
Nature Cities

nature cities

https://doi.org/10.1038/s44284-025-00227-9Article

A strong but uneven increase in urban tree 
cover in China over the recent decade
 

Xiaoxin Zhang    1,2  , Martin Brandt    1  , Xiaoye Tong    1, Xiaowei Tong3,4, 
Wenmin Zhang1, Florian Reiner    1, Sizhuo Li    1, Feng Tian    5, Yuemin Yue3,4, 
Weiqi Zhou    6, Bin Chen    2,7, Xiangming Xiao    8 & Rasmus Fensholt    1

Trees play a crucial role in urban environments, offering various ecosystem 
services that contribute to public health and human well-being. China has 
initiated a range of urban greening policies to increase the number of urban 
trees, but monitoring urban tree dynamics at a national scale has proven 
challenging. Here, we used high-resolution nanosatellite images to quantify 
urban tree cover in all major Chinese cities in 2019 and study changes in 
tree cover between 2010 and 2019. We show that 11.47% of urban areas were 
covered by trees in 2019, and 76% of the cities experienced an increase in 
tree cover compared with 2010. Notably, the increase in tree cover in the 
mega-cities of Shanghai, Beijing, Shenzhen and Guangzhou (6.64%) was 
higher than that in other cities analyzed. Tree cover increases also vary 
between urban land use types, with public service (3.09%) and residential 
areas (1.79%) having the highest values. The study employed a data-driven 
approach toward assessing urban tree cover changes, showing clear signs of 
overall increases that nonetheless do not benefit all cities equally.

China’s rapid urbanization during the past two decades has led to the 
creation of millions of new houses and extensive impervious surfaces, 
often at the expense of agricultural land and forests1,2. Mega-cities 
are often associated with diminished quality of life due to pervasive 
environmental issues such as traffic congestion, air pollution and the 
dominance of concrete landscapes3. To enhance the well-being and 
living conditions of residents in Chinese cities, urban greening policies 
have been implemented since 1992 and have been further promoted 
since 20004,5. For example, the ‘Ordinance for Urban Greening’ program 
provides guidance on planning and establishing green spaces in built-
up areas4. Additionally, the ‘National Forest City’ program, launched 
in 2004, emphasizes the promotion of urban forests as nature-based 
solutions to contribute to achieving a sustainable urban environment5. 

These policies have prioritized the establishment of green spaces and 
urban parks around public and residential areas, the plantation of trees 
along roads and the construction of urban ecological corridors4,6. Trees 
are a major component of greening policies and play a vital role in 
urban environments, being placed in parks, yards, gardens and along 
streets, thus serving as an essential element of urban life7,8. Large urban 
trees offer a range of ecological and socioeconomic benefits, such 
as the mitigation of urban heat islands9,10, reduced energy consump-
tion11, increased carbon sequestration12, air purification13, reduced 
water runoff14, shade15 and biodiversity16, consequently improving 
human well-being and health12. Several studies have documented that 
urban trees provide benefits for municipalities and their residents, and 
local, regional and global initiatives have promoted the planting and 
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at continental scales28, but the short period of data availability (since 
2017) makes them unfit to study changes over longer time periods29. 
Here, we complement the PlanetScope satellite constellation with data 
from RapidEye (~5 m), providing a comparable product since 2010, and 
uncover the changes in tree cover across major cities of China between 
2010 and 2019. In contrast to previous studies1,19, this study goes beyond 
the mapping of ‘urban greening’, by specifically targeting urban trees.

Results
Uneven distribution of urban tree cover across China’s cities
We used 3-m-resolution PlanetScope satellite imagery from 2019 cover-
ing all Chinese cities with an urban area larger than 50 km2 (242 cities; 
see Methods for the definition of urban areas), summing up to a total 
area of 51,882 km2. We trained a deep learning segmentation model30 
with tree labels corresponding to an area of 209 km2 (Supplementary 
Table 1 and Supplementary Fig. 1a) and mapped urban tree canopies, 
including trees along roads, in parks and in private gardens (Fig. 1) at 
a level of detail that was previously only possible for single-city sur-
veys using submeter-resolution imagery23,25 or lidar31. Our map can 
capture single trees and small tree clusters classified as ‘built-up’ areas 
in contemporary land cover products32 (Fig. 1c and Extended Data  
Table 1). We find that 41.94% of the mapped trees and tree-canopy 
clusters were smaller than 100 m2 (Supplementary Fig. 2), which is 
likely to be missed when using satellite imagery with resolution ≥10 m 
(Extended Data Fig. 1).

At the city level, the mean urban tree cover in the 242 large cities 
of China is 11.47% (model performance PlanetScope: R2 = 0.90, bias of 
0.37%), and a total area of 5,951 km2 is covered by urban trees (Fig. 2 and 
Table 1). Urban trees are not evenly distributed among cities (Fig. 2).  
We grouped cities into five classes according to the city population 
sizes33 (Table 1). Mega-cities have a higher mean tree cover as compared 
with large and medium-size cities (Table 1, Fig. 2a,b and Supplementary 

preservation of urban trees6,17. Other, shorter vegetation types, such as 
shrubs and grasses, do not provide such benefits to the same extent18.

Recent studies observed a considerable greening of urban areas in 
China over the past decade from the use of coarse resolution satellite 
time series1,2. Some studies have further documented that the green-
ing of urban core areas has balanced vegetation losses associated 
with urbanization19 and suggested that the greening of urban areas is 
related to greening policies2,4. However, a greening trend is not neces-
sarily related to changes in tree cover, and it remains unclear whether 
urban tree cover has increased. This is because cities represent com-
plex and heterogeneous landscapes where vegetation appears with a 
patchy structure20. Urban trees are often scattered irregularly, with 
gaps between them, and the signals from green grasses, trees, shadows 
and buildings are often merged in publicly available satellite images20. 
Those are characterized by a spatial resolution >10 m, limiting their 
applicability to map urban trees, which requires commercial, high-
resolution datasets21. Consequently, tree cover dynamics in Chinese 
cities are not well quantified, and how tree cover dynamics is balanced 
between cities in relation to environmental conditions and urban 
development at the national scale is also not known.

