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Significance

 Highly pathogenic avian influenza 
virus (HPAIV) threatens wildlife, 
agriculture, and humans. Along 
the East Asian–Australasian 
Flyway, a major waterfowl 
migration corridor and HPAIV hot 
spot, landscape changes are 
altering migratory bird 
distributions and increasing 
opportunities for wild–poultry 
interactions. By integrating 
empirical data into an individual-
based model, we show that 
landscape change between 2000 
and 2015 reshaped waterfowl 
migration, substantially increased 
wild-poultry spillover, and avian 
influenza virus (AIV) reassortment 
in poultry, our proxy for potential 
AIV diversification and 
emergence of novel subtypes. 
Risk regions expanded across 
southeastern China, the Yellow 
River basin, and northeastern 
China. These findings highlight 
the importance of landscape 
changes in potentially elevating 
AIV diversification and 
emergence, and the landscape 
dynamics should be integrated 
into future studies.
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Highly pathogenic avian influenza viruses (HPAIV) persistently threaten wild water-
fowl, domestic poultry, and public health. The East Asian–Australasian Flyway plays a 
crucial role in HPAIV dynamics due to its large populations of migratory waterfowl and 
poultry. Over recent decades, this flyway has undergone substantial landscape changes, 
including both losses and gains of waterfowl habitats. These changes can affect waterfowl 
distributions, increase contact with poultry, and consequently alter ecological conditions 
that favor avian influenza virus (AIV) evolution. However, limited research has assessed 
these likely impacts. Here, we integrated empirical data and an individual-based model 
to simulate AIV transmission in migratory waterfowl and domestic poultry, including 
wild-to-poultry spillover and reassortment dynamics in poultry, across landscapes repre-
senting the years 2000 and 2015. We used the reassortment incidence as a proxy for eco-
logical and transmission conditions that support viral diversification and the emergence 
of novel subtypes. Our simulations show that landscape change reshaped the waterfowl 
distribution, facilitated bird aggregation at improved habitats, increased coinfection, and 
raised reassortment rate by 1,593%, indicating a substantially higher potential for viral 
diversification and emergence. Model-generated risk maps show expanded and increased 
reassortment risk in southeastern China, the Yellow River Basin, and northeastern China. 
These findings suggest the importance of landscape change as a driver of potential AIV 
diversification and subtype emergence. This underscores the need for interdisciplinary 
approaches that integrate landscape dynamics, host movement, and viral evolution to 
better assess and mitigate future risk.

waterfowl migration | AIV | agent-based model | habitat availability | mechanistic model

 Since its first detection in domestic poultry in 1996 ( 1 ), highly pathogenic avian influenza 
virus (HPAIV) A/H5N1 has caused widespread outbreaks, affecting poultry industries 
and wild bird populations ( 2 ). Over time, HPAIV H5 subtypes have evolved, with clade 
2.3.4.4b variants, particularly the subtypes of H5N8 and more recently emerged H5N1, 
spreading across new geographic regions ( 3 ,  4 ) and hosts ( 5 ), including dairy cattle ( 6 ), 
which has increased concerns for public health, agriculture, and wildlife. HPAI H5N8 
clade 2.3.4.4b was circulating in wild bird populations prior to May 2020 ( 7 ,  8 ), whereas 
through genetic reassortment with other low pathogenic avian influenza viruses (LPAIV), 
these H5N8 strains led to the emergence of a new H5N1 subtype, which likely enhanced 
the virus’s adaptability and facilitated its rapid spread across various host groups ( 9 ).

 Genetic reassortment, the exchange of gene segments between coinfecting subtypes 
within a host ( 10 ), is an important mechanism for increasing the diversity of viral geno-
types ( 11 ) and subsequently gives rise to new subtypes ( 10 ,  12 ). While reassortment alone 
does not guarantee high pathogenicity ( 10 ,  13 ), it can result in highly pathogenic strains 
when one of the coinfecting viruses is already an HPAIV ( 10 ), as exemplified by the 
emergence of H5N1 clade 2.3.4.4b ( 8 ,  9 ). In most cases, however, high pathogenicity in 
avian influenza virus (AIV) arises from specific mutations, such as polybasic cleavage site 
insertions in the HA gene ( 10 ). Nonetheless, reassortment plays a crucial role in contrib-
uting to the genetic diversity of AIVs, some of which may later acquire mutations for high 
pathogenicity under favorable ecological conditions ( 10 ).

 The first HPAIV isolation from wild waterfowl occurred in the East Asian–Australasian 
Flyway (EAAF) in 2002/2003 ( 14 ), and the HPAIV infection in wild waterfowl was 
initially regarded as a spillover from domestic poultry ( 14 ). Since then, HPAIV has per-
sisted in the flyway, associated with large populations of migratory waterfowl and domestic 
poultry ( 15 ). Each year, millions of waterfowl migrate from northern breeding grounds 
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in Siberia and Mongolia to wintering grounds in the Yangtze River 
Basin in southeastern China. Seasonal migration, especially in the 
fall, facilitates the long-distance spread of the virus ( 16 ,  17 ), 
increases local viral diversity and coinfection risk, as well as the 
risk of novel viral emergence ( 18 ,  19 ).

