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Abstract

Cardiorespiratory fitness is a predictor of long-term health, traditionally assessed through
structured exercise protocols that require maximal effort and controlled laboratory condi-
tions. These protocols, while clinically validated, are often inaccessible, physically demand-
ing, and unsuitable for unsupervised monitoring. This study proposes a non-invasive,
unsupervised alternative—predicting the heart rate a person would reach after completing
the step test, using wearable data collected during natural daily activities. Ground truth
post-exercise heart rate was obtained through the Queens College Step Test, which is a
submaximal protocol widely used in fitness settings. Separately, wearable sensors recorded
heart rate (HR), blood oxygen saturation, and motion data during a protocol of lifestyle
tasks spanning a range of intensities. Two machine learning models were developed—a
Human Activity Recognition (HAR) model that classified daily activities from inertial
data with 96.93% accuracy, and a regression model that estimated post step test HR using
motion features, physiological trends, and demographic context. The regression model
achieved an average root mean squared error (RMSE) of 5.13 beats per minute (bpm) and
a mean absolute error (MAE) of 4.37 bpm. These findings demonstrate the potential of
test-free methods to estimate standardized test outcomes from daily activity data, offering
an accessible pathway to infer cardiorespiratory fitness.

Keywords: deep learning; health monitoring; human activity recognition; wearable sensors

1. Introduction

Modern society confronts an increasing burden of chronic, lifestyle-related conditions:
hypertension affects approximately 1.28 billion adults aged 30-79 and causes around
10 million deaths annually [1]. Type 2 diabetes now impacts nearly 589 million adults,
with this figure expected to rise to 853 million by 2050; alarmingly, about 40% of those
affected remain undiagnosed [2]. These largely preventable conditions require ongoing
monitoring, something episodic, clinic-based care often fails to provide. The COVID-19
pandemic further underscored the urgency for scalable, remote, and non-invasive health
tools that empower individuals to manage their own health from home.

Cardiorespiratory Fitness (CRF) is widely recognized as one of the most powerful
predictors of long-term health outcomes. A higher CRF level is strongly associated with
reduced risk of cardiovascular disease, metabolic disorders, and all-cause mortality [3].
The gold standard for assessing CRF is maximal oxygen uptake (VO,max); however, its
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assessment typically requires a cardiopulmonary exercise test (CPET), involving lab-grade
equipment (shown in Figure 1, e.g., metabolic gas analyzers, ergometers, electrocardio-
gram), trained personnel, and maximal exertion from the participant.

Image from Wikimedia Commons contributed by COSMED and shared under a license permitting reuse, verified through
Wikimedia’s VRT system (Ticket #2013073010007597).

Figure 1. Standard CPET equipment: Blood pressure monitor, mask (volume sensor and gas analyzer
tubing), electrocardiogram (ECG), ergometer, pulse oximeter, gas analyzer, display of breath-by-
breath data and exercise ECG.

Submaximal alternatives such as the Queens College Step Test [4] offer practical
alternatives. This standardized protocol involves stepping at a prescribed cadence for three
minutes and then measuring the participant’s heart rate during recovery. The resulting post-
test heart rate is used in validated equations to estimate VO,max with reasonable accuracy.
As a lower-burden alternative to CPET, the step test maintains clinical relevance while
being simpler to administer, making it a practical bridge between wearable measurements
and established fitness indicators. In this study, the heart rate predicted as if the participant
had completed a step test serves as an intermediate variable, enabling VO,max estimation
from unconstrained, daily activity data.

While CPET is highly accurate, its complexity, cost, and physical demand limit its use
in preventive care and for populations such as older adults or high-risk patients.

Wearable technologies offer a promising opportunity to improve CRF assessment by
continuously collecting heart rate, SpO,, and motion data in a non-invasive, user-friendly
way. Beyond capturing raw biomarkers, they also support real-time activity recognition,
providing essential context for interpreting physiological changes. For example, an elevated
heart rate during walking is expected, but the same value at rest may indicate a problem.
By integrating this contextual layer, wearables enable more personalized and meaningful
health insights.

Despite its clinical importance, CRF remains difficult to assess in real-world conditions,
as traditional protocols require structured effort and specialized equipment, while passive
monitoring often lacks the context needed to interpret physiological signals. This study
investigates whether it is possible to estimate an individual’s cardiorespiratory capacity
(specifically, their post step test heart rate) based on physiological behavior during natural,
unconstrained activities. By analyzing responses to everyday tasks such as walking or
folding clothes, our approach aims to bypass formal exercise protocols and support more
scalable, user-centered fitness assessment in free-living environments.
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1.1. Related Work
1.1.1. Protocol-Guided or Submaximal Exercise-Based Estimation

Several studies have estimated VO,max using structured submaximal protocols such
as step tests, cycling, or treadmill walks, aiming to reduce the burden of maximal car-
diopulmonary testing while preserving predictive accuracy. For instance, Sheridan et al. [5]
used team sport simulations to estimate oxygen uptake from inertial and heart rate data,
and Wiecha et al. [6] predicted VO,max using submaximal effort and body composition
in athletes. Akay and Abut [7] reviewed machine learning and statistical models ap-
plied to VO,max prediction in structured environments. Though more accessible than
maximal tests, these methods still require supervised physical effort and synchronization
with protocols, often targeting specific populations, limiting their applicability in broader,
unsupervised real-world settings.