The growing availability of submeter-resolution images from aerial 
campaigns or commercial satellites, such as WorldView or Gaofen-2, 
as well as lidar data enables monitoring of urban trees22–25, but these 
images are expensive and typically not available at repeated time 
steps at city or national scale. This limits their applicability for large-
scale urban tree mapping, and only a few countries have conducted 
nationwide inventories of urban trees21,26, which moreover only rep-
resent snapshots in time. The advent of images from the PlanetScope 
nano-satellite constellation, which provides daily global imagery at a 
resolution high enough to identify single trees (~ 3–5 m), represents 
an emerging alternative for such large-scale mapping21,27. It has been 
shown that these images can support the mapping of individual trees 
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Fig. 1 | Mapping urban tree canopies in China using PlanetScope imagery from 2019. a, Trees in Beijing at 3-m resolution. b, Tree cover in Beijing aggregated to 1 ha 
(100 m × 100 m). c, Zoom-in of PlanetScope true-color images and urban trees mapped at 3 m from 2019.
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Fig. 3b): The four mega-cities Shanghai (15.80%), Beijing (22.96%),  
Shenzhen (17.44%) and Guangzhou (17.46%) have on average a tree 
cover of 18.41%, and the 11 super-large cities have on average a tree 
cover of 12.44%, for example, Wuhan (11.04%), Tianjin (7.01%), Nanjing 
(21.64%) and Foshan (11.75%) (Table 1 and Supplementary Fig. 3b). The 
15 type I large cities have on average a tree cover of 11.64%, and the 31 
type II large cities have an average tree cover of 11.28% (Table 1). The 180 
small and medium-sized cities with a population <1 million people show 
the highest intraclass variability in urban tree cover, with some cities 
exhibiting the highest and lowest levels of urban tree cover (Table 1 and 
Supplementary Fig. 3). We then analyzed how different factors impact 
on urban tree cover using a factor detector analysis34,35. We found that 
the city-level gross domestic product (GDP) has the strongest explana-
tory power, surpassing the influence of GDP per person, which reflects 
that large and wealthy cities generally have a high tree cover (Fig. 2b,c).

Spatially, the urban tree cover varies across China, with cities in 
the southwest (16.70%), south-central (12.93%) and northeast (12.68%) 
regions having a higher urban tree cover than the national average 
(Supplementary Fig. 3a). On the contrary, cities in northwestern China, 
characterized by dry climatic conditions, show the lowest urban tree 
cover (6.25%) (Fig. 2a and Supplementary Figs. 3 and 4). Examples 
of cities with low urban tree cover are Xilingol (2.14%), Yulin (2.16%) 
and Aksu (2.18%), all characterized by dry climatic conditions and 
being located at a high elevation (Fig. 2b,d and Supplementary Fig. 4).  

Climatic and topographic factors, such as mean temperature and 
elevation, also represent important explanatory factors in the factor 
detector analysis34,35 (Fig. 2b,d).

Changes in urban tree cover between 2010 and 2019
We acquired high-quality RapidEye satellite imagery for 144 representa-
tive major cities and mapped urban tree canopy cover for 2010 (the 
earliest phase of the lifetime of the satellite constellation) using the 
same deep learning framework as applied for the PlanetScope images 
(Methods and Extended Data Figs. 1 and 2). We report net changes 
(including gains and losses) in tree cover within areas that have already 
been urban in 2010 and also for areas that have been converted to urban 
from other land use types during 2010–2020 (new urban areas) (Table 
1 and Fig. 3). RapidEye provides spatial resolution (~5 m) and image 
quality comparable to PlanetScope (~3–5 m, resampled to 3 m (ref. 
29)) (Extended Data Figs. 1 and 3 and Methods), but at a less frequent 
revisiting time, meaning that not all the cities analyzed in 2019 could 
be covered in 2010 (Methods).

When considering urban boundaries from 2010, at the national 
scale, urban tree cover increased for 86.80% of the cities, from 7.53% 
(performance of the RapidEye model: R2 = 0.84, bias of −0.99%) in 
2010 to 13.92% in 2019 (Fig. 3a). As also observed for urban tree cover 
in 2019, the changes in tree cover are not homogeneous across cit-
ies and are related to the city size: The four mega-cities Shanghai 
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Fig. 2 | Urban tree cover at city level in 2019. a, Urban tree cover for 242 cities. 
Each city is represented by a circle whose size denotes the total urban area 
(frequency plot of urban tree cover, n = 242 cities). b, The relative importance 
of explanatory variables influencing the spatial pattern of urban tree cover at 
city level in 2019 using a factor detector analysis (Q value) (significance tested 
with a two-sided P value: **P ≤ 0.01; *P ≤ 0.05; NS, P > 0.05)34,35. c, Urban tree cover 

grouped by total GDP in 2019 (crosses, mean value; line, median value). In the 
box plots, the lower and upper box limits are the 25th and 75th percentiles, the 
central line is the median, and the upper (lower) whiskers extend to 1.5 and −1.5 
times the interquartile range. d, Urban tree cover in 2019 related to annual mean 
temperature and annual precipitation (n = 242). Colors denote urban tree cover 
(n = 242 cities).
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(9.56%), Beijing (8.68%), Shenzhen (5.12%) and Guangzhou (5.12%) 
have the highest increase (on average, 7.13%) (Fig. 3a and Table 1). The 
changes in the remaining four classes of city groups were on aver-
age lower (0.39–5.20%), with a high variability for the class covering 
small and medium-sized cities (Table 1 and Supplementary Fig. 4d). 
Urban tree cover decreased in 13.2% of all cities, for example, in Zheng-
zhou (−4.54%) and Tianjin (−2.44%) (Fig. 3a). Looking into new urban 
areas (that changed from nonurban to urban during 2010–2019), it 
becomes clear that the tree cover increases happened largely in areas 
that had already been urban in 2010 (Fig. 3b). In particular, small and  
medium-sized cities have seen a considerable tree cover decrease 
(−2.85%) in new urban areas, while areas that were already urban in 2010 
show an increase in tree cover (4.14%) (Fig. 3b). Only mega-cities show 
a strong tree cover increase in new urban areas. The varying tree cover 
changes in new urban areas may be related to the land cover types that 
were replaced by urban expansion during 2010–2019, which was mainly 
cropland in the case of mega-cities (Fig. 3c and Supplementary Fig. 5).

