a sequence for the ith data
point of the test data for evaluation.

AP!. The accuracy of parameter' (AP!) is determined by
assessing the agreement of associated parameters when the CAD
operation type is correctly predicted, considering the sequential
order, as defined in Equation (2). Conditions (c1-3) serve as the
input criteria for the indicator functions. This metric function
serves as the second layer beneath the first layer, AOT, indicating
that parameter evaluation occurs exclusively when the operation
type is accurately predicted (i.e., c1). For c2, recall our use of 8-
bit integers (i.e., 0 — 255) to represent the parameter values. Re-
garding c3, the parameter 1] denotes the permissible tolerance for
differences between the predicted parameters and their ground
truth values. For example, given a specific permissive tolerance
n € [0,255], if a ground truth parameter value is z € [0,255],
to be counted as a correct prediction, the predicted parameter
value Z must satisfy the following conditions: |Z—z| < 7 and
2 €10,255]. Furthermore, the summation over k is a consequence
of each CAD operation vector 0 € R’ having its first dimension
representing the operation type, while the subsequent dimensions
(i.e., dimensions 2-7) pertain to the associated parameters.

L E T Do (I(e]) I(e2) 1(e3))
Ll (P 1))

cl: P'[j,1] = Pi[j1] )

¢2:0 < Pi[j K] < 255

¢3:|PI[j, k]~ PI[j.K]| <7

AP

MSOT. The multiset similarity of operation types (MSOT)
is a metric that compares the similarity of predicted CAD oper-
ation types in a CAD program to those in the ground truth CAD
program, without taking the sequential order into account. In
mathematics, a set is defined as a collection of elements where
the order of these elements is irrelevant and duplicate elements
are not permitted. Conversely, a multiset follows a similar prin-
ciple as a set, but it allows the inclusion of repeated elements.
Thus, a set can be seen as a special case of multiset where
each element occurs only once. To implement the MSOT, we
adapted two commonly used metrics: Tanimoto coefficient (TC)
and cosine similarity (CS) in the Cheminformatics field for car-
rying out molecular similarity calculations [24]. As the order
of the elements in a multiset is not concerned in this case, we
can represent a multiset as a vector, where each element cor-
responds to the count of a particular element in the multiset.

For instance, in this study, we have a universe of elements for
all the operation types {0,1,2,3,4,5,6}, a multiset of a trian-
gular prism {5,0,1,1,1,4,6} can be represented by a vector
[1,3,0,0,1,1, 1] with each number representing the count of a
particular operation type. Denote a and b as the vectors of two
multisets and the TC between a and b can then be calculated as
TC(a,b) = (a-b)/(||a]|*>+||b||> —a-b), where a-b denotes the
dot product between the two vectors (sum of the element-wise
multiplication), || - || denotes the Euclidean norm. CS measures
the cosine of the angle between two vectors and CS between a
and b is calculated as CS(a,b) = (a-b)/(||a|| x ||b]]).

AP?. Similar to AP!, the accuracy of parameter’ (AP?)
serves as the second layer in the evaluation of CAD operations
which can be similarly calculated using Equation (2). Notably,
in AP2, the assessment does not take into account the order of
operations. In this study, an operation type can occur multi-
ple times in a CAD program, such as the Line operation in a
triangular prism. This introduces a challenge regarding which
instance of the Line operation in the predicted CAD program
should be matched with the corresponding instance in the ground
truth CAD program for parameter comparison. Despite this chal-
lenge, AP? retains practical significance, particularly in scenarios
where there are no repeated elements in the CAD operations. In
addition, it is essential to maintain AP? to preserve the integrity
of the evaluation system.

