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Abstract

Accurate estimation of upper-limb joint angles is essential in biomechanics, rehabilitation,
and wearable robotics. While inertial measurement units (IMUs) offer portability and
flexibility, systems requiring multiple inertial sensors can be intrusive and complex to
deploy. In contrast, optical motion capture (MoCap) systems provide precise tracking
but are constrained to controlled laboratory environments. This study presents a deep
learning-based approach for estimating shoulder and elbow joint angles using only three
IMU sensors positioned on the chest and both wrists, validated against reference angles
obtained from a MoCap system. The input data includes Euler angles, accelerometer,
and gyroscope data, synchronized and segmented into sliding windows. Two recurrent
neural network architectures, Convolutional Neural Network with Long-short Term Mem-
ory (CNN-LSTM) and Bidirectional LSTM (BLSTM), were trained and evaluated using
identical conditions. The CNN component enabled the LSTM to extract spatial features
that enhance sequential pattern learning, improving angle reconstruction. Both models
achieved accurate estimation performance: CNN-LSTM yielded lower Mean Absolute
Error (MAE) in smooth trajectories, while BLSTM provided smoother predictions but
underestimated some peak movements, especially in the primary axes of rotation. These
findings support the development of scalable, deep learning-based wearable systems and
contribute to future applications in clinical assessment, sports performance analysis, and
human motion research.

Keywords: deep learning; human motion analysis; inertial measurement units; joint
angle estimation

1. Introduction

Human motion analysis is central to various fields, including physical rehabilitation,
human–robot interaction, biomechanical research, and health monitoring [1–4]. The ability
to quantify movement patterns and joint kinematics provides essential information for
designing adaptive systems, assessing recovery, and developing personalized interven-
tions [5]. In particular, the estimation of upper limb joint angles is a key metric in evaluating
motor function in clinical and real-world environments [6]. These measurements support
the development of robotic assistance, prosthetic control, and rehabilitation tools that rely
on biomechanical feedback to function effectively. At the same time, wearable technologies
have enabled real-time tracking of physiological and kinematic variables in naturalistic
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settings. Recent developments include smart textiles for respiration monitoring [7], open-
source smartwatches for physical activity and heart rate tracking [8], and medical health
patches that provide continuous cardiorespiratory data using dry electrodes [9], illustrating
the growing potential of wearable systems in integrated health assessment.

Traditionally, optical motion capture systems (e.g., Vicon®, OptiTrack®) have been
used as the gold standard for obtaining ground-truth joint angles due to their sub-millimeter
spatial accuracy [10]. However, these systems require fixed infrastructures, extensive
camera calibration, and controlled laboratory conditions, making them impractical for
deployment in everyday environments. Their spatial requirements and sensitivity to
marker occlusion further limit accessibility outside research facilities [11].

In response to these limitations, IMUs have gained popularity as wearable alternatives
for motion capture [12]. These low-power sensors infer segment orientation and joint angles
across diverse conditions. Despite their advantages in portability and ease of integration,
conventional IMU-based approaches often rely on dense sensor configurations (typically
7–10 units), which can present several challenges. These include:

• Sensor-to-segment misalignment, which can introduce substantial errors in joint angle
estimation. Fan et al. reported errors exceeding 24◦ in the knee when misalignment
exceeded 15◦, highlighting the sensitivity of such systems to mounting orientation
errors [13].

• Inter-sensor drift during prolonged recordings, especially in dynamic movements
such as running, where orientation accuracy deteriorates over time without correction
mechanisms [14].

• Although IMUs are generally rated as comfortable by users, especially when embed-
ded in clothing or mounted non-invasively, increasing the number of sensors can
complicate setup and maintenance, affecting overall usability in natural environments.

These limitations motivate the development of minimal-sensor configurations, where
a reduced number of strategically placed IMUs can still deliver high-accuracy joint angle
estimates through robust modeling techniques [15].

1.1. Deep Learning and Reduced Sensor Approaches

The integration of deep learning into motion estimation enables direct mapping from
raw IMU data to joint kinematics. Recurrent neural networks (RNNs), particularly LSTM
and CNN-LSTM hybrids, capture temporal dependencies critical for dynamic joint angle
estimation. These models compensate for sparse inputs by learning latent biomechanical
relationships [16,17].

Recent studies confirm that minimal IMU configurations can achieve accuracy com-
parable to optical systems when combined with optimized deep learning architectures.
For example:

• Kim et al. introduced the Activity-in-the-loop Kinematics Estimator (AIL-KE), an
end-to-end CNN-LSTM model using only two IMUs (wrist and chest). By integrating
activity classification into the pipeline, they achieved shoulder joint angle errors under
6.5◦—a 17 % improvement over a baseline without behavioral context [18]. However,
this approach is primarily aimed at analyzing activities with periodic behaviors.

