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ABSTRACT

Despite being a primate of considerable biomedical interest, particularly as a
model for social behavior and neurobiology, the evolutionary processes shaping
genetic variation in the coppery titi monkey (Plecturocebus cupreus) remain largely
uncharacterized. Utilizing divergence and polymorphism data together with a recently
published high-quality, annotated genome, we here infer the first fine-scale maps of
mutation and recombination rates in this platyrrhine. We find a mean genome-wide
mutation rate of between 0.93 x 10 and 1.61 x 10 per site per generation and a
mean genome-wide recombination rate of 0.975 cM/Mb, in line with fine-scale rates
estimated in other primates. In addition to providing novel biological insights into the
mutation and recombination rates in this emerging model species for behavioral
research, these fine-scale maps also improve our understanding of how the processes
of mutation and recombination shape genetic variation in the coppery titi monkey
genome, and their incorporation into evolutionary models will be a necessary aspect
of future downstream inference of other evolutionary processes required to elucidate

the genetic factors underlying the phenotypic traits studied in this species.
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INTRODUCTION

Mutation and recombination are important evolutionary processes that shape
levels and patterns of genetic diversity in populations. Germline mutations are the
ultimate source of novel genetic variation, whilst recombination shuffles this variation
into potentially novel haplotypes via crossover and non-crossover events. The rate of
input of new mutations, as well as the rate of recombination events, have been shown
to vary at every level of measurement: across the Tree of Life, between and within
species, and across the genome (for mutation rate variation, see the reviews of Baer
et al. 2007; Lynch 2010; Hodgkinson and Eyre-Walker 2011; Pfeifer 2020a; for
recombination rate variation, see the reviews of Ritz et al. 2017; Stapley et al. 2017,
Johnston 2024).

Both mutation and recombination rate estimation can be performed either via
direct observation from pedigrees, or indirectly from sequenced population samples,
(though classical disease-incidence approaches have also historically been utilized for
mutation rate estimation in humans; Haldane 1932, 1935). The direct estimation of
both processes relies on high-throughput genome sequencing of parent-offspring trios
or multi-generation pedigrees, counting the number of de novo mutations as well as
crossover and non-crossover events that have occurred from one generation to the
next (see the review of Pfeifer 2020a for an overview, and Pfeifer 2021; Bergeron et
al. 2022 for a discussion of the challenges in direct rate estimations). Due to the rarity
of both spontaneous mutations and meiotic exchange events in vertebrates, resolution
with such direct estimation approaches is relatively coarse, given the small number of
generations generally considered (see the review of Clark et al. 2010). Consequently,
they provide a genome-wide rate estimate of mutation and recombination, as opposed

to a fine-scale map of rate heterogeneities across the genome that is necessary for a
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variety of applications, including genome-wide association studies and selection
scans.

By contrast, indirect mutation and recombination rate estimation are performed
on species-level divergence data and population-level polymorphism data,
respectively. Central to such indirect mutation rate estimation approaches is the
observation that the neutral mutation rate is equal to the neutral divergence rate
(Kimura 1968, 1983), with the number of substitutions that accumulate in a lineage
being proportional to the per-generation mutation rate. Thus, historically-averaged
mutation rates across the divergence time between the target species and an outgroup
species can be inferred from phylogenetic sequence data in neutral genomic windows,
thereby generating a fine-scale genomic map of mutation rate heterogeneity. However,
there is often great uncertainty in both the generation time of a species, and the
divergence times between the species under investigation. Estimated mutation rates
are therefore given across a range of likely generation and divergence times in order
to span this uncertainty. Instead of divergence data, indirect recombination rate
estimation approaches rely on population-level data of unrelated individuals for the
inference of historical recombination rates from observed patterns of linkage
disequilibrium (LD; see the reviews of Stumpf and McVean 2003; Pefialba and Wolf
2020), again utilizing neutral genomic windows to generate fine-scale maps across the
genome. These inferred rates are necessarily sex-averaged, and one must account
for other population genetic processes that can alter LD (e.g., selection and population
history; Dapper and Payseur 2018; Samuk and Noor 2022) and thus potentially
confound recombination rate inference. To limit the impact of such confounding factors
on the indirect inference of both mutation and recombination rates, high-quality

genome annotations are necessary to identify regions of the genome that are evolving
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neutrally; additionally, a well-fitting demographic model is necessary in the case of
recombination rate inference (Johri et al. 2020, 2022).

Although itis common practice to model mutation and recombination as a single
mean genome-wide rate, accounting for rate heterogeneity across the genome is
critical when performing downstream inference of other population genetic processes.
For example, inference of population history, the distribution of fitness effects, and of
recent positive and balancing selection can all be confounded when heterogeneity in
mutation and recombination rates are unaccounted for (Soni et al. 2023, 2024; Soni
and Jensen 2024; and see Dapper and Payseur 2018; Samuk and Noor 2022; Ghafoor
et al. 2023) due to the interactions between evolutionary processes. For example, Hill-
Robertson effects (Hill and Robertson 1966; Felsenstein 1974) are expected to be
modulated by the locus-specific recombination environment (Maynard Smith and
Haigh 1974; Begun and Aquadro 1992; Charlesworth et al. 1993; and see
Charlesworth and Jensen 2021, 2022).

