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Trees play a crucial role in urban environments, offering various ecosystem

services that contribute to public health and human well-being. China has
initiated a range of urban greening policies to increase the number of urban
trees, but monitoring urban tree dynamics at a national scale has proven
challenging. Here, we used high-resolution nanosatellite images to quantify
urban tree cover in all major Chinese cities in 2019 and study changes in

tree cover between 2010 and 2019. We show that 11.47% of urban areas were
covered by treesin 2019, and 76% of the cities experienced anincrease in
tree cover compared with 2010. Notably, the increase in tree cover inthe
mega-cities of Shanghai, Beijing, Shenzhen and Guangzhou (6.64%) was
higher than thatin other cities analyzed. Tree cover increases also vary
between urban land use types, with public service (3.09%) and residential
areas (1.79%) having the highest values. The study employed a data-driven
approach toward assessing urban tree cover changes, showing clear signs of
overall increases that nonetheless do not benefit all cities equally.

China’s rapid urbanization during the past two decades has led to the
creation of millions of new houses and extensive impervious surfaces,
often at the expense of agricultural land and forests'’. Mega-cities
are often associated with diminished quality of life due to pervasive
environmental issues such as traffic congestion, air pollution and the
dominance of concrete landscapes’. To enhance the well-being and
living conditions of residents in Chinese cities, urban greening policies
have been implemented since 1992 and have been further promoted
since2000*°. For example, the ‘Ordinance for Urban Greening’ program
provides guidance on planning and establishing green spaces in built-
up areas’. Additionally, the ‘National Forest City’ program, launched
in 2004, emphasizes the promotion of urban forests as nature-based
solutions to contribute to achieving asustainable urban environment’.

These policies have prioritized the establishment of green spaces and
urban parks around public and residential areas, the plantation of trees
alongroads and the construction of urban ecological corridors*®. Trees
are a major component of greening policies and play a vital role in
urban environments, being placed in parks, yards, gardens and along
streets, thus serving as an essential element of urban life”®, Large urban
trees offer a range of ecological and socioeconomic benefits, such
as the mitigation of urban heat islands®'°, reduced energy consump-
tion", increased carbon sequestration®, air purification®, reduced
water runoff'*, shade” and biodiversity'®, consequently improving
humanwell-being and health'?. Several studies have documented that
urban trees provide benefits for municipalities and their residents, and
local, regional and global initiatives have promoted the planting and
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Fig.1|Mapping urban tree canopies in China using PlanetScope imagery from 2019. a, Trees in Beijing at 3-mresolution. b, Tree cover in Beijing aggregated to1 ha
(100 m x100 m). ¢, Zoom-in of PlanetScope true-color images and urban trees mapped at 3 m from 2019.

preservation of urbantrees®”. Other, shorter vegetation types, such as
shrubs and grasses, do not provide such benefits to the same extent'®.

Recentstudies observed a considerable greening of urban areasin
Chinaover the past decade from the use of coarse resolution satellite
time series”. Some studies have further documented that the green-
ing of urban core areas has balanced vegetation losses associated
with urbanization” and suggested that the greening of urban areas is
related to greening policies®*. However, a greening trend is not neces-
sarily related to changesin tree cover, and it remains unclear whether
urban tree cover has increased. This is because cities represent com-
plex and heterogeneous landscapes where vegetation appears with a
patchy structure®. Urban trees are often scattered irregularly, with
gapsbetween them, and the signals from green grasses, trees, shadows
andbuildings are often merged in publicly available satellite images?.
Those are characterized by a spatial resolution >10 m, limiting their
applicability to map urban trees, which requires commercial, high-
resolution datasets®. Consequently, tree cover dynamics in Chinese
cities are not well quantified, and how tree cover dynamics is balanced
between cities in relation to environmental conditions and urban
development at the national scale is also not known.

The growingavailability of submeter-resolutionimages fromaerial
campaigns or commercial satellites, such as WorldView or Gaofen-2,
as well as lidar data enables monitoring of urban trees* >, but these
images are expensive and typically not available at repeated time
steps at city or national scale. This limits their applicability for large-
scale urban tree mapping, and only a few countries have conducted
nationwide inventories of urban trees*-*, which moreover only rep-
resent snapshotsintime. The advent of images from the PlanetScope
nano-satellite constellation, which provides daily global imagery at a
resolution high enough to identify single trees (- 3-5 m), represents
an emerging alternative for such large-scale mapping”-”. It has been
shown that these images can support the mapping of individual trees

at continental scales®®, but the short period of data availability (since
2017) makes them unfit to study changes over longer time periods®.
Here, we complement the PlanetScope satellite constellation with data
from RapidEye (-5 m), providing acomparable product since 2010, and
uncover the changesintree cover across major cities of Chinabetween
2010 and 2019. In contrast to previous studies"”, this study goes beyond
the mapping of ‘urban greening’, by specifically targeting urban trees.