4 RESULTS AND DISCUSSION
4.1 EVALUATION OF CAD PROGRAMS

Figure 4 provides a comparison of the Image2CADSeq
model’s performance, evaluated under two different architec-
tures: TEA and TEVAE. The results of the TEVAE model are
detailed in Figure 4 (b). It displays high accuracy in most metrics
similar to the baseline performance of the TEA model in Figure
4 (a) but surpasses its performance in ACP and AP!. Particularly,
the ACP metric shows a significant improvement in the TEVAE
model and achieves a higher value at n = 3 (does not decrease to
zero as in (a)). The AP! metric also reveals an upward trend, set-
tling at a higher value than previously seen with the TEA model.
For a more complete comparison of the two cases, we summa-
rize the results of all metrics at n = 6 in Table 4. This summary
demonstrates that the TEVAE model surpasses the TEA counter-
part, yet the improvement is marginal. This motivates us to per-
form an in-depth evaluation of the model performance in other

TABLE 4. Results when evaluated at the first 6 operations of the CAD
programs

ACP(T) ASOT(T) AOT(T) AP1(T) MSC-TC(T) MSC-CS(T) EDSOT(T)
TEA 0.000 0.961 0.991 0.489 0.990 0.994 -0.053
TEVAE 0.004 0.967 0.993 0.541 0.992 0.996 -0.042
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FIGURE 4. Evaluation of the Image2CADSeq model’s performance
using two distinct architectures: TEA (a) and TEVAE (b)

aspects beyond the CAD program evaluation, as outlined in the
following sections.

4.2 THE OVERALL PARAMETER ACCURACY

The models demonstrate high accuracy in predicting the se-
quence of CAD operations but are less precise in parameter pre-
diction. To facilitate a clearer comparison between the two cases
with respect to parameter prediction accuracy, we have included
Figure 5 to illustrate the relationship between parameter accuracy
and tolerance (of the difference between the ground truth (GT)
parameter value and the predicted value) using metrics ACP and
AP

Especially, in Figure 5 (b), the blue dashed line with triangle
markers represents the AP! value achieved by randomly guess-
ing parameters given a specific tolerance, but without consider-
ing the Sketch parameter (i.e., the identifier of the sketch plane /)
whose values are not allowed for tolerance. We derived the equa-
tion for the random model in Equation (3). The equation can be
simplified to AP' = (—n? 45111 +256)/65536. This line acts

ACP vs. Tolerance
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FIGURE 5. Overall parameter accuracy versus the tolerance levels
evaluated using (a) ACP and (b) AP1 for the three cases.

as a baseline to evaluate the model’s effectiveness in accurately
predicting parameters if the sketch parameter is not considered.

1 (2n+1)(256 —2n) +2(2L20) _ n(lin)y

1 b 2 2
AP" = 556 256 ©)

1 11 (—n?+511n+256) 80
AP' = . — i
T 65536 91

“

To consider the Sketch parameter I, we need to take into
account the characteristics of the dataset (i.e., the ratio of each
parameter taken among all possible parameters in the design rep-
resentation of the CAD programs as outlined in Section 3.1). Ac-
cordingly, we obtain Equation (4) plotted as the red dashed line
with triangle markers in Figure 5 (b). Note that the number of
the sketch parameter takes % of all parameters. Additionally, a
green dotted line is used to indicate the ideal scenario where the
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FIGURE 6.
parameters for the Line, Circle, Arc, and Extrude operations, in that
order. Column (A) TEA and Column (b) TEVAE.

The variation of AP1 versus tolerance for the operation

parameters are perfectly predicted with zero tolerance (i.e., GT).
Other lines in Figures 5 (a) and (b) depict the corresponding met-
ric values for different cases, providing a comprehensive view of
the model’s performance in parameter prediction.

In both (a) and (b) of Figure 5, we consistently see that the
metric values increase with rising tolerance levels. A notable
point in Figure 5 (a) is that the ACP values for all two cases
reach their highest at a tolerance of 255 and the corresponding
values are 0.961 and 0.967 for each case, in accordance with the
ASOT values presented in Table 4. This can be interpreted as the
result that when we evaluate the entire CAD program in terms
of ACP given that all parameters are accurately predicted, we are
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essentially assessing ASOT. In Figure 5 (b), a crucial observation
is that both lines exceed the baseline of the random guess of pa-
rameters. This indicates that the models are effectively learning
parameter prediction.

Additionally, a significant observation in both figures is how
differently the models respond to changes in tolerance. Specif-
ically, the TEVAE model exhibits a faster increase for ACP and
API to changes in tolerance in contrast to the TEA model, sug-
gesting that the TEVAE model excels in parameter prediction
compared to the TEA model.