Initial estimates of mutation and recombination rates in primates were largely
focused upon humans and other great apes (e.g., Kong et al. 2002; Auton et al. 2012;
Stevison et al. 2016). More recent studies have performed inference of these
processes in a number of other catarrhines, as well as in species of biomedical
importance and extinction risk (e.g., Pfeifer 2020b; Xue et al. 2020; Wall et al. 2022;
Versoza, Weiss et al. 2024; Soni, Versoza et al. 2025a, 2025b; Versoza et al. 2025;
Versoza, Lloret-Villas et al. 2025; Terbot et al. 2025; Versoza et al. 2026a, 2026b; and
see the reviews of Tran and Pfeifer 2018; Soni et al. 2025). The recent publication of
a chromosome-level genome assembly that includes protein-coding gene annotations
for the coppery titi monkey, Plecturocebus cupreus (Pfeifer et al. 2024), provides

opportunities to explore mutation and recombination landscapes in a, as of yet,
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92 genomically under-researched platyrrhine despite the considerable biomedical
93 interest in the species (e.g., Bales et al. 2007; Lau et al. 2024; and see Bales et al.
94  2021). In this study, we utilize a combination of patterns of variation within and
95 divergence between coppery titi monkeys and humans, as well as gene-level
96 annotations to mask directly selected genomic regions, in order to indirectly infer fine-
97 scale mutation and recombination rate maps across the coppery titi monkey genome.
98 In addition to providing novel biological insights into mutation and recombination rates
99 in this emerging model species for behavioral and neurobiological research, these

100 fine-scale maps of observed rate heterogeneity will also prove important for the future

101  downstream inference of other evolutionary processes, necessary to elucidate the

102 genetic factors underlying the phenotypic traits studied in this species.

103

104

105 MATERIALS AND METHODS

106

107 Animal subjects

108 This study was performed in compliance with all regulations regarding the care
109 and use of captive primates, including the NIH Guidelines for the Care and Use of
110 Animals and the American Society of Primatologists’ Guidelines for the Ethical
111 Treatment of Nonhuman Primates. Procedures were approved by the UC-Davis
112  Institutional Animal Care and Use Committee (protocol 22523).

113

114  Species-level divergence data

115 To obtain species-level divergence, we needed to identify neutral substitutions

116  between the genomes of the coppery titi monkey and humans. To do so, we first
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117 replaced the outdated, scaffold-level P. cupreus genome assembly in the 447-way
118  multiple species alignment (available from: https://cglgenomics.ucsc.edu/november-
119  2023-nature-zoonomia-with-expanded-primates-alignment/; Zoonomia Consortium
120  2020; Kuderna et al. 2024) with the chromosome-level NCBI reference genome for the
121  species (GenBank assembly: GCA_040437455.1; Pfeifer et al. 2024). To this end, we

122 performed the following steps:

123 1. We removed the scaffold-level P. cupreus genome assembly from the 447-way
124 multiple species alignment using the halRemove Genome function implemented
125 in HAL v.2.2 (Hickey et al. 2013).

126 2. We extracted the neighboring reconstructed ancestral genomes (i.e.,
127 PrimatesAnc157 and PrimatesAnc189) from the 447-way multiple species
128 alignment using HAL's hal2fasta function.

129 3. We aligned the extracted reconstructed ancestral genomes (PrimatesAnc157
130 and PrimatesAnc189) to the chromosome-level P cupreus genome
131 (PleCup_hybrid) using Cactus v.2.9.2 (Armstrong et al. 2020), maintaining the
132 branch lengths that had been inferred in the 447-way multiple species
133 alignment.

134 4. We attached this newly generated sub-alignment back into the 447-way
135 multiple species alignment using HAL's halReplace Genome function.

136  With the fully annotated P. cupreus genome assembly integrated into the 447-way
137 multiple species alignment, we next extracted the sub-alignment containing the
138 genomes for coppery titi monkeys, humans and their reconstructed ancestor
139  (PrimatesAnc003) using Cactus' cactus-halZ2maf function. We converted the extracted
140  sub-alignment back to .hal format using HAL's maf2hal function and identified fixed

141  differences between the coppery titi monkey and human genomes using HAL's
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142 halSnps function. We focused on point mutations that were on the coppery titi monkey
143 branch by selecting sites where humans and the reconstructed ancestor
144  (PrimatesAnc003) shared the same allele while coppery titi monkeys exhibited a
145 different allele. Given the relatively long divergence time between coppery titi monkeys
146  and humans, we limited our analyses to high-confidence regions in the sub-alignment.
147  Specifically, we excluded sites in regions containing gaps and missing nucleotides
148 (denoted by a “—* and “N” in the sub-alignments, respectively); additionally, we limited
149  our analyses to regions to which we could confidently map our short-read data by
150 applying a mappability mask to the P. cupreus genome assembly, generated using the
151  SNPable pipeline with a read length of 150 bp and a stringency parameter of 1
152  (https://In3lh3.users.sourceforge.net/snpable.shtml). Finally, in order to obtain neutral
153  substitutions, we removed sites that are polymorphic in either coppery titi monkeys
154  (see "Population-level polymorphism data") or humans (using the population-level
155  data of the Yoruban population included in the 1000 Genomes Project; 1000 Genomes
156  Project Consortium 2015) as well as those located within 10 kb of functional regions
157  (based on the protein-coding gene information available for the P. cupreus genome
158 assembly [Pfeifer et al. 2024] and the catalogue of regulatory elements constraint
159  across primates [Kuderna et al. 2024]).