We then studied how different factors impact urban tree cover 
changes (including also new urban areas) (Fig. 3d). Temperature and ele-
vation have the strongest explanatory power for the observed changes in 
tree cover, surpassing the influence of GDP. This shows that geographic 
conditions should be considered when evaluating tree cover changes in 
urban areas (Fig. 3d and Supplementary Figs. 3, 4). We further compared 
the transition of urban tree cover from 2010 to 2019 grouped into classes 
of percentage tree cover for 1-ha grids (Fig. 3e and Supplementary Fig. 6). 
The 1-ha grids with tree cover larger than 50% have seen a slight decrease 
(0.45%), probably reflecting forests that were replaced by impervious 
surfaces. In contrast, grids with a tree cover of 0–1% in 2010 decreased 
by 9.45%, possibly reflecting the impact of greening activities or the 
transition of agricultural areas into urban areas where tree cover is higher 
than on the former croplands (Fig. 3b,c,e). Grids with tree cover of 1–10% 
increased by 4.10%, grids with 10–25% tree cover increased by 3.95% and 
grids with tree cover 25–50% increased by 1.85% (Fig. 3e).

Tree cover for different urban land use types
We aggregated mean tree cover for different urban land use types on 
the basis of land use categories from 201836 (Fig. 4a–d and Methods). 
Our results show that the highest tree cover was found in public man-
agement and service areas (20.35%), while commercial areas had the 
lowest tree cover (6.11%) in 2019 (Fig. 4d). Transportation areas had a 
mean tree cover of 11.46%, industrial areas had 9.04% and residential 
areas had a tree cover of 12.67% (Fig. 4d). Mega-cities have considerably 
more trees in public and residential areas as compared with large and 
small cities (Fig. 4d). Considering the diversity of residential areas, 
we used the year when the areas were converted from other land use 

forms (such as cropland) to built-up (on the basis of annual maps on 
impervious surface37), to reflect the construction year (Fig. 4b,c). When 
comparing the current tree cover of residential areas built in different 
time periods, we found that residential areas built before 1995 have a 
relatively low tree cover (10.98%) (Fig. 4e,f). Residential areas built after 
1995 have a tree cover of 15.34%, which could be an indication of the 
effectiveness of urban green management implemented after 1992 (Fig. 
4f). Residential areas built after 2015 have a lower tree cover (5.23%), 
probably because trees in newly built residential areas have not been 
planted or are still too small to be detected by the satellite data. Public 
management and service areas had the greatest increase in tree cover 
(+3.01%) for 2010–2019, and also commercial areas have a positive tree 
cover trend (+1.07%), probably due to newly established urban parks 
(Fig. 4g). Tree cover in transportation and industrial areas (−0.22% 
and −0.57%, respectively) show a decrease, reflecting that greening 
activities rarely target these areas (Fig. 4g).

To study the changes in tree cover within all built-up areas, we 
used annual maps of impervious surfaces to define the year in which 
areas were converted into built-up areas (Methods, Fig. 4a–c and Sup-
plementary Figs. 7 and 8). Areas converted into built-up before 2000 
saw a moderate increase in tree cover by 4% from 2010 to 2019 (Fig. 
4h), while built-up areas converted between 2006 and 2010 showed 
a much higher increase in urban tree cover (5%). For built-up areas 
converted after 2010, smaller increases or even decreases in tree cover 
were observed, probably because trees have not been planted or are 
still too small to be captured by the satellite system6,28. Built-up areas 
converted after 2016 showed a loss of tree cover. These numbers sug-
gest that tree planting can balance the initial loss of trees when built-up 
areas are converted from other land cover forms.

At the city level, most mega- and large cities that have experienced 
rapid urbanization after 2010 show an increase in urban tree cover 
within new built-up areas (Fig. 4j). A few large cities with new-built-up 
areas >100 km2 have experienced a decrease in tree cover, including 
Wuhan (−2.03%), Nanchang (−0.74%), Hangzhou (−4.72%) and Chong-
qing (−6.28%) (Fig. 4j and Supplementary Table 2). For example, Beijing 
shows an increase of 7.8% in urban tree cover in new built-up areas 
(396 km2), probably owing to the plantation of trees4 (Supplementary 
Fig. 7). There is, however, also a number of small cities, such as Enshi 
(Hubei Province), which have experienced a net loss of tree cover in 
urban areas (−20%) without any greening (Supplementary Fig. 8).