Results

Uneven distribution of urban tree cover across China’s cities
We used 3-m-resolution PlanetScope satellite imagery from 2019 cover-
ing all Chinese cities with an urban area larger than 50 km? (242 cities;
see Methods for the definition of urban areas), summing up to a total
area of 51,882 km?. We trained a deep learning segmentation model*°
with tree labels corresponding to an area of 209 km? (Supplementary
Table 1and Supplementary Fig. 1a) and mapped urban tree canopies,
including trees along roads, in parks and in private gardens (Fig. 1) at
alevel of detail that was previously only possible for single-city sur-
veys using submeter-resolution imagery®* or lidar*. Our map can
capturesingle trees and small tree clusters classified as ‘built-up’areas
in contemporary land cover products® (Fig. 1c and Extended Data
Table 1). We find that 41.94% of the mapped trees and tree-canopy
clusters were smaller than 100 m? (Supplementary Fig. 2), which is
likely to be missed when using satellite imagery with resolution >10 m
(Extended DataFig.1).

At the city level, the mean urban tree cover in the 242 large cities
of Chinais 11.47% (model performance PlanetScope: R? = 0.90, bias of
0.37%),and atotal area of 5,951 km?is covered by urban trees (Fig. 2 and
Table 1). Urban trees are not evenly distributed among cities (Fig. 2).
We grouped cities into five classes according to the city population
sizes® (Table1). Mega-cities have a higher mean tree cover as compared
withlarge and medium-size cities (Table 1, Fig. 2a,b and Supplementary
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Fig.2|Urban tree cover at city level in 2019. a, Urban tree cover for 242 cities.
Each city is represented by a circle whose size denotes the total urban area
(frequency plot of urban tree cover, n = 242 cities). b, The relative importance

of explanatory variables influencing the spatial pattern of urban tree cover at
city level in 2019 using a factor detector analysis (Q value) (significance tested
withatwo-sided Pvalue: **P < 0.01;*P< 0.05; NS, P> 0.05)***. ¢, Urban tree cover

Mean temperature (°C)

grouped by total GDPin 2019 (crosses, mean value; line, median value). In the
box plots, the lower and upper box limits are the 25th and 75th percentiles, the
central lineis the median, and the upper (lower) whiskers extend to1.5and -1.5
times theinterquartile range. d, Urban tree cover in 2019 related to annual mean
temperature and annual precipitation (n = 242). Colors denote urban tree cover
(n=242cities).

Fig. 3b): The four mega-cities Shanghai (15.80%), Beijing (22.96%),
Shenzhen (17.44%) and Guangzhou (17.46%) have on average a tree
cover of 18.41%, and the 11 super-large cities have on average a tree
cover of12.44%, for example, Wuhan (11.04%), Tianjin (7.01%), Nanjing
(21.64%) and Foshan (11.75%) (Table 1and Supplementary Fig.3b). The
15typellarge cities have on average a tree cover of 11.64%, and the 31
typelllargecities have an average tree cover of 11.28% (Table 1). The 180
smalland medium-sized cities with a population <1 million people show
the highest intraclass variability in urban tree cover, with some cities
exhibiting the highest and lowest levels of urban tree cover (Table1and
Supplementary Fig. 3). We then analyzed how different factorsimpact
onurbantree cover using a factor detector analysis****. We found that
the city-level gross domestic product (GDP) has the strongest explana-
tory power, surpassing the influence of GDP per person, whichreflects
that large and wealthy cities generally have a high tree cover (Fig. 2b,c).

Spatially, the urban tree cover varies across China, with cities in
the southwest (16.70%), south-central (12.93%) and northeast (12.68%)
regions having a higher urban tree cover than the national average
(Supplementary Fig. 3a). On the contrary, citiesin northwestern China,
characterized by dry climatic conditions, show the lowest urban tree
cover (6.25%) (Fig. 2a and Supplementary Figs. 3 and 4). Examples
of cities with low urban tree cover are Xilingol (2.14%), Yulin (2.16%)
and Aksu (2.18%), all characterized by dry climatic conditions and
beinglocated atahigh elevation (Fig. 2b,d and Supplementary Fig. 4).

Climatic and topographic factors, such as mean temperature and
elevation, also represent important explanatory factors in the factor
detector analysis®** (Fig. 2b,d).