160

161 Inferring fine-scale neutral divergence between P. cupreus and H. sapiens

162 Based on the species-level divergence data, we inferred fine-scale neutral
163  divergence between P. cupreus and H. sapiens across genomic windows (with window
164  sizes of 1 kb, 10 kb, 100 kb and 1 Mb, and step sizes of half of the respective window
165  sizes) by dividing the number of neutral substitutions by the number of accessible sites

166 in each genomic window (thereby requiring that 2 10% of a window is accessible).
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167  Assuming divergence times of 32, 33 and 36 million years between P. cupreus and H.
168  sapiens (Glazko and Nei 2003), and generation times of 6 and 9 years (Pacifici et al.
169  2013; Perez et al. 2013), we then calculated the fine-scale neutral divergence rate by
170  dividing by the divergence time in generations.

171

172  Population-level polymorphism data

173 We obtained population-level polymorphism data from six unrelated coppery titi
174  monkeys paired-end sequenced on an lllumina NovaSeq 6000 to high-coverage. In
175  brief, we removed adapter sequences and trimmed both low-quality and polyG tails
176  using fastp v.0.24.0 (Chen et al. 2018) before aligning the reads to the chromosome-
177 level P. cupreus genome (Pfeifer et al. 2024) using the Burrows—\Wheeler Aligner
178 v.0.7.15 (Li 2013), with shorter split alignments flagged as secondary using the -M
179  option. Prior to variant discovery, we marked duplicated reads using the Genome
180  Analysis Toolkit (GATK) v.4.4.0 MarkDuplicates function (van der Auwera and
181  O'Connor 2020) to reduce support from redundant coverage (Pfeifer 2017), and
182  recalibrated the base quality scores of the reads using GATK's BaseRecalibrator and
183 ApplyBQSR functions together with a set of high-confidence variants previously
184  obtained in pedigreed individuals (Versoza et al. 2026a). Using these high-quality
185 recalibrated reads (--minimum-mapping-quality 40), we called variant and invariant
186 sites (-ERC BP_RESOLUTION) separately for each sample using the GATK
187  HaplotypeCaller, disabling PCR indel modeling (-pcr-indel-model NONE) in
188 accordance with developer guidance for PCR-free library design. We subsequently
189 combined individual gVCFs (CombineGVCFs) and jointly genotyped across samples
190 (GenotypeGVCFs, with the -all-sites flag enabled). In order to obtain high-quality

191  variants, we limited the call set to regions in which all samples exhibited at least half,
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192  but no more than double, the genome-wide average coverage, located farther than 5
193 bp away from the nearest insertion/deletion, and re-genotyped biallelic single
194  nucleotide polymorphisms (SNPs) with complete genotype information across all
195 samples using the graph-based genotyper Graphtyper v.2.7.2 (Eggertsson et al. 2017)
196 to improve genotyping accuracy. Owing to reduced sequencing depth on the X and Y
197 chromosomes, we restricted this re-genotyped dataset to autosomal variants that
198 passed all built-in sample- and site-level quality filters and that were located in
199 mappable regions of the genome (as determined by the SNPable mappability mask;
200 see "Species-level divergence data"). Finally, we phased the resulting dataset using
201  WhatsHap v.2.8 (Martin et al. 2023) and limited recombination rate inference to fully
202 phased SNPs found within alignments = 10 kb in length.

203

204 Inferring fine-scale recombination rates in P. cupreus

205 Based on the phased population-level polymorphism data, we inferred fine-
206 scale recombination rates in P. cupreus using two widely applied LD-based
207 approaches: LDhat v.2.2 (McVean et al. 2002, 2004; Auton and McVean 2007) and

208 LDhelmet v.1.10 (Chan et al. 2012). To this end, we performed the following steps:

209

210 LDhat:

211 1. Using LDhat's complete function, we generated a lookup table for every two-
212 locus haplotype configuration in our sample of six diploids (via the argument -n
213 12), based on a maximum population-scaled recombination rate p of 100
214 (-rhomax 100), a grid size of 201 (-n_pts 201), and the empirically estimated 6

215 of 0.0043/site (-theta 0.0043).
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216 2. Based on this lookup table, we generated region-based estimates of p (in
217 window sizes of 4,000 SNPs with a 200 SNP overlap) using LDhat's interval
218 function, with a block penalty of 5 (-bpen 5), 60 million iterations (-its 60000000),
219 and sampling every 40,000 iterations (-samp 40000).

220 3. To ensure convergence, we discarded the MCMC burn-in, using the argument
221 -burn 500 implemented in LDhat's stat function.