 Waterfowl distribution during migration depends on landscape 
features, particularly the availability of surface water, wetlands, 
and rice paddies, for roosting and foraging ( 20   – 22 ). However, the 
EAAF landscape has changed considerably in recent decades. For 
example, surface water has substantially decreased in northern 
China, while expanding in the south ( 23 ). Wetland area has gen-
erally declined in eastern China, with some local increases in the 
northeast and central-southern regions ( 24 ). In addition, rice 
paddies, which serve as high-quality foraging habitats for both 
wild waterfowl and domestic poultry, have declined in southern 
China but expanded in the north in recent years ( 25 ,  26 ). These 
landscape alterations directly affect waterfowl distribution across 
the flyway, either aggregating birds in fewer remaining suitable 
areas ( 21 ,  27 ) or attracting more birds to new suitable areas ( 28 ).

 These landscape-driven shifts in waterfowl distribution influ-
ence AIV dynamics in two ways. First, aggregation due to habitat 
loss can increase local bird density and facilitate AIV transmission 
( 29 ). Second, increased use of habitats shared with poultry (e.g., 
rice fields) can promote wild–domestic contacts and, consequently, 
spillover transmission ( 28 ). Both ways can increase the opportu-
nities for coinfection and reassortment that can potentially lead 
to an increase in AIV viral diversity and the emergence of novel 
subtypes. However, to date, no study has comprehensively assessed 
how landscape changes affect the risks through their influence on 
bird migration.

 Here, we evaluate how landscape changes in the EAAF from 
2000 to 2015 have affected migratory waterfowl distribution and 
the potential risks of viral diversity and novel subtype emergence. 
We combined telemetry tracking data from a migratory waterfowl 
host, Greater White-fronted goose (Anser albifrons , GWFG), eBird 
data, landscape data, and poultry distribution data to develop an 
individual-based model (IBM) that simulates waterfowl move-
ments and cross-species transmission at the wild bird–poultry 
interface. The model combines a migratory flow network model 
( 30 ), where nodes represent sites and edges represent potential 
movement paths ( 29 ), with compartment models (i.e., Susceptible–
Infected–Recovered). Bird movements are determined by habitat 
availability and distance, and the model simulates infection 
dynamics within wild and poultry populations, spillovers from 
wild birds to poultry, and reassortments in poultry. By comparing 
simulations between 2000 and 2015, we assessed how landscape 
change influences these risks through altering bird migration, 
using reassortment incidence as a proxy. 

Results and Discussion

Impacts of Landscape Changes on Wild Bird Migration Dynamics. 
Telemetry tracking data revealed 50 sites used by GWFG between 
2014 and 2016, including 11 breeding, 7 wintering, and 32 
stopover sites (Fig. 1A and Dataset S1). Based on the tracking 
data and environmental variables, we built a generalized linear 
model (GLM) to predict suitable sites for 2000 and 2015. The 
number of predicted stopover sites in Russia increased between 
2000 and 2015, decreasing the strong reliance on the Magadan site 
(Fig. 1 B and D). Meanwhile, breeding and wintering sites showed 
contrasting trends. The number of breeding sites increased from 2 
to 14 (Fig. 1 B and D), with a 23.3% increase in habitat availability 
(i.e., sum of wetland and rice paddy area). Although wintering sites 
decreased from 13 to 5, habitat availability increased by 39.7%, 

driven by a 398.2% expansion in wetland area, offsetting a 15.9% 
decline in rice paddy area (Datasets S2 and S3). IBM simulations 
showed that improved connectivity and habitat in 2015 shifted 
birds from heavy reliance on the poorly connected Magadan site 
to a broader network across Russia and the borders of Mongolia 
and northeast China (Fig. 1 C and E and SI Appendix, Table S1).

 The changes in site use reflect broader habitat changes across 
the EAAF. Before 2000, widespread habitat degradation and loss 
restricted waterbird populations and distributions ( 22 ,  31 ). For 
example, an Oriental white stork (Ciconia boyciana ) population 
had been restricted to relying on a single stopover site to finish its 
migration around 2000 ( 32 ). Similarly, in our 2000 scenario, 
GWFG had limited stopovers in Russia, increasing their depend-
ence on a few key sites. However, by 2015, habitat availability had 
increased in Russia and northeast China (see also ref.  33 ), with 
more sites at higher latitudes and areas with increased surface water 
( Fig. 1 C  and E   and SI Appendix, Table S2 ), likely due to climate 
change-related increases in surface water ( 34 ,  35 ) and/or from 
agricultural land abandonment in Russia ( 36 ). These changes 
allowed shorter, more frequent stopovers, reducing dependence 
on Magadan. Meanwhile, substantial habitat loss persisted in 
Japan and the Korean Peninsula ( Fig. 1 D  and E  ), consistent with 
long-term observations ( 33 ,  37 ,  38 ). Despite fewer wintering sites, 
total wintering area remained stable (9,603 km2  in 2,000 vs. 9,520 
km2  in 2015; Datasets S2  and S3 )( 24 ,  39 ), with birds in the 2015 
scenario concentrating in fewer but larger sites, primarily in the 
Yangtze River Basin.

 Habitat loss can force birds to concentrate in fewer sites, 
restricting their spatial distribution ( 21 ,  40 ), while increased avail-
ability allows dispersal ( 29 ,  33 ) and colonization of new sites ( 41 , 
 42 ). Our piecewise structural equation modeling (piecewiseSEM) 
results align with these findings, showing that in 2000, bird dis-
tributions were mainly constrained by low network connectivity 
( Fig. 2A  ), relying on a few connecting sites ( Fig. 1 B  and C  ). In 
2015, wetland and rice paddy became more important in shaping 
GWFG distribution ( Fig. 2B  ), particularly in northeast China, 
where expanding rice cultivation attracted birds ( Fig. 1 D  and E   
and SI Appendix, Fig. S4 A  and B ) ( 25 ,  26 ,  28 ). The increased 
importance of habitat in 2015 compared to 2000 ( Fig. 2 A  and 
﻿B  ), combined with major landscape changes over time, highlights 
the importance of landscape change in reshaping bird distribution 
along the flyway ( 33 ).          