1.1.2. Wearable-Based Estimation of Cardiorespiratory Fitness

Recent studies have used consumer-grade wearables to estimate CRF in semi-
controlled or free-living environments, typically using heart rate, step count, or pho-
toplethysmography (PPG) data. Neshitov et al. [8], for example, estimated CRF from heart
rate and step count collected during free-living activity, but their method required at least
200 min of active data, limiting its use for real-time or short-duration assessments.

Similarly, Spathis et al. [9] introduced a longitudinal approach to VO,max prediction
using wearable data, emphasizing the value of repeated measures over time. While promis-
ing, this approach requires prolonged usage and assumes consistent device adherence,
as the window size is one week of data. In a more controlled setting, Hsiao et al. [10]
developed a custom wearable system incorporating multichannel PPG to estimate VO,
during treadmill exercise, showcasing real-time estimation capabilities but still requiring
structured physical effort and specialized hardware.

While wearable-based CRF models have advanced non-invasive fithess assessments,
many still depend on long-term tracking, structured effort, or device-specific setups, limit-
ing their use for rapid or flexible deployment. In contrast, our two-model framework pro-
vides a faster, context-aware estimation from just a few minutes of wearable data collected
during natural activities, making it well suited for opportunistic use in real-world settings.

1.1.3. Modeling CRF with Indirect or Non-Exercise Features

Recent approaches have explored estimating CRF without requiring structured phys-
ical exertion. Instead of relying on exercise protocols, these models infer fitness from
demographic data, short physiological snapshots, or latent health indicators. For instance,
Lee and Park [11] proposed a deep learning model that predicts health status from ordered
questionnaire responses, demonstrating the feasibility of low-effort CRF estimation.

A promising alternative involves two-step strategies that first predict an intermediate
value, like post-exercise heart rate, then estimate CRF using validated formulas. This
preserves alignment with VO,max while avoiding maximal or submaximal testing, offering
a practical balance between accuracy and accessibility in settings where traditional protocols
are impractical.

1.1.4. Human Activity Recognition Using Inertial Sensors

HAR is a core application of wearable sensing, especially with inertial measurement
units (IMUs) that capture motion in free-living conditions. Deep learning models such
as Convolutional Neural Networks (CNNs) and Long-Short Term-Memory LSTMs have
improved classification accuracy, moving from handcrafted features to end-to-end learn-
ing [12]. Qureshi et al. [13] reviewed HAR challenges, including sensor variability, class



Electronics 2025, 14, 3081

40f18

imbalance, and real-time demands. While HAR is mainly used for context inference, its
integration into health analytics is expanding. Recognizing physical activity enriches phys-
iological signal interpretation and supports context-aware modeling, yet few HAR systems
connect activity context with individualized physiological responses in CRF estimation.

1.2. Study Proposal: Context-Aware Step Test HR Estimation from Wearable Data

This study introduces a novel two-model framework for indirectly estimating car-
diorespiratory fitness from wearable sensor data collected during daily life, eliminating
the need for structured exercise testing or prolonged tracking. The key innovation lies in
combining context-aware activity recognition with physiological modeling to approximate
a step test-equivalent heart rate.

The first model employs a HAR model to classify physical activities based on inertial
sensor data. In the second model, the classified activity, combined with physiological
signals (heart rate and oxygen saturation), motion features, and demographic information,
is used to predict the heart rate the individual would exhibit after completing a standardized
step test.

Figure 2 illustrates the full pipeline of the proposed method. Wearable devices capture
accelerations, angular velocities, quaternions, heart rate, and SpO, during daily activi-
ties, while demographic variables such as age, sex, and body composition are collected
separately. Model 1 uses motion features to infer the current activity. Model 2 then uses
the corresponding activity label, collected independently during the protocol, alongside
physiological signals and user metadata to estimate the step test-equivalent heart rate.
Although both models use activity context, they are trained independently.