222 4. To obtain chromosome-scale estimates of p, we combined the region-based
223 estimates of p at the midpoint of the overlapping windows, whilst masking
224 localized peaks with p > 100 between adjacent SNPs together with their
225 neighboring 50 SNPs (masking a total of 6,327 SNPs across 120 regions) in
226 order to minimize the impact of artificial LD breaks generated by genome
227 assembly errors (see Auton et al. 2012; Pfeifer 2020b).

228 5. Finally, we calculated the per-generation recombination rate, r. To do so, we
229 calculated the effective population size (Ne) based on the mean empirical value
230 of 8 of 0.0043/site and a mutation rate of 1.07 x 10%/site/generation, and used
231 the resulting value of Ne to calculate r from p.

232

233 LDhelmet

234 1. As LDhelmet requires sequence information in .fasta format as input, we
235 converted the population-level polymorphism data using the consensus
236 function implemented in BCFtools v.1.14 (Danecek et al. 2021), with the -s
237 argument enabled to allow for a multi-sample input and the -H 1 and -H 2
238 arguments enabled to obtain the first and second haplotypes, respectively, and

239 subsequently concatenated the resulting files per chromosome.
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240 2. We generated a configuration file using LDhelmet's find_confs function, utilizing
241 a window size of 50 SNPs (-w 50).

242 3. We generated a likelihood lookup table using LDhelmet's table_gen function,
243 based on the empirically estimated 6 of 0.0043/site (-t 0.0043) and the default
244 grid values of p (-r0.0 0.1 10.0 1.0 100.0).

245 4. We generated padé coefficients for the sampling step using LDhelmet’s pade
246 function, based on the mean empirical value of 8 of 0.0043/site (-t 0.0043) and
247 the default number of padé coefficients (-x 11).

248 5. We generated a mutation matrix from our empirical data, following the approach
249 outlined in Chan et al. (2012). In brief, we polarized the coppery titi monkey
250 SNPs by identifying the corresponding positions in the ancestral
251 PrimatesAnc157 genome from the 447-way multiple-species alignment, and
252 counted the number of each mutational type in alignments = 10 kb using
253 BEDTools nuc v.2.3.0 (Quinlan and Hall 2010).

254 6. After this data pre-processing, we inferred recombination rates along each
255 chromosome using LDhelmet's rjmemc function, based on a window size of 50
256 SNPs (-w 50), block penalties (-b) of 5, 10, 20, and 50, and our mutation matrix,
257 with a burn in of 100,000 iterations (--burn_in 100000) and 1 million total
258 iterations (-n 1000000).

259 7. Finally, we post-processed the binary data output from the previous step using
260 LDhelmet's post_to_text function, obtaining the mean (-m) value of p for each
261 window, which was converted into r via a calculation of Ne using the empirical
262 6 of 0.0043/site (as in the LDhat step 5 description).

263
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264  Assessing the performance of recombination rate estimators under the inferred

265 populations history of P. cupreus

266 To assess the performance of the two recombination rate estimators utilized,
267 we simulated 10 replicates of a 1 Mb region in msprime v.1.3.2 (Baumdicker et al.
268 2022) with a constant per-site recombination rate of 10, under the demographic
269 model of P. cupreus inferred by Terbot et al. (2026), sampling six individuals to match
270 our empirical data. For each replicate, we generated a random set of nucleotides to
271 create a reference sequence and then drew from the empirical mutational matrix to
272  assign polymorphisms at positions determined by the simulation. Recombination rates
273  were inferred on each simulated dataset with both LDhat and LDhelmet to assess their
274  performance under the species-specific population history.

275 To account for differences in performance as well as uncertainties in Ne, we re-
276 scaled the recombination rate estimates obtained with LDhat and LDhelmet to the
277  autosomal genetic map length inferred from pedigreed individuals (2,450 cM; Versoza
278 et al. 2026b) using scaling factors of 1.21 and 0.168, respectively.

279

280 Inferring recombination hotspots

281 In order to infer recombination hotspots, we ran LDhot v.0.4 (Auton et al. 2014)

282  on the landscape of recombination inferred by LDhat via the following steps:

283 1. We used LDhot's Idhot function to perform 1,000 simulations with a 1.5 kb
284 window size, a 1 kb step size, and a 50 kb background window centered on the
285 hotspot.

286 2. We used LDhot's Idhot_summary function to combine significant windows,
287 merging adjacent candidates. For calling hotspots, we used a significance

288 threshold of 0.001, whilst a threshold of 0.01 was used for merging hotspots.
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289 3. Finally, we filtered out spurious hotspots based on the recommendations from
290 both the Great Ape Recombination Project (Stevison et al. 2016) and Brazier
291 and Glémin (2024). Briefly, hotspot candidates with a width larger than 10 kb
292 were removed, as well as those with an intensity below 4, or above 200.

293 Afterwards, we used FIMO v.5.5.7 (Grant et al. 2011) to check how many of the final
294  hotspots contained the putative PRDM9 binding sequence (CCTGCCTCAGCCTCC)
295 recently identified through computational analyses (Versoza et al. 2026b). To assess
296  statistical significance, we used BEDTools random v.2.3.0 (Quinlan and Hall 2010) to
297 randomly draw the same number of coldspot regions from the genomic background.

