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ABSTRACT 1 

 Despite being a primate of considerable biomedical interest, particularly as a 2 

model for social behavior and neurobiology, the evolutionary processes shaping 3 

genetic variation in the coppery titi monkey (Plecturocebus cupreus) remain largely 4 

uncharacterized. Utilizing divergence and polymorphism data together with a recently 5 

published high-quality, annotated genome, we here infer the first fine-scale maps of 6 

mutation and recombination rates in this platyrrhine. We find a mean genome-wide 7 

mutation rate of between 0.93 ´ 10-8 and 1.61 ´ 10-8 per site per generation and a 8 

mean genome-wide recombination rate of 0.975 cM/Mb, in line with fine-scale rates 9 

estimated in other primates. In addition to providing novel biological insights into the 10 

mutation and recombination rates in this emerging model species for behavioral 11 

research, these fine-scale maps also improve our understanding of how the processes 12 

of mutation and recombination shape genetic variation in the coppery titi monkey 13 

genome, and their incorporation into evolutionary models will be a necessary aspect 14 

of future downstream inference of other evolutionary processes required to elucidate 15 

the genetic factors underlying the phenotypic traits studied in this species.  16 
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INTRODUCTION 17 

 Mutation and recombination are important evolutionary processes that shape 18 

levels and patterns of genetic diversity in populations. Germline mutations are the 19 

ultimate source of novel genetic variation, whilst recombination shuffles this variation 20 

into potentially novel haplotypes via crossover and non-crossover events. The rate of 21 

input of new mutations, as well as the rate of recombination events, have been shown 22 

to vary at every level of measurement: across the Tree of Life, between and within 23 

species, and across the genome (for mutation rate variation, see the reviews of Baer 24 

et al. 2007; Lynch 2010; Hodgkinson and Eyre-Walker 2011; Pfeifer 2020a; for 25 

recombination rate variation, see the reviews of Ritz et al. 2017; Stapley et al. 2017; 26 

Johnston 2024).  27 

 Both mutation and recombination rate estimation can be performed either via 28 

direct observation from pedigrees, or indirectly from sequenced population samples, 29 

(though classical disease-incidence approaches have also historically been utilized for 30 

mutation rate estimation in humans; Haldane 1932, 1935). The direct estimation of 31 

both processes relies on high-throughput genome sequencing of parent-offspring trios 32 

or multi-generation pedigrees, counting the number of de novo mutations as well as 33 

crossover and non-crossover events that have occurred from one generation to the 34 

next (see the review of Pfeifer 2020a for an overview, and Pfeifer 2021; Bergeron et 35 

al. 2022 for a discussion of the challenges in direct rate estimations). Due to the rarity 36 

of both spontaneous mutations and meiotic exchange events in vertebrates, resolution 37 

with such direct estimation approaches is relatively coarse, given the small number of 38 

generations generally considered (see the review of Clark et al. 2010). Consequently, 39 

they provide a genome-wide rate estimate of mutation and recombination, as opposed 40 

to a fine-scale map of rate heterogeneities across the genome that is necessary for a 41 
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variety of applications, including genome-wide association studies and selection 42 

scans. 43 

 By contrast, indirect mutation and recombination rate estimation are performed 44 

on species-level divergence data and population-level polymorphism data, 45 

respectively. Central to such indirect mutation rate estimation approaches is the 46 

observation that the neutral mutation rate is equal to the neutral divergence rate 47 

(Kimura 1968, 1983), with the number of substitutions that accumulate in a lineage 48 

being proportional to the per-generation mutation rate. Thus, historically-averaged 49 

mutation rates across the divergence time between the target species and an outgroup 50 

species can be inferred from phylogenetic sequence data in neutral genomic windows, 51 

thereby generating a fine-scale genomic map of mutation rate heterogeneity. However, 52 

there is often great uncertainty in both the generation time of a species, and the 53 

divergence times between the species under investigation. Estimated mutation rates 54 

are therefore given across a range of likely generation and divergence times in order 55 

to span this uncertainty. Instead of divergence data, indirect recombination rate 56 

estimation approaches rely on population-level data of unrelated individuals for the 57 

inference of historical recombination rates from observed patterns of linkage 58 

disequilibrium (LD; see the reviews of Stumpf and McVean 2003; Peñalba and Wolf 59 

2020), again utilizing neutral genomic windows to generate fine-scale maps across the 60 

genome. These inferred rates are necessarily sex-averaged, and one must account 61 

for other population genetic processes that can alter LD (e.g., selection and population 62 

history; Dapper and Payseur 2018; Samuk and Noor 2022) and thus potentially 63 

confound recombination rate inference. To limit the impact of such confounding factors 64 

on the indirect inference of both mutation and recombination rates, high-quality 65 

genome annotations are necessary to identify regions of the genome that are evolving 66 
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neutrally; additionally, a well-fitting demographic model is necessary in the case of 67 

recombination rate inference (Johri et al. 2020, 2022). 68 

Although it is common practice to model mutation and recombination as a single 69 

mean genome-wide rate, accounting for rate heterogeneity across the genome is 70 

critical when performing downstream inference of other population genetic processes. 71 