Changes inurban tree cover between 2010 and 2019
Weacquired high-quality RapidEye satelliteimagery for 144 representa-
tive major cities and mapped urban tree canopy cover for 2010 (the
earliest phase of the lifetime of the satellite constellation) using the
same deep learning framework as applied for the PlanetScope images
(Methods and Extended Data Figs. 1 and 2). We report net changes
(including gains and losses) in tree cover within areas that have already
beenurbanin2010 andalso for areas thathave been converted tourban
from other land use types during 2010-2020 (new urban areas) (Table
1and Fig. 3). RapidEye provides spatial resolution (-5 m) and image
quality comparable to PlanetScope (-3-5m, resampled to 3 m (ref.
29)) (Extended Data Figs. 1and 3 and Methods), but at a less frequent
revisiting time, meaning that not all the cities analyzed in 2019 could
be covered in 2010 (Methods).

When considering urban boundaries from 2010, at the national
scale, urban tree cover increased for 86.80% of the cities, from 7.53%
(performance of the RapidEye model: R? = 0.84, bias of -0.99%) in
2010t013.92%in 2019 (Fig. 3a). As also observed for urban tree cover
in 2019, the changes in tree cover are not homogeneous across cit-
ies and are related to the city size: The four mega-cities Shanghai
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Table 1| Urban tree cover and population density in 2019 and tree cover changes (from 2010 to 2019) grouped by city

population sizes®*

Population  Cities 2019 Change from 2010 to 2019
illi
fon;:sg:lns) Count  Population Urban Tree Count Changein Urban area (km?) Tree cover (%)
density in 2019 area(km?) cover (%) population density (bias of 1.07%)
(personskm™) (bias of (personskm)
0.37%)
<1 Small and medium- 181 6,350 18,950 11.28 100 732 5,949 (10,790) 414 (1.00)
sized cities
(1,3) Type Il large cities 31 5,453 8,733 11.08 21 768 3,547 (5,923) 5.2(3.21)
(3,5) Type | large cities 15 6,681 7818 11.64 9 1018 3,059 (4,834) 5.01(2.53)
(5,10) Super-large cities n 6,544 9,403 12.44 10 847 6589 (8,718) 0.39(0.27)
>10 Mega-cities 4 6,605 6,574 18.41 4 989 5148 (6,575) 713 (6.64)
China 242 6,283 51,544 1.47 144 776 25,048 (36,906) 6.39(4.57)

Note that the change analysis includes fewer cities owing to the lower number of high-quality RapidEye images available in 2010. We report changes based on urban area boundaries in
2010, excluding areas that have been converted to urban during 2010-2019 (as defined in Methods), and also for urban areas in 2020 in parenthesis, which includes urban expansion areas

during 2010-2020.

(9.56%), Beijing (8.68%), Shenzhen (5.12%) and Guangzhou (5.12%)
havethe highestincrease (on average, 7.13%) (Fig. 3aand Table1). The
changes in the remaining four classes of city groups were on aver-
age lower (0.39-5.20%), with a high variability for the class covering
small and medium-sized cities (Table 1 and Supplementary Fig. 4d).
Urbantree cover decreasedin13.2% of all cities, for example, in Zheng-
zhou (-4.54%) and Tianjin (-2.44%) (Fig. 3a). Looking into new urban
areas (that changed from nonurban to urban during 2010-2019), it
becomes clear that the tree coverincreases happenedlargely inareas
that had already been urban in 2010 (Fig. 3b). In particular, small and
medium-sized cities have seen a considerable tree cover decrease
(-2.85%) innew urban areas, while areas that were already urbanin2010
showanincreaseintree cover (4.14%) (Fig.3b). Only mega-cities show
astrongtree coverincreaseinnew urbanareas. The varying tree cover
changesinnew urban areas may berelated to the land cover types that
werereplaced by urban expansion during 2010-2019, which was mainly
croplandinthe case of mega-cities (Fig. 3c and Supplementary Fig. 5).

We then studied how different factors impact urban tree cover
changes (including also new urban areas) (Fig. 3d). Temperature and ele-
vation have the strongest explanatory power for the observed changesin
tree cover, surpassing theinfluence of GDP. This shows that geographic
conditions should be considered when evaluating tree cover changesin
urbanareas (Fig. 3d and Supplementary Figs. 3, 4). We further compared
the transition of urban tree cover from 2010 to 2019 grouped into classes
of percentage tree cover for 1-hagrids (Fig. 3e and Supplementary Fig. 6).
Thel-hagridswithtree coverlargerthan50% have seenaslight decrease
(0.45%), probably reflecting forests that were replaced by impervious
surfaces. In contrast, grids with a tree cover of 0-1% in 2010 decreased
by 9.45%, possibly reflecting the impact of greening activities or the
transition of agricultural areasinto urban areas where tree cover is higher
thanontheformer croplands (Fig.3b,c,e). Grids with tree cover of 1-10%
increased by 4.10%, grids with10-25% tree cover increased by 3.95% and
grids with tree cover 25-50% increased by 1.85% (Fig. 3e).