Model 1: HAR

Input: Accelerations
X Angular velocities
Wearable data collection O iemione

Accelerations Output: Activity Label

Y
1 5
B Angular velocities e.g. Walking
4 Quaternions
¢
Heart Rate
SpO2 Model 2: HR Regression
Cardi iratory Fit
Input: Activity Label EHCE D LSS
Indicator
HR, SpO2
— 5 5
Acceleratlol? magnitudes VO2max Estimation from
Demographics

» daily activity response

Output: Estimated Step-Test HR

S
c—/ |

Demographic data —

Figure 2. Overview of the proposed two-model framework for cardiorespiratory fitness estimation.
Model 1 classifies physical activity using motion data from wearable sensors. Model 2 indepen-
dently uses the ground-truth activity label along with physiological signals, movement features, and
demographic metadata to estimate the heart rate a person would reach after a standardized step test.

By modeling natural physiological responses during free-living activities, this ap-
proach introduces a new path toward unsupervised, low-burden fitness assessment. Un-
like prior CRF estimation methods that require structured exertion, dedicated testing, or
long-term data aggregation, this framework allows opportunistic CRF estimation from
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just a few minutes of wearable data, supporting real-world deployment in remote and
preventive care.

1.3. Contributions and Paper Organization

The main contributions of this work include: (1) a unified framework that integrates
activity recognition and physiological modeling to estimate step test-equivalent heart rate
from daily wearable data, and (2) an indirect method for VO,max estimation that does
not require participants to follow formal exercise protocols. Future directions include
expanding the dataset to incorporate broader demographic and health diversity, replacing
activity classification with effort-based regression for more generalized modeling, and
validating predicted fitness indicators against direct VO,max measurements obtained via
gas exchange analysis in clinical settings.

The rest of the paper is structured as follows: Section 2 details the study protocol,
wearable setup, data processing, and models. Section 3 presents evaluation results for
activity classification and heart rate prediction. Section 4 discusses the implications, limita-
tions, and future directions. Section 5 concludes with a summary of contributions and the
significance of this approach for health monitoring.

2. Materials and Methods

This section describes the experimental protocol, data collection procedures, wearable
setup, preprocessing steps, and deep learning architectures used in the study. It outlines
how participants were recruited and monitored using wearables during a structured
protocol involving real-world physical activities. Two separate pipelines were established:
one for HAR and another for estimating post-exercise heart rate through regression.

2.1. Participants and Protocol

This study received ethical approval from the Institutional Review Board (IRB) of the
University of Puerto Rico. All research procedures complied with the ethical standards set
by the Collaborative Institutional Training Initiative (CITI Program) for research involving
human participants. Approval was granted prior to the start of data collection. Before par-
ticipating, each subject received a full explanation of the study’s objectives and procedures
and provided written informed consent. To ensure participant’s safety, all individuals
completed the Physical Activity Readiness Questionnaire (PAR-Q) and disclosed basic
health information prior to participation.

Data collection took place in a controlled indoor environment that adhered to
ANSI/CTA recommendations for real-world testing [14]. The room was private, free from
distractions, and maintained under consistent conditions, including a constant temperature
of 21 °C, with lighting and humidity levels set within comfortable indoor ranges. These
measures were intended to minimize external influences on physiological measurements
and promote participant comfort throughout the experimental protocol.

A total of 67 participants were initially enrolled in the study. However, data from
7 participants were excluded from the final analysis due to issues affecting the quality or
completeness of the recorded data. The resulting dataset includes 60 participants, consisting
of 36 males and 24 females, with ages ranging from 19 to 64 years. For each participant,
key demographic variables were collected, including age, sex, height, weight, body fat
percentage, and body mass index (BMI). These variables were used to characterize the
study population and were also included as features in the heart rate regression model.

Figure 3 illustrates the demographic distribution of the final participant pool, including
sex proportions, age ranges, body fat percentage, and BMI categories. This visual summary
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highlights the diversity in body composition and physical profiles across the sample,
supporting the robustness of the physiological modeling approach.

Gender Distribution by Age Groups
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Figure 3. Demographic distribution of study participants. (a) Distribution of participants based on
age and gender; (b) distribution of participants by gender and fat percentage ranges; (c) distribution
of participants based on BMI ranges.

Each participant began the session by performing the Queens College Step Test [4], a
standardized submaximal exercise protocol used to assess cardiorespiratory recovery. The
test involves stepping up and down on a platform at a fixed cadence of 24 steps per minute
for men and 22 steps per minute for women, over a period of three minutes. Maintaining
this cadence is essential for producing consistent post-exercise heart rate responses, which
are later used to estimate cardiorespiratory fitness. Participants were given verbal instruc-
tions, and a metronome was used to help them keep the correct rhythm. At the end of the
test, the heart rate was measured manually at the wrist by a trained researcher.

Following the step test, wearable sensors were placed on the participants to monitor
physiological and motion data during a sequence of activities. Details about the sensor
setup, body placement, and signal types are provided in Section 2.2.