Discussion
Urbanization in China promotes economic growth38 and poverty reduc-
tion39 but can at the same time cause the expansion of built-up areas and 
loss of natural lands1, which challenges the sustainable development of 

Table 1 | Urban tree cover and population density in 2019 and tree cover changes (from 2010 to 2019) grouped by city 
population sizes33

Population 
(million 
persons)

Cities 2019 Change from 2010 to 2019

Count Population 
density in 2019 
(persons km−2)

Urban 
area (km2)

Tree 
cover (%) 
(bias of 
0.37%)

Count Change in 
population density 
(persons km−2)

Urban area (km2) Tree cover (%) 
(bias of 1.07%)

<1 Small and medium-
sized cities

181 6,350 18,950 11.28 100 732 5,949 (10,790) 4.14 (1.00)

(1, 3) Type II large cities 31 5,453 8,733 11.08 21 768 3,547 (5,923) 5.2 (3.21)

(3, 5) Type I large cities 15 6,681 7,818 11.64 9 1018 3,059 (4,834) 5.01 (2.53)

(5, 10) Super-large cities 11 6,544 9,403 12.44 10 847 6589 (8,718) 0.39 (0.27)

>10 Mega-cities 4 6,605 6,574 18.41 4 989 5148 (6,575) 7.13 (6.64)

China 242 6,283 51,544 11.47 144 776 25,048 (36,906) 6.39 (4.57)

Note that the change analysis includes fewer cities owing to the lower number of high-quality RapidEye images available in 2010. We report changes based on urban area boundaries in 
2010, excluding areas that have been converted to urban during 2010–2019 (as defined in Methods), and also for urban areas in 2020 in parenthesis, which includes urban expansion areas 
during 2010–2020.
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Chinese cities40. Urban trees are a key component of urban ecosystems 
and a possible pathway toward improved quality of life in large cities41,42. 
Consequently, the Chinese government has promoted the planting and 
maintenance of urban trees, aiming at mitigating the negative effects 
of urbanization and improving the urban environment4.

Previous studies have shown a widespread greening of Chinese 
cities1,19, based on vegetation indices such as Normalized Difference 
Vegetation Index (NDVI), but the somehow fuzzy variable termed 
‘greenness’ includes also grasses and shrubs19. Greenness maps derived 
from vegetation indices lack units and are less well suited for quantify-
ing changes, being merely indicative for reporting directions of change. 
However, NDVI has often been used as a proxy for suggesting changes 
in urban tree cover43–45. Interestingly, when comparing greenness 
changes (reflected by Moderate-Resolution Imaging Spectroradiom-
eter (MODIS) NDVI) with tree cover changes during 2010–2019, we find 
a weak relationship (r2 = 0.10), indicating the limited use of greenness 
as a proxy for urban tree cover changes (Supplementary Fig. 9), and 
also high resolution Sentinel-2-based NDVI does not correlate well 
with our tree cover maps at the city scale (Supplementary Fig. 10). 
Our tree cover maps for 2010 and 2019 show a clear increase in tree 
cover, probably as a consequence of urban tree plantations (Extended 
Data Figs. 2 and 4), but we also reveal that large cities, and in particu-
lar mega-cities, have a considerably higher tree cover and tree cover 
increase as compared with the majority of cities in China. Our results 
indicate that economic differences, but also climate and topography, 
determine differences in tree cover, which was also observed at a global 
scale46. Developed and wealthy regions, such as many cities in North 
America and Europe (or more generally, the Global North), have made 
substantial investments in the planting and maintenance of urban 

trees47,48, which arguably has improved the well-being of residents49,50. 
In contrast, many densely populated cities, often located in the Global 
South, have limited resources for maintaining or increasing tree cover, 
which impacts people’s health, for example, via heatwaves51. These 
effects are aggravated by climatic conditions: in dryer regions, the 
costs of planting and managing urban trees is higher, but at the same 
time, the health benefits, such as the cooling effect, are more urgently 
needed52. Moreover, relative increases in tree cover may also be related 
to the rate of urban expansion of a city during 2010–2019 (Fig. 4j). The 
net decline in tree cover in some cities is probably related to new urban 
areas where trees that were potentially planted have not yet reached a 
size that makes them detectable by the satellite data used6,28.

While the apparent success story of increased tree cover in China’s 
cities is notable, a comprehensive evaluation of the sustainability of 
urban tree management must consider the uneven distribution and 
the influence of geographic and climate factors. Our study found 
that the explanatory power of relative GDP is lower than that of the 
total GDP, which indicates that increasing urban tree cover is not to 
the same extent a priority of smaller wealthy cities as compared with 
large cities. This concurs with the fact that larger cities exhibit the most 
pronounced challenges associated with urban heat islands, marked 
by elevated daytime temperatures, reduced nighttime cooling and 
higher levels of air pollution. To address these issues, a potential miti-
gation strategy involves augmenting tree cover within urban areas. 
Additionally, our research reveals a considerable variability in tree 
cover among emerging cities, a phenomenon partially influenced by 
climatic and geographic conditions. In particular, the low tree cover 
in northwestern China, predominantly in developing medium and 
small cities, may be attributed to the substantial costs associated with 
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nonurban lands from new urban areas (2010–2020) based on GlobeLand30 land 
cover maps56. d, The relative importance of explanatory variables influencing 

the spatial pattern of changes in urban tree cover using a factor detector analysis 
(Q value) (significance tested with a two-sided P value: **P ≤ 0.01; *P ≤ 0.05; NS, 
P > 0.05)34,35. e, Transitions of tree cover (grouped into intervals of percentage 
cover per hectare) from 2010 to 2019 for 1-ha grids in urban areas (n = 3,531,113). 
Note that d and e are based on both areas that have already been urban in 2010 
and new urban areas.

http://www.nature.com/natcities


Nature Cities

Article https://doi.org/10.1038/s44284-025-00227-9

planting and managing urban trees in these dry regions, for example, 
owing to expenses related to irrigation53. Therefore, in arid regions, 
it is advisable to select drought-tolerant tree species or implement 
alternative strategies such as incorporating short vegetation to ensure 
sustainable greening practices. With global warming, the maintenance 
costs associated with irrigation might increase, which may require the 
use of natural-based solutions that are adapted to the local climate 
and the preservation of existing trees54. In response to these issues, 

the Chinese government released new guidelines on the development 
of nature-based solutions for urban parks and forests in 2021, which 
emphasize the importance of natural-based planning and implement-
ing rainwater harvesting for irrigation as important components of 
urban green management55.