4.3 PARAMETER ACCURACY OF OPERATION TYPES

To gain more insight into how the models perform in pa-
rameter prediction, we plotted the variation of AP! versus the
tolerance for the operation parameters for each CAD operation
type in Figure 6.

Spanning columns (a) to (b), the rows in each column show
variations in AP! against tolerance levels (1 = 0 — 255) for spe-
cific parameters, corresponding to different CAD operations,
Line, Circle, Arc, and Extrude. These results look into the
model’s adaptability and accuracy across various CAD opera-
tions. Each figure includes a red dashed line representing the
baseline as defined in Equation (3). In addition, the green dot-
ted line illustrates the perfect prediction of the parameters with
zero tolerance. The other lines show the AP! for specific pa-
rameters related to the respective CAD operations. To facilitate
a more quantitative comparison of how well the parameters are
predicted, we also computed the area under the curve (AUC) for
each parameter, as indicated in the upper right corner of each fig-
ure. Generally, the parameters of Circle are particularly harder
for the model to predict compared to other operations (i.e., Line,
Arc, and Extrude) in each case. In addition, the coordinates x and
y of Line, Circle, and Arc are more difficult to predict compared
to other parameters such as the radius of a Circle and the Alpha
angle of an Arc. This result indicates that the model is better at
predicting shapes than the position of shapes.

Comparing the two cases, in Column (b), the results demon-
strate a better performance compared to Column (a). All metric
values not only surpass those in Column (a), but they also show
a further deviation from the baseline, indicating a significant en-
hancement of the model’s predictive performance. These values
are closely approaching the ground truth (GT) line, underscoring
the refined ability of the TEVAE model to learn from the training
data.

4.4 EVALUATION OF 3D CAD MODELS AND IMAGES

Table 5 shows the summary of the parsing rate, intersection
over union (IoU), and mean squared error (MSE) outlined in Fig-
ure 3 of the two cases. We perform an analysis of loU and MSE
by calculating the mean and standard deviation for each metric in
the table. Aligning with our observations in the evaluation of the
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TABLE 5. The mean and standard deviation of parsing rate, intersec-
tion over union (IoU), and mean squared error (MSE) of the two cases

TEA TEVAE

Parsing rate (1) 0.55 0.58
loU (1) 0.214 + 0.225 0.431 +0.255
MSE ({) 0.022 + 0.012 0.017 £ 0.011

CAD programs, as introduced in previous sections, the TEVAE
achieves a better performance compared to the TEA model.

4.5 DISCUSSION

The effectiveness of the TEVAE architecture is demon-
strated through improved performance across various metrics,
significantly exceeding the results achieved in the TEA archi-
tecture. The superior performance of the TEVAE model can be
largely attributed to the three advantages offered by VAEs. (1)
Unlike traditional AEs, VAEs create a latent space that follows
a well-defined and continuous distribution, such as the Gaussian
distribution typically used. This design facilitates smoother in-
terpolation between data points, enhancing the capture of mean-
ingful variations in CAD designs. (2) The encoder in a VAE is
more efficient in extracting relevant and prominent features from
CAD programs than a standard AE. This efficiency stems from
the VAE’s focus on capturing the underlying data distribution,
rather than merely replicating input data. (3) The inclusion of
the KL-divergence term in the VAE’s loss function helps reduce
overfitting. It promotes the model to capture a broader data distri-
bution rather than memorizing specific instances. This enhances
TEVAE’s generalizability on new, unseen data.

It is indeed a challenge in our research to further improve
the prediction accuracy of operation parameters. An important
observation from our experiments is the near-perfect reconstruc-
tion capability in Stage 1 training with an accuracy of the CAD
program (ACP), up to 99.9%. However, the problem arises dur-
ing Stage 2 training, which involves regressing the latent space
learned in Stage 1 using images as input. The difficulty lies
in aligning the latent representation of the image with that of
the CAD programs. To address this issue, we plan to explore
modal alignment techniques as introduced in the recent litera-
ture [18,25]. They could offer a promising solution to unify dif-
ferent modalities in a single latent space to promote cross-modal
synthesis.