Simulated Changes in Transmission within and Across Species. 
Increased breeding sites from 2000 to 2015 prolonged the period 
over which GWFG departed for fall migration (SI  Appendix, 
Fig. S5A), delaying virus exposure and transmission at stopovers. 
This resulted in higher infection prevalence during the declining 
phase after the peak (Fig. 3A), particularly during stopover and 
winter arrival in 2015 (Fig. 3A and SI Appendix, Fig. S5 B and 
C). The elevated infection prevalence increased the risk of viral 
spread from stopover to wintering sites and increased cross-species 
transmission by boosting environmental viral loads at wintering 
sites (Fig.  3B). LPAIVw load was the leading contributor to 
infections in wild birds in both years, causing 57% of infections 
in 2015, compared to 34% in 2000 (Fig. 3C), highlighting the 
role of environmental transmission (43–45).

 For poultry hosts, LPAIVp  prevalence remained comparable 
between the years and was regulated by disinfection after periodic 
trading events (SI Appendix, Fig. S6 ). However, LPAIVw  preva-
lence, coinfection, and cumulative reassortment incidence were 
substantially higher in 2015, with reassortment rate peaks 15.9 
times higher than in 2000 ( Fig. 3 D –F  ). For both LPAIVp  and 
LPAIVw , increased viral loads shed by poultry ( Fig. 3 G  and H  ) D
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followed infection dynamics ( Fig. 3 D –F  ), indicating amplifica-
tion of cross-species transmission.

 PiecewiseSEM identified environmental LPAIVw  load (Evw ) and 
the poultry LPAIVp  prevalence (Ip﻿

vp ) as the main drivers of reas-
sortment incidence (Reassortment) in both years ( Fig. 2 C  and D  ). 
This is expected, as reassortment occurs only when wild- and 
poultry-origin LPAIVs coinfect the same host in the model. 
Although we did not find a statistical association between the 
cumulative number of visited birds (Distribution) and reassort-
ment incidence, given that LPAIVw  load (Evw ) originates from 
infected wild birds and significantly influences reassortment, we 
infer that the cumulative number of birds has a fundamental 
impact on reassortment. In addition, the role of the LPAIVw  load 
(Evw ) also indicates that cross-species transmission drives the disease 
dynamics that lead to reassortment. Sensitivity analysis supports 
this by showing that the cross-species transmission rate dispropor-
tionally influences reassortment, especially in the 2015 scenario 
(SI Appendix, Fig. S7 ).

 Poultry LPAIVp  prevalence (Ip﻿
vp ) was positively influenced by 

poultry population size (Poultry). The effect was larger in 2015 
(β=0.71 vs. 0.61 in 2000,  Fig. 2 C  and D  ), suggesting that altered 
landscape conditions in 2015 enhanced the role of poultry in 
sustaining LPAIVp  circulation. These findings emphasize the need 
for biosecurity practices, such as separating poultry from wild 
birds ( 46 ) and controlling viral circulation within poultry through 
measures like disinfection and flock management ( 47 ,  48 ), to 
minimize the risk of spillover and novel subtype emergence.  

Simulated Changes in Spatial Risk of AIV Reassortment in 2000 
and 2015. Our simulations suggest that reassortment risk increased 
in both magnitude and spatial extent between 2000 and 2015, 
especially in northeastern China, the borders with Mongolia and 
Russia, and from the Yangtze to Yellow River Basin (Fig. 4A). 
These increases are associated with improved habitat conditions 
that enhanced site attractiveness and wild bird population. For 
example, both wetland and rice paddy expanded at Xihulu Pao in 
northeastern China (Fig. 4B), and wetland area increased, despite 
a minor decrease in rice paddy, at Poyang Lake in southeastern 
China (Fig. 4C and SI Appendix, Fig. S4 A and B) (23, 24, 26, 
39). These landscape changes made these sites more attractive to 
wild birds in our model (see Eqs. 1 and 2 in the Materials and 
Methods), leading to more visiting birds, and consequently, higher 
viral loads and increased reassortment rates (Fig. 4 B and C). These 
outcomes support previous studies suggesting that increased rice 
paddy attracts more migratory waterfowl, and when domestic 
poultry also use these areas, the co-occurrence can increase the 
AIV spillover risk (28, 49).

 Additionally, our finding of elevated reassortment risk also 
aligns with historical patterns of HPAIV reassortment events and 
empirical observations of bird migration. Specifically, no HPAIV 
reassortments were reported before 1995, but 45 events occurred 
during 1996–2005 and 82 during 2006–2015 in East Asia ( 10 ), 
mirroring the landscape-driven increase in reassortment risk 
observed in our simulations. Moreover, since 2000, waterbirds 
from Siberia and Mongolia have increasingly used the Yellow River 

Fig. 1.   Migration networks generated from telemetry tracking, GLM predictions, and IBM simulations for 2000 and 2015 scenarios. (A) Network of sites from 
dBBMM using 2015 telemetry tracking data; (B) Network of sites predicted by GLM for 2000; (C) Network based on sites simulated by IBM for 2000; (D) Network 
of sites predicted by GLM for 2015; (E) Network based on sites simulated by IBM for 2015. Links in networks A, B, and D use migration step length, whereas links 
in networks C and E use simulated IBM movement trajectories. Green and blue contours show breeding and wintering ground ranges, respectively. In networks 
C and E, node color indicates number of visited birds, and link width indicates number of traveling birds.
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Basin as a stopover, year-round, or overwintering site ( 50 ,  51 ), 
facilitating the introduction and spread of H5N8 clade 2.3.4.4b 
in the region ( 50 ,  52 ).  