Uncertainty within our study pertains to several factors. First, 
the definition of urban areas is based on continuous built-up areas 
using a previously published land cover map56. The definition may 
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Fig. 4 | Urban tree cover related to urban land use types in China. a, Urban land 
use categories (EULUC-China36), using Beijing as an example. b, Annual artificial 
impervious areas for 1985–2018 from the GAIA product37. c, Construction year of 
residential areas (Methods). d, Mean tree cover in 2019 for different urban land 
use types grouped by city size33. e, Examples of residential areas built in different 
periods: before 1985 (e1), 1999 (e2), 2003 (e3) and 2016 (e4), illustrated by very-high-
resolution satellite images (WorldView, 2024 Maxar Technologies) and tree canopy 
cover for 2019. f, Mean tree cover in residential areas in China during 1985–2018,  

grouped by construction year. The fit lines were fit by scatterplot smoothing 
(LOESS), and the shaded areas indicates the 95% confidence interval for the LOESS 
estimate. g, Tree cover changes for 2010–2019 for different urban land use types. 
h, Mean tree cover for areas of different construction years (that is, conversion 
from other land use into urban built-up) during 1991–2018. The fit orange line and 
confidence areas (gray color, 95%) were fit by the LOESS function. i, Changes in 
tree cover and new built-up areas for 2010–2019 at the city level (n = 144). Colors 
denote geographical zones. Mega-cities are labeled with city names.
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exclude subcenters or outskirt towns, which could lead to different 
values from our study as compared with national statistics that base 
calculations on urban tree cover using administrative borders. Second, 
the current tree cover change maps are only based on satellite data 
from two years (2010 and 2019) and therefore do not provide annual 
information that would give more detailed insights into the effects 
of urban tree management. The tree cover assessments for these two 
years were conducted by different satellite remote sensing systems, and 
a thorough intercomparison showed that there is no systematic bias 
between the sensor systems. While the availability of the satellite data 
used is lower before 2019, newer PlanetScope satellites now provide 
daily images, allowing for a continuation of this work and a consistent 
monitoring of annual urban tree cover after 2019. Third, the use of this 
type of optical images limits the analyses to the metric of tree cover, 
which does not provide information on tree size and species, which is 
however important in regards to the ecological services provided57. 
Finally, shadows cast by tall buildings may reduce the detectability 
of trees to some extent. The inclusion of lidar, drone and field data 
is essential to enhance the mapping accuracy and leverage further 
information on urban trees. Future research should further examine 
the driving mechanisms and consider various socioeconomic factors, 
local climate zones and urban growth patterns.

Our study is based on commercial imagery, and the costs of 
repeated analyses at the national level are currently not negligible for 
a large-sized country such as China. However, the spatial resolution 
and coverage of publicly available data sources are not yet sufficient 
for mapping trees as single objects, often leaving a high uncertainty 
on mapping urban tree cover and in particular changes thereof. Nev-
ertheless, the costs of nanosatellite images are considerably lower as 
compared with traditional commercial submeter-resolution imagery, 
and our study demonstrates that current technologies enable compre-
hensive monitoring of tree cover changes not only in Chinese cities 
but worldwide. This is expected to facilitate evidence-based decision-
making and foster global collaboration in urban greening initiatives for 
different countries as pledged by the 11th UN Sustainable Development 
Goal (sustainable cities and communities) advocating for creating 
green public spaces58.

Methods
To calculate the change in urban tree cover over the past decades, we 
defined urban areas from a land cover map and selected the major 242 
cities in China. We then mapped urban tree canopies using PlanetScope 
images from 2019 and RapidEye images from 2010 using a deep learning 
framework and compared the dynamics of urban trees between cities, 
as well as for various urban land use types.

Defining urban areas
We selected 242 cities by their size (area ≥50 km2), using the ‘artificial 
surface’ class from the GlobeLand30 land cover map in 2020 provided 
at 30 m spatial resolution56. Areas classified as grassland and forest 
within built-up areas were included as urban areas. We also use Google 
Earth satellite imagery to double-check all urban boundaries, reviewing 
misclassifications and confirming the urban areas as spatially continu-
ous built-up areas. Shijiazhuang City was omitted owing to the lack 
of high-quality PlanetScope images for 2019. We then classified the 
cities into five population size groups according to the latest standard 
released by China’s State Council in 201433 (Table 1 and Extended Data 
Fig. 5), including 4 mega-cities (population ≥10 million), 11 super-large 
cities (population ≥5 million), 15 type I large cities (population ≥ 3 mil-
lion), 31 type II large cities (population ≥1 million) and 181 small and 
medium-sized cities (population <1 million) (Table 1 and Extended Data 
Fig. 5). The cities were divided into six geographical zones to compare 
the regional differences in urban tree cover: northeast China (23 cit-
ies), north China (28 cities), east China (99 cities), south-central China 
(63 cities), northwest China (18 cities) and southwest China (11 cities) 

(Extended Data Fig. 5). High-quality RapidEye images from around 
2010 covering 144 cities were used to study changes in urban tree cover. 
These cities are representative for all climatic conditions, geographical 
zones and different stages of cities (Extended Data Fig. 5). The same 
urban boundaries from 2020 were used to compare the net change of 
tree cover. Moreover, we also defined urban areas in 2010 on the basis 
of the built-up areas from the GlobeLand30 land cover map56 in 2010. 
We then compared the change in tree cover in areas that were already 
urban in 2010 and new urban areas, that is, areas converted from non-
urban into urban land use during 2010–2020 (Supplementary Fig. 11).

Preprocessing PlanetScope and RapidEye images
We use PlanetScope images (four bands: red, green, blue and near-
infrared) at 3 m spatial resolution29 to generate annual composites 
for 242 cities in 2019. The images were acquired during a phenologi-
cal window where trees have green leaves but grasses have passed 
their productivity peak, which is defined using the MODIS phenology 
product. For more details, see ref. 28. We organized and mosaicked raw 
satellite scenes in grids of 1° × 1° (ref. 28). We then upsampled Planet 
images from 3 m to 1 m using bilinear interpolation to preserve the high 
quality of the manual training samples and smooth the boundaries of 
tree canopies28.