• Alemayoh et al. showed that a single IMU placed on the shank or thigh can estimate
lower-limb joint angles with a mean absolute error of 3.65◦ using a BLSTM, demon-
strating feasibility for sagittal-plane kinematics during walking [15]. No upper limbs
were analyzed in this study.

• Airaksinen et al. systematically assessed trade-offs in IMU configurations and con-
cluded that the minimal configuration with acceptable classifier performance includes
at least a combination of one upper and one lower extremity sensor [19].
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1.2. Problem Statement: Toward Practical and Scalable Joint Angle Estimation

Despite the growing interest in IMU-based motion tracking, achieving accurate upper
limb joint angle estimation under real-world constraints remains an open challenge. Optical
motion capture systems offer exceptional precision but are limited by their dependence on
controlled environments. In contrast, wearable IMU solutions enable free-living monitoring
but often rely on dense sensor networks that compromise usability [20].

The need for scalable and user-friendly solutions calls for approaches that maintain
high accuracy while minimizing hardware complexity. Reducing the number of IMUs
requires robust neural learning frameworks capable of extracting informative represen-
tations from partial data streams. This trade-off between model complexity, number of
sensors, and system deployability remains a challenge. Reducing sensor count reduces
observability, but intelligent modeling strategies can compensate for this loss. Evaluating
different neural architectures under constrained input conditions is essential to identify
scalable and efficient solutions [21].

1.3. Proposed Framework

To address these challenges, this work proposes a deep learning framework that
estimates upper limb joint angles using only three IMUs located at the chest and wrists.
This configuration ensures biomechanical relevance while minimizing invasiveness. We
assessed the effectiveness of two different model architectures: a CNN-LSTM, which uses
convolutional layers to extract spatial features followed by temporal modeling, and a
Bidirectional LSTM (BLSTM), which processes sequences in both forward and backward
directions to enhance context awareness. An overview of the proposed sensor placement
and model pipeline is illustrated in Figure 1.

 

Figure 1. Proposed framework for upper limb joint angle estimation using a reduced number of IMU
sensors. Both CNN + LSTM and BLSTM were compared using the same dataset.

The models were trained using IMU data synchronized with ground truth MoCap
measurements, allowing the system to learn joint-specific motion patterns. By compar-
ing both architectures, we evaluated the trade-offs between inference, accuracy, and
temporal smoothness.

1.4. Contributions and Paper Organization

This work contributes to the ongoing effort to simplify joint angle estimation systems
for practical deployment in health and rehabilitation contexts. We demonstrate that with a
minimal sensor configuration and proper model selection, it is possible to achieve high-
accuracy estimation of upper limb kinematics.

The rest of the paper is structured as follows: Section 2 describes the dataset acquisition,
sensor placement, and preprocessing steps. Section 3 introduces the model architectures
and training procedure. Section 4 presents quantitative results comparing CNN-LSTM
and BLSTM under specific motion conditions. Section 5 discusses the implications of these
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findings, highlights current limitations, and outlines future research directions toward
scalable, real-world biomechanical monitoring systems.

2. Materials and Methods

2.1. Instrumentation

This study employed a dual-system configuration comprising an IMU-based wearable
platform and an optical MoCap system to obtain synchronized kinematic datasets. The
IMU system utilized MetaMotionS devices developed by Mbientlab Inc. (San Jose, CA,
USA), capable of capturing raw linear acceleration, angular velocity, and orientation in
quaternion or Euler-angle format. These sensors operate over Bluetooth Low Energy (BLE)
and provide onboard fusion capabilities for orientation estimation.

For ground-truth kinematics, an OptiTrack® motion capture system (OptiTrack, Cor-
vallis, OR, USA) was used in conjunction with Motive software (version 3.3.0.1), which
handled the digitization and recording of all OptiTrack® data. This system computes
segmental joint angles based on 3D marker trajectories and predefined biomechanical mod-
els. All data streams were timestamped and synchronized to ensure alignment between
IMU and MoCap recordings. Although MoCap systems are considered the gold standard,
they are not free from limitations such as marker displacement and soft tissue artifacts.
To address these, a previous study conducted by the authors evaluated the feasibility
of emulating an IMU sensor using a MoCap system by performing specific controlled
movements across and along each coordinate axis, as well as combined motions [22]. The
results demonstrated high consistency between the motion capture output and expected
IMU behavior, supporting the reliability of MoCap-based ground truth for this application.