Limitations and Future Modeling Efforts. This study focused 
on GWFG due to the availability of high-resolution telemetry 
tracking data and well-characterized habitat preference. While 
GWFG uses croplands and interacts with poultry (53), our 
GWFG-focused model likely underestimates overall transmission, 
which is dominated by other key hosts, especially dabbling ducks 
(54). AIV dynamics are complex, involving multiple species 
with differing habitat needs, movement patterns (33), and viral 
shedding characteristics that can significantly alter spillover risk 
(55). Gulls, for example, use different habitats than geese but 
play an increasingly important role in recent HPAIV H5 clade 
2.3.4.4b transmission (56). These interspecific differences can 
influence how species respond to landscape changes and their roles 
in AIV transmission. Our single-species model provides a proof-
of-principle that landscape change can influence emergence risk 
via host movement and poultry contact and should be interpreted 
as a baseline that illustrates these mechanisms, rather than a 
comprehensive or quantitative risk assessment.

 Wild bird migration is influenced by factors beyond habitat 
availability, including weather conditions such as temperature ( 57 , 
 58 ). Temperature generally influences migration timing, especially 

for departures from breeding and wintering sites ( 53 ,  59 ), often 
in interaction with habitat conditions such as vegetation growth. 
This study focused on habitat availability for simplicity, but future 
research aiming to comprehensively model waterfowl behavior, 
distribution, and associated AIV risk may consider incorporating 
weather conditions and other migration drivers. Integrating 
weather variables would also enable simulations of climate change 
effects on AIV dynamics, which have important impacts on the 
emergence of novel subtypes, especially for the emergence of 
HPAIV ( 60 ).

 While we aimed to assess AIV diversification and the potential 
emergence of novel subtypes driven by landscape changes, we did 
not explicitly model the complete molecular and evolutionary pro-
cesses, such as natural selection and mutation, but instead used 
reassortment incidence in poultry as a proxy. Thus, our simulation 
outputs should be interpreted as indicators of ecological and trans-
mission conditions that heightened the potential for the risks, rather 
than as quantitative predictions. We did not include the mutation 
mechanisms required to generate high pathogenicity, but given the 
widespread circulation and significant impact of H5 2.3.4.4b, it is 
important to incorporate the mutation dynamics for modeling 
HPAIV emergence risk ( 9 ). However, mutation rates remain insuf-
ficiently quantified across most host taxa, including GWFG ( 61 ), 
which constrained our ability to assess the HPAIV emergence risk 
in this study. Future modeling studies that incorporate more 

Fig. 2.   Results from piecewiseSEM analysis based on IBM simulation outputs. (A) drivers of bird distribution in 2000 and (B) 2015; (C) drivers of reassortment 
in 2000 and (D) 2015. In panels A and B, Distribution represents cumulative number of visited GWFG, Rice paddy, Wetland, and Surface water represent the 
areas of the landscape type. In panels C and D, Reassortment is accumulated incidence, Poultry indicates poultry abundance, E and I represent environmental 
viral load and infected birds, respectively, with subscripts w and p for wild and poultry birds, and superscripts vw and vp for LPAIVw and LPAIVp. Arrows indicate 
causal paths: Solid lines denote significant effects (P ≤ 0.05), dashed lines nonsignificant, blue and red indicate positive and negative effects. The size of each 
arrow corresponds to the effect size, which is also annotated next to the arrows.
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comprehensive evolutionary mechanisms, including natural selection 
and host-specific mutation probabilities where such data are available 
( 61 ), will improve the prediction of viral diversification, as well as 
the transition to high pathogenicity under macroecological drivers 
such as landscape and climatic change.

 We used a spatial proximity approach to define sites, simplified 
the heterogeneous landscape by merging those within a 15 km 
buffer zone (2 × 7.4 km of foraging distance) into a single site, 
and summarized them by geographic centroids ( 27 ,  29 ). This 
approach resulted in some unrealistically large sites, particularly 
in Siberia and the Yangtze River Basin. For example, birds in 
eastern Siberia are unlikely to interact with those in the west due 

to the vast distances and low activity during the breeding season 
( 62 ). This simplification could have affected GWFG’s spatial 
spread and local density, thereby influencing transmission effi-
ciency. We partially addressed this by testing LPAIVw  exposure at 
different migration phases (i.e., breeding, migration, and over-
wintering). Since both density and exposure timing affect trans-
mission, early exposure allows the pathogens more time to spread 
within populations, while later exposure limits their spread across 
the network. This approach partially accounts for density-driven 
differences in infection dynamics. Our consistent finding of a 
higher reassortment rate in 2015 across scenarios suggests this 
simplification is unlikely to affect our qualitative results.   

Fig. 3.   Epidemiological dynamics in GWFG and poultry as simulated in the IBM. (A) Infection prevalence of LPAIVw in GWFG; (B) Environmental viral load LPAIVw 
shed by GWFG; (C) Contribution of environmental indirect transmission in GWFG; (D) Infection prevalence of LPAIVw in poultry; (E) Coinfection prevalence in 
poultry; (F) Cumulative reassortment incidence, with inset showing reassortment rate; (G) Environmental viral load LPAIVw shed by poultry; and (H) Environmental 
viral load LPAIVp. Blue and red indicate the years 2000 and 2015, respectively, and ribbons indicate the SD of the mean, and horizontal segments in (A) indicate 
the migration phases.