Limitations: We have been focused on synthesizing simple
geometrical shapes, such as cylinders and tri-prisms. While these
basic geometries are fundamental to more complex designs, our
focus on them has limited the network’s capability to handle in-
tricate, real-world design tasks. Recognizing this, we acknowl-
edge the need to train the Image2CADSeq model with more di-
verse and complex datasets to tackle advanced design challenges.
We plan to collect more sophisticated geometries that mirror
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the complexities encountered in actual design environments, of-
ten embodied as assemblies comprising multiple interconnected
components. To achieve this, we plan to explore two primary
strategies: (1) Enhancing our data synthesis pipeline: We in-
tend to integrate a wider range of complex geometries into our
current data synthesis pipeline. This expansion will allow the
network to learn from a broader spectrum of shapes and struc-
tures, better preparing it for real-world applications. (2) Using
real-world design datasets: Another avenue involves harnessing
datasets that include historical CAD modeling process data. An
example is the Autodesk Fusion 360 Gallery dataset [9], which
offers a rich source of real-world design examples. Our objec-
tive here is to extract CAD sequences that correspond to more
intricate designs. This approach will enable the network to learn
from actual design processes, further enhancing its applicabil-
ity to practical scenarios. We also recognize the limitations of
the existing model, which relies on rendered images as input.
This may lead to suboptimal performance with real-world im-
ages or photographs for real-world applications. To overcome
these challenges, we aim to enhance the model’s capability to
handle a diverse range of images featuring various colors, tex-
tures, perspectives, and light. Specifically, implementing data
augmentation techniques, such as introducing objects in different
colors and under various lighting conditions or backgrounds, is a
potential solution. It is anticipated to enhance the model’s train-
ing dataset and improve its understanding of a broader range of
real-world image data.

The result underscores the need for further enhancements
in the Image2CADSeq model to improve its accuracy in infer-
ring the CAD representations of images of real-world objects. In
particular, enhancing the model’s ability to accurately predict pa-
rameters is essential to improve the parsing rate. Predicting CAD
sequences from images could transform the reverse engineering
process and expedite conceptual design. Our research leads the
way in this field and indicates the potential of Image2CADSeq.
However, further investigation is needed to compare the pro-
posed model with other models in the literature to more com-
prehensively understand its performance.

5 CONCLUSION

In this study, we have developed a novel Image2CADSeq
model to predict CAD sequences from images. This net-
work, particularly exemplified by the performance of the TEVAE
model, aims to revolutionize design methodologies by enabling
the conversion of images into operational CAD sequences. A
CAD sequence offers more benefits than pure 3D CAD mod-
els, such as greater flexibility in modifying CAD operations and
managing the historical process/knowledge of CAD model con-
struction.

For training purposes, our focus is on synthesized data rep-
resenting simple shape primitives. In addition, we propose an
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evaluation framework that can comprehensively assess model
performance. The results obtained are very promising, yet im-
provement can still be made. Therefore, our future efforts will be
directed towards (1) Enhancing geometric complexity. We will
expand the model’s capabilities to encompass a broader spec-
trum of geometries. This expansion aims to align the model more
closely with those in real-world design applications; (2) Incorpo-
rating diverse design data. A key area of development involves
the integration of more varied and realistic design datasets. This
can greatly facilitate the machine learning process; (3) Advanc-
ing training methodologies. We plan to explore innovative net-
work architectures and training methodologies to improve the
efficiency and adaptability of the model; (4) Incorporating in-
dustry standards. Engaging with industry experts will be crucial
to guide the development of the model. Their insights will en-
sure that the model meets practical needs and adheres to industry
standards.

In summary, the proposed approach has significant poten-
tial to lead to transformative changes in existing CAD systems,
revolutionizing the product development cycle. Additionally, it
has the potential to promote the democratization of design, al-
lowing people with limited experience or expertise to actively
participate in CAD. For example, this approach can help regu-
lar customers engage in product design and concept generation,
promoting personalized design and creation and human-centered
generative design [18,26].
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