After the step test and sensor setup, each participant completed a structured activity
protocol designed according to the ANSI/CTA-2108 Framework for Validation of Health
Technology Derived Metrics under Naturalistic or Unconstrained Conditions [15] and
the ANSI/CTA-2065.1 Standard for Physical Activity Monitoring for Heart Rate—Real
World Analysis [14]. Activity intensity levels were categorized following CTA-2074 guide-
lines [16], which define physical effort using Metabolic Equivalent of Task (MET) val-
ues and real-world examples. The protocol included alternating periods of rest, light,
moderate, and vigorous activity, simulating common daily tasks while eliciting varied
cardiovascular responses.
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The full activity protocol lasted 37 min and was consistent with all participants.
Activities were selected to cover a representative spectrum of daily movements with
increasing physiological demand. Table 1 summarizes the activity types, their assigned
MET values, and their corresponding activity codes from the 2024 Adult Compendium of
Physical Activities [17].

Table 1. Structured activity protocol with MET values.

Time [min] Activity Activity Code MET

0-3 Sit 07021 1.0

3-8 Fold clothes while seated 05091 2.0
8-13 Sweep, light effort 05011 2.3
13-16 Sit 07021 1.0
16-21 Walk at 5.6 km/h, treadmill surface 17190 3.8
21-26 Move a 4.5 kg box from the table to the floor and vice versa 11615 4.5
26-29 Sit 07021 1.0
29-34 Static bike, 101-125 watts 01224 6.8
34-37 Sit 07021 1.0

This sequence allowed for the capture of wearable data across a realistic range of
physical intensities, while incorporating recovery periods to observe heart rate dynamics.
To ensure consistent task execution, an automated timer system provided visual and
auditory cues to the participants at each activity transition, indicating the start and end of
every segment.

2.2. Wearable Setup

To capture detailed biomechanical and physiological signals, participants were instru-
mented with a combination of motion sensors and wearable biomarker devices. The motion
capture setup was designed to ensure symmetry and provide coverage of both the upper
and lower limbs, as well as the torso. A total of five Inertial Measurement Units (IMUs)
MetaMotionRL from MbientLab Inc. were used, positioned on the chest, left hand, right
hand, left knee, and right knee. These IMUs operated in streaming mode during the activity
protocol and transmitted their data via Bluetooth after each session for synchronization
and storage. Each IMU captured a specific subset of motion features:

Chest: Quaternions, tri-axial acceleration, and gyroscope (50 Hz);
Left hand: Quaternions only (50 Hz);

Right hand: Acceleration and gyroscope (50 Hz);

Left knee: Acceleration and gyroscope (50 Hz);

Right knee: Quaternions only (50 Hz).

The asymmetrical configuration resulted from hardware limitations: the MetaMo-
tionRL sensors could not record quaternions and raw acceleration/gyroscope data si-
multaneously. To balance signal diversity while minimizing device count, we adopted
a complementary layout, assigning quaternions to one limb and acceleration/gyroscope
to the opposite. This strategy leveraged the symmetric nature of the protocol’s activities
(e.g., walking, sweeping), allowing mirrored motion patterns to be inferred. Moreover,
prior findings [18] showed that quaternion-based representations improve classification
performance, and that full-body instrumentation can be reduced without significant loss of
accuracy, supporting the idea that a reduced, strategically distributed configuration can
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still capture the essential features for activity recognition. The chest sensor was assigned
the most comprehensive sensing role, serving as a central anchor point to contextualize
upper and lower limb movements with respect to the trunk.

IMU calibration was performed immediately following sensor placement on each
participant. After all devices were secured, participants were instructed to sit upright with
their hands resting on their knees and remain still. During this neutral and reproducible
posture, the IMUs were initialized and calibrated to establish a reference frame for mo-
tion tracking. Since individual posture and body geometry vary across participants, the
resulting orientation references naturally differed between subjects. This strategy promotes
robustness and real-world applicability, enabling the model to tolerate small deviations in
sensor alignment or anatomical differences, conditions that are common in everyday use.

To track orientation, quaternions were used instead of Euler angles, as they prevent the
gimbal lock effect and support smooth, multi-axis rotational representation; as validated
in our previous work [19]. This combination of data quality and minimal sensor burden
supports both modeling accuracy and future real-world deployment.

For physiological monitoring, two wrist-worn devices were used, each capturing
HR and SpO, at a sampling rate of 0.5 Hz. A Garmin Venu 3 smartwatch, worn on
the right wrist, and a CheckMe™ oximeter, worn on the left wrist, provided redundant
measurements for cross-validation and robustness during motion. During data review,
the Garmin watch occasionally returned zero values for SpO, during movement periods,
indicating signal dropout, in contrast, the CheckMe™ oximeter provided more stable and
complete recordings. As a result, SpO, data from the CheckMe™ was prioritized during
preprocessing to ensure signal continuity. Figure 4 provides a schematic overview of
sensor placement, indicating the precise body locations and signal types associated with
each device.