298

299 Assessing correlations between genomic features

300 We calculated summary statistics for a variety of genomic features — including
301 nucleotide diversity (based on our population-level polymorphism data), divergence
302 (based on our species-level divergence data), recombination rate (based on our
303 estimates obtained with LDhat), as well as CpG-content, GC-content, gene-content,
304 and repeat-content (based on the species' genome annotations; Pfeifer et al. 2024) —
305 across the 22 autosomes of the coppery titi monkey genome and calculated partial
306 Kendall's rank correlations across 1 kb, 10 kb, 100 kb, and 1 Mb windows (requiring a
307 minimum accessibility of 50% in both the population genomic data as well as the 447-
308 way multi-species alignment) using the kendalltau package implemented in SciPy

309 v.1.16.3 (Virtanen et al. 2020).

310

311

312
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313 RESULTS AND DISCUSSION

314

315 Population-level polymorphism and species-level divergence data

316 To estimate neutral divergence as well as fine-scale rates and patterns of
317 mutation and recombination, we obtained population-level polymorphism data from six
318 captive coppery titi monkeys (three males and three females), sequenced at a depth
319 of 38-57x per individual. Alignment-based variant discovery across the autosomes
320 yielded 6.9 million phased SNPs, with an observed transition-to-transversion ratio of
321 2.6 (Supplementary Table S1; and see "Materials and Methods" for details). With this
322 population genomic data on hand, we next replaced the outdated, scaffold-level P.
323 cupreus genome included in the 447-way multiple species alignment (Zoonomia
324  Consortium 2020; Kuderna et al. 2024) with the fully annotated, chromosome-level
325 genome of Pfeifer et al. (2024). Using this updated multiple sequence alignment, we
326 counted the fixed differences between P. cupreus and the P. cupreus—H. sapiens
327 reconstructed ancestor, PrimatesAnc003, in high-confidence regions (excluding any
328 gaps and applying a mappability mask to the alignment; see "Materials and Methods"
329 for details). In order to examine neutral genomic data, we masked functional regions
330 as well as 10 kb flanking regions. To obtain substitutions, we removed sites that were
331 observed to be polymorphic in either P. cupreus or H. sapiens. Neutral divergence was
332 subsequently calculated by counting neutral substitutions across genomic windows of
333 various sizes (1 kb, 10 kb, 100 kb, 1 Mb). Supplementary Figure S1 provides the
334  distribution of neutral divergence for each window size.

335

336

337
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338 The landscape of mutation in the coppery titi monkey

339 Based on the mean genome-wide fine-scale divergence estimate of 0.056
340 across 100 kb windows, we calculated the mutation rate across a range of divergence
341 times between coppery titi monkeys and humans (32, 33, and 36 million years ago
342 [myal); Glazko and Nei 2003), and coppery titi monkey generation times (6 and 9 years;
343 Pacifici et al. 2013; Perez et al. 2013), given that there is uncertainty in both
344  parameters. Across this range of divergence and generation times, as well as across
345  our window sizes, the mean mutation rate ranged between 0.93 x 10 and 1.61 x
346  10°® /site/generation. Supplementary Table S2 summarizes the range of mean
347 mutation rates for different divergence times, generation times, window sizes, and
348  accessibility length thresholds (i.e., the minimum number of sites that must be
349 accessible for a window to be considered when calculating mutation rates), whilst
350 Figure 1a provides density plots of neutral mutation rate estimates and Figure 1b
351 portrays the genome-wide, per-site, per-generation rates across the autosomal
352  coppery titi monkey genome (and see Supplementary Figure S2 for estimates from
353 individual autosomes). These mutation rate estimates are notably higher than those
354 inferred from divergence data in the common marmoset (Callithrix jacchus), another
355 platyrrhine of biomedical interest (ranging between 0.25 x 10® and 0.37 x 108
356 /site/generation; Soni, Versoza et al. 2025b); however, they are consistent with those
357 inferred in the great apes (e.g., Venn et al. 2014; Jonsson et al. 2017; Tatsumoto et al.
358 2017; Besenbacher et al. 2019; and see the reviews of Tran and Pfeifer 2018;
359  Chintalapati and Moorjani 2020) and gray mouse lemurs (1.52 x 108 /site/generation
360 with a 95% Cl of 1.28 x 10® — 1.78 x 108 /site/generation; Campbell et al. 2021).