Tree cover for different urban land use types

We aggregated mean tree cover for different urban land use types on
the basis of land use categories from 2018* (Fig. 4a—d and Methods).
Our results show that the highest tree cover was found in public man-
agement and service areas (20.35%), while commercial areas had the
lowest tree cover (6.11%) in 2019 (Fig. 4d). Transportation areas had a
mean tree cover of 11.46%, industrial areas had 9.04% and residential
areashadatree cover of12.67% (Fig. 4d). Mega-cities have considerably
moretreesin public and residential areas as compared with large and
small cities (Fig. 4d). Considering the diversity of residential areas,
we used the year when the areas were converted from other land use

forms (such as cropland) to built-up (on the basis of annual maps on
impervious surface”), toreflect the construction year (Fig. 4b,c). When
comparingthe currenttree cover of residential areas built in different
time periods, we found that residential areas built before 1995 have a
relatively low tree cover (10.98%) (Fig. 4e,f). Residential areas built after
1995 have a tree cover of 15.34%, which could be an indication of the
effectiveness of urban green management implemented after 1992 (Fig.
4f). Residential areas built after 2015 have a lower tree cover (5.23%),
probably because trees in newly built residential areas have not been
planted or are still too small to be detected by the satellite data. Public
management and service areas had the greatestincrease in tree cover
(+3.01%) for 2010-2019, and also commercial areas have a positive tree
cover trend (+1.07%), probably due to newly established urban parks
(Fig. 4g). Tree cover in transportation and industrial areas (-0.22%
and -0.57%, respectively) show a decrease, reflecting that greening
activities rarely target these areas (Fig. 4g).

To study the changes in tree cover within all built-up areas, we
used annual maps of impervious surfaces to define the year in which
areas were converted into built-up areas (Methods, Fig. 4a-cand Sup-
plementary Figs. 7 and 8). Areas converted into built-up before 2000
saw a moderate increase in tree cover by 4% from 2010 to 2019 (Fig.
4h), while built-up areas converted between 2006 and 2010 showed
amuch higher increase in urban tree cover (5%). For built-up areas
converted after 2010, smaller increases or even decreases in tree cover
were observed, probably because trees have not been planted or are
still too small to be captured by the satellite system®?®, Built-up areas
converted after 2016 showed a loss of tree cover. These numbers sug-
gest thattree planting canbalance the initial loss of trees when built-up
areas are converted from other land cover forms.

Atthecity level, most mega-and large cities that have experienced
rapid urbanization after 2010 show an increase in urban tree cover
within new built-up areas (Fig. 4j). A few large cities with new-built-up
areas >100 km? have experienced a decrease in tree cover, including
Wuhan (-2.03%), Nanchang (-0.74%), Hangzhou (-4.72%) and Chong-
qing (-6.28%) (Fig.4j and Supplementary Table 2). For example, Beijing
shows an increase of 7.8% in urban tree cover in new built-up areas
(396 km?), probably owing to the plantation of trees* (Supplementary
Fig. 7). There is, however, also a number of small cities, such as Enshi
(Hubei Province), which have experienced a net loss of tree cover in
urban areas (-20%) without any greening (Supplementary Fig. 8).

Discussion

Urbanizationin China promotes economic growth**and poverty reduc-
tion* but can at the same time cause the expansion of built-up areas and
loss of naturallands’, which challenges the sustainable development of
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Fig. 3| Changesin tree cover inurban areas (2010-2019). a, City-level spatial
patterns and frequency plot of changes in urban tree cover for areas that were
already urbanin 2010 (n =144).b, Changes in urban tree cover for areas that were
already urban in 2010, and also for areas that have been converted into urban
during 2010-2019 (new urban areas) for different city size groups. ¢, Loss of
nonurban lands from new urban areas (2010-2020) based on GlobeLand30 land
cover maps*.d, The relative importance of explanatory variables influencing

the spatial pattern of changes in urban tree cover using a factor detector analysis
(Qvalue) (significance tested with a two-sided Pvalue: **P< 0.01; *P < 0.05; NS,
P> 0.05)***. e, Transitions of tree cover (grouped into intervals of percentage
cover per hectare) from 2010 to 2019 for 1-ha grids in urban areas (n = 3,531,113).
Note thatd and e are based on both areas that have already been urbanin 2010
and new urban areas.

Chinese cities*’. Urban trees are akey component of urban ecosystems
andapossible pathway toward improved quality of life in large cities***.
Consequently, the Chinese government has promoted the planting and
maintenance of urban trees, aiming at mitigating the negative effects
of urbanization and improving the urban environment*.