Angular Velocity

Quaternion [ i
Acceleration v IMU Sensors
. Garmin Venu 3

‘ CheckMe Oximeter

Acceleration
Angular Velocity

(a) (b)

Figure 4. Wearable sensor placement overview. (a) Wearable sensing prototype; (b) human subject
instrumented with the proposed sensor setup.

To ensure temporal alignment across all sensor inputs, including IMUs and physiolog-
ical devices, linear extrapolation based on timestamps was used for synchronization. This
step enabled frame-level integration of biomechanical and cardiorespiratory data, resulting
in a rich, unified dataset suitable for downstream analysis in both activity classification and
physiological modeling. The collected dataset is available in the resource [20].
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2.3. Data Processing
2.3.1. Preprocessing for Human Activity Recognition

Raw IMU data collected at 50 Hz, including acceleration, gyroscope, and quaternion
signals, underwent a multi-step preprocessing pipeline prior to activity classification.

First, signals were smoothed using a fifth-order Butterworth low-pass filter with a
cutoff frequency of 5 Hz, which preserves human movement frequencies while eliminating
high-frequency noise. The filtered signals were then Z-score normalized feature-wise,
with the mean and standard deviation computed per feature channel and per participant,
to account for inter-individual differences in baseline physiology and motion patterns,
ensuring that the model focuses on relative changes over time rather than being biased by
absolute values that vary naturally across individuals.

To assign activity labels, each sample was timestamp-aligned and segmented into
predefined time intervals according to the standardized activity protocol. A 5 s mar-
gin was trimmed after each activity transition to reduce transitional noise and avoid
label ambiguity.

After labeling, the continuous signal was segmented into overlapping sliding windows
to create fixed-length samples for input to the neural network. Figure 5 illustrates the
segmentation and input structure used for HAR model training. Each input sample
consists of a sliding window of 20 frames (0.4 s) and is defined by a set of individual
features derived from the wearable sensors. These features include quaternions, linear
accelerations, and angular velocities collected from the chest, knees, and hands, based on
the specific sensor configuration described in Section 2.2. Each signal component (e.g.,
X, y, z of acceleration or w, X, y, z of quaternions) is treated as a separate input feature in
the model. The windowing process uses a stride of 6 frames, resulting in a 70% overlap
between windows. This approach maximizes the temporal resolution of the input while
preserving the sequential structure of the movement data.

N

1D
] :| (1 dimension)

Window Size = 20 frames
Figure 5. Input features and segmentation for the HAR model.

2.3.2. Preprocessing for Heart Rate Regression

For the HR regression task, the pipeline integrated synchronized physiological, biome-
chanical, and demographic data into a unified input structure suitable for deep learning.
The goal was to model how each individual’s body responded to natural activities to predict
their step test-equivalent heart rate.

For the sequential data, time-series signals were collected at 0.5 Hz and formed the
basis of the sequential input branch. These included:
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e HRand SpO; recorded at 0.5 Hz;

e  Acceleration magnitudes computed from tri-axial accelerometer data at the chest, left
knee, and right hand. Each signal was first filtered with a 5th-order Butterworth
low-pass filter (cutoff = 5 Hz) and then downsampled to match the 0.5 Hz sampling
rate of the biomarkers.

This set of five features per time step formed the sequential portion of the input matrix,
capturing the moment-to-moment physiological and motion response of the participant
during the activity protocol.

To capture temporal patterns in physiological response, the sequential data was
segmented into sliding windows of 30 frames, corresponding to 60 s of continuous activity.
This window size was selected to reflect a typical adaptation timescale of HR and SpO,
to physical effort. A stride of 8 frames was used between windows, enabling significant
overlap and increasing the number of training samples. Additionally, the segmentation
process was repeated using three different offsets (0, 4, and 8 frames), producing multiple
views of the same signal and improving robustness against alignment variability.

In parallel with the sequential input, each window was enriched with a vector of
contextual data and participant-specific variables, appended once per window:

o  Demographic data: age, sex, height, weight, BMI, and body fat percentage;

e  Baseline values: resting HR and SpO,, computed from the initial resting segment of
the protocol;

e  Activity context: current activity label, previous activity label, duration (in seconds)
of the current activity up to that point, and MET value representing the estimated
physical intensity.

These metadata features provided the model with static context and physiological
background for each subject, enabling more personalized and accurate predictions. The
resulting multimodal input is illustrated in Figure 6, which shows the segmentation of
the sequential features and the alignment of the contextual data with each window. The
final input to the model consisted of a pair, i.e., a (30, 5) matrix representing the sequential
features and a single 12-dimensional context data vector per window.