361 Helpfully, a recent study utilized pedigree data to provide a genome-wide direct

362 estimation of point mutation rates in P. cupreus (Versoza et al. 2026a), allowing us to


https://doi.org/10.64898/2026.01.13.699361

bioRxiv preprint doi: https://doi.org/10.64898/2026.01.13.699361; this version posted January 14, 2026. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

363 compare direct and indirect estimates. The authors inferred rates of 0.5 x 108
364 /site/generation in individuals born to younger parents and 1.1 x 108 /site/generation
365 inindividuals born to older parents, with an average rate of 0.6 x 108 /site/generation
366 across the pedigreed individuals. Based on these mutation rate estimates, we
367 calculated divergence times based on our divergence estimate of 0.056 and
368 generation times of 6 and 9 years. Divergence times between coppery titi monkeys
369 and humans ranged from 32 mya (for mutation rates of 1.1 x 108 /site/generation and
370 generation times of 6 years) to an infeasible 96 mya (for mutation rates of 0.5 x 108
371  [site/generation and generation times of 9 years) (Table 1). Although generation times
372 in wild individuals remain elusive, previous studies suggest that titi monkeys reach
373  sexual maturity between 15 months (males) and 32 months (females; Conley et al.
374  2022), juveniles leave their family group around the age of 2 to 3 years, and adults
375 exhibit life spans of around 20 years in the wild (Zablocki-Thomas et al. 2023) and
376 around 25 years in captivity (de Magalh&es and Costa 2009). In captivity, females tend
377  to give birth to their first offspring around the age of 3.7 years (with a range between
378 2.0 and 6.9 years), and interbirth intervals tend to be around 1.0 to 1.5 years on
379 average (Valeggia et al. 1999; Van Belle et al. 2016). Given previous support for a split
380 time between 32 and 36 mya (Glatzo and Nei 2003), these results thus support a
381  younger generation time together with mutation rate estimates of around (or slightly
382 less than) 1.1 x 10 /site/generation in wild titi monkey populations. Alternatively,
383  mutation rates higher than 1.1 x 108 /site/generation would be needed to reconcile an
384  older generation time with our current understanding of primate split times. Taken
385 together, the pedigree-based inference from older parents are highly consistent with
386 our indirect inference provided here, and both are consistent with previous estimates

387  of this split time.
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388 The landscape of recombination in the coppery titi monkey

389 Fine-scale estimators of recombination rates are based upon patterns of LD in
390 population-level genomic data, and we inferred the landscape of recombination across
391 the coppery titi monkey genome using two widely applied approaches: LDhat (McVean
392 etal. 2002, 2004; Auton and McVean 2007) and LDhelmet (Chan et al. 2012).

393 Firstly, to assess the performance of these recombination rate estimators within
394 the context of the specific population history of this species, we simulated a 1 Mb
395 region under the P. cupreus demography recently inferred by Terbot et al. (2026).
396 Briefly, the coppery titi monkey population was inferred to have experienced three
397 historical population size changes, including a population expansion ~131,000
398 generations ago, with the population increasing from ~45,000 individuals to almost 2
399 million, before undergoing a more recent, severe collapse in population size to
400 ~12,300 individuals occurring 3,160 generations ago. We simulated 10 replicates of
401  this history with a constant recombination rate of 108 /site/generation. Our simulations
402 demonstrate that both LDhat and LDhelmet underestimate the recombination rate
403 under the P. cupreus demographic model (Figure 2). In support of this observation,
404  Dutheil (2024) found via simulation that LDhat underestimates recombination rates in
405 populations that have undergone a recent reduction in population size, as is the case
406 here (note that this study did not investigate the performance of LDhelmet). These
407 results thus again highlight the importance of evaluating the performance of
408 recombination rate estimators within the context of the specific demographic history of
409 the population in question (see the discussion in Johri et al. 2022).

410 Having quantified the extent of expected mis-inference of recombination rates
411 under the coppery titi monkey-specific population history, we then estimated the

412  empirical landscapes of recombination. Given that LDhat and LDhelmet both infer the
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413 population-scaled recombination rate (p = 4N,r), we calculated the effective
414  population size, Ne, from the empirically observed 6 of 0.0043 in order to estimate the
415  per-generation recombination rate, r (i.e., r = p/4N,, with N, = 8/4u). Furthermore,
416 due to the above-described expectation of under-estimation as well as uncertainties
417  in Ne, we re-scaled rates such that the total autosomal genetic map length was equal
418 to that recently obtained from pedigreed individuals (Versoza et al. 2026b), whilst
419 preserving the relative heterogeneity in recombination rates across the genome.
420 Taking this approach, we inferred mean fine-scale genome wide recombination rates
421 of 0.978 cM/Mb with LDhat (with sex-averaged rates ranging from 0.758 cM/Mb on
422  one of the two longest autosomes, chromosome 12, to 1.177 cM/Mb on the shortest
423 autosome, chromosome 22) and 0.975 cM/Mb with LDhelmet. Figure 3 provides the
424  genome-wide recombination rates inferred by each method (and see Supplementary
425 Figure S3 for the landscape of recombination across individual autosomes and
426  Supplementary Figure S4 for the correlation between the two recombination maps).

427 The genome-wide average rates inferred in coppery titi monkeys are thus
428  similar to those inferred in another platyrrhine, common marmosets (0.91 cM/Mb; Soni,
429 \Versoza et al. 2025b), but higher than those previously inferred in several catarrhines
430 of biomedical interest, including rhesus macaques (0.43 + 0.33 cM/Mb; Xue et al.
431  2020) and vervet monkeys (0.43 + 0.44 cM/Mb; Pfeifer 2020b). Moreover, these rates
432  are within the same range as those previously reported in a number of great apes,
433 including humans (1.32 + 1.40 cM/Mb [International HapMap Consortium 2007], with
434  an average rate of 0.945 cM/Mb in males and 1.518 cM/Mb in females [Halldorsson et
435 al. 2019]), chimpanzees, bonobos, and gorillas (~1.19 cM/Mb; Stevison et al. 2016). A

436 note of caution is necessary, however, when comparing inferred recombination rates
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437  across different studies as the impact of demographic histories on these estimates
438 have been considered to varying degrees between studies.