Fig. 4.   Simulated changes in reassortment incidences and associated habitat conditions between 2000 and 2015. (A) Map showing change in reassortment 
incidence (log-transformed) between 2000 and 2015, and the inset map provides geographic context showing the study region; (B) Habitat characteristics and 
simulation outcomes for Xihulu Pao, including maps of wetland (Wet) and rice paddy (Rice) distribution in 2000 and 2015, and bar charts comparing simulated 
number of visited geese, environmental viral load of LPAIVw, and reassortment incidence per km2 between years; (C) Corresponding habitat characteristics and 
simulation outcomes for the Poyang Lake. The light blue shaded area in (A) represents the study region boundary.D
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Summary

 Our simulations demonstrate that landscape changes between 
2000 and 2015 alone can reshape migratory waterfowl distribu-
tion in EAAF, increasing interactions with poultry and elevating 
reassortment incidences, a proxy for risks of viral diversification 
and subtype emergence. By integrating ecological and epidemio-
logical modeling, our findings extend previous phylogenetic and 
virological studies on the mechanisms driving the risks ( 9 ,  63 ,  64 ), 
highlighting the critical role of environmental changes in AIV 
dynamics. As landscape changes continue to reshape the EAAF 
and other migratory flyways, an interdisciplinary approach com-
bining ecology, molecular biology, computational modeling, and 
macroecological drivers will be essential for predicting AIV 
dynamics and identifying high-risk zones.  

Materials and Methods

Our study area is located in the EAAF. Since we simulated the migration of GWFG, 
we extracted landscape and environmental variables within the species’ range 
in the flyway (33). The range, which has been described in previous studies (29, 
33), stretches from Siberia, passing through Mongolia, to the middle and lower 
reaches of the Yangtze River Basin in China and extends to the Korean Peninsula 
and Japan (Fig. 4A).

Landscape and Environmental Data. We collected remote sensing-derived 
data layers for the years 2000 and 2015 to assess changes in GWFG habitats, 
including surface water, wetlands, and rice paddies. Densities of humans and 
roads were collected to control for GWFG observation bias in the eBird dataset, 
and density of poultry (i.e., domestic duck) was used to characterize the poultry 
population size at each GWFG site.

We converted surface water data into vector format and built buffer zones of 
7.4 km (i.e., foraging distance for GWFG)(65) outward from each surface water 
boundary and merged any overlapped buffers to treat adjacent surface water 
bodies as one (27, 29). We calculated the area and perimeter of each merged 
surface water polygon. We also calculated wetland area and perimeter, rice paddy 
area, and average densities of humans, roads, and poultry inside each polygon 
(see detailed environmental data in SI Appendix, Table S3).

eBird and Satellite Telemetry Data. We used field observation records from 
eBird between 1995 and 2020 to describe potential sites for GWFG (66). This 
broader time window compensates for the limitations of eBird data in East Asia. 
We retained 4,083 GWFG locations (see the raw eBird locations in SI Appendix, 
Fig.  S8) after filtering the data according to the eBird data processing proce-
dures (67).

We used satellite telemetry tracking data (late 2014 to 2016) from 79 
GWFG individuals to further select suitable sites for the 2015 scenario. Geese 
were equipped with GPS–GSM (Global Positioning System–Global System 
for Mobile Communications), solar-powered neckband devices at Poyang 
Lake (29.1˚N, 116.3˚E) in the winter of 2014/15 to record 12 GPS locations 
per day for each individual (see raw GPS locations in SI Appendix, Fig. S9). 
Deployment details of the tracking device have been described in previous 
studies (53, 59).

To include most of the sites the tracked geese used, we segmented each indi-
vidual’s tracking trajectory by season and year and outlined seasonal sites (i.e., 
breeding, stopover, and wintering sites) based on the distribution of GPS loca-
tions. We first generated a net displacement plot for each individual (SI Appendix, 
Fig.  S10) and identified the turning point for seasonal behavior change (i.e., 
departure for migration or arrival) in interactive HTML files of the net displace-
ment plots (Dataset S4) to separate the seasons in each year. After excluding the 
segments of spring migration and without a complete migration journey from 
breeding to wintering sites, we included 257 fall segments for further analysis. 
Following previous studies (68, 69), we fit a dynamic Brownian Bridge Movement 
Model (dBBMM) to each segment to calculate a utilization distribution. We used a 
10 × 10 km resolution with a window size of 31 GPS locations (i.e., approximately 
2 to 3 d) and a margin size of 11 locations, treating 50% cumulative probability 
contours as sites (31, 68).

Identification of Suitable Sites with Generalized Linear Model. We assume 
dBBMM sites represent precise locations used by the tracked GWFG population, while 
eBird observations provide broader, opportunistic records that may include sites used 
by other populations or reflect low-quality or transient use rather than core sites. Thus, 
to identify a broader range of suitable sites for the tracked population, we combined 
dBBMM sites and eBird observation sites to compile a GWFG presence and pseu-
doabsence dataset alongside environmental variables for identifying suitable sites 
for 2015. Sites were defined as surface water polygons intersecting either dBBMM 
or eBird locations; those overlapping dBBMM were considered presences, and the 
rest pseudoabsences. Predictor variables included the area and perimeter of surface 
water, wetlands, and rice paddies, densities of humans, roads, and domestic ducks, 
along with geographic coordinates (i.e., longitude and latitude).