The RapidEye images have a spatial resolution of ~5 m and are 
acquired in five spectral bands, including blue, green, red, red-edge 
and near-infrared. We used RapidEye images from around 2010, pre-
processed in the same manner as the PlanetScope images. Owing to 
the lack of reliable metadata on cloud cover, we only kept cloud-free 
RapidEye imagery for 144 cities by visually screening the images and 
disregarding cities with low data quality. Furthermore, a few patches 
within urban areas that had no available observations from either 
PlanetScope in 2019 or RapidEye in 2010 were also excluded from the 
analysis. This was done to ensure a consistent comparison of changes 
in tree cover within urban areas.

Segmentation of tree canopies using deep learning
We used the framework from refs. 30,28 to segment tree canopy cover 
using a convolutional neural network, specifically the U-Net architec-
ture. We trained two models, one for PlanetScope and one for RapidEye. 
The models were trained with a batch size of 32 and a patch size of 
256 × 256 pixels, and the Tversky loss was used as the loss function to 
balance the commission (60%) and omission errors (40%) (see Sup-
plementary Table 1 for specific settings). The training labels included 
individual tree crowns and clusters of trees and covered 209.29 km2 
over 496 sample sites for 2019, including 34.74 km2 of trees distributed 
across 69 cities (Supplementary Fig. 1a and Supplementary Table 1). 
For the 2010 RapidEye data, we delineated tree canopies for 481 sites, 
covering 74.15 km2 across 57 cities (Supplementary Fig. 1b and Sup-
plementary Table 1) and trained a model in the same way as was done 
for PlanetScope.

Evaluation and comparison
We compared our maps with an evaluation dataset consisting of 185 
randomly selected 100 × 100 m patches with manual labels from Plan-
etScope and RapidEye images (Extended Data Fig. 6). The data used 
for evaluation were not used for training the models or selecting the 
hyperparameters. The PlanetScope model showed an overall accuracy 
of 0.90, a kappa coefficient of 0.85, a mean absolute error (MAE) of 
0.37% and a root mean square error (RMSE) of 7.69% (Extended Data 
Fig. 6a–c,f). The RapidEye model achieved an overall accuracy of 
84%, a kappa coefficient of 0.78, an MAE of −0.99% and an RMSE of 
9.84% (Extended Data Fig. 6a,b,d,g). To evaluate the uncertainty of 
the change between RapidEye and PlanetScope, we manually labeled 
changes between 2010 and 2019 for 185 patches and compared the 
results with the model predictions. Here, we obtained an R2 of 0.83, an 
MAE of 1.07% and an RMSE of 8.99% (Extended Data Fig. 6e), suggesting 
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that the intercomparison of tree cover maps derived from two differ-
ent satellite systems is valid. The validation shows higher accuracy in 
areas with larger canopy cover compared with those areas with lower 
canopy cover (Extended Data Fig. 6). Urban forests, with their larger 
canopy areas, can be mapped with lower uncertainty than smaller, 
irregularly scattered trees. We collected high-quality RapidEye images 
from 2019 for six selected cities to study whether there are system-
atic differences between tree cover maps derived from PlanetScope 
and RapidEye imagery, which would lead to biased change values for 
2010–2019 (Extended Data Figs. 1 and 3 and Supplementary Table 
3). The results show that there is no obvious systematic bias (2.39%; 
Supplementary Table 3).

We compared our tree cover map in 2019 with other tree cover 
maps, including the MODIS Vegetation Continuous Fields Yearly Global 
250m (MOD44B version 6) tree cover product54 and the European 
Space Agency (ESA) WorldCover 2020 tree cover map32. Our map 
showed that MOD44B (spatial resolution of 250 m) underestimated 
tree cover in cities by 9.52% (Extended Data Fig. 7a). The mean urban 
tree cover of the Sentinel-2-based WorldCover map from 2020 was only 
0.66% lower as compared with our map, but areas of low tree cover 
were underestimated while areas of higher tree cover were overesti-
mated (Extended Data Fig. 7b). The results showed that 6.79% of the 
tree cover in built-up areas was misclassified in the ESA WorldCover 
2020 map (covering a total of 2,182.12 km2 of urban areas in our study) 
(Extended Data Table 1). The trees omitted by the ESA map are often 
located in densely built-up areas, dominated by small and isolated 
trees. Additionally, almost half of the areas in the class ‘tree cover’ 
were found to be misclassified, as it was found to be dominated by 
shrubland, or grassland (Extended Data Table 1). The Esri land cover 
map59 underestimate urban tree cover, especially in the case of scat-
tered trees (Extended Data Fig. 1).

Urban tree cover for different urban land use types
We used the urban land use category map from 2018 covering the whole 
of China (EULUC-China36) to define different types of urban land use. 
This map combines multiple datasets, including 10-m satellite images, 
OpenStreetMap, nighttime lights, points of interest (POI) and Tencent 
social big data36. EULUC-China classifies urban land into five classes: 
residential, commercial, industrial, transportation, and public manage-
ment and service36. Public management and service areas include land 
used for administrative purposes, education, hospitals, public sports, 
cultural services, parks and green spaces. We examined the distribu-
tion and change in urban tree cover for different urban land use types. 
We further defined the year when residential areas were converted 
from other land use types (such as cropland) using the annual maps of 
artificial impervious surface areas (GAIA)37 (Fig. 4 and Supplementary 
Figs. 6 and 7). We then assessed the urban tree cover in 2019 and the 
change from 2010 to 2019 for residential areas grouped by the year 
they were converted.