For example, inference of population history, the distribution of fitness effects, and of 72 

recent positive and balancing selection can all be confounded when heterogeneity in 73 

mutation and recombination rates are unaccounted for (Soni et al. 2023, 2024; Soni 74 

and Jensen 2024; and see Dapper and Payseur 2018; Samuk and Noor 2022; Ghafoor 75 

et al. 2023) due to the interactions between evolutionary processes. For example, Hill-76 

Robertson effects (Hill and Robertson 1966; Felsenstein 1974) are expected to be 77 

modulated by the locus-specific recombination environment (Maynard Smith and 78 

Haigh 1974; Begun and Aquadro 1992; Charlesworth et al. 1993; and see 79 

Charlesworth and Jensen 2021, 2022). 80 

 Initial estimates of mutation and recombination rates in primates were largely 81 

focused upon humans and other great apes (e.g., Kong et al. 2002; Auton et al. 2012; 82 

Stevison et al. 2016). More recent studies have performed inference of these 83 

processes in a number of other catarrhines, as well as in species of biomedical 84 

importance and extinction risk (e.g., Pfeifer 2020b; Xue et al. 2020; Wall et al. 2022; 85 

Versoza, Weiss et al. 2024; Soni, Versoza et al. 2025a, 2025b; Versoza et al. 2025; 86 

Versoza, Lloret-Villas et al. 2025; Terbot et al. 2025; Versoza et al. 2026a, 2026b; and 87 

see the reviews of Tran and Pfeifer 2018; Soni et al. 2025). The recent publication of 88 

a chromosome-level genome assembly that includes protein-coding gene annotations 89 

for the coppery titi monkey, Plecturocebus cupreus (Pfeifer et al. 2024), provides 90 

opportunities to explore mutation and recombination landscapes in a, as of yet, 91 
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genomically under-researched platyrrhine despite the considerable biomedical 92 

interest in the species (e.g., Bales et al. 2007; Lau et al. 2024; and see Bales et al. 93 

2021). In this study, we utilize a combination of patterns of variation within and 94 

divergence between coppery titi monkeys and humans, as well as gene-level 95 

annotations to mask directly selected genomic regions, in order to indirectly infer fine-96 

scale mutation and recombination rate maps across the coppery titi monkey genome. 97 

In addition to providing novel biological insights into mutation and recombination rates 98 

in this emerging model species for behavioral and neurobiological research, these 99 

fine-scale maps of observed rate heterogeneity will also prove important for the future 100 

downstream inference of other evolutionary processes, necessary to elucidate the 101 

genetic factors underlying the phenotypic traits studied in this species. 102 

 103 

 104 

MATERIALS AND METHODS 105 

 106 

Animal subjects 107 

 This study was performed in compliance with all regulations regarding the care 108 

and use of captive primates, including the NIH Guidelines for the Care and Use of 109 

Animals and the American Society of Primatologists’ Guidelines for the Ethical 110 

Treatment of Nonhuman Primates. Procedures were approved by the UC-Davis 111 

Institutional Animal Care and Use Committee (protocol 22523). 112 

 113 

Species-level divergence data 114 

 To obtain species-level divergence, we needed to identify neutral substitutions 115 

between the genomes of the coppery titi monkey and humans. To do so, we first 116 
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replaced the outdated, scaffold-level P. cupreus genome assembly in the 447-way 117 

multiple species alignment (available from: https://cglgenomics.ucsc.edu/november-118 

2023-nature-zoonomia-with-expanded-primates-alignment/; Zoonomia Consortium 119 

2020; Kuderna et al. 2024) with the chromosome-level NCBI reference genome for the 120 

species (GenBank assembly: GCA_040437455.1; Pfeifer et al. 2024). To this end, we 121 

performed the following steps: 122 

1. We removed the scaffold-level P. cupreus genome assembly from the 447-way 123 

multiple species alignment using the halRemoveGenome function implemented 124 

in HAL v.2.2 (Hickey et al. 2013). 125 

2. We extracted the neighboring reconstructed ancestral genomes (i.e., 126 

PrimatesAnc157 and PrimatesAnc189) from the 447-way multiple species 127 

alignment using HAL's hal2fasta function. 128 

3. We aligned the extracted reconstructed ancestral genomes (PrimatesAnc157 129 

and PrimatesAnc189) to the chromosome-level P. cupreus genome 130 

(PleCup_hybrid) using Cactus v.2.9.2 (Armstrong et al. 2020), maintaining the 131 

branch lengths that had been inferred in the 447-way multiple species 132 

alignment. 133 

4. We attached this newly generated sub-alignment back into the 447-way 134 

multiple species alignment using HAL's halReplaceGenome function. 135 

With the fully annotated P. cupreus genome assembly integrated into the 447-way 136 

multiple species alignment, we next extracted the sub-alignment containing the 137 

genomes for coppery titi monkeys, humans and their reconstructed ancestor 138 

(PrimatesAnc003) using Cactus' cactus-hal2maf function. We converted the extracted 139 

sub-alignment back to .hal format using HAL's maf2hal function and identified fixed 140 

differences between the coppery titi monkey and human genomes using HAL's 141 
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halSnps function. We focused on point mutations that were on the coppery titi monkey 142 

branch by selecting sites where humans and the reconstructed ancestor 143 

(PrimatesAnc003) shared the same allele while coppery titi monkeys exhibited a 144 

different allele. Given the relatively long divergence time between coppery titi monkeys 145 

and humans, we limited our analyses to high-confidence regions in the sub-alignment. 146 