439 To further characterize the fine-scale distribution of recombination activity
440 across the coppery titi monkey genome, we identified putative recombination hotspots
441  using LDhot (Auton et al. 2014) and applied a multi-stage filtering procedure that
442  integrates criteria from the Great Ape Recombination Project (Stevison et al. 2016) to
443 construct a robust set of hotspot candidates. Following this filtering pipeline, we
444  observed 9,210 hotspots, a number comparable to estimates previously obtained from
445 non-human great apes (for which samples of similar size are available) using a
446  modified LDhot framework (Nigerian chimpanzees: 9,316 hotspots; Western
447  chimpanzees: 12,599 hotspots; gorillas: 10,384 hotspots; bonobos: 14,081 hotspots;
448 see Table 3 in Stevison et al. 2016). Notably, the vast majority of hotspots (8,692, or
449  94.4%) contained the putative PRDM9 binding sequence recently identified through
450 computational analyses (Versoza et al. 2026b) — a significant enrichment compared
451  to the genomic background (background rate: 562 out of 9,210, or 6.1%; Fisher's exact
452  test: p-value = 0).

453 Lastly, studying scale-specific covariation of recombination with a variety of
454  genomic factors allowed us to investigate its impact on other evolutionary processes
455  (Figure 4). In agreement with earlier studies, and concordant with one of the most
456  prominent patterns in population genetics (Begun and Aquadro 1992), recombination
457  in coppery titi monkeys is strongly positively correlated with nucleotide diversity, as
458 expected from the effects of selection at linked sites reducing diversity in low
459 recombination rate regions. A positive, albeit much weaker, correlation also exists with
460 divergence, likely resulting from the mutagenic effects of recombination (Halldorsson

461 et al. 2019). Nucleotide diversity and divergence are themselves strongly positively
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462  correlated due to the shared influences of genomic context (such as GC content and
463 CpG density) and regional mutation rate variation (Hodgkinson and Eyre-Walker
464  2011). As expected from GC-biased gene conversion (Duret and Galtier 2009),
465 recombination is weakly positively correlated with GC-density. In contrast,
466 recombination rate and nucleotide diversity are both negatively correlated with gene
467 density, likely driven by the preferential placement of PRDM9-dependent
468 recombination within intergenic regions (Myers et al. 2005) as well as the pervasive
469 effects of purifying and background selection (Charlesworth et al. 1993). A negative
470  correlation with repeat content was also observed, consistent with the accumulation
471  of repetitive elements in heterochromatic regions where recombination is suppressed,
472  likely reflecting structural and epigenetic constraints that promote genome stability
473  (see the review by Charlesworth et al. 1994). Notably, nearly all correlations exhibit a
474  pronounced dependence on genomic scale, with the correlations observed at fine
475 scales being consistent with the transient and rapidly evolving nature of PRDM9-
476  dependent recombination hotspots, and the correlations observed at the broad scales
477  reflecting the cumulative effects of hotspot turnover, genome organization, and long-
478 term constraints on recombination placement. The emergence of stronger
479 recombination—diversity and recombination—divergence correlations at the broad-
480 scale therefore suggests that, while PRDM9 determines the fine-scale localization of
481 recombination events, the evolutionary consequences of recombination primarily
482  manifest at broader genomic scales — in agreement with both theoretical expectations
483 and empirical observations in other primates (e.g., Auton et al. 2012; Pfeifer and
484  Jensen 2016; Stevison et al. 2016; Pfeifer 2020b; and see the review of Cutter and
485  Payseur 2013).

486
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CONCLUDING THOUGHTS

This study presents the first fine-scale, genome-wide mutation and
recombination rate maps in the coppery titi monkey, P. cupreus. Interestingly, rates
were generally more consistent with estimates in the great apes, rather than (the
admittedly sparse) estimates previously reported from other platyrrhines. This work
thus again highlights the important levels of rate heterogeneity even amongst relatively
closely related species, and highlights the need for more dense species- and
population-sampling across the primate clade. Given the importance of coppery titi
monkeys as a model system of neurobiology and social behavior, these estimated rate
landscapes will prove useful for future research, including for example when
performing genomic scans for selection, as well as for interpreting genome-wide

association studies, for traits of biomedical interest.
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pedigree-based mutation rate divergence time
0.5E-08 0.6E-08 1.1E-08 32 mya 33 mya 36 mya
generation time 6 64 mya 54 mya 32 mya 1.05E-08 1.02E-08 0.93E-08
(vears) 9 | 9 mya 80 mya 48 mya 1.58E-08 1.53E-08 1.40E-08