Due to the unbalanced data (50 presence vs. 176 pseudoabsence sites), we 
applied 1,000 replicated bootstrapped sampling and univariate regressions, aver-
aging the results across replicates to identify significant predictors (SI Appendix, 
Table S4), following a previously published method (70). To avoid multicolline-
arity, we examined pairwise correlations and removed predictors with correla-
tion coefficients greater than 0.7 (SI Appendix, Table S5). Variables with P-values 
smaller than 0.05 were retained for the final multiple GLM regression. This final 
model also used a bootstrapped sampling procedure, and sites with predicted 
probabilities greater than 0.6 were classified as suitable, following a previous 
study (33). The model achieved 88.5% overall classification accuracy based on 
agreement with dBBMM (SI Appendix, Table S6). Road density was included in 
all GLMs to account for sampling bias.

Because tracking data were only available for 2014–2016, we applied the 
2015 model to environmental conditions in 2000 to backcast site suitability. The 
potential sites, their associated environmental variables, and the predicted prob-
ability in both years are included in Datasets S2 and S3, respectively. A schematic 
of the data preparation and processing flow is illustrated in Fig. 5.

Individual-Based Model Construction.
Simulating bird migration. Using the GLM-predicted suitable sites, we 
constructed fall migration networks for 2000 and 2015, following previous 
approaches (27, 29). Suitable sites were treated as nodes, connected by direc-
tional links (i.e., north to south) if their distance was less than the migration step 
length (Slength, see parameterization below). We imported these networks into an 
IBM platform (71) and initialized 10,000 individuals that followed behavioral 
rules adapted from a prior study (29). Individuals were initially distributed across 
breeding sites in proportion to the resource availability (i.e., the sum of wetland 
and rice paddy areas). Each individual was assigned a random initial body mass 
(Bmass,t=0) drawn from a truncated normal distribution defined by species’ mean 
body weight (see parameterization below) (29). Birds departed breeding sites 
when body mass reached a threshold (Tmass), lost body mass during flight, and 
gained body mass while refueling at stopovers. Stopover duration was regulated 
by Rrest, the ratio of resting time to total migration time, based on tracking data 
indicating that GWFG spend 60 to 70% of their migration period resting (72).

The migratory flow network model determined bird trajectories (29, 30), using 
site-level habitat attractiveness (Ai,t), which followed a logistic growth curve and 
was proportional to per capita resource availability. We assumed constant resource 
availability over time during fall migration (72):

Ai,t =
Resmax

1 + e(a×Resmed−ki,t)
,

where Resmax and Resmed are the maximum and median resource values across 
sites, α is a scaling parameter to control the shape of the function curve, and ki,t 
is the per capita resource:

ki,t =

⎧
⎪⎨⎪⎩

WetAreai,t+RiceAreai,t

Nw,i,t

, if Nw,i,t >0

Weti,t+Ricei,t , otherwise

,

where the Weti,t and Ricei,tare the area of wetland and rice paddy, and the Nw,i,t 
indicates the number of GWFG at the site i time t.

Bird movement was driven by migration pressure Pij between site i and all the 
other connected sites j, selecting the site with the highest pressure:

[1]

[2]
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Pij,t =

⎧
⎪⎨⎪⎩

Aj,t−Ai,t

Rij
, if Ai,t ≥0, Aj,t ≥0, and Aj,t−Ai,t >0

0, otherwise

,

where Rij is the resistance between sites, indicating the difficulty of flying over 
the distance:

Rij =
Dij

Dwb
,

Dijis the distance between sites i and j, and Dwbis the distance between the north-
ernmost breeding and southernmost wintering sites. Birds, therefore, choose 
destinations based on resource availability and distance. Furthermore, the num-
ber of birds at a site was calculated as

Nw,i,t = Nw,i,t−1 + � ×

q∑
j=1

Mw,ji,t−1 × sm −

q∑
j=1

Mw,ij,t ,

where θ is the fraction of migrants arriving in time step t, sm is the survival rate, ∑q

j=1
Mw,ji,t−1 describes birds arriving from other sites, and 

∑q

j=1
Mw,ij,t describes 

birds departing site i (see detailed description in SI Appendix, Method S1).
Simulating pathogen transmission. We integrated SIR models to simulate the 
transmission of two LPAIV strains: LPAIVw (originating in wild birds) and LPAIVp 
(originating in poultry). We assumed that wild birds were infection-free at breed-
ing sites (73) and first acquired LPAIVw at stopover sites (18), initiating circulation 
within the wild population (74).

We focused on the viral diversitification and subtype emergence in poultry, 
assuming a positive correlation with reassortment following coinfection by two 
strains. This focus reflects evidence that poultry populations often serve as incu-
bators for novel strains (1, 9). Additionally, spillover from wild waterfowl into 
poultry occurs more frequently than the reverse, and it is a main driver of virus 
spread (56). Thus, to simplify the model, we simulated the unidirectional spillover 
of LPAIVw from wild birds to poultry, while acknowledging that bidirectional viral 
exchange can occur in reality (1, 9).