Specifically, we excluded sites in regions containing gaps and missing nucleotides 147 

(denoted by a “–“ and “N” in the sub-alignments, respectively); additionally, we limited 148 

our analyses to regions to which we could confidently map our short-read data by 149 

applying a mappability mask to the P. cupreus genome assembly, generated using the 150 

SNPable pipeline with a read length of 150 bp and a stringency parameter of 1 151 

(https://lh3lh3.users.sourceforge.net/snpable.shtml). Finally, in order to obtain neutral 152 

substitutions, we removed sites that are polymorphic in either coppery titi monkeys 153 

(see "Population-level polymorphism data") or humans (using the population-level 154 

data of the Yoruban population included in the 1000 Genomes Project; 1000 Genomes 155 

Project Consortium 2015) as well as those located within 10 kb of functional regions 156 

(based on the protein-coding gene information available for the P. cupreus genome 157 

assembly [Pfeifer et al. 2024] and the catalogue of regulatory elements constraint 158 

across primates [Kuderna et al. 2024]).  159 

 160 

Inferring fine-scale neutral divergence between P. cupreus and H. sapiens 161 

 Based on the species-level divergence data, we inferred fine-scale neutral 162 

divergence between P. cupreus and H. sapiens across genomic windows (with window 163 

sizes of 1 kb, 10 kb, 100 kb and 1 Mb, and step sizes of half of the respective window 164 

sizes) by dividing the number of neutral substitutions by the number of accessible sites 165 

in each genomic window (thereby requiring that ≥ 10% of a window is accessible). 166 
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Assuming divergence times of 32, 33 and 36 million years between P. cupreus and H. 167 

sapiens (Glazko and Nei 2003), and generation times of 6 and 9 years (Pacifici et al. 168 

2013; Perez et al. 2013), we then calculated the fine-scale neutral divergence rate by 169 

dividing by the divergence time in generations. 170 

 171 

Population-level polymorphism data 172 

 We obtained population-level polymorphism data from six unrelated coppery titi 173 

monkeys paired-end sequenced on an Illumina NovaSeq 6000 to high-coverage. In 174 

brief, we removed adapter sequences and trimmed both low-quality and polyG tails 175 

using fastp v.0.24.0 (Chen et al. 2018) before aligning the reads to the chromosome-176 

level P. cupreus genome (Pfeifer et al. 2024) using the Burrows–Wheeler Aligner 177 

v.0.7.15 (Li 2013), with shorter split alignments flagged as secondary using the -M 178 

option. Prior to variant discovery, we marked duplicated reads using the Genome 179 

Analysis Toolkit (GATK) v.4.4.0 MarkDuplicates function (van der Auwera and 180 

O'Connor 2020) to reduce support from redundant coverage (Pfeifer 2017), and 181 

recalibrated the base quality scores of the reads using GATK's BaseRecalibrator and 182 

ApplyBQSR functions together with a set of high-confidence variants previously 183 

obtained in pedigreed individuals (Versoza et al. 2026a). Using these high-quality 184 

recalibrated reads (--minimum-mapping-quality 40), we called variant and invariant 185 

sites (-ERC BP_RESOLUTION) separately for each sample using the GATK 186 

HaplotypeCaller, disabling PCR indel modeling (-pcr-indel-model NONE) in 187 

accordance with developer guidance for PCR-free library design. We subsequently 188 

combined individual gVCFs (CombineGVCFs) and jointly genotyped across samples 189 

(GenotypeGVCFs, with the -all-sites flag enabled). In order to obtain high-quality 190 

variants, we limited the call set to regions in which all samples exhibited at least half, 191 
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but no more than double, the genome-wide average coverage, located farther than 5 192 

bp away from the nearest insertion/deletion, and re-genotyped biallelic single 193 

nucleotide polymorphisms (SNPs) with complete genotype information across all 194 

samples using the graph-based genotyper Graphtyper v.2.7.2 (Eggertsson et al. 2017) 195 

to improve genotyping accuracy. Owing to reduced sequencing depth on the X and Y 196 

chromosomes, we restricted this re-genotyped dataset to autosomal variants that 197 

passed all built-in sample- and site-level quality filters and that were located in 198 

mappable regions of the genome (as determined by the SNPable mappability mask; 199 

see "Species-level divergence data"). Finally, we phased the resulting dataset using 200 

WhatsHap v.2.8 (Martin et al. 2023) and limited recombination rate inference to fully 201 

phased SNPs found within alignments ≥ 10 kb in length.  202 

 203 

Inferring fine-scale recombination rates in P. cupreus 204 

 Based on the phased population-level polymorphism data, we inferred fine-205 

scale recombination rates in P. cupreus using two widely applied LD-based 206 

approaches: LDhat v.2.2 (McVean et al. 2002, 2004; Auton and McVean 2007) and 207 