Previous studies have shown a widespread greening of Chinese
cities"'?, based on vegetation indices such as Normalized Difference
Vegetation Index (NDVI), but the somehow fuzzy variable termed
‘greenness’ includes also grasses and shrubs”. Greenness maps derived
fromvegetationindiceslack units and are less well suited for quantify-
ing changes, being merely indicative for reporting directions of change.
However, NDVI has often been used as a proxy for suggesting changes
in urban tree cover” . Interestingly, when comparing greenness
changes (reflected by Moderate-Resolution Imaging Spectroradiom-
eter (MODIS) NDVI) with tree cover changes during 2010-2019, we find
aweak relationship (= 0.10), indicating the limited use of greenness
as a proxy for urban tree cover changes (Supplementary Fig. 9), and
also high resolution Sentinel-2-based NDVI does not correlate well
with our tree cover maps at the city scale (Supplementary Fig. 10).
Our tree cover maps for 2010 and 2019 show a clear increase in tree
cover, probably as aconsequence of urban tree plantations (Extended
Data Figs. 2 and 4), but we also reveal that large cities, and in particu-
lar mega-cities, have a considerably higher tree cover and tree cover
increase as compared with the majority of cities in China. Our results
indicate that economic differences, but also climate and topography,
determine differencesin tree cover, which was also observed at aglobal
scale*®. Developed and wealthy regions, such as many cities in North
Americaand Europe (or more generally, the Global North), have made
substantial investments in the planting and maintenance of urban

47,48 49,50

trees”**, which arguably hasimproved the well-being of residents
In contrast, many densely populated cities, oftenlocated in the Global
South, have limited resources for maintaining or increasing tree cover,
which impacts people’s health, for example, via heatwaves®. These
effects are aggravated by climatic conditions: in dryer regions, the
costs of planting and managing urban trees is higher, but at the same
time, the health benefits, such as the cooling effect, are more urgently
needed®. Moreover, relative increasesin tree cover may also be related
totherate of urban expansionofacity during 2010-2019 (Fig. 4j). The
netdeclineintree coverinsomecitiesis probably related to new urban
areas where trees that were potentially planted have not yet reached a
size that makes them detectable by the satellite data used®*.

While the apparent success story ofincreased tree cover in China’s
cities is notable, a comprehensive evaluation of the sustainability of
urban tree management must consider the uneven distribution and
the influence of geographic and climate factors. Our study found
that the explanatory power of relative GDP is lower than that of the
total GDP, which indicates that increasing urban tree cover is not to
the same extent a priority of smaller wealthy cities as compared with
large cities. This concurs with the fact that larger cities exhibit the most
pronounced challenges associated with urban heat islands, marked
by elevated daytime temperatures, reduced nighttime cooling and
higher levels of air pollution. To address these issues, a potential miti-
gation strategy involves augmenting tree cover within urban areas.
Additionally, our research reveals a considerable variability in tree
cover among emerging cities, a phenomenon partially influenced by
climatic and geographic conditions. In particular, the low tree cover
in northwestern China, predominantly in developing medium and
small cities, may be attributed to the substantial costs associated with
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periods: before 1985 (e1),1999 (e2),2003 (e3) and 2016 (e4), illustrated by very-high-
resolution satelliteimages (WorldView, 2024 Maxar Technologies) and tree canopy
cover for 2019.f, Mean tree cover in residential areas in China during 1985-2018,
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confidence areas (gray color, 95%) were fit by the LOESS function. i, Changes in
tree cover and new built-up areas for 2010-2019 at the city level (n = 144). Colors
denote geographical zones. Mega-cities are labeled with city names.

planting and managing urban trees in these dry regions, for example,
owing to expenses related to irrigation®>. Therefore, in arid regions,

itis advisable to select drought-tolerant tree species or

alternative strategies suchasincorporating short vegetation to ensure
sustainable greening practices. With global warming, the maintenance
costs associated withirrigation might increase, which may require the
use of natural-based solutions that are adapted to the local climate
and the preservation of existing trees*. In response to these issues,

implement

the Chinese governmentreleased new guidelines on the development
of nature-based solutions for urban parks and forests in 2021, which
emphasize theimportance of natural-based planning and implement-
ing rainwater harvesting for irrigation as important components of
urban green management®.