Development stages of built-up areas
Annual maps of global artificial impervious surface areas (GAIA) for 
1985–201837 at 30 m resolution were used to identify in which year 
areas were converted into built-up areas in 144 cities. The built-up areas 
continuously expanded over the past decades, thereby indicating in a 
spatially explicit way the expansion of newly constructed built-up areas 
(Supplementary Figs. 6 and 7). The different starting years when first 
observed as built-up serve as an indicator of the development stage of 
built-up areas. The mean tree cover in 2010 and 2019 for annual new 
built-up areas was studied to compare the tree cover change in built-up 
areas at various development stages.

Other datasets and factor detector analysis
We used GlobeLand30 (2010 and 2020)56 to estimate the loss of non-
urban lands to new urban areas between 2010 and 2020. We used the 

WorldPop population density maps60 from 2019 and 2010 to quantify 
the population size for each city and changes in population density. 
WorldPop provides the estimated number of people residing in a 
1 × 1-km grid on the basis of a random forest model and a global dataset 
including administrative unit-based census information, which has a 
higher spatial resolution and update frequency than other population 
datasets60. The yearly precipitation and mean temperature datasets 
are derived from the TerraClimate precipitation dataset for the period 
1970–2015. The elevation for each city was calculated from the Shuttle 
Radar Topography Mission version 3 product61 at a resolution of 1 arc-
sec (~30 m). The mean nighttime light map for 2019 was derived from 
monthly nighttime data from the Visible Infrared Imaging Radiometer 
Suite day/night band62 at 500 m spatial resolution. To indicate the 
economic conditions, the total GDP of each city in 2019 was collected 
from the Chinese Statistical Yearbook. We use the Q value of each factor 
from a factor detector analysis35 to quantify their relative importance 
for explaining urban tree cover in 2019 and changes in tree cover from 
2010 to 2019. The geographical detector model was used to analyze 
influencing factors, including spatially correlated variables63,64. In 
this study, we included GDP for 2019, GDP per capita, urban areas and 
population size as socioeconomic factors, while mean temperature 
and mean precipitation for each city were included as climate factors 
to assess both the effects of urban tree cover in 2019 and the changes 
in urban tree cover between 2010 and 2019. The optimal parameters-
based geographical detector model34 was used to automatically select 
the best way of stratifying the continuous values of the variables, 
including equal distribution, natural breaks, quantile interval, geo-
metric interval and standard deviation interval. We then estimated the 
importance of multiple factors with the stratified variables by using the 
factor detector approach. Higher Q values indicate greater importance 
in explaining urban tree cover and its changes.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The high-resolution tree canopy and changes in tree cover are available 
at https://ee-xzrscph.projects.earthengine.app/view/china-urban-tree-
change. PlanetScope imagery and RapidEye imagery in urban areas 
over China are available via Planet Labs at https://www.planet.com/
products/ upon acquiring a license agreement. The GlobeLand30 land 
cover dataset (2010 and 2020) is available at http://www.globalland-
cover.com/home_en.html. The ESA WorldCover 2020 land cover map 
is available at https://worldcover2020.esa.int/. Annual maps for the 
global artificial impervious areas (GAIA) dataset are available at http://
data.ess.tsinghua.edu.cn. The essential urban land use categories map 
in China (EULUC-China) is available at http://data.ess.tsinghua.edu.
cn/. VIIRS-DNB nighttime light is available via the Google Earth Engine 
at https://developers.google.com/earth-engine/datasets/catalog/
NOAA_VIIRS_DNB_MONTHLY_V1_VCMCFG. GDP data are accessible 
from the National Bureau of Statistics of the People’s Republic of China. 
Population density data from WorldPop in 2019 are available at https://
www.worldpop.org. The administrative boundaries in China are avail-
able via the national catalog service for geographic information at 
https://www.ngcc.cn/.

Code availability
The code for the tree canopy detection framework based on U-Net is 
available via Zenodo at https://doi.org/10.5281/zenodo.3978185 (ref. 65).
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Extended Data Fig. 1 | Comparison of PlanetScope tree canopy mapping 
with other products. a, Google Earth satellite images (Google, 2023 Maxar 
Technologies). b, PlanetScope Image 2019 (RGB: NIR/G/B). Credit: Planet Labs 
PBC. c, PlanetScope tree canopy mapping 2019. d, Tree canopy from the ESA 

2020 Land cover map32. e, Tree canopy based on the Esri land cover map 202059. 
f, RapidEye image 2019 (RGB: NIR/G/B). Credit: Planet Labs PBC. g, RapidEye tree 
canopy cover in 2019.
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Extended Data Fig. 2 | Examples showing changes in tree canopy cover from 
2010 to 2019. a, Change in tree cover in 1 ha grids (2010–2019). b, The prediction 
of tree canopy cover is based on RapidEye imagery in 2010. c, The prediction 

of tree canopy cover is based on PlanetScope imagery in 2019. d, Google Earth 
historical imagery in 2010 (Google, 2024 Maxar Technologies). e, Google Earth 
historical imagery in 2019 (Google, 2024 Maxar Technologies).
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Extended Data Fig. 3 | Comparison of PlanetScope and RapidEye in 2019. a, Google Earth satellite images (Google, 2024 Maxar Technologies). b, PlanetScope Image 
2019 (RGB: NIR/G/B). c, PlanetScope tree canopy cover in 2019. d, RapidEye image 2019 (RGB: NIR/G/B). e, RapidEye tree canopy cover in 2019.
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Extended Data Fig. 4 | Examples of urban greening in various urban land use 
types. a, Google Earth satellite images (Google, 2024 Maxar Technologies).  
b, RapidEye Image 2010 (RGB: NIR/G/B). c, RapidEye image 2019 (RGB: NIR/G/B). 