Table 1. Inferred P. cupreus—H. sapiens divergence times based on the observed
mean neutral divergence rate of 0.056 for two different possible generation times (6
years and 9 years; Pacifici et al. 2013; Perez et al. 2013) and three different pedigree-
based mutation rate estimates (0.5 x 108, 0.6 x 108, and 1.1 x 108 /site/generation)
obtained from parents of differing ages by Versoza et al. (2026a) (shown in orange).
Relatedly, the resulting divergence-based mutation rate estimates based on three
possible divergence times between the coppery titi monkey and humans (32 million
years ago [mya], 33 mya, and 36 mya; Glazko and Nei 2003), and the two possible
generation times (shown in blue).


https://doi.org/10.64898/2026.01.13.699361

density

L=

mutation rate (/site/gen)

bioRxiv preprint doi: https://doi.org/10.64898/2026.01.13.699361; this version posted January 14, 2026. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

3E8 1

6 year generation time; 32 mya split

6 year generation time; 33 mya split
2E8 A

8 year generation time; 32 mya split

8 year generation time; 33 mya split

8 year generation time; 36 mya split
1E8 A

0 T 1
0 1E-8 2E-8 3E-8 4E-8
mutation rate (/site/gen)

3E-8

2E-8

1E-8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
chromosome

Figure 1. Fine-scale rates of neutral mutation. (a) Density plots of the per-site per-
generation mutation rate implied by the neutral divergence for two possible generation
times (6 years and 9 years; Pacifici et al. 2013; Perez et al. 2013) and three possible
divergence times between the coppery titi monkey (P. cupreus) and humans (H.
sapiens) (32 million years ago [mya], 33 mya, and 36 mya; Glazko and Nei 2003). (b)
Genome-wide per-site per-generation neutral mutation rates for genomic windows of
size 100 kb, with a 50 kb step size, assuming a P. cupreus—H. sapiens divergence
time of 33 mya and a generation time of 9 years (and see Supplementary Figure S2
for the heterogeneity in neutral mutation rates across all autosomes). Neutral mutation
rates were estimated from the rates of neutral divergence observed between P.
cupreus and H. sapiens.
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Figure 2. Performance of the recombination estimators. Performance of the
recombination estimators LDhat and LDhelmet under the demographic history inferred
in the coppery titi monkey by Terbot et al. (2026). The dashed line represents the
constant recombination rate used in the simulations (10 /site/generation). Results for
LDhelmet are shown for block penalties (bpen) of 5, 10, 20, and 50.
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Figure 3. Fine-scale rates of recombination. Genome-wide recombination rates
inferred using LDhat (top) and LDhelmet (bottom) for genomic windows of size 1 Mb,
with a 500 kb step size (and see Supplementary Figure S3 for the heterogeneity in
recombination rates across all autosomes). Results for LDhat and LDhelmet are
shown for a block penalty of 5.


https://doi.org/10.64898/2026.01.13.699361

bioRxiv preprint doi: https://doi.org/10.64898/2026.01.13.699361; this version posted January 14, 2026. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 kb 10 kb
repeat-content - -0.02 repeat-content - -0.05
GC-content -| 0.00 0.12 GC-content -0.02 0.19
CpG-content 0.19 -0.06  0.02 CpG-content 0.27 -0.02  0.08
divergence | -0.05 -0.09 -0.04 -0.49 divergence - -0.10 -0.17 -0.05 -0.62
Ll 0.06 0.03 0.04 0.04 -0.05 m 0.13 0.02 0.05 0.03 -0.11
recombination {  0.24 0.08 0.02 0.06 -0.02 -0.06 recombination 4 0.49 0.11 0.01 0.08 -0.04 -0.09
: [ y [ . [ ; [ y [ . [
m CpG-content repeat-content m CpG-content repeat-content 1.0
divergence GC-content gene-content divergence GC-content gene-content »
0.5
0.0
100 kb 1 Mb 05
o,
repeat-content - 0.01 repeat-content | 0.18
GC-content - -0.01 0.31 GC-content - 0.06 0.49
CpG-content - 0.38 0.10 0.26 CpG-content 0.61 0.19 0.47
divergence -0.07 -0.01 -0.04 -0.21 divergence -049  -046 -0.24 .
m 0.29 -0.11 -0.00 -0.03 -0.17 m 0.29 -0.18 -0.07 -0.13 -0.24
recombination 4 = 0.60 0.25 -0.08 0.05 -0.10  -0.12 recombination - 0.60 0.20 -0.09 0.02 -0.18  -0.14
" [ y [ . [ : [ y [ . [
m CpG-content repeat-content m CpG-content repeat-content
divergence GC-content gene-content divergence GC-content gene-content

Figure 4. Correlation between recombination rates and genomic features.
Correlation between recombination rates and genomic features — namely nucleotide
diversity (17), neutral divergence, CpG-content, GC-content, repeat-content, and gene-
content — calculated across a variety of window sizes (1 kb, 10 kb, 100 kb, and 1 Mb).
Partial Kendall's 7 correlations are color-coded, with a red coloring indicating positive
correlations and a blue coloring indicating negative correlations. Color intensity is
proportional to the strength of correlation.
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