LDhelmet v.1.10 (Chan et al. 2012). To this end, we performed the following steps: 208 

 209 

LDhat: 210 

1. Using LDhat's complete function, we generated a lookup table for every two-211 

locus haplotype configuration in our sample of six diploids (via the argument -n 212 

12), based on a maximum population-scaled recombination rate r of 100  213 

(-rhomax 100), a grid size of 201 (-n_pts 201), and the empirically estimated 𝜃 214 

of 0.0043/site (-theta 0.0043). 215 
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2. Based on this lookup table, we generated region-based estimates of r (in 216 

window sizes of 4,000 SNPs with a 200 SNP overlap) using LDhat's interval 217 

function, with a block penalty of 5 (-bpen 5), 60 million iterations (-its 60000000), 218 

and sampling every 40,000 iterations (-samp 40000). 219 

3. To ensure convergence, we discarded the MCMC burn-in, using the argument 220 

-burn 500 implemented in LDhat's stat function. 221 

4. To obtain chromosome-scale estimates of r, we combined the region-based 222 

estimates of r at the midpoint of the overlapping windows, whilst masking 223 

localized peaks with r > 100 between adjacent SNPs together with their 224 

neighboring 50 SNPs (masking a total of 6,327 SNPs across 120 regions) in 225 

order to minimize the impact of artificial LD breaks generated by genome 226 

assembly errors (see Auton et al. 2012; Pfeifer 2020b). 227 

5. Finally, we calculated the per-generation recombination rate, r. To do so, we 228 

calculated the effective population size (Ne) based on the mean empirical value 229 

of 𝜃 of 0.0043/site and a mutation rate of 1.07 ´ 10-8/site/generation, and used 230 

the resulting value of Ne to calculate r from r. 231 

 232 

LDhelmet 233 

1. As LDhelmet requires sequence information in .fasta format as input, we 234 

converted the population-level polymorphism data using the consensus 235 

function implemented in BCFtools v.1.14 (Danecek et al. 2021), with the -s 236 

argument enabled to allow for a multi-sample input and the -H 1 and -H 2 237 

arguments enabled to obtain the first and second haplotypes, respectively, and 238 

subsequently concatenated the resulting files per chromosome. 239 
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2. We generated a configuration file using LDhelmet's find_confs function, utilizing 240 

a window size of 50 SNPs (-w 50). 241 

3. We generated a likelihood lookup table using LDhelmet's table_gen function, 242 

based on the empirically estimated 𝜃 of 0.0043/site (-t 0.0043) and the default 243 

grid values of r  (-r 0.0 0.1 10.0 1.0 100.0). 244 

4. We generated padé coefficients for the sampling step using LDhelmet’s pade 245 

function, based on the mean empirical value of 𝜃 of 0.0043/site (-t 0.0043) and 246 

the default number of padé coefficients (-x 11). 247 

5. We generated a mutation matrix from our empirical data, following the approach 248 

outlined in Chan et al. (2012). In brief, we polarized the coppery titi monkey 249 

SNPs by identifying the corresponding positions in the ancestral 250 

PrimatesAnc157 genome from the 447-way multiple-species alignment, and 251 

counted the number of each mutational type in alignments ≥ 10 kb using 252 

BEDTools nuc v.2.3.0 (Quinlan and Hall 2010). 253 

6. After this data pre-processing, we inferred recombination rates along each 254 

chromosome using LDhelmet's rjmcmc function, based on a window size of 50 255 

SNPs (-w 50), block penalties (-b) of 5, 10, 20, and 50, and our mutation matrix, 256 

with a burn in of 100,000 iterations (--burn_in 100000) and 1 million total 257 

iterations (-n 1000000).   258 

7. Finally, we post-processed the binary data output from the previous step using 259 

LDhelmet's post_to_text function, obtaining the mean (-m) value of r for each 260 

window, which was converted into r via a calculation of Ne using the empirical 261 

𝜃 of 0.0043/site (as in the LDhat step 5 description). 262 

 263 
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Assessing the performance of recombination rate estimators under the inferred 264 

populations history of P. cupreus  265 

 To assess the performance of the two recombination rate estimators utilized, 266 

we simulated 10 replicates of a 1 Mb region in msprime v.1.3.2 (Baumdicker et al. 267 