In our model, when migrating wild birds reach a site containing poultry, 
all local poultry birds are considered susceptible to LPAIVw, regardless of any 
existing LPAIVp infection. When exposed to LPAIVw, susceptible poultry (Sp) and 
those recovered from LPAIVp (Rp

vp) move to component Ip
vw (Fig. 6), while poultry 

already infected with LPAIVp (Ip
vp) can move to the coinfection compartment 

(Ip
co), with susceptibility reduced by partial immunity (ρ). Coinfected poultry 

(Ip
co) enables reassortment between wild- and poultry-origin strains, and con-

sequently, we calculated the reassortment incidence as a proxy to indicate the 
risk of viral diversification and novel subtype emergence. We modeled only 
LPAIV transmission, assuming all infections are asymptomatic. This approach 
avoids the complexities of simulating HPAIV-associated pathogenicity, mortal-
ity, detection, and control measures (e.g., culling), which were beyond the scope 
of this study. In addition, poultry population change through periodic trade-
outs (TO), followed one day later by trade-ins (TI) of uninfected birds (Fig. 6; 
and see detailed transmission dynamics and their mathematical descriptions 
in SI Appendix, Method S2).

Parameterization.
Bird migration parameters. We estimated GWFG migration parameters by 
averaging seasonal data from each tagged individual, including migration 
duration (Mduri), migration distance (Mdist), resting duration on stopovers (Rduri), 
flying duration in migration (Fduri), flying speed (Fspeed), number of stopover sites 
(Nstop), and step length (Slength). Migration duration was calculated as the elapsed 
time between the first and last timestamp of a seasonal track, and migration 
distance was the distance between the southernmost breeding and northernmost 
winter sites. We summed the elapsed time among the GPS locations inside the 
50% dBBMM contour to obtain the resting duration and summed the elapsed 
time outside the contour for flying duration. Flying speed was calculated as the 
cumulative distance divided by flying duration; the number of stopover sites 
was directly counted from the dBBMM results; and step length was estimated 
by dividing the migration distance by the number of stopover sites. Additional 
parameters, including population size of wild birds (Nw), species body mass (Bmass) 
and its SD (BmassSD), body mass accumulation and consumption rates (Amass and 
Cmass), body mass threshold for starting migration (Tmass), and survival rate during 
migration (sm), were taken from previous studies that were carried out in the 
same region (27, 72, 75) (see values of migration parameters and their sources 
in SI Appendix, Table S7).
Poultry population dynamic parameters. The size of the poultry population (Np) 
at each site was estimated as the product of resources and poultry density (see 
Datasets S2 and S3 for years 2000 and 2015, respectively). The trading interval 
(i.e., duration between two trading events, Tinter), and trade-in/out volumes (TI and 
TO) were selected to represent a typical intensive broiler duck raising cycle and 
management practices in the study region (76) (see values of poultry dynamic 
parameters and their sources in SI Appendix, Table S8).
Disease transmission parameters. To simplify the model, we used the same 
epidemiological parameters for the transmission of LPAIVw and LPAIVp. Despite 
parameters of virus transmission coefficient (β), viral decay rate (ε), and infectious 
duration (1/γ), we introduced four parameters to regulate the spillover, coinfec-
tion, and reassortment processes in the model: cross-species transmission rate 
(σ), efficacy of partial immunity (ρ), contribution of coinfection to LPAIVp infection 
(ϕ; i.e., probability that a coinfected bird transmits LPAIVp onward), and reassort-
ment efficiency (τ). Furthermore, to parameterize the initial infection condition for 
the poultry populations in each site, we preran the sole transmission of LPAIVp in 
poultry for 1,000 steps in each scenario (SI Appendix, Fig. S11) and used the most 
frequent infection condition from dynamic equilibrium (SI Appendix, Fig. S12) 
(see detailed parameterization in the SI Appendix, Method S3; see values of 
transmission parameters and their sources in SI Appendix, Table S9).
Individual-based model scenarios. The simulations began when infection-free 
GWFG initiated body mass gain at breeding sites, and initial LPAIVw exposure 
occurred upon first arrival at stopovers, while poultry started with the background 
prevalence. Additionally, we replicated the simulations with varied first LPAIVw 
exposure, either at breeding sites or at wintering sites, reflecting studies that 
suggest wild birds may carry the infection during breeding (17) and/or acquire it 
upon arrival at wintering grounds (18, 73) (SI Appendix, Fig. S13). We also tested 
the model’s sensitivity to the viral decay rate (ε) and cross-species transmission 
rate (σ) by varying their values ±10%, respectively, to create 9 × 9 combinations. 
The risk of emergence from each parameter combination was compared to that 
of the default scenario (SI Appendix, Fig. S7). In this study, each scenario was 
run for 3,000 iterations of 150 daily time steps, a sufficient time window for fall 
migration and overwintering, with outputs averaged to generate final results.

[3]

[4]

[5]

Fig. 5.   Schematic of the data preparation and processing flow. Red and blue 
elements in the diagram represent procedures for 2000 and 2015 scenarios, 
respectively.
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Simulation outputs and analysis. We exported the migration trajectories and 
number of visiting birds at each site and time step to generate movement 
networks and evaluate the accuracy of the spatial distribution against dBBMM 
results (SI Appendix, Table S10). We also exported daily counts of surviving wild 
birds in each infectious class, as well as new infections from direct transmission. 
For poultry, we calculated population size by infectious class and environmental 
viral loads from both wild and poultry birds. To indicate the risk of diversification 
and novel subtype emergence, we calculated the cumulative reassortment inci-
dences and the rates of reassortment scaled by the simulation steps.