d, Areas of increasing and decreasing urban tree canopy cover between 2010 and 
2019, with unchanged canopy areas excluded. Credit: a, Google Earth;  
b,c: Planet Labs PBC.
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Extended Data Fig. 5 | Cities studied in 2010 (n = 144) and 2019 (n = 242). a, Spatial distribution of cities studied in 2010 and 2019. b, Mean temperature and annual 
precipitation of cities analyzed. c, Number of cities in the different geographical zones. d, Urban areas of the analyzed cities. e, Cities grouped by their population size 
(see Methods).
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Extended Data Fig. 6 | Comparison between manually labeled areas from the 
test dataset and the corresponding predictions for 185 patches (the size of 
each patch is 1 ha). a, Location of patches for evaluation. Map data retrieved 
from Google, 2023 Maxar Technologies. b, Examples of patches with labeled 
tree canopy cover for 2010 (b1) and 2019 (b2) and prediction (b3). c, Comparison 
between predictions and manual labeling for PlanetScope 2019 tree canopy 
cover. d, Comparison between predictions and manual labeling for RapidEye 
2010 tree canopy cover. e, Comparison of tree canopy cover changes from 2010 

to 2019 between model predictions and manual labeling. f, Statistical evaluation 
metrics for the PlanetScope 2019 tree canopy cover mapping (※: mean value; –:  
median value). g, Statistical evaluation metrics for the RapidEye 2010 tree 
canopy cover mapping (※: mean value; –: median value). Basemap in a is from 
Google Maps Google Earth Satellite Imagery from 2023 (Imagery 2023, Maxar 
Technologies). In the box plots the lower and upper box limits are the 25th and 
75th percentiles, the central line is the median, and the upper (lower) whiskers 
extend to 1.5 (−1.5) times the interquartile range.
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Extended Data Fig. 7 | Comparison of tree cover predictions from PlanetScope 
and other tree cover products in urban areas. a, Density plot for the 
PlanetScope-based 2019 tree cover and MOD44B 2019 tree cover. b, Box plot for 
the PlanetScope-based 2019 tree cover and ESA WorldCover 202032 tree cover  

(×: mean value; –: median value). c, Histogram of PlanetScope 2019 tree cover and 
ESA WorldCover 202032 tree cover in urban areas. In the box plots the lower and 
upper box limits are the 25th and 75th percentiles, the central line is the median, 
and the upper (lower) whiskers extend to 1.5 (−1.5) times the interquartile range.
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Extended Data Table 1 | Mean tree cover by land cover class. Land cover classes are derived from the ESA WorldCover 2020 
map32

Land cover type (ESA WorldCover 
2020) 

Total area (km2) 
PlanetScope tree cover 
(%) 

Tree Cover 65291.74 48.26 

Shrubland 806.22 23.02 

Grassland 11301.15 14.24 

Cropland 74083.89 17.59 

Built-up 401606.23 6.79 

Bare/sparse vegetation 85634.48 6.41 

Permanent water bodies 9461.42 5.27 

Herbaceous wetland 161.62 12.46 

http://www.nature.com/natcities
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection We used open source python (3.8.6) to collect dataset. the code is available Code for preparation of imagery from PlanetScope raw scenes 
has been deposited in the Zenodo database and is available at https://doi.org/10.5281/zenodo.7764359

Data analysis We used open-source Python (version 3.8.6) to perform the analysis. The code for the tree canopy detection framework based on U-Net is 
publicly available at https://doi.org/10.5281/zenodo.3978185.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The high-resolution tree canopy and changes in tree cover can be visualized at https://ee-xzrscph.projects.earthengine.app/view/china-urban-tree-change. 
PlanetScope imagery and RapidEye imagery in urban areas over China is available from Planet Labs (https://www.planet.com/products/) upon acquiring a license 
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agreement. GlobeLand30 land cover dataset (2010, 2020) is available at http://www.globallandcover.com/home_en.html. The ESA WorldCover 2020 land cover 
map can be downloaded at https://worldcover2020.esa.int/. Annual maps for the global artificial impervious areas (GAIA) dataset can be downloaded from http://
data.ess.tsinghua.edu.cn. The essential urban land use categories map in China (EULUC-China) is available at http://data.ess.tsinghua.edu.cn/. Population density 
data from WorldPop in 2019 can be downloaded at https://www.worldpop.org. The administrative boundaries in China are accessible from the national catalog 
service for geographic information (https://www.ngcc.cn/).

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender NA

Reporting on race, ethnicity, or 
other socially relevant 
groupings

NA

Population characteristics NA

Recruitment NA

Ethics oversight NA

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We used PlanetScope satellite data for 2019 and RapidEye imagery for 2010 to map urban tree cover and study the dynamics of trees 
between 2010 and 2019 in urban areas across China.

Research sample The data used for this study consisted of 3-meter, 4-band satellite imagery from PlanetScope, and 5-meter, 5-band satellite imagery 
from RapidEye. The study area comprises China's urban areas, defined by a land cover map. The high-resolution satellite images were 
obtained from Planet Labs via their API, with raw scenes downloaded through the Planet API and then merged into 1x1 degree 
composite mosaics. The satellite imagery for 2010 and 2019 was then clipped to match the urban areas.

Sampling strategy Urban areas larger than 50 km² and available within cloud-free PlanetScope and RapidEye coverage are included. 

Data collection High-resolution imagery from two satellites was collected through the Planet API by Florian Reiner, Martin Brandt, and Xiaoxin Zhang.

Timing and spatial scale The date range for each mosaic is specific to the phenology of the urban areas cover 245 cities in China for 2019 and 145 cities for 
2010.

Data exclusions Among all available PlanetScope and RapidEye images, scenes were filtered first by date range using the phenology-determined 
temporal window, and then by quality using API filters based on factors such as percent cloud cover, haze, and visual confidence. 
From these selected scenes, only a subset was used to create a gap-less mosaic. Scene footprints were clipped prior to downloading 
to minimize redundant data retrieval.

Reproducibility With the deep learning framework used, predication of trees canopy cover is deterministic, i.e.. predicting the same image several 
times will always give the same results.

Randomization NA

Blinding NA

Did the study involve field work? Yes No
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes NA

Seed stocks NA

Authentication NA
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