Gender [F=0; M=1]

\ SpOZ Age (Years)
Height (m)
“ 3 N Heart Rate Weight (kg)
\\‘\ N Fat Percentage (%)
\ | | Acc Chest | | BMI( kg/mz)
\ \ Resting HR (bpm)
‘9/‘\‘\ | | Acc Hand| | Resting SpO, (%)
(?)/‘\\ \. Current Activity [One-hot]
(//(')\\ N I1Acc Kneel | Previous Activity [One-hot]
% T Duration of Current Activity (s)
A \ MET value of the activity
N\ x =0 X, =4 x,=8

Offsets

Window Size = 30 frames
Figure 6. Structure of input data used for the heart rate regression model.
2.4. Model Architecture

2.4.1. Human Activity Recognition Classification Model

To classify physical activities from wearable motion data, we implemented a deep
learning model that combines a one-dimensional CNN with an LSTM layer. The model
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receives as input a time-series tensor of shape (batch size, time steps, features), where each
frame contains multichannel IMU features.

Figure 7 illustrates the architecture of the model; it begins with a 1D convolutional
layer that extracts short-term temporal patterns across input features using a kernel size
of 3. This is followed by batch normalization and a ReLU activation function to stabilize
training and introduce non-linearity. The resulting feature maps are then permuted and
passed into an LSTM layer, which captures long-range temporal dependencies across the
windowed sequence. A final fully connected layer maps the LSTM outputs to per-time-step
activity class probabilities.

[ Data ]
! :
ConvlD | [LSTM ] [Linear l
Kernel <3x31x64> {Kemel <3x31x64> J Kernel <3x31x64> ’
bias <64> bias <64> bias <64>
BatchNorm + ReLU| ¢
[ Classification J

Figure 7. Architecture of the HAR model.

Hyperparameter tuning was conducted using Optuna [21], an open-source framework
for automatic hyperparameter optimization based on Bayesian search strategies. Key
parameters, including CNN output channels, LSTM hidden size, learning rate, and batch
size were explored across predefined ranges. Trials were evaluated on validation accuracy
after a few training epochs to identify optimal configurations.

2.4.2. Heart Rate Regression Model

To estimate the heart rate a participant would reach after completing a standardized
step test, we developed a deep learning model that integrates sequential time-series data
with contextual metadata. The model aims to learn cardiorespiratory responses to daily
activities using fused physiological and biomechanical signals.

The first branch of the model processes sequential data: five time-series channels
sampled at 0.5 Hz, including HR, SpO,, and acceleration magnitudes from the chest, right
hand, and left knee. These signals are passed through two stacked 1D convolutional layers
with batch normalization, ReLU activation, max pooling, and dropout. The resulting
temporal features are encoded by an LSTM layer into a fixed-length hidden representation.

In parallel, the context data branch encodes a 12-dimensional vector consisting of
participant-specific features (age, sex, height, weight, BMI, body fat %), resting physio-
logical baselines (HR, SpO;), and contextual activity features (current/previous activity,
duration, MET). This vector is processed through a fully connected layer with ReLU and
dropout to produce a compact contextual embedding.

The two branches are concatenated and passed to a fusion module, a two-layer Mul-
tilayer Perceptron (MLP) that outputs a scalar prediction of the post-exercise heart rate.
Figure 8 gives a visual representation of the architecture description.
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Figure 8. Architecture of the HR regression model.

3. Results

This section presents the performance outcomes of the two proposed models: the HAR
classifier and the post step test HR regression model. Evaluation focused on their accuracy,
generalizability across participants, and ability to capture both movement patterns and
physiological responses. Metrics such as accuracy, F1-score, RMSE, and NRMSE were used
to assess model effectiveness under real-world conditions.

3.1. Human Activity Recognition Classification Model’s Performance

The final HAR model was evaluated on a held-out test set using the hyperparameters
selected through Optuna tuning. The model showed strong performance in recognizing
physical activities from wearable IMU data, with a weighted accuracy of 96.93% across all
activity types.

To further assess model performance, we calculated precision, recall, and F1-score
using a weighted average to account for potential class imbalance. All three metrics
consistently exceeded 95%, suggesting both high sensitivity and precision in detecting
a variety of everyday tasks. Figure 9 presents the confusion matrix of the HAR model,
summarizing its classification performance across all six activity types.
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Figure 9. Confusion matrix for the HAR model predictions on the test set.
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RMSE vs LSTM Hidden Layer Size (CNN = 32)

The matrix reveals high accuracy overall, with most predictions correctly aligned
along the diagonal. This indicates that the model was highly effective at distinguishing
between different physical activities based on wearable motion data.

While most samples were correctly classified, some minor misclassifications were
observed. Interestingly, the greatest confusion occurred between the bike and rest activities,
two tasks with clearly distinct physical intensities. This misclassification may be attributed
to the similarity in upper body movement, as the hands remain relatively still in both
activities. Additionally, the transition period at the beginning of the biking segment (when
participants were seated and adjusting their position before pedaling) may have contributed
to the overlap in motion patterns captured by the sensors. Despite these challenges, all
activity classes maintained high recognition rates, indicating that the model generalizes
effectively across the diverse set of movements in the protocol.