With the migration networks generated with GLM sites, we calculated various 
network-level metrics to indicate overall connectivity (SI Appendix, Table S1), and 
site-level centrality metric betweenness to indicate the role of each site in bird 
migration (Datasets S2 and S3). Using the IBM simulation results, we constructed 
migration networks to illustrate the birds’ spatial distribution (i.e., number of 
GWFG that visited each site), and compared migration parameters (i.e., number 
of days resting, number of days flying, number of stops, and migration duration) 
between the years 2000 and 2015 (SI Appendix, Fig. S14).

We used piecewiseSEM to analyze how environmental variables influence bird 
distribution and cumulative reassortment at each site, using nested path analysis 
to quantify the unique effect of each predictor and prevent potential collinearity 
(77). We first constructed full models that included all the associations between the 
predictors and response variables that were mathematically programmed in our 
model (SI Appendix, Fig. S15). After that, we created 22,785 nested models for bird 
distribution and 87,885 nested models for reassortment for the 2000 and 2015 
scenarios, respectively, by randomly removing one to all associations from the full 
models. Finally, we assessed the goodness of fit of each nested model by comparing 
the Akaike information criterion (AIC) among the models with Fisher’s C P-value 
smaller than 0.05, reporting the model with the lowest AIC value (77) (SI Appendix, 
Figs. S13 and S14 for the top nested models with ∆AIC ≤ 2 of bird distribution in 
2000 and 2015, and SI Appendix, Figs. S15 and S16 of reassortment).

To visualize the spatial changes in the potential risks, we mapped the differ-
ence in reassortment incidence between 2000 and 2015. To account for vary-
ing exposure timings during migration, we averaged cumulative reassortment 
incidence across different exposure scenarios for each habitat site and assigned 
this value to the irregular water body polygon represented by that site. Next, we 
overlaid a 1° × 1° hexagonal grid and averaged site-level incidence within each 
cell for both years (see the risk maps for 2000 and 2015 in SI Appendix, Figs. S17 
and S18). The final map presents the change in the risks as the difference in 
hexagon-level incidences between the years.

In this study, the remote sensing data were processed in an open-source 
geographic information system (QGIS version 3.22) (78), the IBM was built and 
simulated in an agent-based modeling platform (NetLogo version 6.1.1) (71), 
and the data were processed and analyzed with a statistical language (R version 
4.4.1) (79). The eBird data were processed by using the package “auk” (67), and 
the dBBMM and piecewiseSEM analyses were implemented by using the pack-
ages “move” (80) and “piecewiseSEM” (81), respectively.

Data, Materials, and Software Availability. All study data, code scripts, and 
model are included in the article, supporting information, and Figshare:  https://
doi.org/10.6084/m9.figshare.28352081.v1 (82).

ACKNOWLEDGMENTS. We are thankful to the field team for deploying the GPS 
trackers on wild birds. We thank Yanjie Xu, Chenglong Yin, and Wenjiao Shi for 
their discussions on data processing and analysis. This work was supported in 
part by the NSF (Grant nos. 2200310 and 2234970), the National Natural Science 
Foundation of China (Grant nos. 32271605, 41471347, and 42201129), and U.S. 
Geological Survey’s Ecosystems Mission Area. The University of Oklahoma (OU) 
Libraries’ Open Access Fund provides financial support for publishing. The model 
computations were performed at the OU Supercomputing Center for Education & 
Research (OSCER). We thank OSCER director Henry Neeman and computing facil-
itator Thang Ha for their assistance. Any use of trade, firm, or product names is for 
descriptive purposes only and does not imply endorsement by the US Government.

Author affiliations: aSchool of Biological Sciences, University of Oklahoma, Norman, OK 
73019; bU.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD 20708; cU.S. 
Geological Survey, Georgia Cooperative Fish and Wildlife Research Unit, Warnell School of 
Forestry and Natural Resources, University of Georgia, Athens, GA 30602; dDepartment 
of Environmental Biology, Institute of Environmental Sciences, Leiden University, Leiden 
2333 CC, The Netherlands; eCollege of Land Science and Technology, China Agricultural 
University, Beijing 100193, China; fNational Observations and Research Station for Wetland 
Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 
200438, China; gKey Laboratory of Wetland Ecology and Environment, Northeast Institute 
of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, 
China; hDepartment of Zoology, School of Life Sciences, Nanjing Forestry University, 
Nanjing 210037, China; iWildlife Ecology and Conservation Group, Wageningen University, 
Wageningen 6708 PB, The Netherlands; and jSuisun Resource Conservation District, Suisun 
City, CA 94585

Author contributions: S.Y., D.J.P., and X.X. designed research; S.Y. performed research; 
S.Y., C.Z., C.S.T., D.J.P., and X.X. analyzed data; S.Y., Z.Y.X.H., and W.F.d.B. contributed to 
model construction; C.Z., Y.S., G.Z., X.W., and D.M. contributed to data acquisition; S.Y., 
C.Z., C.S.T., Y.S., G.Z., X.W., D.M., Z.Y.X.H., W.F.d.B., J.T., D.J.P., and X.X. wrote the paper; and 
S.Y., J.T., D.J.P., and X.X. secured funding support for this project.

Fig. 6.   Conceptual model of LPAIVw and LPAIVp transmission in host populations. Blocks of S, I, R, and E indicate the components of susceptible, infected, and 
recovered individuals and viruses in the environment; blocks of M, TI, and TO indicate the components of migration, trade-in, and trade-out. The subscripts of 
ij, w, and p indicate the pair of sites, wild birds, and poultry birds. The superscripts of m, vw, vp, and co indicate the mortality, LPAIVw, LPAIVp, and coinfection.
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