2.2. Data Acquisition

A single 10 min recording session was performed by a single subject, involving contin-
uous upper limb movements executed at a natural speed and full range of motion. Prior
authorization from the Institutional Review Board (IRB) was obtained to perform this study.
The shoulder joint was evaluated across three degrees of freedom: abduction/adduction,
flexion/extension, and internal/external rotation. The elbow joint was evaluated only
in flexion/extension. No segmentation or repetition scheme was enforced, ensuring a
representative sequence of natural motion.

IMU data were collected at 50 Hz and included tri-axial acceleration, angular velocity,
and quaternion orientation. This sampling rate was selected based on prior studies indi-
cating that 50 Hz is sufficient to capture the natural frequency of human motion without
aliasing, even during fast transitions [23,24]. All quaternion data were converted to Euler
angles using a ZYX intrinsic rotation convention. This conversion was necessary due to the
limitations of directly using quaternions in neural network training.

Euler angles offer scalar orientation values aligned with anatomical axes, making
them more interpretable for both biomechanical analysis and neural network learning.
Unlike quaternions, which are abstract and non-intuitive, Euler angles correspond directly
to clinically meaningful joint motions such as flexion or rotation. This alignment facilitates
better feature learning and promotes faster convergence during model training, as the
network can associate specific signal patterns with anatomically relevant movements. The
dataset is available in the following reference [25].

2.3. Experimental Design

All data collection was conducted by a single subject under consistent environmental
conditions. More subjects will be included for future studies to account for other body
sizes, limbs, and dynamics. The subject wore three IMUs placed on the chest and both
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wrists, along with reflective markers positioned according to the standardized upper-limb
marker set required by the Motive skeletal solver (See Figure 1). The OptiTrack® system
consisted of 7 infrared cameras surrounding the capture volume to provide high-fidelity
3D tracking. Figure 2 illustrates the complete setup used during data collection.

 

Figure 2. Overview of the real-world setup used for experiments.

At the beginning of each recording session, the subject adopted a T-pose posture,
with both arms extended horizontally and palms facing downward. This standardized
position served as the initial reference for all subsequent movements and was used to align
the coordinate systems of the IMU and MoCap data. Starting from a well-defined T-pose
ensured consistent orientation across both systems and facilitated the synchronization of
reference frames during post-processing.

Following this posture, the subject performed a series of continuous upper limb
motions at a natural speed and amplitude. These movements included:

• A shoulder rotation around the Z-axis (Yaw), shown in Figure 3.

Figure 3. Illustration of the shoulder yaw (Z-axis) movement performed during validation.

• A shoulder flexion/extension around the X-axis (Roll), shown in Figure 4.
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Figure 4. Illustration of the shoulder roll (X-axis) movement performed during validation.

• An elbow flexion/extension primarily around the Z-axis (Yaw), shown in Figure 5.

Figure 5. Illustration of the elbow yaw (Z-axis) movement performed during validation.

The sequence was designed to reflect a broad range of typical daily activities, ensuring
sufficient variability across all rotational degrees of freedom to support robust model training.

Ground-truth joint angles were obtained from the OptiTrack® motion capture system
using Motive’s embedded biomechanical solver. This software computed shoulder and
elbow joint angles based on the 3D trajectories of the reflective markers. The resulting
time series of joint angles served as the reference targets for training and evaluating the
proposed learning models.

2.4. Data Preprocessing

The raw data acquired from the wearable sensors consisted of acceleration, angular
velocity, and quaternion signals from each IMU. Static angles were initially captured in
quaternion format because the sensor fusion algorithm implemented in the Mbientlab
MetaMotionRL devices (version r0.5) with firmware-enabled 9-axis sensor fusion, yields
more accurate orientation estimates when the data is exported directly in this format.
In contrast, exporting orientation directly as Euler angles from the device introduced
noticeable inaccuracies. Therefore, the data was first collected in quaternion form and
subsequently converted into Euler angles for model training. Preliminary experiments
using quaternions as training targets yielded poor results, since the networks struggled to
preserve the unit norm required for valid quaternions, and their abstract 4D representation
limited the model’s ability to learn meaningful geometric relationships. Euler angles
provided a more interpretable and effective representation for the estimation task.

To prepare this data for use in neural network models, a structured and multi-stage
preprocessing pipeline was developed, encompassing data synchronization, trimming,
subsampling, segmentation into temporal windows, and normalization. This pipeline is
illustrated in Figure 6.
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Figure 6. Data preprocessing pipeline for the proposed framework. (a) Describes the processing
of MoCap data used to generate the target joint angles for the neural networks. (b) Describes the
processing of IMU signals.