3.2. Heart Rate Regression Model’s Performance

The heart rate regression model was evaluated using Leave-One-Subject-Out (LOSO) [22]
cross-validation, ensuring generalizability by testing on each participant while training
on all others. This approach was repeated for all 60 participants, ensuring robust and
personalized performance evaluation across the population.

To identify the optimal model architecture, a grid search was performed over key
hyperparameters: the number of output channels in the convolutional layers, the hidden
size of the LSTM, and the dimensionality of the context branch. The context branch
is a Multi-Layer Perceptron (MLP) responsible for processing non-sequential metadata,
including demographic variables, resting biomarkers, and activity context. These features
are projected into a compact representation and fused with the output of the sequential
layers. Figure 10 displays the RMSE results across hyperparameter combinations: panel (a)
shows results for models with 32 convolutional channels, and panel (b) for 64. Each line
corresponds to a different number of neurons in the context MLP layer, while the x-axis
indicates the LSTM hidden layer size.

RMSE vs LSTM Hidden Layer Size (CNN = 64)
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Figure 10. Grid search results show RMSE performance across LSTM, and context hidden sizes.
(a) Results for CNN hidden size 32 and (b) Results for CNN hidden size 64. Each line represents a
different context MLP layer size, illustrating how LSTM hidden layer size affects the results.

While Figure 10 highlights the best-performing configurations for clarity, the full
hyperparameter search included additional LSTM sizes (up to 1024), as well as variations
in dropout rates and learning rates. These extended configurations revealed that model
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performance generally saturates at an LSTM hidden size of 768, with no consistent im-
provements beyond that point. In some cases, larger configurations led to slightly higher
RMSE or training instability, particularly when the LSTM and context layers were both
large. A consistent trend emerges across configurations: models perform better when the
LSTM hidden layer size exceeds the context MLP layer size. This suggests that allocating
more capacity to temporal modeling of physiological and motion signals is critical for
accurate heart rate prediction, while a smaller context representation is sufficient to encode
static metadata.

The best results were obtained with a model that used 64 convolutional output chan-
nels, an LSTM hidden layer size of 768, and 384 units in the context MLP branch. This con-
figuration achieved an average RMSE of 5.13 beats per minute (bpm), a MAE of 4.37 bpm,
and a NRMSE of 0.174. These results indicate that the model can accurately estimate the
heart rate a participant would reach after performing the Queens College Step Test, based
solely on their physiological and motion responses to free-living activities.

To assess the agreement between predicted and actual values, a Bland—Altman anal-
ysis [23] was performed. Figure 11 shows the mean bias between predicted and ground
truth post-test heart rate values, which was just 0.13 bpm. Most differences fell within the
95% limits of agreement, suggesting strong alignment and minimal systematic bias in the
model’s predictions.

Bland-Altman Plot for HR Predictions
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Figure 11. Bland—Altman plot comparing predicted and true HR values. Each point represents a
participant’s prediction. The solid black line shows the mean bias (0.13 bpm), while the dashed red
lines indicate the 95% limits of agreement (1.96 SD). Color intensity has no additional meaning, and
all points reflect individual HR predictions.

Finally, model performance was also analyzed by activity type. As shown in Figure 12,
the NRMSE was computed separately for each task.
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Figure 12. Normalized root mean squared error (NRMSE) of heart rate prediction across activity types.
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Activities such as sweeping, walking, and moving a box led to the lowest prediction
errors, with NRMSE values around 0.036-0.037. These activities typically elicit consistent
physiological responses, making it easier to model across participants. On the other hand,
resting periods showed the highest error (NRMSE = 0.046), likely due to higher inter-
individual variability in baseline heart rate. These results reinforce the model’s ability to
learn exertion-driven trends from natural activity, while also highlighting the challenges of
modeling personalized rest-state physiology.

4. Discussion and Future Work

This study presents a framework for estimating an individual’s post step test heart
rate using wearable data collected during natural daily activities. By integrating move-
ment and physiological signals from wearable sensors, the proposed model enables an
indirect estimation of VO;max, the gold-standard indicator of CRF, without requiring
structured exercise protocols. Unlike traditional assessments involving treadmills or cycle
ergometers under supervision, our method allows users to be passively monitored through
everyday movement.

The results demonstrate that this indirect VO,max estimation is feasible, with the
model achieving an average error of just 5.13 bpm across participants. The HAR model
further reinforces this framework by providing reliable activity context information, with
classification metrics consistently exceeding 96%. These components support the feasibility
of context-aware, at-home monitoring of cardiorespiratory health, opening the door to
more accessible and user-friendly fitness evaluation systems beyond clinical environments.