Uncertainty within our study pertains to several factors. First,
the definition of urban areas is based on continuous built-up areas
using a previously published land cover map°®. The definition may
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exclude subcenters or outskirt towns, which could lead to different
values from our study as compared with national statistics that base
calculations on urbantree cover using administrative borders. Second,
the current tree cover change maps are only based on satellite data
from two years (2010 and 2019) and therefore do not provide annual
information that would give more detailed insights into the effects
of urban tree management. The tree cover assessments for these two
years were conducted by different satellite remote sensing systems, and
athorough intercomparison showed that there is no systematic bias
between the sensor systems. While the availability of the satellite data
used is lower before 2019, newer PlanetScope satellites now provide
dailyimages, allowing for a continuation of this work and a consistent
monitoring of annual urbantree cover after 2019. Third, the use of this
type of optical images limits the analyses to the metric of tree cover,
which does not provide information on tree size and species, whichis
however important in regards to the ecological services provided®’.
Finally, shadows cast by tall buildings may reduce the detectability
of trees to some extent. The inclusion of lidar, drone and field data
is essential to enhance the mapping accuracy and leverage further
information on urban trees. Future research should further examine
the driving mechanisms and consider various socioeconomic factors,
local climate zones and urban growth patterns.

Our study is based on commercial imagery, and the costs of
repeated analyses at the national level are currently not negligible for
alarge-sized country such as China. However, the spatial resolution
and coverage of publicly available data sources are not yet sufficient
for mapping trees as single objects, often leaving a high uncertainty
on mapping urban tree cover and in particular changes thereof. Nev-
ertheless, the costs of nanosatellite images are considerably lower as
compared with traditional commercial submeter-resolutionimagery,
and our study demonstrates that current technologies enable compre-
hensive monitoring of tree cover changes not only in Chinese cities
butworldwide. Thisis expected to facilitate evidence-based decision-
making and foster global collaborationin urban greening initiatives for
different countries as pledged by the 11th UN Sustainable Development
Goal (sustainable cities and communities) advocating for creating
green public spaces®®.

Methods

To calculate the change in urban tree cover over the past decades, we
defined urbanareas fromaland cover map and selected the major 242
citiesin China. We thenmapped urbantree canopies using PlanetScope
images from 2019 and RapidEye images from 2010 using adeep learning
framework and compared the dynamics of urban trees betweenc cities,
as well as for various urban land use types.

Defining urban areas

We selected 242 cities by their size (area =50 km?), using the ‘artificial
surface’class fromthe GlobeLand30 land cover mapin2020 provided
at 30 m spatial resolution®. Areas classified as grassland and forest
withinbuilt-up areas wereincluded asurban areas. We also use Google
Earthsatelliteimagery to double-check all urban boundaries, reviewing
misclassifications and confirming the urban areas as spatially continu-
ous built-up areas. Shijiazhuang City was omitted owing to the lack
of high-quality PlanetScope images for 2019. We then classified the
citiesinto five population size groups accordingto the latest standard
released by China’s State Council in2014* (Table 1and Extended Data
Fig.5),including 4 mega-cities (population >10 million), 11super-large
cities (population >5million), 15 type I large cities (population > 3 mil-
lion), 31 type Il large cities (population >1 million) and 181 small and
medium-sized cities (population <1 million) (Table 1and Extended Data
Fig.5). Thecities were divided into six geographical zones to compare
the regional differences in urban tree cover: northeast China (23 cit-
ies), north China (28 cities), east China (99 cities), south-central China
(63 cities), northwest China (18 cities) and southwest China (11 cities)

(Extended Data Fig. 5). High-quality RapidEye images from around
2010 covering 144 cities were used to study changesinurban tree cover.
These cities are representative for all climatic conditions, geographical
zones and different stages of cities (Extended Data Fig. 5). The same
urbanboundaries from 2020 were used to compare the net change of
tree cover. Moreover, we also defined urban areasin 2010 on the basis
of the built-up areas from the GlobeLand30 land cover map*in 2010.
We then compared the change in tree cover in areas that were already
urbanin 2010 and new urban areas, that s, areas converted from non-
urbaninto urbanland use during 2010-2020 (Supplementary Fig. 11).

Preprocessing PlanetScope and RapidEye images

We use PlanetScope images (four bands: red, green, blue and near-
infrared) at 3 m spatial resolution® to generate annual composites
for 242 cities in 2019. The images were acquired during a phenologi-
cal window where trees have green leaves but grasses have passed
their productivity peak, whichis defined using the MODIS phenology
product. For more details, see ref. 28. We organized and mosaicked raw
satellite scenes in grids of 1° x 1° (ref. 28). We then upsampled Planet
imagesfrom 3 mtol musingbilinearinterpolation to preserve the high
quality of the manual training samples and smooth the boundaries of
tree canopies®.

The RapidEye images have a spatial resolution of ~5m and are
acquired in five spectral bands, including blue, green, red, red-edge
and near-infrared. We used RapidEye images from around 2010, pre-
processed in the same manner as the PlanetScope images. Owing to
the lack of reliable metadata on cloud cover, we only kept cloud-free
RapidEye imagery for 144 cities by visually screening the images and
disregarding cities with low data quality. Furthermore, a few patches
within urban areas that had no available observations from either
PlanetScope in 2019 or RapidEye in 2010 were also excluded from the
analysis. This was done to ensure a consistent comparison of changes
in tree cover within urban areas.