2.4.1. Type of Measured Data

Each IMU sensor recorded triaxial accelerometer data (g), gyroscope data (◦/s), and
quaternion orientation data (W, X, Y, Z). A separate CSV file was generated for each signal
type and each sensor.

2.4.2. Synchronization and Trimming

Data acquisition was initiated first with the three IMU sensors. After a 5 s delay to
ensure all sensors were actively recording, the MoCap system was started. This approach
ensured that the MoCap system provided a consistent and precise timestamp reference to
align all IMU data streams. During preprocessing, the IMU files were temporally synchro-
nized by aligning their internal timestamps to the MoCap start time. Once synchronization
was achieved, all data streams were trimmed to match the duration recorded by the MoCap
system. Since the OptiTrack® Motive software allows configuration of a fixed trial duration,
this ensured all signals were aligned and had identical length. Notably, IMU recorded a
few extra seconds at the end due to delayed manual stopping; trimming ensured these
were discarded, resulting in consistent frame alignment across all devices.

2.4.3. Subsampling

Mbientlab sensors record quaternions at a fixed sampling rate of 100 Hz, while ac-
celerometer and gyroscope data were configured to operate at 50 Hz. Additionally, the
OptiTrack® motion capture system provided ground-truth joint angles sampled at 50 Hz.
To ensure temporal consistency across all input and target signals, quaternion data were
subsampled to 50 Hz by retaining every other sample.

2.4.4. Filtering

A low-pass Butterworth filter (fifth-order, cutoff frequency = 5 Hz) was applied to
the accelerometer and gyroscope data to attenuate high-frequency noise. This cutoff
frequency was selected to preserve the dominant frequencies associated with voluntary
human limb motion, which typically fall below 6 Hz [26]. In biomechanics, low-pass
filtering is commonly applied to both kinematic and kinetic data to improve signal quality
and reduce noise. Common cutoff frequencies range from 3 to 10 Hz [27], with 6 Hz
often used as a representative value, as seen in tools like OpenSim [27,28]. The filter was
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implemented using the filtfilt function to achieve zero-phase distortion. Quaternion data
were not filtered.

2.4.5. Tensor Preparation and Normalization

The recordings were loaded and concatenated into a unified dataset. The input
features included yaw, pitch, and roll (transformed Euler angles from quaternions), angular
velocities (ωx, ωy, ωz), and linear accelerations (ax, ay, az) from each IMU sensor, resulting
27 columns across the chest, right wrist, and left wrist sensors. The output (target) variables
were 10 joint angles derived from the MoCap system: 3 degrees of freedom (DOF) at each
shoulder and 2 DOF at each elbow.

Min–max normalization was applied independently to the input and output variables
using the MinMaxScaler from scikit-learn. The scaler was fitted on the training data and
reused to normalize the validation data and later to inverse-transform the model outputs
during evaluation.

2.4.6. Sliding Window Design

The normalized data were segmented into overlapping temporal windows of
50 frames (corresponding to 1 s of data at 50 Hz) using a stride of 5 frames as shown
in Figure 7. This configuration results in a 90% overlap between consecutive windows,
ensuring high temporal continuity across samples. The high overlap also helps preserve
dynamic changes between windows, particularly important in short sequences where
rapid joint movements occur. This decision was especially beneficial given the reduced
number of sensors and the system’s low observability, as it increased the number of training
samples and improved the model’s ability to capture sequential dependencies and postural
transitions. While lower overlaps (e.g., 50% and 25%) were tested and yielded acceptable
and poor results, respectively, 90% consistently led to better performance. Overall, this
setting promoted generalization and mitigated overfitting by exposing the model to more
nuanced motion patterns.

Figure 7. Input tensor representation used in the CNN-LSTM architecture. The input consists
of a window of 50 and 9 features per sensor, including Euler angles, angular velocities, and
linear accelerations.

Following the windowing step, the output tensors were trimmed to compensate for
the shift introduced by the convolutional operations within the CNN-LSTM architecture.
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This alignment guaranteed consistency between the sequence length of the inputs and the
targets. A detailed explanation of this architectural adjustment is presented in Section 2.5.

2.4.7. Data Split

After preprocessing and tensor construction, the data was divided into training and
validation sets. Five of the six available recordings were used for training, while the other
one was exclusively reserved for validation. This take-independent split ensured that the
validation set contained motion patterns not directly seen during training, allowing for a
more realistic assessment of the model’s generalization ability. The resulting split produced
approximately 30,000 training frames and 6000 validation frames after windowing.