2022) with a constant per-site recombination rate of 10-8, under the demographic 268 

model of P. cupreus inferred by Terbot et al. (2026), sampling six individuals to match 269 

our empirical data. For each replicate, we generated a random set of nucleotides to 270 

create a reference sequence and then drew from the empirical mutational matrix to 271 

assign polymorphisms at positions determined by the simulation. Recombination rates 272 

were inferred on each simulated dataset with both LDhat and LDhelmet to assess their 273 

performance under the species-specific population history.  274 

 To account for differences in performance as well as uncertainties in Ne, we re-275 

scaled the recombination rate estimates obtained with LDhat and LDhelmet to the 276 

autosomal genetic map length inferred from pedigreed individuals (2,450 cM; Versoza 277 

et al. 2026b) using scaling factors of 1.21 and 0.168, respectively.  278 

 279 

Inferring recombination hotspots  280 

 In order to infer recombination hotspots, we ran LDhot v.0.4 (Auton et al. 2014) 281 

on the landscape of recombination inferred by LDhat via the following steps: 282 

1. We used LDhot's ldhot function to perform 1,000 simulations with a 1.5 kb 283 

window size, a 1 kb step size, and a 50 kb background window centered on the 284 

hotspot.   285 

2. We used LDhot's ldhot_summary function to combine significant windows, 286 

merging adjacent candidates. For calling hotspots, we used a significance 287 

threshold of 0.001, whilst a threshold of 0.01 was used for merging hotspots. 288 
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3. Finally, we filtered out spurious hotspots based on the recommendations from 289 

both the Great Ape Recombination Project (Stevison et al. 2016) and Brazier 290 

and Glémin (2024). Briefly, hotspot candidates with a width larger than 10 kb 291 

were removed, as well as those with an intensity below 4, or above 200. 292 

Afterwards, we used FIMO v.5.5.7 (Grant et al. 2011) to check how many of the final 293 

hotspots contained the putative PRDM9 binding sequence (CCTGCCTCAGCCTCC) 294 

recently identified through computational analyses (Versoza et al. 2026b). To assess 295 

statistical significance, we used BEDTools random v.2.3.0 (Quinlan and Hall 2010) to 296 

randomly draw the same number of coldspot regions from the genomic background.   297 

 298 

Assessing correlations between genomic features 299 

 We calculated summary statistics for a variety of genomic features — including 300 

nucleotide diversity (based on our population-level polymorphism data), divergence 301 

(based on our species-level divergence data), recombination rate (based on our 302 

estimates obtained with LDhat), as well as CpG-content, GC-content, gene-content, 303 

and repeat-content (based on the species' genome annotations; Pfeifer et al. 2024) — 304 

across the 22 autosomes of the coppery titi monkey genome and calculated partial 305 

Kendall’s rank correlations across 1 kb, 10 kb, 100 kb, and 1 Mb windows (requiring a 306 

minimum accessibility of 50% in both the population genomic data as well as the 447-307 

way multi-species alignment) using the kendalltau package implemented in SciPy 308 

v.1.16.3 (Virtanen et al. 2020). 309 

 310 

 311 

 312 
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RESULTS AND DISCUSSION 313 

 314 

Population-level polymorphism and species-level divergence data 315 

 To estimate neutral divergence as well as fine-scale rates and patterns of 316 

mutation and recombination, we obtained population-level polymorphism data from six 317 

captive coppery titi monkeys (three males and three females), sequenced at a depth 318 

of 38–57´ per individual. Alignment-based variant discovery across the autosomes 319 

yielded 6.9 million phased SNPs, with an observed transition-to-transversion ratio of 320 

2.6 (Supplementary Table S1; and see "Materials and Methods" for details). With this 321 

population genomic data on hand, we next replaced the outdated, scaffold-level P. 322 

cupreus genome included in the 447-way multiple species alignment (Zoonomia 323 

Consortium 2020; Kuderna et al. 2024) with the fully annotated, chromosome-level 324 

genome of Pfeifer et al. (2024). Using this updated multiple sequence alignment, we 325 

counted the fixed differences between P. cupreus and the P. cupreus–H. sapiens 326 

reconstructed ancestor, PrimatesAnc003, in high-confidence regions (excluding any 327 

gaps and applying a mappability mask to the alignment; see "Materials and Methods" 328 

for details). In order to examine neutral genomic data, we masked functional regions 329 

as well as 10 kb flanking regions. To obtain substitutions, we removed sites that were 330 

observed to be polymorphic in either P. cupreus or H. sapiens. Neutral divergence was 331 

subsequently calculated by counting neutral substitutions across genomic windows of 332 

various sizes (1 kb, 10 kb, 100 kb, 1 Mb). Supplementary Figure S1 provides the 333 

distribution of neutral divergence for each window size. 334 

 335 

 336 

 337 
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The landscape of mutation in the coppery titi monkey 338 

Based on the mean genome-wide fine-scale divergence estimate of 0.056 339 

across 100 kb windows, we calculated the mutation rate across a range of divergence 340 

times between coppery titi monkeys and humans (32, 33, and 36 million years ago 341 

[mya]; Glazko and Nei 2003), and coppery titi monkey generation times (6 and 9 years; 342 

Pacifici et al. 2013; Perez et al. 2013), given that there is uncertainty in both 343 

parameters. Across this range of divergence and generation times, as well as across 344 

our window sizes, the mean mutation rate ranged between 0.93 ´ 10-8 and 1.61 ´  345 

10-8 /site/generation. Supplementary Table S2 summarizes the range of mean 346 

mutation rates for different divergence times, generation times, window sizes, and 347 

accessibility length thresholds (i.e., the minimum number of sites that must be 348 

accessible for a window to be considered when calculating mutation rates), whilst 349 