Segmentation of tree canopies using deep learning

We used the framework fromrefs. 30,28 to segment tree canopy cover
using a convolutional neural network, specifically the U-Net architec-
ture. We trained two models, one for PlanetScope and one for RapidEye.
The models were trained with a batch size of 32 and a patch size of
256 x 256 pixels, and the Tversky loss was used as the loss function to
balance the commission (60%) and omission errors (40%) (see Sup-
plementary Table1for specific settings). The training labels included
individual tree crowns and clusters of trees and covered 209.29 km?
over 496 samplessites for 2019, including 34.74 km?*of trees distributed
across 69 cities (Supplementary Fig. 1a and Supplementary Table 1).
Forthe 2010 RapidEye data, we delineated tree canopies for 481 sites,
covering 74.15 km? across 57 cities (Supplementary Fig. 1b and Sup-
plementary Table 1) and trained a model in the same way as was done
for PlanetScope.

Evaluation and comparison

We compared our maps with an evaluation dataset consisting of 185
randomly selected 100 x 100 m patches with manual labels from Plan-
etScope and RapidEye images (Extended Data Fig. 6). The data used
for evaluation were not used for training the models or selecting the
hyperparameters. The PlanetScope model showed an overallaccuracy
of 0.90, a kappa coefficient of 0.85, a mean absolute error (MAE) of
0.37% and aroot mean square error (RMSE) of 7.69% (Extended Data
Fig. 6a—c,f). The RapidEye model achieved an overall accuracy of
84%, a kappa coefficient of 0.78, an MAE of -0.99% and an RMSE of
9.84% (Extended Data Fig. 6a,b,d,g). To evaluate the uncertainty of
the change between RapidEye and PlanetScope, we manually labeled
changes between 2010 and 2019 for 185 patches and compared the
results with the model predictions. Here, we obtained an R of 0.83, an
MAE of 1.07% and an RMSE 0f 8.99% (Extended Data Fig. 6e), suggesting
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that the intercomparison of tree cover maps derived from two differ-
entsatellite systemsis valid. The validation shows higheraccuracyin
areas with larger canopy cover compared with those areas with lower
canopy cover (Extended Data Fig. 6). Urban forests, with their larger
canopy areas, can be mapped with lower uncertainty than smaller,
irregularly scattered trees. We collected high-quality RapidEye images
from 2019 for six selected cities to study whether there are system-
atic differences between tree cover maps derived from PlanetScope
and RapidEye imagery, which would lead to biased change values for
2010-2019 (Extended Data Figs. 1and 3 and Supplementary Table
3). The results show that there is no obvious systematic bias (2.39%;
Supplementary Table 3).

We compared our tree cover map in 2019 with other tree cover
maps, including the MODIS Vegetation Continuous Fields Yearly Global
250m (MOD44B version 6) tree cover product® and the European
Space Agency (ESA) WorldCover 2020 tree cover map*. Our map
showed that MOD44B (spatial resolution of 250 m) underestimated
tree cover in cities by 9.52% (Extended Data Fig. 7a). The mean urban
tree cover of the Sentinel-2-based WorldCover map from 2020 was only
0.66% lower as compared with our map, but areas of low tree cover
were underestimated while areas of higher tree cover were overesti-
mated (Extended Data Fig. 7b). The results showed that 6.79% of the
tree cover in built-up areas was misclassified in the ESA WorldCover
2020 map (covering atotal 0f2,182.12 km?of urban areas in our study)
(Extended Data Table 1). The trees omitted by the ESA map are often
located in densely built-up areas, dominated by small and isolated
trees. Additionally, almost half of the areas in the class ‘tree cover’
were found to be misclassified, as it was found to be dominated by
shrubland, or grassland (Extended Data Table 1). The Esri land cover
map® underestimate urban tree cover, especially in the case of scat-
tered trees (Extended Data Fig. 1).

Urban tree cover for different urban land use types

We used the urbanland use category map from 2018 covering the whole
of China (EULUC-China*) to define different types of urban land use.
This map combines multiple datasets, including 10-m satellite images,
OpenStreetMap, nighttime lights, points of interest (POI) and Tencent
social big data®. EULUC-China classifies urban land into five classes:
residential, commercial, industrial, transportation, and public manage-
mentand service®. Public managementand service areasinclude land
used for administrative purposes, education, hospitals, publicsports,
cultural services, parks and green spaces. We examined the distribu-
tionand changeinurbantree cover for different urbanland use types.
We further defined the year when residential areas were converted
from otherland use types (such as cropland) using the annual maps of
artificialimpervious surface areas (GAIA)* (Fig. 4 and Supplementary
Figs. 6 and 7). We then assessed the urban tree cover in 2019 and the
change from 2010 to 2019 for residential areas grouped by the year
they were converted.