With the dataset structured for training and validation, the next step involved de-
signing and evaluating neural network architectures capable of learning the complex
relationship between the multivariate inertial inputs and the corresponding joint angles.
Two deep learning models were assessed for this task: a CNN-LSTM network and a
BLSTM network.

2.5. Comparative Analysis of Architectures

The CNN-LSTM and BLSTM architectures were assessed to estimate upper limb joint
angles from inertial data; however, they differ in structure, computational complexity, and
learning dynamics, which impact their respective advantages and limitations.

The CNN-LSTM model leverages convolutional layers to extract local spatiotemporal
features from segmented IMU signals before passing them to the LSTM layers. This
hierarchical structure enables effective encoding of short-term dynamics and reduces
the dimensionality of the input prior to sequential modeling. Its use of 2D convolution
allows for localized feature learning across both sensor modalities and time, promoting
generalization while keeping the model relatively lightweight. Moreover, the presence
of a CNN front-end introduces a degree of robustness to noise and spatiality, helping the
model focus on motion-relevant features [29]. However, the choice of kernel size and stride
introduces a shape mismatch between input and output sequences, requiring architectural
adjustments and additional processing steps such as target cropping.

In contrast, the BLSTM model eliminates the need for convolutional preprocessing by
directly operating on a flattened representation of the IMU signals. Its bidirectional nature
allows it to access both past and future motion trends within the input window, enabling
potentially more accurate estimation in temporally ambiguous situations [30]. This ability
to integrate broader temporal context may improve performance in scenarios with delayed
responses or nonlinear movement transitions. However, the absence of a CNN component
also means that the model may be more sensitive to noise or irrelevant features, as it lacks
an explicit mechanism for spatial feature extraction.

Overall, while the CNN-LSTM model offers a more compact and interpretable ar-
chitecture that balances performance with computational efficiency, the BLSTM provides
richer temporal modeling capabilities that may prove advantageous in tasks requiring
higher sensitivity to motion context.

2.6. Neural Network Architectures

The selection of architectural parameters, such as the number of layers, kernel size,
and hidden units, was selected based on related works and optimized through manual
configuration adjustments validated experimentally. Several configurations were tested
iteratively, adjusting hyperparameters such as filter size, dropout rate, and the number of
recurrent layers until stable convergence and low validation error were achieved. These
decisions were also informed by related works in joint angle estimation using IMUs. The
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following subsections describe the final architectures and training strategies adopted for
each model.

2.6.1. Convolutional-Long Short-Term Memory (CNN-LSTM) Architecture

The model input consisted of 50-frame temporal windows. For each sensor, nine
features were included: three Euler angles, three angular velocities, and three linear
accelerations, resulting in a total of 27 features per frame. Each input sample was thus
represented as a tensor of shape (50, 27), which was expanded to (1, 50, 27) to comply with
the input requirements of 2D convolutional layers. The overall structure of the CNN-LSTM
architecture is shown in Figure 8.

Figure 8. Architecture of CNN-LSTM regression model.

The first layer of the network was a 2D convolutional layer with 128 filters and a
kernel size of (3, 10), applied without padding. This kernel spanned three timesteps and ten
feature dimensions, enabling the model to extract spatiotemporal correlations across the
time and all sensors. Due to the convolution operation, the time dimension was reduced
from 50 to 48 frames. To maintain consistency between input and target sequences, the
ground truth joint angle series was trimmed by two frames during preprocessing, as
mentioned in the previous section.

Following the convolutional layer, a dropout layer with a rate of 0.3 was used to
mitigate overfitting by randomly deactivating neurons during training. The output of the
convolutional stage was reshaped from (batch, 64, 48, 1) to (batch, 48, 64), making it suitable
for input to a recurrent layer.

To capture the temporal dynamics of the motion, the network employed a single LSTM
layer with 256 hidden neurons. This layer processed the sequential features extracted by
CNN and learned temporal dependencies across the 48-frame sequence. The output
of the LSTM at each timestep was passed to a fully connected layer that mapped the
256-dimensional hidden state to 10 outputs per frame, representing the joint angles of
interest. The target labels for the neural networks correspond to the joint angles at the final
frame of each shifting window. This strategy is consistent with established practices in the
literature, where the output label is aligned with the last timestep of the input sequence,
ensuring temporal consistency between the observed inertial dynamics and the predicted
joint angles [15].