Figure 1a provides density plots of neutral mutation rate estimates and Figure 1b 350 

portrays the genome-wide, per-site, per-generation rates across the autosomal 351 

coppery titi monkey genome (and see Supplementary Figure S2 for estimates from 352 

individual autosomes). These mutation rate estimates are notably higher than those 353 

inferred from divergence data in the common marmoset (Callithrix jacchus), another 354 

platyrrhine of biomedical interest (ranging between 0.25 ´ 10-8 and 0.37 ´ 10-8 355 

/site/generation; Soni, Versoza et al. 2025b); however, they are consistent with those 356 

inferred in the great apes (e.g., Venn et al. 2014; Jónsson et al. 2017; Tatsumoto et al. 357 

2017; Besenbacher et al. 2019; and see the reviews of Tran and Pfeifer 2018; 358 

Chintalapati and Moorjani 2020) and gray mouse lemurs (1.52 ´ 10-8 /site/generation 359 

with a 95% CI of 1.28 ´ 10-8 – 1.78 ´ 10-8 /site/generation; Campbell et al. 2021). 360 

Helpfully, a recent study utilized pedigree data to provide a genome-wide direct 361 

estimation of point mutation rates in P. cupreus (Versoza et al. 2026a), allowing us to 362 
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compare direct and indirect estimates. The authors inferred rates of 0.5 ´ 10-8 363 

/site/generation in individuals born to younger parents and 1.1 ´ 10-8 /site/generation 364 

in individuals born to older parents, with an average rate of 0.6 ´ 10-8 /site/generation 365 

across the pedigreed individuals. Based on these mutation rate estimates, we 366 

calculated divergence times based on our divergence estimate of 0.056 and 367 

generation times of 6 and 9 years. Divergence times between coppery titi monkeys 368 

and humans ranged from 32 mya (for mutation rates of 1.1 ´ 10-8 /site/generation and 369 

generation times of 6 years) to an infeasible 96 mya (for mutation rates of 0.5 ´ 10-8 370 

/site/generation and generation times of 9 years) (Table 1). Although generation times 371 

in wild individuals remain elusive, previous studies suggest that titi monkeys reach 372 

sexual maturity between 15 months (males) and 32 months (females; Conley et al. 373 

2022), juveniles leave their family group around the age of 2 to 3 years, and adults 374 

exhibit life spans of around 20 years in the wild (Zablocki-Thomas et al. 2023) and 375 

around 25 years in captivity (de Magalhães and Costa 2009). In captivity, females tend 376 

to give birth to their first offspring around the age of 3.7 years (with a range between 377 

2.0 and 6.9 years), and interbirth intervals tend to be around 1.0 to 1.5 years on 378 

average (Valeggia et al. 1999; Van Belle et al. 2016). Given previous support for a split 379 

time between 32 and 36 mya (Glatzo and Nei 2003), these results thus support a 380 

younger generation time together with mutation rate estimates of around (or slightly 381 

less than) 1.1 ´ 10-8 /site/generation in wild titi monkey populations. Alternatively, 382 

mutation rates higher than 1.1 ´ 10-8 /site/generation would be needed to reconcile an 383 

older generation time with our current understanding of primate split times. Taken 384 

together, the pedigree-based inference from older parents are highly consistent with 385 

our indirect inference provided here, and both are consistent with previous estimates 386 

of this split time. 387 
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The landscape of recombination in the coppery titi monkey 388 

Fine-scale estimators of recombination rates are based upon patterns of LD in 389 

population-level genomic data, and we inferred the landscape of recombination across 390 

the coppery titi monkey genome using two widely applied approaches: LDhat (McVean 391 

et al. 2002, 2004; Auton and McVean 2007) and LDhelmet (Chan et al. 2012). 392 

Firstly, to assess the performance of these recombination rate estimators within 393 

the context of the specific population history of this species, we simulated a 1 Mb 394 

region under the P. cupreus demography recently inferred by Terbot et al. (2026). 395 

Briefly, the coppery titi monkey population was inferred to have experienced three 396 

historical population size changes, including a population expansion ~131,000 397 

generations ago, with the population increasing from ~45,000 individuals to almost 2 398 

million, before undergoing a more recent, severe collapse in population size to 399 

~12,300 individuals occurring 3,160 generations ago. We simulated 10 replicates of 400 

this history with a constant recombination rate of 10-8 /site/generation. Our simulations 401 

demonstrate that both LDhat and LDhelmet underestimate the recombination rate 402 

under the P. cupreus demographic model (Figure 2). In support of this observation, 403 