A key advantage of this approach lies in its efficiency. Unlike many existing methods in
the literature, which rely on long-term data aggregation, ranging from hours to entire weeks
of wearable recordings, our framework produces a fitness estimate from just a few minutes
of daily activity. This substantial reduction in data requirements not only lowers the burden
on users but also makes the method more compatible with opportunistic and on-demand
assessment. It eliminates the need for continuous tracking or strict protocol adherence,
offering greater flexibility for real-world deployment and broader population use.

Our approach emphasizes generalizability, as demonstrated through LOSO cross-
validation, which confirmed the model’s robustness across unseen individuals despite
the moderate dataset size. While the activity protocol was structured, it was carefully
designed to reflect free-living conditions by incorporating a variety of realistic daily tasks
rather than isolated or treadmill-based exercises. Notably, the HAR model sustained high
classification performance despite inter-individual differences in how movements were
executed, suggesting that it reliably captures activity-specific patterns across diverse users.
This design helps bridge the gap between controlled clinical protocols and real-world,
unsupervised monitoring.

While the dataset used in this study includes participants with a range of ages and
body compositions, it primarily represents individuals in average health. For safety reasons
defined in the consent protocol, participants with known cardiovascular, pulmonary, or
frailty-related conditions were excluded. As a result, the model has not yet been validated
in clinical or high-risk populations, and its current findings should be interpreted within
this context.

This model serves as a first step toward broader applications. Looking ahead, several
improvements can be made to strengthen this framework. Future work should focus on
expanding the dataset with a greater number of participants across a broader range of
health conditions, ages, and fitness levels. Clinical validation in controlled environments
(particularly with high-risk populations) will be essential to ensure safety and extend
applicability to those who would benefit most from fitness monitoring. In these settings,
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future studies should compare predicted values against gold-standard VO,max measure-
ments (e.g., via metabolic gas analysis) to formally establish the clinical accuracy of the
proposed framework. Integrating additional biomarkers, such as respiration rate, ECG, or
skin temperature, could enhance the model’s understanding of internal physiological states,
and it is also recommended to explore higher sampling rates for these signals to improve
temporal resolution and capture finer physiological variations. In addition, analyzing
performance across demographic groups could help ensure fairness and generalizability.

Validation under real-world free-living conditions is necessary to evaluate the model’s
robustness in practical, uncontrolled environments. Introducing variable intensity levels
within the same activity class would support the development of more nuanced models
capable of distinguishing effort gradients. Moreover, rather than relying on predefined
activity classes, future models could benefit from regressing MET values directly, providing
a continuous and more generalized representation of physical effort.

Finally, a key long-term goal is to move beyond offline estimation toward real-time
feedback systems. With further refinement, this approach could power wearable-based
fitness and recovery trackers that provide personalized health insights on the go, enabling
early detection of decline, optimizing rehabilitation, and empowering users to engage
in proactive health management from the comfort of their home. Future work should
also consider optimizing model size and efficiency for on-device deployment, minimizing
impact on battery life and processing.

5. Conclusions

This work presents a novel, data-driven approach to estimating cardiorespiratory
fitness using wearable sensors in natural, unsupervised settings. By combining a deep
learning-based HAR model with an HR regression model that integrates motion, physiolog-
ical biomarkers, and contextual metadata, we demonstrate the feasibility of predicting the
heart rate a person would reach after a standardized step test, without requiring them to
perform the test. This predicted heart rate can then be used to estimate a cardiorespiratory
fitness indicator.

A key strength of this framework lies in its ability to operate with just a few minutes
of daily activity data, in contrast to many existing methods that require prolonged mon-
itoring periods. This enables more opportunistic, user-friendly assessments compatible
with real-world deployment. The model also showed strong generalizability across partici-
pants, achieving high accuracy in both activity classification and heart rate prediction, as
demonstrated through LOSO cross-validation.

The ability to infer a CRF indicator from free-living activity data, without requiring
treadmills, structured protocols, invasive equipment, or clinical supervision, represents
a significant breakthrough. It bridges the gap between controlled laboratory assessments
and real-world conditions, paving the way for more accessible, scalable, and personalized
tools for cardiorespiratory fitness monitoring beyond clinical settings.
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Abbreviations

The following abbreviations are used in this manuscript:

HR Heart Rate

HAR Human Activity Recognition

RMSE Root Mean Squared Error

bpm beats per minute

MAE Mean Absolute Value

CRF Cardiorespiratory Fitness

VO;max Maximal Oxygen Uptake

CPET Cardiopulmonary Exercise Test

ECG Electrocardiogram

SpO, Blood Oxygen Saturation

PPG Photoplethysmography

IMU Inertial Measurement Unit

CNN Convolutional Neural Network

LSTM Long-Short Term-Memory

PAR-Q Physical Activity Readiness Questionnaire
ANSI/CTA  American National Standards Institute/Consumer Technology Association
BMI Body Mass Index

MET Metabolic Equivalent of Task

LOSO Leave-One-Subject-Out

MLP Multi-Layer Perceptron
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