The target angles correspond to the rotational components (Yaw, Pitch, and Roll) of
the shoulder and (Yaw and Pitch) of the elbow, for both left and right arms. This results
in a total of 10 predicted joint angles per window, representing the angular orientation of
each joint in the anatomical frame with respect to the initial T-pose posture.

The network was trained for 150 epochs using the Adam optimizer with a learning
rate of 1 × 10−5. A batch size of 50 was used, matching the temporal length of each input
window. The loss function employed was the Mean Absolute Error (MAE), selected for
its interpretability in degrees and its robustness to outliers compared to squared-error-
based metrics. Its exclusive use in this study ensured a simple and consistent evaluation
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framework across models and joints, prioritizing clarity and interpretability over the
inclusion of multiple statistical indicators.

To prevent overfitting, a dropout rate of 30% was applied between layers, and early
stopping was implemented during training based on the validation loss. This training strat-
egy enabled the model to gradually minimize the angular discrepancy between predicted
and ground-truth joint angles across all degrees of freedom.

2.6.2. Bidirectional Long Short-Term Memory (BLSTM)

To assess the impact of temporal context on angle estimation, an alternative architec-
ture was implemented using a BLSTM network. Unlike the LSTM, which only captures
dependencies in the forward temporal direction, the BLSTM processes the input sequence
in both forward and backward directions simultaneously. This dual traversal allows the
network to access past and future context at each timestep, which can be particularly
beneficial when the prediction depends on motion trends occurring before and after a
given frame.

In contrast to the CNN-LSTM model, the BLSTM architecture does not include con-
volutional layers; thus, the input tensor is not four-dimensional. Instead, the IMU data
are directly reshaped into a three-dimensional tensor of shape (batch, window size, fea-
tures), where the features dimension results from concatenating all sensor channels (i.e.,
acceleration, angular velocity, and Euler angles) across all devices, yielding an input tensor
of shape (batch, 50, 27). This flattened representation preserves the temporal structure of
the signal while providing the network with simultaneous access to all sensor signals. The
overall structure of the CNN-LSTM architecture is shown in Figure 9.

Figure 9. Architecture of the BLSTM regression model.

The BLSTM was composed of five stacked bidirectional LSTM layers, each with
512 hidden units per direction. Due to the bidirectional nature of architecture, the resulting
hidden state dimension was 1024 (512 forward + 512 backward). The output of the final
timestep was passed through a dropout layer (p = 0.3) and subsequently to a fully connected
layer that mapped the 1024-dimensional hidden representation to the 10 target joint angles.

This model was trained under the same conditions as the CNN-LSTM architecture:
150 epochs, a batch size of 50, and the Adam optimizer with a learning rate of 1 × 10−5.
The Mean Absolute Error (MAE) was also used as the loss function to maintain consis-
tency in evaluation. As with the CNN-LSTM model, a 30% dropout rate was introduced
between layers, and early stopping was employed based on the validation loss to mitigate
overfitting. This consistent training configuration facilitated a fair comparison between
both architectures.

While the BLSTM adds complexity and computational cost compared to its unidirec-
tional counterpart, its ability to incorporate future motion context into each prediction may
enhance generalization in scenarios with temporally ambiguous or noisy input sequences.
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This trade-off between temporal context and model efficiency is further explored in the
discussion section through a comparative analysis of results.

3. Results

To evaluate the performance of both neural network architectures, the validation was
carried out using a sequence not seen during training. As described in Section 2.3, this
recording included three specific upper limb movements:

• A shoulder rotation around the Z-axis (Yaw).
• A shoulder flexion/extension around the X-axis (Roll).
• An elbow flexion/extension primarily in the Z-axis (Yaw).

3.1. CNN-LSTM

To evaluate the CNN-LSTM model, complete predictions for each of the three selected
movements are shown alongside ground truth angles to illustrate the general behavior of
the network.

Figure 10 shows the model’s predictions for the three movements mentioned pre-
viously for the CNN-LSTM. The presented CNN-LSTM model demonstrates robust per-
formance in predicting joint angles using only wrist and chest sensor data, achieving
consistent prediction accuracy across multiple degrees of freedom. For both upper limbs,
the model exhibits high precision in estimating planar movements, with shoulder Pitch
errors as low as 3.67◦ (left) and 3.77◦ (right), and Roll errors measuring 5.08◦ (left) and 4.88◦

(right). These results indicate adequate capability in capturing fundamental movement
patterns with satisfactory accuracy. Rotational (Yaw) predictions show slightly higher but
still adequate performance, with shoulder errors of 8.58◦ (left) and 9.12◦ (right), and elbow
errors of 9.90◦ (left) and 9.98◦ (right), this is considered satisfactory given the complexity of
rotational kinematics and the minimal sensor configuration. The consistent performance
across both limbs demonstrates the model’s generalization capabilities. The close correspon-
dence between predictions and ground truth throughout most movement phases highlights
the effectiveness of the CNN-LSTM architecture in learning meaningful spatiotemporal
relationships from limited distal sensor data. It is important to note the model’s ability to
accurately reconstruct proximal joint angles without direct measurements from shoulders
or elbows, showcasing advanced pattern recognition capabilities.