Dutheil (2024) found via simulation that LDhat underestimates recombination rates in 404 

populations that have undergone a recent reduction in population size, as is the case 405 

here (note that this study did not investigate the performance of LDhelmet). These 406 

results thus again highlight the importance of evaluating the performance of 407 

recombination rate estimators within the context of the specific demographic history of 408 

the population in question (see the discussion in Johri et al. 2022). 409 

Having quantified the extent of expected mis-inference of recombination rates 410 

under the coppery titi monkey-specific population history, we then estimated the 411 

empirical landscapes of recombination. Given that LDhat and LDhelmet both infer the 412 
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population-scaled recombination rate (r = 4𝑁!𝑟), we calculated the effective 413 

population size, Ne, from the empirically observed 𝜃 of 0.0043 in order to estimate the 414 

per-generation recombination rate, r (i.e., 𝑟 = r 4𝑁!⁄ , with 𝑁! = 𝜃/4𝜇). Furthermore, 415 

due to the above-described expectation of under-estimation as well as uncertainties 416 

in Ne, we re-scaled rates such that the total autosomal genetic map length was equal 417 

to that recently obtained from pedigreed individuals (Versoza et al. 2026b), whilst 418 

preserving the relative heterogeneity in recombination rates across the genome. 419 

Taking this approach, we inferred mean fine-scale genome wide recombination rates 420 

of 0.978 cM/Mb with LDhat (with sex-averaged rates ranging from 0.758 cM/Mb on 421 

one of the two longest autosomes, chromosome 12, to 1.177 cM/Mb on the shortest 422 

autosome, chromosome 22) and 0.975 cM/Mb with LDhelmet. Figure 3 provides the 423 

genome-wide recombination rates inferred by each method (and see Supplementary 424 

Figure S3 for the landscape of recombination across individual autosomes and 425 

Supplementary Figure S4 for the correlation between the two recombination maps).    426 

The genome-wide average rates inferred in coppery titi monkeys are thus 427 

similar to those inferred in another platyrrhine, common marmosets (0.91 cM/Mb; Soni, 428 

Versoza et al. 2025b), but higher than those previously inferred in several catarrhines 429 

of biomedical interest, including rhesus macaques (0.43 ± 0.33 cM/Mb; Xue et al. 430 

2020) and vervet monkeys (0.43 ± 0.44 cM/Mb; Pfeifer 2020b). Moreover, these rates 431 

are within the same range as those previously reported in a number of great apes, 432 

including humans (1.32 ± 1.40 cM/Mb [International HapMap Consortium 2007], with 433 

an average rate of 0.945 cM/Mb in males and 1.518 cM/Mb in females [Halldorsson et 434 

al. 2019]), chimpanzees, bonobos, and gorillas (~1.19 cM/Mb; Stevison et al. 2016). A 435 

note of caution is necessary, however, when comparing inferred recombination rates 436 
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across different studies as the impact of demographic histories on these estimates 437 

have been considered to varying degrees between studies. 438 

To further characterize the fine-scale distribution of recombination activity 439 

across the coppery titi monkey genome, we identified putative recombination hotspots 440 

using LDhot (Auton et al. 2014) and applied a multi-stage filtering procedure that 441 

integrates criteria from the Great Ape Recombination Project (Stevison et al. 2016) to 442 

construct a robust set of hotspot candidates. Following this filtering pipeline, we 443 

observed 9,210 hotspots, a number comparable to estimates previously obtained from 444 

non-human great apes (for which samples of similar size are available) using a 445 

modified LDhot framework (Nigerian chimpanzees: 9,316 hotspots; Western 446 

chimpanzees: 12,599 hotspots; gorillas: 10,384 hotspots; bonobos: 14,081 hotspots; 447 

see Table 3 in Stevison et al. 2016). Notably, the vast majority of hotspots (8,692, or 448 

94.4%) contained the putative PRDM9 binding sequence recently identified through 449 

computational analyses (Versoza et al. 2026b) — a significant enrichment compared 450 

to the genomic background (background rate: 562 out of 9,210, or 6.1%; Fisher's exact 451 

test: p-value » 0). 452 

Lastly, studying scale-specific covariation of recombination with a variety of 453 

genomic factors allowed us to investigate its impact on other evolutionary processes 454 

(Figure 4). In agreement with earlier studies, and concordant with one of the most 455 

prominent patterns in population genetics (Begun and Aquadro 1992), recombination 456 

in coppery titi monkeys is strongly positively correlated with nucleotide diversity, as 457 

expected from the effects of selection at linked sites reducing diversity in low 458 

recombination rate regions. A positive, albeit much weaker, correlation also exists with 459 

divergence, likely resulting from the mutagenic effects of recombination (Halldorsson 460 

et al. 2019). Nucleotide diversity and divergence are themselves strongly positively 461 
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correlated due to the shared influences of genomic context (such as GC content and 462 

CpG density) and regional mutation rate variation (Hodgkinson and Eyre-Walker 463 

2011). As expected from GC-biased gene conversion (Duret and Galtier 2009), 464 

recombination is weakly positively correlated with GC-density. In contrast, 465 

recombination rate and nucleotide diversity are both negatively correlated with gene 466 

density, likely driven by the preferential placement of PRDM9-dependent 467 

recombination within intergenic regions (Myers et al. 2005) as well as the pervasive 468 

effects of purifying and background selection (Charlesworth et al. 1993). A negative 469 

correlation with repeat content was also observed, consistent with the accumulation 470 

of repetitive elements in heterochromatic regions where recombination is suppressed, 471 

likely reflecting structural and epigenetic constraints that promote genome stability 472 