Development stages of built-up areas

Annual maps of global artificial impervious surface areas (GAIA) for
1985-2018* at 30 m resolution were used to identify in which year
areas were converted into built-up areas in 144 cities. The built-up areas
continuously expanded over the past decades, thereby indicatingina
spatially explicit way the expansion of newly constructed built-up areas
(Supplementary Figs. 6 and 7). The different starting years when first
observed asbuilt-up serve as anindicator of the development stage of
built-up areas. The mean tree cover in 2010 and 2019 for annual new
built-up areas was studied to compare the tree cover change in built-up
areas at various development stages.

Other datasets and factor detector analysis
We used GlobeLand30 (2010 and 2020)° to estimate the loss of non-
urban lands to new urban areas between 2010 and 2020. We used the

WorldPop population density maps®® from 2019 and 2010 to quantify
the population size for each city and changes in population density.
WorldPop provides the estimated number of people residing in a
1x1-kmgrid onthebasis of arandom forest model and aglobal dataset
including administrative unit-based census information, which has a
higher spatial resolution and update frequency than other population
datasets®’. The yearly precipitation and mean temperature datasets
arederived fromthe TerraClimate precipitation dataset for the period
1970-2015. The elevation for each city was calculated from the Shuttle
Radar Topography Mission version 3 product® at aresolution of 1arc-
sec (-30 m). The mean nighttime light map for 2019 was derived from
monthly nighttime datafromthe Visible Infrared Imaging Radiometer
Suite day/night band®® at 500 m spatial resolution. To indicate the
economic conditions, the total GDP of each city in 2019 was collected
fromthe Chinese Statistical Yearbook. We use the Q value of each factor
from afactor detector analysis® to quantify their relative importance
for explaining urbantree coverin2019 and changes in tree cover from
2010 to 2019. The geographical detector model was used to analyze
influencing factors, including spatially correlated variables®***. In
this study, we included GDP for 2019, GDP per capita, urban areas and
population size as socioeconomic factors, while mean temperature
and mean precipitation for each city were included as climate factors
to assess both the effects of urban tree cover in 2019 and the changes
inurban tree cover between 2010 and 2019. The optimal parameters-
based geographical detector model** was used to automatically select
the best way of stratifying the continuous values of the variables,
including equal distribution, natural breaks, quantile interval, geo-
metricinterval and standard deviationinterval. We then estimated the
importance of multiple factors with the stratified variables by using the
factor detector approach. Higher Qvalues indicate greaterimportance
inexplaining urban tree cover and its changes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The high-resolution tree canopy and changesintree cover are available
athttps://ee-xzrscph.projects.earthengine.app/view/china-urban-tree-
change. PlanetScope imagery and RapidEye imagery in urban areas
over China are available via Planet Labs at https://www.planet.com/
products/uponacquiringalicense agreement. The GlobeLand30 land
cover dataset (2010 and 2020) is available at http://www.globalland-
cover.com/home_en.html. The ESA WorldCover 2020 land cover map
is available at https://worldcover2020.esa.int/. Annual maps for the
global artificialimpervious areas (GAIA) dataset are available at http://
data.ess.tsinghua.edu.cn. The essential urbanland use categories map
in China (EULUC-China) is available at http://data.ess.tsinghua.edu.
cn/.VIIRS-DNB nighttime lightis available via the Google Earth Engine
at https://developers.google.com/earth-engine/datasets/catalog/
NOAA VIIRS DNB_MONTHLY V1 VCMCFG. GDP data are accessible
from the National Bureau of Statistics of the People’s Republic of China.
Populationdensity datafrom WorldPop in 2019 are available at https://
www.worldpop.org. The administrative boundaries in China are avail-
able via the national catalog service for geographic information at
https://www.ngcc.cn/.

Code availability
The code for the tree canopy detection framework based on U-Net is
availableviaZenodo at https://doi.org/10.5281/zenod0.3978185 (ref. 65).
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Extended Data Table 1| Mean tree cover by land cover class. Land cover classes are derived from the ESA WorldCover 2020
map”

Land cover type (ESA WorldCover PlanetScope tree cover
2020) Total area (km?) %)

Tree Cover 65291.74 48.26

Shrubland 806.22 23.02

Grassland 11301.15 14.24

Cropland 74083.89 17.59

Built-up 401606.23 6.79

Bare/sparse vegetation 85634.48 6.41

Permanent water bodies 9461.42 5.27

Herbaceous wetland 161.62 12.46
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