3.2. BLSTM

The BLSTM model was evaluated using the same validation sequence as the CNN-
LSTM, allowing direct comparison under identical conditions.

Figure 11 shows the model’s predictions for the three movements mentioned previ-
ously for the BLSTM. The BLSTM network demonstrates effective performance in predicting
joint angles from limited sensor data, with particularly strong results for certain movement
types. For the right shoulder, the model achieves acceptable accuracy in Pitch estimation
(MAE: 5.09◦) and maintains good performance for Roll movements (MAE: 5.98◦). The
elbow Pitch predictions also show competitive results with an MAE of 6.82◦. While the Yaw
predictions for both shoulder (MAE: 17.07◦) and elbow (MAE: 19.66◦) exhibit higher error
values, these results remain significant given the inherent complexity of rotational kine-
matics and the minimal sensor configuration. The consistent performance across different
joint angles highlights the model’s ability to capture fundamental movement patterns, with
particularly accurate tracking of planar motions. The prediction curves closely follow the
ground truth, highlighting the BLSTM’s ability to capture temporal dependencies. Notably,
it reconstructs proximal joint angles using only wrist and chest sensors, demonstrating
strong pattern recognition despite the limited sensor setup.
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Figure 10. CNN-LSTM full prediction for the left (L) and right (R) arm. (a.R/L) Shoulder Yaw, (b.R/L)
Shoulder Roll, (c.R/L) Shoulder Pitch, (d.R/L) Elbow Yaw, (e.R/L) Elbow Pitch. Each sub-figure
shows a zoomed view of the side of the transition and the MAE at the corresponding bottom.
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Figure 11. BLSTM full prediction for the left (L) and right (R) arm. (a.R/L) Shoulder Yaw, (b.R/L)
Shoulder Roll, (c.R/L) Shoulder Pitch, (d.R/L) Elbow Yaw, (e.R/L) Elbow Pitch. Each sub-figure
shows a zoomed view of the side of the transition and the MAE at the corresponding bottom.
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The CNN-LSTM model demonstrated strong performance in planar motion prediction,
achieving MAEs of 3.67–5.08◦ for shoulder Pitch/Roll and 4.83–5.07◦ for elbow Pitch,
while Yaw predictions yielded higher errors (8.58–9.98◦). The BLSTM network showed
comparable accuracy in planar movements, with shoulder Pitch/Roll MAEs of 5.09–5.98◦

and elbow Pitch at 6.82◦, but exhibited increased Yaw prediction errors (17.07–19.66◦).
Both models successfully reconstructed joint angles using only wrist and chest data, with
the CNN-LSTM showing slightly better overall precision, particularly in rotational (Yaw)
estimations. The BLSTM maintained robust temporal tracking but displayed marginally
higher deviations in complex rotations, suggesting differences in handling kinematic
dependencies between architectures.

3.3. Architectures Computational Performance

To evaluate and compare the computational performance of the tested architectures,
key metrics such as the number of parameters, model size, average inference time per batch
and per sample, and GPU memory usage were measured. Table 1 presents a side-by-side
comparison between the CNN-LSTM and BLSTM models.

Table 1. Computational performance comparison between CNN-LSTM and BLSTM.

Metric CNN-LSTM BLSTM

Total Parameters 1,461,002 27,424,778
Model Size (MB) 5.58 104.62

Avg. Inference time per batch (ms) 15.894 43.456
Avg. Inference time per sample (ms) 0.318 0.869

Max GPU memory used (MB) 166.21 1122.33

Both models were evaluated under the same conditions using a batch size of 50 and a
window stride of 5 (90% overlap). The results show that the CNN-LSTM model is more
computationally efficient than the BLSTM across all measured aspects. It required fewer
parameters, occupied less storage, had faster inference times, and consumed less memory
during execution.