(see the review by Charlesworth et al. 1994). Notably, nearly all correlations exhibit a 473 

pronounced dependence on genomic scale, with the correlations observed at fine 474 

scales being consistent with the transient and rapidly evolving nature of PRDM9-475 

dependent recombination hotspots, and the correlations observed at the broad scales 476 

reflecting the cumulative effects of hotspot turnover, genome organization, and long-477 

term constraints on recombination placement. The emergence of stronger 478 

recombination–diversity and recombination–divergence correlations at the broad-479 

scale therefore suggests that, while PRDM9 determines the fine-scale localization of 480 

recombination events, the evolutionary consequences of recombination primarily 481 

manifest at broader genomic scales — in agreement with both theoretical expectations 482 

and empirical observations in other primates (e.g., Auton et al. 2012; Pfeifer and 483 

Jensen 2016; Stevison et al. 2016; Pfeifer 2020b; and see the review of Cutter and 484 

Payseur 2013). 485 

  486 
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CONCLUDING THOUGHTS 487 

 This study presents the first fine-scale, genome-wide mutation and 488 

recombination rate maps in the coppery titi monkey, P. cupreus. Interestingly, rates 489 

were generally more consistent with estimates in the great apes, rather than (the 490 

admittedly sparse) estimates previously reported from other platyrrhines. This work 491 

thus again highlights the important levels of rate heterogeneity even amongst relatively 492 

closely related species, and highlights the need for more dense species- and 493 

population-sampling across the primate clade. Given the importance of coppery titi 494 

monkeys as a model system of neurobiology and social behavior, these estimated rate 495 

landscapes will prove useful for future research, including for example when 496 

performing genomic scans for selection, as well as for interpreting genome-wide 497 

association studies, for traits of biomedical interest.  498 
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  pedigree-based mutation rate divergence time 

  0.5E-08 0.6E-08 1.1E-08 32 mya 33 mya 36 mya 

generation time 
(years) 

6 64 mya 54 mya 32 mya 1.05E-08 1.02E-08 0.93E-08 

9 96 mya 80 mya 48 mya 1.58E-08 1.53E-08 1.40E-08 

 

Table 1. Inferred P. cupreus–H. sapiens divergence times based on the observed 
mean neutral divergence rate of 0.056 for two different possible generation times (6 
years and 9 years; Pacifici et al. 2013; Perez et al. 2013) and three different pedigree-
based mutation rate estimates (0.5 ´ 10-8, 0.6 ´ 10-8, and 1.1 ´ 10-8 /site/generation) 
obtained from parents of differing ages by Versoza et al. (2026a) (shown in orange). 
Relatedly, the resulting divergence-based mutation rate estimates based on three 
possible divergence times between the coppery titi monkey and humans (32 million 
years ago [mya], 33 mya, and 36 mya; Glazko and Nei 2003), and the two possible 
generation times (shown in blue). 
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Figure 1. Fine-scale rates of neutral mutation. (a) Density plots of the per-site per-
generation mutation rate implied by the neutral divergence for two possible generation 
times (6 years and 9 years; Pacifici et al. 2013; Perez et al. 2013) and three possible 
divergence times between the coppery titi monkey (P. cupreus) and humans (H. 
sapiens) (32 million years ago [mya], 33 mya, and 36 mya; Glazko and Nei 2003). (b) 
Genome-wide per-site per-generation neutral mutation rates for genomic windows of 
size 100 kb, with a 50 kb step size, assuming a P. cupreus–H. sapiens divergence 
time of 33 mya and a generation time of 9 years (and see Supplementary Figure S2 
for the heterogeneity in neutral mutation rates across all autosomes). Neutral mutation 
rates were estimated from the rates of neutral divergence observed between P. 
cupreus and H. sapiens.   
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Figure 2. Performance of the recombination estimators. Performance of the 
recombination estimators LDhat and LDhelmet under the demographic history inferred 
in the coppery titi monkey by Terbot et al. (2026). The dashed line represents the 
constant recombination rate used in the simulations (10-8 /site/generation). Results for 
LDhelmet are shown for block penalties (bpen) of 5, 10, 20, and 50. 
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Figure 3. Fine-scale rates of recombination. Genome-wide recombination rates 
inferred using LDhat (top) and LDhelmet (bottom) for genomic windows of size 1 Mb, 
with a 500 kb step size (and see Supplementary Figure S3 for the heterogeneity in 
recombination rates across all autosomes). Results for LDhat and LDhelmet are 
shown for a block penalty of 5. 
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Figure 4. Correlation between recombination rates and genomic features. 
Correlation between recombination rates and genomic features — namely nucleotide 
diversity (π), neutral divergence, CpG-content, GC-content, repeat-content, and gene-
content — calculated across a variety of window sizes (1 kb, 10 kb, 100 kb, and 1 Mb). 
Partial Kendall's t correlations are color-coded, with a red coloring indicating positive 
correlations and a blue coloring indicating negative correlations. Color intensity is 
proportional to the strength of correlation.  
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