4. Discussion and Future Work

The results from both the CNN-LSTM and BLSTM architectures demonstrate promis-
ing capabilities for joint angle prediction using minimal sensor configurations, with each
showing distinct strengths. The CNN-LSTM achieved superior performance in planar
movements (Pitch/Roll MAEs: 3.67–5.08◦) and notably lower Yaw errors (8.58–9.98◦) com-
pared to the BLSTM (Pitch/Roll MAEs: 5.09–5.98◦; Yaw: 17.07–19.66◦). However, these
higher Yaw errors can be attributed to the nature of sensor placement and the reduced
observability of axial rotations in this configuration, which limits the detectable range and
angular variation in the Yaw axis. Additionally, abrupt motion transitions involving rapid
changes in velocity or acceleration were observed to be more error-prone, as such dynamic
segments are more difficult for the models to capture, especially under reduced sensor
input. Although no explicit segmentation by motion phase was performed, qualitative
inspection of the predicted trajectories supports this observation.

On the other hand, the CNN-LSTM model demonstrated significantly better computa-
tional efficiency compared to the BLSTM. It required fewer parameters, reduced the model
size, and lowered inference time and memory usage by a considerable margin. These
differences reflect the higher complexity and resource demands of the BLSTM architecture.
While BLSTM may offer benefits in modeling temporal dependencies due to its bidirec-
tional structure, the CNN-LSTM achieved a better balance between computational cost
and performance.
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This suggests that the CNN-LSTM’s hybrid spatial-temporal feature extraction may
better handle rotational kinematics. Both models effectively reconstructed proximal joint
angles from distal sensors, validating their potential for wearable applications.

Future work will be focused on integrating lower limbs estimations and optimizing
model architectures to combine the strengths of CNN-LSTM and BLSTM, potentially
through hybrid designs or attention mechanisms, to further reduce errors in rotational
axes. Architectural refinements could integrate CNN-LSTM’s spatial feature extraction
with BLSTM’s bidirectional temporal modeling to further reduce Yaw errors. Targeted data
augmentation, emphasizing rotational movements, could enhance generalization for both
models. Additionally, addressing the current limitation of using a single subject, future
validation will involve multi-subject datasets, including publicly available human activity
recognition (HAR) datasets [31] that capture a broader range of daily movements and
inter-subject variability. Although upper limb motion generally exhibits lower variability
across individuals compared to lower limb movements, techniques such as dropout and
early stopping were applied during training to mitigate overfitting. To further enhance
model robustness, transfer learning strategies could also be explored to adapt a pretrained
model to new subjects, reducing the need for extensive retraining while mitigating subject-
specific biases.

Hybrid approaches incorporating attention mechanisms and biomechanical con-
straints may improve rotational tracking. Attention could allow the model to assign greater
weight to rotational components where errors are typically higher, enhancing its ability to
focus on the most informative features. In parallel, introducing biomechanical constraints
based on typical human joint ranges could guide the network toward more anatomically
plausible predictions, acting as a form of regularization. Together, these strategies would
support more accurate and consistent angle estimation, even under sensor limitations
and diverse motion patterns. Sensor fusion techniques, such as sparse upper-body sen-
sor integration, could be explored to disambiguate complex rotations while preserving
wearability. The models’ complementary strengths also suggest potential for ensemble
methods or adaptive switching between architectures based on motion complexity. In po-
tential real-time applications, the CNN-LSTM architecture is more suitable due to its causal
structure and lower computational demands. In contrast, BLSTM relies on future context,
which limits its applicability in online scenarios; however, a short temporal buffer could
be introduced to access limited future frames, enabling near real-time performance with
minimal latency. Finally, validation should expand to diverse populations and real-time
implementations to solidify its clinical and industrial applicability. These advancements
would position such models as leading solutions for accurate, minimal-sensor motion
capture across rehabilitation, sports science, and human–computer interaction.

5. Conclusions

This study demonstrates that deep learning architectures can effectively estimate
upper-limb joint angles using only three IMUs placed on the chest and wrists, offering a
practical alternative to multi-sensor or optical motion capture systems. The CNN-LSTM
and BLSTM models both achieved competitive accuracy, with the CNN-LSTM excelling in
precision for planar movements and complex rotations (Yaw), while the BLSTM provided
smoother temporal predictions but exhibited higher errors in peak rotational estimations.
These results validate the feasibility of minimal-sensor configurations for joint angle recon-
struction, highlighting the CNN-LSTM’s superior spatial-temporal feature extraction and
the BLSTM’s robust sequential modeling. The findings underscore the potential of such ap-
proaches to bridge the gap between laboratory-grade accuracy and real-world wearability,
enabling applications in rehabilitation, sports science, and human–robot interaction.
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